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Abstract

This paper reports the work carried out by iTEAM re-
searchers in Passive Acoustic Monitoring (PAM) for un-
derwater monitoring of cetaceans. It includes a
description of novel signal processing algorithms for de-
tection and classification of aguatic mammal species as
well as a hardware system called SAMARUC specially de-
signed in collaboration with marine biologists.

Keywords: Signal processing, Passive Acoustic Monitor-
ing, Marine Bioacoustics Signal Processing, Signal Detec-
tion and Classification.

1. Introduction

Underwater passive acoustic monitoring (PAM) is a non-
intrusive technique that can be used successfully to detect
and classify marine mammals, monitor migratory patterns
and even for density estimation of different species. This
discipline has gained popularity among marine biologists
and other scientists in the last years. The procedure of
PAM involves using recording devices and algorithms. Un-
derwater passive acoustic sensors are also commonly used
in other communities. Navies, for instance, have been
using passive acoustics for a long time, but their systems
are generally expensive, complex and their performance
is usually classified. Biologists on the other hand, use small
and simple recorders for PAM. These recorders are some-
times home-built, or purchased from small specialized
companies. The devices typically employed fall into two
different categories: towed array systems connected to a
boat that record and process the data in a laptop/desktop
computer, and standalone autonomous systems that re-

main underwater for long periods of time and have to be
recovered in order to access the data. In this work, we are
going to focus on these autonomous devices, study their
performance, algorithms and compare them to the sys-
tem developed at the Instituto de Telecomunicaciones y
Aplicaciones Multimedia (iTEAM).

2. Passive acoustic monitoring devices

One of the most successful devices for PAM is the pop-
up buoy developed at Cornell University [1]. The instru-
ment consists of a small-scale recording device placed in
a water-tight glass sphere. This system has been success-
fully employed to monitor the critically endangered north-
ern right whale. Another well known autonomous system
is the HARP instrument developed at Scripps Whale
Acoustic Lab. This system was developed to record baleen
whales that are known to emit low frequency calls (e.g.
fin and blue whales [2], and beaked whales [3]). It is worth
mentioning the C-POD as one of the first systems devel-
oped that makes some signal processing within the in-
sides of the device. Although the C-POD does not record
the raw data, it is capable of detecting cetacean clicks
alongside with some variables such as center frequency,
sound pressure level, duration and bandwidth. The C-POD
works with all toothed cetaceans except sperm whales
and has been recently used for beluga whale monitoring
[4]. Some other devices typically used by biologists are the
EAR [5] as well as other instruments with a limited num-
ber of publications. Table 1 shows a comparative study of
the aforementioned devices.

At the present, the available systems cannot be pro-
gramed to include specific algorithms for whale call de-
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PAM devices System Hydrophone Continuous Max. System autonomy | Storage memory Possibility of including
frequency range | frequencyrange/ | recording/ Deploym automatic detection
sensibility Predetermined ent algorithms
on/off schedule depth
EAR - Oceanwide 20Hz -30kHz 1Hz -28kHz (+/- 1.5 | Predetermined 500m Variable 160Gb No
Science Inst. Hawai dB) on/off schedule
Pop-up MARU - Up to 200kHz - Continuous 6000m 90 days 120Gb No
USA
Cornell University
HARP 2KHz-200 KHz 10 Hz - 100 kHz Both N/A 54 days 16 x 120 GB (IDE) No
AURAL-Canada 10 Hz - 16384 2Hz- 30kHz Both 300m 162-208 days 64MB Flash card No
Multi-Electronique | kHz 320GB Hard Disk
SM2M - USA 4Hz-96 kHz 2-40kHz (+/- 1dB) Both 150m. 62 days -Alkaline 512GB SDXC card. No
Wildlife Acoustics 104 days - Lithium
SM2M Ultrasonic | 4Hz-384 kHz 2-40kHz (+/- 1dB) Both 150m. 25 days -Alkaline 512GB SDXC card. No
Wildlife Acoustics 42 days- Lithium
mRADAR USA 20 Hz- 96 kHz 20 Hz- 50KHz Continuous 100m. 2 -3 days 16 Gb No
Cetacean Research
C-POD Chelonia 20-160 kHz 20 Hz-160 kHz Not raw audio, >100m. 4 months D type SD Card Yes (only detects echo-
Itd. United only events are Alkaline bat. location sounds from
Kingdom available. toothed cetaceans)
SAMARUC 20 Hz -96kHz 16Hz - 44KHz (+/- Both 1000m. 1 month D type SD Card Yes. Entirely
3dB) Alkaline bat. programmable

Table 1. Comparative specifications of the main PAM devices.

tection and classification. Most of the systems work as
digital recorders and the recorded sounds have to be
processed afterwards in regular computers with signal
processing software. Although this may add versatility to
the process it can be a drawback when the system has
to be used by researchers with limited knowledge of sig-
nal processing.

3. Passive acoustic monitoring
algorithms

It is possible to find in the bibliography a large number of
PAM algorithms for specific applications. The majority of
PAM algorithms are based on computing some kind of
time-frequency representation of the acoustic recordings.
The sound patterns or calls of the different species are
searched in these time-frequency representations by
means of various signal processing techniques: spectro-
gram correlation detector (XBAT) [6],[7], cross correlation
with a matched filter kernel [7], [8], two-dimensional lin-
ear FIR filters [9], artificial neural networks [7], [10], and
classification and regression tree classifiers [10] are the
most representative techniques. Some authors propose
using algorithms to remove undesired noise and enhance
the spectrogram. Hussein used in [11] edge detection
techniques to obtain enhanced spectrograms while pre-
serving their temporal and spectral accuracy. Another ex-
ample can be found in [12] where Baumgartner employed
a Gaussian smoothing kernel and a tonal noise-removing
algorithm to reduce ship generated noise.

In the last years, some software packages for PAM have
have been developed. PAMGUARD (an open source proj-
ect for semi automated real time detection), XBAT and
Raven (from the Cornell Lab of Ornithology) are the most
representative. These packages integrate most of the
state of the art algorithms and provide a user-friendly in-
terface for researchers. However, most of these packages

are created as research laboratory tools and require high
capacity processors. Additionally, the user needs to be fa-
miliarized with different signal processing concepts in
order to achieve automatic detection of whale calls.

New technologies have begun to incorporate signal
recognition algorithms for a reduced set of species to be
used in real-time systems while devices are recording
[13], [14]. In order to achieve real time monitoring, a two-
stage process is normally employed. The first stage con-
sists of an activity detector designed to detect any signal
that is not background noise. The second stage is a spec-
tral classifier designed to detect the desired whale vocal-
izations. Different approaches have arisen to design the
optimum and with the lowest computational cost activity
detector: matched filter detector [15], local max detectors
[15], energy detector [16], [17], entropy detector [18],
and power-law detectors [19]. In a similar way, efficient
algorithms for classification based on principal compo-
nent analysis (PCA) with discriminant analysis (DA) to fea-
ture space dimensionality reduction achieve the greatest
separation of classes [20].

On the other hand, algorithms for automatic passive
monitoring of anthropogenic noise have been almost re-
stricted to underwater noise from ships [21]-[23]. It is
very difficult to find any reference of algorithms for pas-
sive monitoring of underwater noise from seismic airgun
surveys for petroleum [24], and naval sonars [25].

Beyond the state of the art of Passive acoustic mon-
itoring algorithm

Even though there has been previous research on opti-
mizing automatic detectors for specific calls or specific
species, the real time detection of any type of call by a
diversity of marine mammal species still poses quite a
challenge. The development of detectors and classifica-
tion algorithms becomes more complicated if we add the
presence of underwater noise from sources such as ship-
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ping, seismic airgun surveys, and naval sonars, that in
some situations can be easily confused with some
cetacean calls. This is of particular relevance if we take
into account that underwater noise is growing at a rapid
rate, with background noise levels doubling every decade
over the last half century [26]. A feasible alternative for
passive acoustic monitoring in the presence of noise con-
sists of incorporating image processing algorithms based
on mathematical morphology to clean up the time-fre-
guency representation. An example can be found in [24]
where the authors designed an automatic detector for
fin whale calls. In this work, it was shown that time-fre-
guency representations contaminated with tonal noise
P(n,k) could be cleaned up by filtering in the Discrete Co-
sine Transform Domain to obtain Pgenoised(nk) as illus-
trated in Equation (1):
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Figure 1. Top figure: time-frequency representation
contaminated with airgun explosions (blue rectangles)
and ship noise (red rectangles). Bottom figure: Time-fre-
quency representation after applying the technique de-
scribed in [24].

Pdenoised (n.k)=P(n,k)-Pp(n,k). (M

Where P,(n,k}=DCT;1,[DCT,,, [P(n,k)]- W(w)] with DCT,,

and DCT‘ufl the direct and inverse Discrete Cosine Trans-
form and W(u) the cosine domain filtering window. Pos-
terior processing of the time-frequency diagram using
row-wise Otsu”s thresholding as well as statistical infor-
mation of fin whale calls allows to distinguish whale calls

from seismic acoustic explosions (see Figure 1).

Advanced techniques employed in voice activity detection
of human speech can also be used to improve the detec-
tion robustness and performance of cetacean call detec-
tion in noisy environments [27]. Some examples are: the
use of Empirical Mode Decomposition (EMD) and variance-
of-instantaneous-frequency detection, that seem to be ad-
equate tools to separate the target echo signal from the
reverberation [28] and the use of Mel-frequency cepstral
coefficients (MFCC) have shown to be very valuable in in-
formation retrieval and audio similarity measurement.

The mel scale approximates many animals’ auditory sys-
tem response in a closer manner than the linear-spaced
frequency bands and gives, in some species, superior
classification percentages to some other features’ extrac-
tion techniques. Following this idea, the authors have
studied an algorithm that applies the MFCCs for classifi-
cation and detection of cetacean sounds, particularly to
the right whales [29].

MFCCs are the results of a cosine transform of the real
logarithm of the short-term energy spectrum expressed
on a mel-frequency scale (Figure 2). The main coefficients
are obtained using Equation (2),

“n” 2;1 log (Sy,) cos [n(k-[O{.ﬂw] .

where n represents the MFCC coefficient number. Fur-
thermore, the static MFCC vector at frame ¢, has 13 delta
(dp) and 13 acceleration coefficients (ay) appended to
yield a 39-dimensional feature vector (Figure 3), where d
and ay are respectively obtained by Equations (3) and (4):

P
2 1 plcrrp—crp)

d,=
DG

, where P=2 (3)
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Figure 2. Block diagram to obtain de MFCC.
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Figure 3. Feature vector.
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Figure 4. General block diagram of the SAMARUC system.
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The choice of this approach is motivated by a desire to
obtain a more accurate detection and classification of a
given whale species sound in low Signal to Noise Ratio
(SNR) recordings. Additionally, using MFCCs makes it not
necessary to compute spectrogram related features mak-
ing these algorithms more appropriate to work in real
time automatic detection systems.

, Where P=2 (4)

Other techniques being studied by the authors, and
whose application has been never, or very little, studied
in cetaceans are the signal modality characterization [30]
and the analysis / synthesis techniques modeling whale
sound production mechanisms. These techniques may
provide important information when trying to under-
stand the nature of the signals and may yield new fea-
tures related to the presence of nonlinearities, chaos
dynamics and whale anatomy of the structures responsi-
ble for sound production.

4. Brief description of the SAMARUC
signal processing and recording
system for PAM

The SAMARUC system is a PAM device that can run real
time signal processing algorithms for detection and classi-
fication of underwater sounds. The major component of
the system is a general purpose ultra low power consump-
tion Digital Signal Processing (DSP) board. The board is
configured in DMA Ping-Pong mode so that signal pro-

cessing algorithms can run simultaneously without sample
loss while the system is recording acoustic information. A
general overview of the system can be seen in Figure 4.

The electronics of SAMARUC can be activated by means
of a magnetic relay switch so that no waste of energy oc-
curs while the system is being transported to the deploy-
ment location. Additionally, the magnetic switch serves as
trigger to start recording and processing the data. The
battery block provides more than 30 days of autonomy
to the pre-amplified hydrophone and to the DSP board.
To do this, a highly efficient DC-DC regulator is employed.
The acquisition subsystem is composed of a hydrophone
with specific electronics that adequate the output to the
Analog to Digital converter of the DSP board.

All these electronic components are placed inside of a
pressure housing with underwater connectors. The sys-
tem was conceived with the requirement that it has to
be able to operate in up to a 1000 meter depth in the
sea. To face this, the housing of SAMARUC was made of
stainless steel (Figure 7). First designs of the structure of
the buoy are shown in Figure 6. Figure7 shows the hous-
ing as it was built in the prototype.

The Ping-Pong configuration is suitable to include signal
processing algorithms for detection and classification of
underwater sounds (see Figure 8). These algorithms can
be programmed by the user, using the time slot shown in
Figure 8. The DSP chip employed provides computational
power enough to run in real time the majority of the al-
gorithms currently employed for PAM and described in
Section 3. As examples of applications we can mention,
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are the use of algorithms for noise control of seismic ex-
plosion boats or to simply count echolocalization signals
produced by a species of cetacean that could be user pro-
gramed and included as plugins into the system.

5. Monitoring dolphin sounds with
SAMARUC.

The SAMARUC system is relatively new. In its first weeks
the system has been utilized in different environments, and
for different applications. The system was employed to
record the audio information from the risso's dolphin
(Grampus griseus) that arrived on March 30, 2013 to the
Valencia harbor. Unfortunately, the risso s dolphin was in
very poor physical condition and died a few days after de-
spite all the veterinarian expert efforts. The SAMARUC sys-
tem was placed in the security perimeter to monitor and
check if any sounds could indicate any change in the dol-
phin”“s health.

Figure 7. SAMARUC housing (left). Complete SAMARUC prototype (right).
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Figure 8. Chronogram of the DMA Ping Pong Configuration.

Waves i’2013 -gegf%ISSN 1889-8297 SONOS EXHIBIT 1018 9

age



The possibility of programming specific automatic de-
tection algorithms that run within the SAMARUC
system can be very valuable and offers great usability.

Frequency (Hz)

Time (s)

Figure 9. Time frequency representation of bottlenose
dolphin sounds recorded with SAMARUC.

The system is also being employed to record audio infor-
mation produced by the bottlenose dolphins (Tursiops
truncatus) located at the dolphinarium of the
Oceanografic of Valencia. In fact, more than 150 vocal-
izations have been stored (see Figure 9). The purpose of
these recordings is to prepare and test the system for a
more intensive recording campaign that will be done in
the next months in the Mediterranean Sea. These tests
serve also to check the usability of the system by biolo-
gists and non-technical personnel.

Typical operation of the SAMARUC system in measure-
ment campaigns is illustrated in Figure 10. The SAMARUC
system is transported to the location where it is going to
be deployed and dropped to the seafloor. The system sinks
and remains firmly moored on the seafloor by means of
an anchor weight and is also equipped with an acoustic
release transponder (EdgeTech). A flotation device is used
to keep the system in vertical operational mode (Figure

10a). The system is moored for a period of time, recording
and processing all the sounds from different species (Figure
10b). At the recovery phase, the control station issues an
acoustic command. The control station is typically on a
boat, but may also be a device operated by a diver or
mounted on a remotely operated underwater vehicle.
Upon receipt and verification, the acoustic release triggers
a mechanism that drops the anchor weight. The
SAMARUC s carried back to the surface by the flotation
device for recovery (Figure 10¢).

6. Conclusions and future work

A new PAM system called SAMARUC has been devel-
oped to register and do in-situ processing of sounds. The
possibility of programming specific automatic detection
algorithms that run within the system can be very valu-
able and offers great usability. Additionally, the system
has comparable (and in some aspects superior) technical
specifications with respect to the rest of systems. On the
other hand, the system is at its early stage and much
more testing has to be done in the future. In the next
months, a long measuring campaign is planed.
SAMARUC is going to be deployed in the Cabrera Archi-
pelago Maritime National Park, in the Balearic Islands
(Spain), a protected area with enough presence of
cetaceans. With these measurements SAMARUC will be
ready to be marketed and begin its expansion strategy.

Future applications of the algorithms and the system include
expansion to automatically detect different species such as
the sperm whale (Physeter macrocephalus) or Cuvier's
beaked whale (Ziphius cavirostris). Future enhancements of
the system include a higher bandwidth A/D converter that
will allow SAMARUC to be used to monitor the noise level
in our seas and oceans as well as to monitor underwater
detonations during prospection. Another future develop-
ment will be including a compact hydrophone array into the
system. This will allow some localization capabilities as well
as taking advantage of spatial diversity signal processing al-
gorithms to obtain a more robust PAM device.

N
Py P

P
e

1

s

&

Figure 10. a) The system sinks by means of an anchor weight, b) The system remains moored recording and processing
acoustic information, c) An acoustic command is employed to release the SAMARUC.
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