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ABSTRACT

Though Mel frequency cepstral coeÆcients (MFCCs)
have been very successful in speech recognition, they have
the following two problems: 1) They do not have any
physical interpretation, and 2) Liftering of cepstral coef-
�cients, found to be highly useful in the earlier dynamic
warping-based speech recognition systems, has no e�ect in
the recognition process when used with continuous obser-
vation Gaussian density hidden Markov models. In this
paper, we propose to use the �lter-bank energies (FBEs)
as features. The FBEs are physically meaningful quanti-
ties and amenable for applying human auditory processing
such as masking. We describe procedures to decorrelate
and lifter the FBEs and show that the FBEs perform at
least as good as (and sometimes even better than) the
MFCCs for robust speech recognition.

INTRODUCTION

Mel frequency cepstral coeÆcients (MFCCs) are per-
haps the most widely used features for speech recognition
[1, 2, 3]. The MFCCs are computed from the speech signal
using the following three steps [4]:

1. Compute the FFT power spectrum of the speech
signal.

2. Apply a Mel-spaced �lter-bank to the power spec-
trum to get N energies. (N is typically 20 to 60).

3. Compute discrete cosine transform (DCT) of log
�lter-bank energies to get MFCCs. (M is typically
about 10.) The DCT is applied to �lter-bank en-
ergies (FBEs) to mainly decorrelate them and get
(approximately) uncorrelated MFCCs.

Though MFCCs have been very successful in speech
recognition, they have the following two problems: 1)
They do not have any physical interpretation, and 2) Lif-
tering of cepstral coeÆcients, found to be highly useful
in the earlier dynamic warping-based speech recognition
systems, has no e�ect in the recognition process when
used with continuous observation Gaussian density hid-
den Markov models (HMMs).

The �lter-bank energies (FBEs) have a clear physi-
cal interpretation which can be used advantageously for
incorporating the properties of human speech perception
system (such as masking) into the automatic speech recog-
nition process. A question arises whether one can use the
FBEs as features for speech recognition. In fact, the FBEs
have been used in 50's, 60's and 70's for speech recognition
[5, 6, 7, 8]. However, they have been abandoned in favor
of the cepstral coeÆcients because of the following two

problems: 1) Use of 20 to 60 FBEs increases the dimen-
sionality of feature space, and 2) The FBEs are highly
correlated. The �rst problem can solved by restricting
the number of FBEs computed from the FFT spectrum
to about 10 (i.e., by making N equal to M). The second
problem can be solved by �ltering the FBE sequence of
a given frame so as to remove correlation among them.
Another advantage of FBEs is that the phenomenon of
cepstral liftering can be easily applied on FBEs, which is
e�ective in the recognition process even with continuous
observation Gaussian density HMMs.

In this paper, we investigate the use of the �lter-bank
energies (FBEs) as features. We describe the decorrela-
tion and liftering of FBEs. We carry out speech recogni-
tion experiments with clean as well as noisy speech and
quantify the e�ect of decorrelation and liftering of FBEs
in terms of their speech recognition performance. A num-
ber of studies on this topic have been reported earlier by
Nadeu and his collaborators [9, 10, 11].

ROLE OF CEPSTRAL LIFTERING IN

SPEECH RECOGNITION

In the 70's and early 80's, the dynamic time warping
(DTW) based framework was the most popular approach
for speech recognition. In this framework, the dissimi-
larity between the test vector x and the mean vector x̂
representing a given class is measured in terms of the Eu-
clidean distance measure of the form:

d(x; x̂) = (x� x̂)
t
(x� x̂);

=

DX
i=1

(xi � x̂i)
2
; (1)

where D is the dimensionality of the feature space and the
superscript t denotes transpose of a vector (or matrix).

If the cepstral coeÆcients are used as recognition fea-
tures, then it has been demonstrated through a number
of studies [12, 13, 14, 15, 16] that the performance of the
speech recognition system can be improved signi�cantly
by liftering the cepstral coeÆcients. If xi is the i-th cep-
stral coeÆcient, then the corresponding liftered cepstral
coeÆcient is given by

yi = wixi; (2)

where weights wi; i = 1; 2; :::; D, de�ne the lifter. The dis-
tance measure in terms of the liftered cepstral coeÆcients
is given by

d(y; ŷ) = (y� ŷ)
t
(y� ŷ);
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=

DX
i=1

(yi � ŷi)
2
;

=

DX
i=1

[wi(xi � x̂i)]
2
; (3)

Various types of lifters are proposed in the literature.
Some of the important lifters are listed below.

1. Linear lifter [12]:

wi = i: (4)

2. Statistical lifter [12, 13]:

wi = 1=�̂i; (5)

where �̂i is the standard deviation of the i-the cep-
stral coeÆcient computed from the training data.

3. Sinusoidal lifter [14]:

wi = 1 +
D

2
sin(

�i

D
): (6)

4. Exponential lifter [15]:

wi = i
s
exp(�

i2

2�2
); (7)

where s and � are constants. Their typical values
are s = 1:5 and � = 5.

Note that the weights wi in the linear and statistical lifters
increase with quefrency i, thus giving more importance
to higher cepstral coeÆcients in the computation of dis-
tance d(y; ŷ) (Eq. (3)). In the sinusoidal and exponential
lifters, the weights wi initially increase with i, attain a
maximum and then start decreasing with an increase in i.
Thus, these lifters provide less weight to both lower and
higher cepstral coeÆcients in distance computation.

In order to illustrate the importance of cepstral lifter-
ing, we provide here in Table 1 speech recognition results
from our earlier study [17]. These results were obtained
from a speaker-dependent isolated-word speech recogni-
tion system using the DTW-based framework. Recogni-
tion experiments were conducted on speech from 4 speak-
ers and used an alpha-digit vocabulary of 39 words con-
sisting of the 26 letters of English alphabet (A-Z), 3 com-
mand words (stop, error and repeat) and the ten En-
glish digits (zero-nine). Ten cepstral coeÆcients derived
through linear prediction analysis were used as recogni-
tion features. Speech recognition performance was eval-
uated for clean speech as well as noisy speech which was
obtained by adding white Gaussian noise to clean speech.
Table 1 lists speech recognition accuracy (in %) for di�er-
ent signal-to-noise ratio (SNR) values. It can be observed
from this table that all the four types of cepstral lifter-
ing help in recognizing clean as well as noisy speech bet-
ter. However, improvement in recognition performance
due to liftering is much better for noisy speech than that
for clean speech. Similar improvements have been ob-
served by other researchers [16, 15].

In order to understand why cepstral liftering helps
speech recognition, note that the cepstral coeÆcients are
obtained by taking inverse Fourier transform of the log-
power spectrum. In cepstral liftering, the cepstral coeÆ-
cients fxig are multiplied by the weights fwig. The mul-
tiplicative weighting is equivalent to convolution in spec-
tral domain where the the log-power spectral sequence is

Table 1: E�ect of cepstral liftering on the performance of
a DTW-based speech recognizer.

Type of SNR in dB
lifter 1 30 25 20 15

No lifter 93.0 70.6 55.9 37.2 24.0

Lin. lifter 94.0 90.8 86.6 80.1 70.6

Stat. lifter 93.9 86.7 78.3 68.3 55.3

Sin. lifter 94.5 85.9 78.9 68.7 51.5

Exp. lifter 94.3 90.1 85.1 78.9 68.1

convolved with a �lter impulse response (determined by
taking Fourier transform of the weight sequence fwig).
It can be shown that the linear and statistical weights
lead to high-pass (HP) �lter in the spectral domain; while
the sinusoidal and exponential weights result in a band-
pass (BP) �lter. All the four types of liftering give less
weight to lower cepstral coeÆcients. This tends to sup-
press slow variations in the log-power spectrum, which
come mainly from factors such as speaker-to-speaker vari-
ability and additive white noise. This is the reason for the
cepstral weighting working so well for noisy speech. Since
the higher cepstral coeÆcients provide less discrimination
for speech recognition than the lower cepstral coeÆcients
[18], the sinusoidal and exponential lifters give less weight
to higher cepstral coeÆcients and, hence, provide better
recognition performance than the other lifters for clean
speech.

So far, we have discussed the role of cepstral liftering
on the performance of the DTW-based speech recognition
system. Currently, the DTW-based framework is rarely
used for speech recognition. Instead, most of the speech
recognition systems presently utilize the hidden Markov
model (HMM) based framework. We show below that
cepstral liftering, found to be highly useful in the earlier
DTW-based speech recognition systems, has no e�ect in
the recognition process when used with continuous obser-
vation Gaussian density HMMs.

In continuous Gaussian density HMMs, the log likeli-
hood of a test vector x belonging to a given class is com-
puted through the following Mahalanobis distance mea-
sure [3]:

d(x; x̂; �̂x) = (x� x̂)
t
�̂
�1

x (x� x̂); (8)

where x̂ and �̂x are the mean vector and covariance ma-
trix, respectively, representing the given class, and are
obtained from the training data of the given class.

When the liftered cepstral coeÆcients (given by Eq.
(2)) are used as recognition features, the Mahalanobis dis-
tance is given by

d(y; ŷ; �̂y) = (y� ŷ)
t
�̂
�1

y (y� ŷ): (9)

Let us de�ne a matrix

W =

2
664

w1 0 0 : : : 0
0 w2 0 : : : 0
0 0 0 : : : 0
: : : : : : :
0 0 0 : : : wD

3
775 :

Then, it can be easily shown that y =Wx, ŷ =Wx̂, and
�̂y = W�̂xW

t. By substituting these equations in Eq.
(9), we get the following equation:

d(x; x̂; �̂x) = d(y; ŷ; �̂y): (10)
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This shows that the Mahalanobis distance remains invari-
ant under liftering of cepstral coeÆcients. Thus, cepstral
liftering has no e�ect in the recognition process when used
with continuous observation Gaussian density HMMs. This
is a major drawback with the cepstral coeÆcients. How-
ever, note that a statistical lifter (similar to Eq. (5))
is implicit in the continuous Gaussian density HMM for-
mulation. Also, note that when discrete density HMMS
with vector quantization and Euclidean distance measure
are used for speech recognition, cepstral liftering o�ers
improvements in recognition performance similar to the
DTW-based framework.

DECORRELATION OF FILTER BANK

ENERGIES

In this paper, our aim is to use FBEs as features for
speech recognition. However, the FBEs have the problem
that they are correlated. If we want to use them with
continuous Gaussian density HMMs with diagonal covari-
ance matrices, we must decorrelate them. This is done as
follows:

Let the N FBEs computed for a given frame are given
by the sequence, en, n = 0; 1; :::; N � 1. We model the
correlation among consecutive FBEs by a linear predictor
(LP)

P (z) =

pX
i=1

aiz
�i
;

where ai, i = 1; 2; :::; p, are the LP coeÆcients. These can
be estimated from the FBE sequence feng of the given
frame using the covariance method of LP analysis. The
decorrelated FBEs are computed by passing the sequence
feng through the inverse �lter A(z) = 1�P (z). If we are
interested in M decorrelated FBE features, then we must
have N =M + p.

LIFTERING OF FILTER BANK ENERGIES

As discussed earlier, the cepstral liftering is achieved
by applying multiplicative weights fwig to cepstral coeÆ-
cients. Because of this, liftering of cepstral coeÆcients has
no e�ect in the recognition process when used with con-
tinuous observation Gaussian density HMMs. Since the
multiplicative weighting of cepstral coeÆcients is equiva-
lent to convolution in spectral domain, liftering of FBEs
can be used with the continuous Gaussian density HMMs
with positive e�ect on recognition performance.

In order to lifter the FBEs, we design an L-th order
�nite impulse response (FIR) �lter

H(z) =

LX
i=0

hiz
�i
;

from the lifter weights fwig using the windowing method.
The liftered FBEs are computed by passing the sequence
feng through the �lter H(z). If we are interested in M
liftered FBE features, then we must have N =M + L.

SPEECH RECOGNITION EXPERIMENTS

AND RESULTS

In this paper, we investigate the use of FBEs as recog-
nition features using a speaker independent isolated word

recognition system as a test bed. For this, we use the ISO-
LET spoken letter database from Oregon Graduate Insti-
tute [19]. Here, the vocabulary consists of 26 English al-
phabets (A-Z). From this data base, we use 90 utterances
for each word from 90 talkers (45 male and 45 female) for
training and 30 utterances for each word from 30 talkers
(15 male and 15 female, di�erent from training talkers)
for testing. In the original data base, these utterances
were digitized at 16 kHz sampling rate. We down-sample
the speech utterances from this data base to 8 kHz us-
ing a lowpass �lter with cuto� frequency of 3.5 kHz. The
speech signal is analyzed every 10 ms with a frame width
of 30 ms (with Hamming window and preemphasis), and
each frame is represented in terms of M = 10 features.

The recognition system uses a multi-mixture contin-
uous density HMM framework. We use a 5-state con-
tinuous density HMM recognizer with probability density
functions approximated by a mixture of 5 multivariate
normal distributions with diagonal covariance matrices.

We investigate the decorrelated and liftered FBEs as
features for recognizing noisy speech. For this, we train
our continuous Gaussian density HMM-based recognizer
on clean speech and test it on white noise corrupted speech
at di�erent SNRs. Table 2 lists results in terms of recog-
nition accuracy (in %) for the following feature sets:

� Feature set 1: 10 FBEs.

� Feature set 2: 10 decorrelated FBEs (obtained by
using �rst order linear predictor P (z) = a1z

�1,
where a1 is computed from the FBEs of a given
frame).

� Feature set 3: 10 decorrelated FBEs (obtained by
using second order linear predictor P (z) = a1z

�1+
a2z

�2, where a1 and a2 are computed from the
FBEs of a given frame).

� Feature set 4: 10 liftered FBEs (obtained by using
H(z) = 1� 0:5z�1).

� Feature set 5: 10 liftered FBEs (obtained by using
H(z) = 1� 0:75z�1).

� Feature set 6: 10 liftered FBEs (obtained by using
H(z) = 1� z�1).

� Feature set 7: 10 liftered FBEs (obtained by using
H(z) = 1� z�2).

� Feature set 8: 10 decorrelated and liftered FBEs
(decorrelation by P (z) from the feature set 3 and
liftering from the feature set 7).

Table 2: E�ect of decorrelation and liftering of FBEs on
the speech recognition performance.

Feature SNR in dB
set 1 30 25 20 15

Set 1 74.3 71.5 66.2 57.4 42.1

Set 2 74.5 73.5 71.5 67.6 57.7

Set 3 65.3 63.5 61.0 56.7 47.5

Set 4 76.0 75.0 71.2 65.6 55.3

Set 5 75.6 74.7 72.8 68.2 59.5

Set 6 75.8 75.6 73.8 70.1 61.7

Set 7 76.5 75.4 72.6 69.1 62.2

Set 8 69.3 69.8 69.3 66.4 58.7

We can make the following observations from this ta-
ble:
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Table 3: Comparison of the MFCC and the liftered FBE
features for speech recognition.

Feature SNR in dB
set 1 30 25 20 15

MFCC:
c 76.4 74.3 71.4 66.2 55.5
c+�c 86.0 83.6 81.8 78.6 71.6
c+�c+��c 89.0 86.5 85.0 82.2 76.6

FBE:
e 76.5 75.4 72.6 69.1 62.2
e+�e 86.6 85.6 84.2 81.3 74.7
e+�e+��e 88.9 87.7 86.5 83.7 77.3

1. Speech recognition performance improves by decor-
relating FBEs using the �rst order predictor. How-
ever, the performance goes down when the second
order predictor is used for decorrelation.

2. Liftering of FBEs always helps in improving the
speech recognition performance. Liftering with the
�lter H(z) = 1� z�2 provides the best results.

3. When both decorrelation and liftering of FBEs are
used, the speech recognition performance goes down.

Thus, we have seen that when we use H(z) = 1� z�2

to �lter the FBE sequence feng to get the liftered FBE
features, we achieve the best results. We will use hereafter
in this paper these liftered FBEs as the FBE features.

Since MFCCs are currently used by most of the re-
searchers as recognition features, we compare the liftered
FBE features with the MFCC features in terms of their
recognition performance. This comparison will help us
in putting the FBE features in proper perspective. Since
temporal derivatives of the feature-vector sequence has
been found to be greatly useful for speech recognition, we
include delta and delta-delta parameters of the MFCCs
and FBEs in the feature set. Results are shown in Table
3. In this table, symbol c is used to denote the MFCCs,
and e the FBEs. It can be observed from this table that
the liftered FBE features perform as well as (and some-
times better than) the MFCC features.

CONCLUSIONS

In this paper, we have investigated the use of FBEs as
features for speech recognition. We have studied the role
of decorrelation and liftering of FBEs and shown that lif-
tering provides best advantage for speech recognition. We
have compared the liftered FBE features with the MFCC
features for speech recognition and found them to be as
good as (and sometimes better than) the MFCC features.
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