IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD

IPR2023-01382

CERTIFIED COPY

U.S. Patent No. 9,748,347

INNOSCIENCE (ZHUHAI) TECHNOLOGY COMPANY, LTD. and INNOSCIENCE AMERICA, INC.,

Petitioners,

v.

EFFICIENT POWER CONVERSION CORPORATION,
Patent Owner.

ORAL DEPOSITION OF JAMES RICHARD SHEALY, PH.D.

Thursday, May 16, 2024

Reported by:

SUSAN ASHE, Certified Electronic Reporter

Job No.: 137277

1	IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
2	BEFORE THE PATENT TRIAL AND APPEAL BOARD
3	
4	IPR2023-01382 CERTIFIED COPY
5	U.S. Patent No. 9,748,347
6	
7	
8	INNOSCIENCE (ZHUHAI) TECHNOLOGY COMPANY, LTD. and
9	INNOSCIENCE AMERICA, INC.,
10	Petitioners,
11	v.
12	EFFICIENT POWER CONVERSION CORPORATION,
13	Patent Owner.
14	
15	
16	ORAL DEPOSITION OF JAMES RICHARD SHEALY, PH.D.
17	
18	Thursday, May 16, 2024
19	
20	
21	
22	
23	Reported by:
24	SUSAN ASHE, Certified Electronic Reporter
25	Job No.: 137277

1	IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
2	BEFORE THE PATENT TRIAL AND APPEAL BOARD
3	
4	IPR2023-01384
5	U.S. Patent No. 10,312,335
6	
7	
8	INNOSCIENCE (ZHUHAI) TECHNOLOGY COMPANY, LTD. and
9	INNOSCIENCE AMERICA, INC.,
10	Petitioners,
11	v.
12	EFFICIENT POWER CONVERSION CORPORATION,
13	Patent Owner.
14	
15	
16	
17	Oral deposition of JAMES RICHARD SHEALY,
18	PH.D., taken on behalf of the Petitioners, beginning
19	at 9:03 a.m., on Thursday, May 16, 2024, at the law
20	offices of Finnegan, Henderson, Farabow, Garrett &
21	Dunner, LLP, 1875 Explorer~Street, Reston, Virginia,
22	before Susan Ashe, Certified Electronic Reporter,
23	and Notary Public of the Commonwealth of Virginia.
24	
25	

1	APPEARANCE OF COUNSEL:
2	On behalf of the Petitioners:
3	BLANK ROME LLP
4	BY: DIPU A. DOSHI, ESQ.
5	BY: AMEYA V. PARADKAR, ESQ.
6	BY: MARK F. MASHACK, ESQ.
7	1825 Eye Street, Northwest
8	Washington, D.C. 20006
9	(202) 420-2200
10	dipu.doshi@blankrome.com
11	arun.paradkar@blankrome.com
12	mark.mashack@blankrome.com
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	APPEARANCE OF COUNSEL (Continued):
2	On behalf of the Patent Holder and the Witness:
3	FINNEGAN, HENDERSON, FARABOW, GARRETT &
4	DUNNER, LLP
5	BY: KARA A. SPECHT, ESQ.
6	271 17th Street, Northwest, Suite 1400
7	Atlanta, Georgia 30363
8	(404) 653-6400
9	kara.specht@finnegan.com
10	- and -
11	BY: LUKE H. MacDONALD, PH.D., ESQ.
12	BY: LIONEL M. LAVENUE, ESQ.
13	1875 Explorer Street, Suite 800
14	Reston, Virginia 20190
15	(571) 203-2700
16	luke.macdonald@finnegan.com
17	lionel.lavenue@finnegan.com
18	
19	
20	ALSO PRESENT:
21	Caitlin Coverstone, Patent Agent
22	Finnegan, Henderson, Farabow, Garrett &
23	Dunner, LLP
24	
25	

1		CONTENTS	
2	THE WITNESS		
3	James Richard	Shealy, Ph.D.	
4			
5	BY MR. DOSH	I	7, 106
6	BY MS. SPEC	HT	96
7			
8		EXHIBITS	
9	Exhibit No.		Marked
10	Exhibit 1032	Hand Drawing "low drain bias"	105
11	Exhibit 2001	Patent Owner's Notice of	
12		Deposition of	
13		Dr. James Shealy	
14		U.S. Patent No. 9,748,347	11
15	Exhibit 2001	Patent Owner's Notice of	
16		Deposition of	
17		Dr. James Shealy	
18		U.S. Patent No. 10,312,335	11
19	Exhibit 2002	Hand Drawing "photoresist"	49
20	Exhibit 2003	Hand Drawing "low drain bias"	69
21			
22			
23			
24			
25			

1			PREVIOUSLY MARKED EXHIBITS	
2	Exhibit	No.		Introduced
3	Exhibit	1003	Declaration of	
4			James Richard Shealy, Ph.D.	12
5	Exhibit	1006	"Yoshida Reference"	74
6	Exhibit	1007	U.S. Patent Application	
7			2006/0108606	28
8	Exhibit	1008	U.S. Patent Application	
9			2007/0007547	86
10	Exhibit	1009	"Shenoy Reference" Journal o	of
11			the Electrochemical Society	91
12	Exhibit	1020	"Uemoto Reference"	93
13	Exhibit	1021	U.S. Patent Application	
14			2006/0019435	85
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

	ĺ	
	1	THURSDAY, MAY 16, 2024;
	2	9:03 A.M. EASTERN DAYLIGHT TIME
	3	000
	4	Whereupon,
	5	JAMES RICHARD SHEALY, PH.D.
	6	having been first duly sworn, was examined
	7	and testified as follows:
	8	MR. DOSHI: Dipu Doshi, for
	9	Efficient Power Conversion Corporation,
09:03	10	from Blank Rome.
	11	Also with me are Mark Mashack
	12	and Ameya Paradkar.
	13	MS. SPECHT: And Kara Specht,
	14	from Finnegan, for Innoscience, the
09:04	15	petitioner.
	16	And with me is Dr. Luke
	17	MacDonald, Lionel Lavenue, Caitlin
	18	Coverstone also from Finnegan.
	19	EXAMINATION
09:04	20	BY MR. DOSHI:
	21	Q. Good morning, Dr. Shealy.
	22	A. Good morning.
	23	Q. How are you?
	24	A. Fine, thanks.
09:04	25	Q. Okay. You've been deposed before?

09:04	1	A. Yes.
	2	Q. And so, I'll just give you the short
	3	version of the ground rules, which are that the
	4	court reporter, or something, is taking all of the
09:04	5	words that we're saying today down. So it's
	6	important that we not talk over one another. Okay?
	7	And I'm going to try to break every 45 to
	8	60 minutes. If you need a break before that time,
	9	just let me know and we'll break. But I just ask
09:04	10	that if there's a pending question, that you answer
	11	the question before.
	12	And then I think
	13	That's the short version
	14	A. Okay.
09:04	15	Q of the ground rules.
	16	If anything else comes up, let me know.
	17	A. Okay.
	18	Q. All right. So what did you do to prepare
	19	for today's deposition?
09:05	20	A. Okay. I got these binders in the mail
	21	about two weeks ago maybe two and a half weeks
	22	ago, I think.
	23	And then about a week ago, we had two
	24	Zoom, like, prep sessions with these three lawyers
09:05	25	here.

09:05	1	And then we had, the day before yesterday
	2	and yesterday, in-office prep session.
	3	Q. Great. And did you speak with anyone
	4	other than the Finnegan lawyers in preparing for
09:06	5	today's deposition?
	6	A. No.
	7	Q. Did you review documents, other than those
	8	that you said were shipped to you?
	9	A. There's two binders for each patent one
09:06	10	exhibits, one pleadings.
	11	So, I've looked at those.
	12	Q. Okay.
	13	A. And that's all I've looked at.
	14	Q. Okay. And just to be clear, you said "the
09:06	15	two patents."
	16	So it's your understanding that we're
	17	talking about the '347 and '335 patents today?
	18	A. Yes.
	19	Q. Okay. And so for the record, I'll say
09:06	20	that the '347 patent is 9,748,347.
	21	Is that your understanding?
	22	A. That's correct.
	23	Q. And that is for IPR2023-01382.
	24	Is that correct?
09:06	25	A. That's correct.

09:06	1	Q. All right. And the '335 patent, the full
	2	number for that is 10,312,335.
	3	Do you agree?
	4	A. Yes.
09:07	5	Q. All right. And that is for IPR2023-01384.
	6	Correct?
	7	A. Yes.
	8	Q. Okay, great.
	9	All right. So you have authored a total
09:07	10	of four declarations for four patents that are
	11	assigned to EPC. Correct?
	12	A. Yes. But I've only reviewed these two for
	13	today.
	14	Q. Understood. That's great.
09:07	15	MR. DOSHI: Okay. So I'm going
	16	to hand you this is more of a formality
	17	than anything else and just for the
	18	record a notice of deposition of
	19	Dr. James Shealy.
09:07	20	So we'll mark this as
	21	(Pause.)
	22	MR. DOSHI: Bear with us.
	23	THE WITNESS: Sure.
	24	(Pause.)
09:07	25	MR. DOSHI: So we'll go with

	1	
09:07	1	2001.
	2	(Whereupon, Exhibit 2001 was marked for
	3	identification.)
	4	MR. DOSHI: And that's 1382,
09:09	5	2001 so, it's complicated.
	6	And I'm handing you what's going
	7	to be also 2001 for 1384, a notice of
	8	deposition.
	9	COURT REPORTER: It's 2001
09:09	10	again?
	11	MR. DOSHI: Yeah I know, it's
	12	complicated.
	13	(Whereupon, Exhibit 2001 was marked for
	14	identification.)
10:25	15	BY MR. DOSHI:
	16	Q. And again, this is more for formalities
	17	than anything else.
	18	A. Okay.
	19	Q. And have you seen these documents before,
09:10	20	the ones I just handed you 2001, 1382?
	21	A. I don't I don't recall. I might have
	22	received them in an email or something. But
	23	MR. DOSHI: Okay. Let me hand
	24	you what has previously been marked as
09:10	25	1003, Exhibit 1003 in the 1382 proceeding.

09:10	1	(Whereupon, Exhibit 1003, previously
	2	marked, was presented to the witness.)
	3	BY MR. DOSHI:
	4	Q. Do you recognize that document?
09:11	5	A. Yes.
	6	Q. Okay. And that is what?
	7	A. That's my declaration for the '347 patent.
	8	Q. And I'm handing you 1384, what's been
	9	marked as 1003.
09:11	10	It's been previously marked, so you don't
	11	have to mark it.
	12	Do you recognize that document?
	13	A. Yes.
	14	Q. And what do you recognize that to be?
09:11	15	A. That's my declaration for the '335 patent.
	16	Q. Okay. So those two declarations are
	17	documents that you reviewed in preparation for
	18	today's deposition?
	19	A. Yes.
09:12	20	Q. Okay. And do you have your own you
	21	have your own copy?
	22	A. Yes.
	23	Q. Okay. That has notes and stuff in there?
	24	A. No; no notes.
09:12	25	Q. Okay. And you can use your own copy if it

09:12	1	has no notes in it.
	2	A. No; there's no notes.
	3	Q. Okay. If you're comfortable with that.
	4	So the declarations that I've handed you
09:12	5	have your opinions on the validity of the two
	6	patents. Correct?
	7	A. Correct.
	8	Q. In formulating your opinions, did you
	9	speak with anyone outside of the Finnegan attorneys?
09:12	10	A. No.
	11	Q. Okay. Other than the documents that you
	12	cite in your reports for your declarations, did you
	13	review any other documents?
	14	A. Yes.
09:13	15	Q. Okay. And do you recall what those
	16	documents were?
	17	A. The patent owner response, the Board
	18	decisions and, you know, all the references.
	19	I'm trying to think if I'm forgetting
09:13	20	anything. Let me look
	21	We have all the pleadings for each case.
	22	And so, there's so I've looked at all
	23	of these: the petition, the patent owner response,
	24	the petitioner preliminary reply, the patent owner
09:14	25	sur reply, and then the institution decision.

09:14	1	So I looked at all of those for each
	2	patent.
	3	Q. Have you spoken with anyone about the
	4	ongoing litigation between EPC and Innoscience?
09:14	5	A. No well, other than this case.
	6	I mean, I don't know if this is considered
	7	a litigation, but
	8	It is, isn't it?
	9	Q. Sure.
09:14	10	A. Yeah.
	11	Q. How did you come about being an expert for
	12	Innoscience?
	13	A. I think I was contacted. I don't remember
	14	by who, but one of the attorneys.
09:14	15	And I had done work for Finnegan before.
	16	I don't know if that had any bearing on it.
	17	But they contacted me and we discussed it.
	18	And then we decided I would be the expert in these.
	19	Q. Okay. And do you recall when you were
09:15	20	contacted by Finnegan?
	21	A. It's been a while. So I can't really give
	22	you an accurate date. But
	23	Q. 2023?
	24	A. I would say something on the order of a
09:15	25	year ago, maybe is my guess.

09:15	1	Q. Spring 2023?
	2	A. Something like that, yeah.
	3	Q. Okay. In Paragraph 3 of your declaration
	4	for the '347, you say that you're being compensated
09:15	5	for your time at your standard hourly consulting
	6	rate.
	7	What is your consulting rate?
	8	A. Yes, I see that. 750 an hour.
	9	Q. Okay. And you state that you have no
09:15	10	other interest in this proceeding.
	11	Is that correct?
	12	A. No I mean, what do you mean? "No
	13	interest"?
	14	Q. It's on Paragraph 3 so, if you can look
09:16	15	at Paragraph 3, the last part of that sentence, the
	16	last sentence.
	17	A. No. I have no other interest in this
	18	proceeding.
	19	Q. Okay. Other than publicly available prior
09:16	20	art and the documents you discussed, did counsel
	21	provide you with any material any other material
	22	from the
	23	Well, let me back up.
	24	Do you understand that there is a pending
09:16	25	ITC investigation between EPC and Innoscience?

09:16	1	A. Yes.
	2	Q. Okay. Did counsel provide you with any of
	3	the documents from that investigation?
	4	A. No.
09:16	5	Q. Okay. Have you had discussions with
	6	Dr. Levy?
	7	A. No.
	8	Q. Okay. Do you know who Dr. Levy is?
	9	A. Not really.
09:17	10	Q. Okay. Dr. Levy
	11	A. Georgia Tech, was it? Or
	12	Q. That's a good question. I don't know.
	13	Do you know if Innoscience has another
	14	expert that opined on invalidity in connection with
09:17	15	the ITC investigation?
	16	A. I don't know who it is, and I have no
	17	information on that. So
	18	Q. Okay. Were you provided with any
	19	deposition transcripts to review in
09:17	20	A. No.
	21	Q. Any emails from Dr. Levy?
	22	A. No.
	23	Q. Any hearing transcripts?
	24	A. No.
09:17	25	Q. Did you discuss your I think I asked
		l l

09:18	1	this, but I'm going to phrase it a little
	2	differently.
	3	Did you discuss your involvement in
	4	this in these proceedings with anyone outside of
09:18	5	your lawyers?
	6	A. No.
	7	Q. Did you speak with some of your colleagues
	8	at work about this?
	9	A. No.
09:18	10	Q. Did you inform them of your involvement in
	11	this case?
	12	And let me clear that up.
	13	Have you informed your colleagues of your
	14	involvement in this case?
09:18	15	A. No. They know I'm out of town for a week.
	16	But other than that, no.
	17	Q. All right. Let's turn to Paragraph 19
	18	of
	19	A. Where, the '347?
09:18	20	Q. '347.
	21	In 2019, you co-founded Odyssey
	22	Semiconductor. Correct?
	23	A. Where did you say?
	24	Q. I'm sorry. Paragraph 19. Page 5.
09:19	25	A. Oh, Paragraph 19. Okay.

09:19	1	(Pause.)
	2	A. Okay.
	3	Q. In Paragraph 19, you quote you say,
	4	quote:
09:19	5	I co-founded Odyssey
	6	Semiconductor, end quote.
	7	Do you see that?
	8	A. Yes.
	9	Q. What is the business of Odyssey
09:19	10	Semiconductor?
	11	A. Odyssey Semiconductor is engaged in
	12	designing and building prototypes of vertical
	13	high-power gallium nitride transistors.
	14	Q. Okay. Can you elaborate on what the
09:20	15	day-to-day operations of Odyssey Semiconductor are?
	16	A. We have a semiconductor fab. So we
	17	take we do not produce gallium nitride epitaxy.
	18	So we procure that.
	19	And we conduct semiconductor processes to
09:20	20	create vertical FETs in that host material.
	21	And so, those devices involve plasma
	22	etching, several types of plasma etching, metal
	23	deposition, dielectric deposition you know, all
	24	of the photolithography everything you associate
09:21	25	with building a gallium nitride device.

09:21	1	It's not the same device, as these are
	2	lateral conduction devices.
	3	So vertical conduction is a totally
	4	different animal, but it uses a lot of the same
09:21	5	fabrication techniques.
	6	Q. Understood.
	7	And when you say it's not the same as
	8	these, you're pointing to the patents?
	9	A. Yes. These are these two patents
09:21	10	and all of the prior art references all describe
	11	well, not all the prior art, but much much of the
	12	prior art describes lateral conduction Field Effect
	13	Transistors. And they're often referred to as
	14	"HEMTs."
09:22	15	I used to build HEMTs at Cornell back in
	16	the late '90s.
	17	We built the first gallium nitride HEMT on
	18	silicon, which is the basis for all of this
	19	technology.
09:22	20	We were also the first to build an
	21	insulated gate transistor on gallium nitride. And
	22	we developed nucleation methods, which are appear
	23	to be dominating the you have to nucleate these
	24	materials when you grow them on silicon or sapphire,
09:22	25	a different semiconductor substrate.

09:22	1	And so, we've we were the first
	2	well, "first" we Nakamura came up with a
	3	nucleation method. That's what the world used.
	4	We came up with one in the mid '90s which
09:23	5	replaced that and works better, and now that's
	6	heavily in use. And that's also patented.
	7	Q. Okay. Thank you.
	8	Going back to Odyssey, you say that the
	9	you don't do Odyssey doesn't have its own epi.
09:23	10	A. That's correct.
	11	Q. Okay. So when we say "epi," we're talking
	12	about the growth of the layers up to what level?
	13	A. Well, the epitaxial structure for a
	14	vertical device is obviously different than a HEMT.
09:23	15	But so the vertical device would
	16	typically have three to five layers in it, and
	17	they're all gallium nitride, and they're all doped
	18	n-type.
	19	Q. Okay. And where does Odyssey
09:23	20	Semiconductor source that material from?
	21	A. We've sourced it from a lot of places.
	22	But, currently, we're collaborating with
	23	Sandia Labs, and they're providing us all the
	24	epitaxial material there.
09:24	25	They're actually experts. They've been at

09:24	1	it a long time as have I. I mean, when I was at
	2	Cornell, we my group designed and built MOCVD
	3	reactors to grow gallium nitride.
	4	So I've been involved in the heavily
09:24	5	involved in the epitaxy end of things.
	6	Q. Has Odyssey Semiconductors sourced any
	7	material from Innoscience?
	8	A. No.
	9	(Pause.)
09:24	10	A. Maybe I should have said: The vertical
	11	transistors are grown on a gallium nitride
	12	substrate.
	13	And as far as I know, neither one of these
	14	parties involved here work with gallium nitride
09:25	15	substrates.
	16	So it's a single crystal, low-defect
	17	density sort of arrangement.
	18	Q. And that would be the substrate?
	19	A. The substrate is low-defect density. We
09:25	20	source those from Japan.
	21	But the it's also a conducting
	22	substrate. And when you're doing HEMTs, you're
	23	looking for an insulating substrate, generally.
	24	So there's a lot of differences, right
09:25	25	from the substrate all the way up.

09:25	1	Q. And you say in Paragraph 19 on Page 5
	2	that:
	3	Odyssey Semiconductor also
	4	recently developed the
09:25	5	fabrication techniques.
	6	How recently did Odyssey Semiconductor
	7	develop the fabrication techniques?
	8	A. This is referring to micro-LED arrays.
	9	To help pay the bills, we do foundry work
09:26	10	because we have a fab.
	11	So there's two or three companies that
	12	have approached us, and we've done micro-LED work
	13	for two companies.
	14	So that also involved a lot of the same
09:26	15	core sets of gallium nitride-based Light Emitting
	16	Diode. And a lot of the same fabrication techniques
	17	that were used there are also used kind of generally
	18	to process gallium nitride and related materials.
	19	Q. Where are Odyssey Semiconductor's fabs
09:26	20	located?
	21	A. There's only one fab. It's in Ithaca, New
	22	York at the airport.
	23	Q. Let's go back to your
	24	How many times have you been deposed?
09:27	25	A. I don't know. Somewhere between, I'd say,

09:27	1	ten and twenty times.
	2	Q. Have you testified at trial?
	3	A. Do you consider ITC trials?
	4	Q. Sure.
09:27	5	A. I've done, I think, three ITC trials.
	6	I've only done one district court trial in
	7	front of a live jury.
	8	Q. Okay.
	9	A. ButI think that covers it.
09:27	10	Q. Okay. Do you know Dr. Schubert?
	11	A. Yes.
	12	Q. How do you know him?
	13	A. I've known him a long time.
	14	Back when he was at Bell Labs is when I
09:27	15	first met him. He used to come up and visit us at
	16	Cornell.
	17	But I was his expert when he was going
	18	around litigating his patent. So I know him from
	19	that as well.
09:28	20	Q. You said you've testified at a jury trial.
	21	What did that trial involve?
	22	A. That involved Light Emitting Diodes used
	23	for, you know, commercial lighting lamps.
	24	Q. Okay. And then the three ITC trials, what
09:28	25	did those involve?

09:28	1	A. The first one involvedthe
	2	All right. Now you're taking me back a
	3	decade or so.
	4	Q. To the best of your recollection.
09:29	5	A. The first one involved a patent that I
	6	can't even remember the
	7	The patent involved gallium nitride
	8	materials, in general.
	9	And the other ITC trial was a involved
09:29	10	Light Emitting Diodes again.
	11	And that, I think
	12	And then, the last ITC trial I did was
	13	involving the electronic circuits to drive LEDs.
	14	Q. Have you worked with EPC at all?
09:30	15	A. No. I discussed working with them, but I
	16	never have worked for them.
	17	Q. Do you know Alex Lidow?
	18	A. No.
	19	Q. Do you know any of the inventors on the
09:30	20	'347 patent?
	21	A. No.
	22	Q. Okay. Earlier, you said that you do
	23	foundry work because you have a fab.
	24	Is that right?
09:31	25	A. Yes.
		l l

09:31	1	Q. And there are two or three companies that
	2	approached you.
	3	Is that right?
	4	A. There's been a lot of companies that have
09:31	5	approached us.
	6	We've done a lot of fab work for a lot of
	7	different companies I just mentioned.
	8	I was responding to your question about
	9	the micro-LED arrays.
09:31	10	Q. Okay. What other companies have you done
	11	work for?
	12	A. There's a company called "Innovation." I
	13	don't know if there's anything beyond "Innovation."
	14	That's what I call them.
09:31	15	They they're in I think they're
	16	based in Rochester. And we've built micro-LED
	17	arrays for them.
	18	There was another Canadian company we did
	19	that for, and I VueReal, I think or VueReal,
09:32	20	or something, was their name.
	21	And then we've done a lot of odd jobs
	22	for you know, I'm not really involved in the
	23	foundry part of that. So
	24	But thethere's a company in Buffalo
09:32	25	we're currently building some nuclear batteries,

09:32	1	using GaN.
	2	And then there's many others I just can't
	3	remember.
	4	Q. Do any of the companies design gallium
09:32	5	nitride transistors?
	6	A. I think we've done one job involving HEMTs
	7	and gallium nitride, yeah.
	8	Q. Can you tell me any details about that
	9	job?
09:33	10	A. We just there was a company interested
	11	in integrating HEMTs with another device.
	12	And so, we they provided us with some
	13	substrates. And HEMTs are, by comparison, much
	14	easier to fabricate than a vertical GaN transistor.
09:33	15	And so, we just built some standard HEMTs
	16	for them, using, more or less, the techniques
	17	that we kind of imported the technology from
	18	Cornell, obviously, into this company. So we have
	19	certain ways of building HEMTs.
09:33	20	And so, we've carried that those out.
	21	Q. Okay. And which company was that?
	22	A. I can't tell you off the top of my head.
	23	It wasn't a big HEMT company like the two
	24	players here.
09:34	25	It was a small company. I just don't

09:34	1	remember the name.
	2	Q. Have you had discussions with any
	3	Innoscience employees in formulating your opinions?
	4	A. No.
09:35	5	Q. So it was just the one company that you
	6	were focused on making HEMTs for?
	7	A. Yeah, it was
	8	Like, you know, we built them, tested
	9	them, shipped them out. And that was the end of it.
09:35	10	Q. And that was in your fab in New York?
	11	A. That's correct.
	12	Q. And the way that works is that epitaxial
	13	layers are sourced from somewhere and then shipped
	14	to your fab?
09:35	15	A. Yes.
	16	Q. Do you know where those epitaxial layers
	17	were shipped from?
	18	A. No. I don't remember the details of the
	19	job. I just know that the job did happen, because I
09:36	20	was consulted on some of the fabrication issues on
	21	it.
	22	MR. DOSHI: Why don't we take a
	23	short break
	24	THE WITNESS: Okay.
09:37	25	MR. DOSHI: because I'm about

	1	
09:37	1	to switch topics.
	2	Can we go off the record.
	3	(Whereupon, a recess was taken
	4	from 9:37 a.m. until 9:49 a.m.)
09:49	5	BY MR. DOSHI:
	6	Q. Dr. Shealy, welcome back.
	7	A. Thank you.
	8	Q. Before the break, we were talking about
	9	HEMTs. And I just want to clarify for the record,
09:49	10	it's H-E-M-T. Correct?
	11	A. High Electron Mobility Transistor, yeah.
	12	Q. Thank you.
	13	MR. DOSHI: All right. I'm
	14	handing you what has previously been
09:49	15	marked as 1007.
	16	So this is 1007 in both 1382 and
	17	1384.
	18	THE WITNESS: These aren't being
	19	marked now?
09:49	20	COURT REPORTER: They're
	21	premarked.
	22	THE WITNESS: Oh.
	23	MR. DOSHI: They've been marked.
	24	(Whereupon, Exhibit 1007, previously
09:49	25	marked, was presented to the witness.)

	ı	
09:49	1	THE WITNESS: Okay oh, yeah.
	2	BY MR. DOSHI:
	3	Q. And do you recognize this document?
	4	A. Yes.
09:50	5	Q. What do you recognize it to be?
	6	A. Excuse me?
	7	Q. What do you recognize it to be?
	8	A. This is a prior art reference authored by
	9	Saxler.
09:50	10	Q. Okay. And you rely on this document in
	11	your opinions. Correct?
	12	A. Yes.
	13	Q. Okay. Looking at Figure 1A of Saxler, it
	14	shows a transistor having a recessed gate structure.
09:50	15	Correct?
	16	A. Yes.
	17	Q. Okay. And then 1B shows a nonrecessed
	18	transistor.
	19	Is that right?
09:50	20	A. 1B is some sort of idealized
	21	Yes, it'scould you repeat that
	22	question? Sorry.
	23	Q. Sure. 1B shows a let me try it again.
	24	1B of Saxler shows a nonrecessed
09:50	25	transistor. Right?

09:51	1	A. It shows a transistor where the gate isn't
	2	recessed.
	3	Q. Okay. And then, you said turning to
	4	Figures 2 and A 2A and 2B on the next page.
09:51	5	Do you see that?
	6	A. Yes.
	7	Q. Yeah. It seems like they reversed it.
	8	Right?
	9	A and B is now reversed. And it looks
09:51	10	like 2A is the nonrecessed transistor. Right?
	11	A. In that depiction, yes, the gate is not
	12	recessed.
	13	Q. And 2B is the recessed transistor?
	14	A. The gate is recessed into the barrier
09:51	15	layer in 2B.
	16	Q. Into the barrier layer in 2B, yes okay.
	17	Thank you.
	18	And on Page 41 of your declaration so,
	19	let's go to your report here.
09:51	20	Sorry. I'm using things interchangeably.
	21	Do you want to refer to your declaration
	22	as a particular noun? Is there something
	23	A. Sure. Let's refer to the declaration,
	24	yeah.
09:52	25	Q. Okay, declaration.

09:52	1	Page 41 of your declaration, you have an
	2	illustration.
	3	Do you see that?
	4	A. Yes.
09:52	5	Q. And what is that illustration?
	6	A. That is an illustration of a nonrecessed
	7	gate.
	8	So you start with Figure 1A and you remove
	9	the gate recess. And that's what you get when you
09:52	10	remove the gate recess and change nothing else.
	11	Q. Okay. And the modified structure is
	12	something you put together?
	13	A. Yeah, it was my opinion to that's what
	14	it means to recess the gate or to remove the
09:53	15	recess, leave everything else the same. Let's just
	16	remove the recess.
	17	Q. And this illustration is not in Saxler.
	18	Correct?
	19	A. It's described in Paragraph 52, I think,
09:53	20	pretty effectively, if you want to look at that.
	21	Q. We'll get there.
	22	A. Okay.
	23	Q. What I'm asking is: This depiction is not
	24	from Saxler. Correct?
09:53	25	A. It's a modified version of a figure from

09:53	1	Saxler.
	2	Q. And you modified it. Right?
	3	A. Yes.
	4	
00 50		Q. And then, did you use Photoshop or how
09:53	5	did you come about this?
	6	A. I think I probably told somebody to modify
	7	it. Somebody else did it on the computer.
	8	Q. Okay. So we'll call
	9	Okay. You say that in your
09:53	10	declaration, you say that the recess is optional.
	11	Right?
	12	A. Saxler says that again and again.
	13	Q. Okay. And you cite to a couple of
	14	paragraphs that you say support your conclusion that
09:54	15	it's optional. Right?
	16	A. Yes.
	17	Q. And then one of them is the abstract.
	18	Right?
	19	(Witness reading.)
09:54	20	A. I don't see any discussion of a gate
	21	recess in the abstract.
	22	Q. Okay.
	23	A. There's an Ohmic contact without a
	24	recess
09:54	25	Q. That's right.

	ĺ	
09:54	1	A mentioned in the abstract.
	2	Q. Okay. And then, another Paragraph is 13.
	3	You're looking at Paragraph 13.
	4	A. Yes.
09:55	5	Q. And then, the first sentence says:
	6	In particular embodiments
	7	of the present invention
	8	without a gate recess
	9	A. Wait a minute, where are we reading?
09:55	10	Q. Paragraph 13 of Saxler.
	11	A. Saxler?
	12	In other embodiments?
	13	Q. In particular embodiments.
	14	A. My version of this says "in other
09:55	15	embodiments."
	16	Q. Oh, I'm sorry. It's line
	17	Well, there are no lines.
	18	It's the fifth line from the top:
	19	In particular
09:55	20	embodiments
	21	A. In that paragraph? Or the
	22	Q. Yeah, in Paragraph 13.
	23	(Witness reading.)
	24	A. Okay.
09:55	25	Q. Okay. It says:

09:55	1	In particular embodiments
	2	of the present invention with a
	3	gate recess, the doped region
	4	extends into the cap layer from
09:56	5	about 30 angstroms to about
	6	5000 angstroms.
	7	Is that right?
	8	A. Yes.
	9	Q. Okay. And then, the sentence that
09:56	10	follows well, actually, if you go up from there,
	11	the second line from the top, it says:
	12	In particular embodiments
	13	of the present invention
	14	without a gate recess, the
09:56	15	doped region extends into the
	16	cap layer from about 2.5
	17	angstroms to about
	18	15 angstroms.
	19	Do you see that?
09:56	20	A. Yes.
	21	Q. So there are differences between the two
	22	embodiments. Correct?
	23	A. There are many other embodiments where I
	24	don't think those differences show up.
09:56	25	But in Paragraph 13, what you said is
		,

09:56	1	correct.
	2	Q. And you cite to Paragraph 13. Right?
	3	A. I cite many others as well.
	4	Q. Okay. So let's go to Paragraph 27.
09:56	5	That's another one that you cite to. Correct?
	6	A. From Page 41 of the declaration? I don't
	7	see 27 mentioned there.
	8	Q. All right. Paragraph
	9	So if you flip to Page 63 of your
09:57	10	declaration, Paragraph 122. You say:
	11	The recess in Saxler's cap
	12	layer 24 is optional.
	13	And you cite to Paragraph 27.
	14	A. Okay.
09:58	15	Q. Yeah. So if we go back to Saxler at
	16	Paragraph 27.
	17	Here again, it says:
	18	And the transistor may
	19	further include a gate contact
09:58	20	recessed into the aluminum
	21	nitride cap layer
	22	I'm on one, two, three, four, five
	23	six from the top.
	24	A. Yes.
09:58	25	Q. (Continued reading:)

	i	
09:58	1	In such embodiments, the
	2	aluminum layer has a thickness
	3	of from about 5 to about
	4	5000 angstroms.
09:58	5	Do you see that?
	6	A. Yes.
	7	Q. Okay. And one, two, three, four,
	8	five six from the bottom:
	9	The transistor may also
09:59	10	include a gate contact on the
	11	aluminum nitride cap layer and
	12	not recessed into the aluminum
	13	nitride cap layer. In such
	14	embodiments, the aluminum
09:59	15	nitride cap layer has the
	16	thickness of about or from
	17	about 2 angstroms to about
	18	20-angstroms.
	19	Do you see that?
09:59	20	A. Yes.
	21	Q. Okay. So there are, again, differences in
	22	the thickness of the cap layer. Correct?
	23	A. In the embodiments described in
	24	Paragraph 27, yes.
09:59	25	Q. Okay. And so, there are differences
	J	

09:59	1	between the recessed and nonrecessed embodiments.
	2	Correct?
	3	MS. SPECHT: Objection; form.
	4	A. I wouldn't agree with that.
09:59	5	If you go to Paragraph 52, we could I
	6	could explain that a little better.
	7	Q. Okay. Let's go to 52.
	8	(Pause.)
	9	Q. I'm there.
10:00	10	A. Okay. 52 in Paragraph 52, they're
	11	referring to Figures 1A through 6. And they
	12	(Reading:)
	13	Thus, while embodiments of
	14	the present invention are
10:00	15	described herein with reference
	16	to a recessed gate structure or
	17	a nonrecessed gate structure,
	18	other embodiments of the
	19	present invention may include
10:00	20	or not include a gate recess.
	21	So I interpret that to apply to Figure 1A.
	22	Q. Okay. Despite the differences between the
	23	recessed and nonrecessed embodiments that are
	24	specifically recited in Saxler?
10:00	25	A. Yes. Because a p-doping can be doped

	i	
10:00	1	throughout, and it can be on the surface.
	2	You know, I think you can they
	3	basically say you can
	4	It further says:
10:01	5	Embodiments of the present
	6	invention not be should not
	7	be construed as limited to the
	8	particular exemplary
	9	embodiments.
10:01	10	So I read that to mean it could be doped
	11	throughout if you want to.
	12	Q. Okay. But the Saxler paragraphs that we
	13	went through describe differences between the
	14	recessed and nonrecessed embodiments in terms of
10:01	15	thicknesses and in terms of dope in regions.
	16	Correct?
	17	MS. SPECHT: Objection; form.
	18	A. It was pretty clear what was stated in
	19	those paragraphs. So
10:02	20	Q. Okay. But it's your opinion that 52
	21	allows for the allows for what, exactly?
	22	A. Well, allows for just what it says:
	23	The embodiments of the
	24	present invention should not be
10:02	25	as construed as limiting to

10:02	1	the particular exemplary
	2	embodiment.
	3	So I think you can take all the
	4	embodiments, and mix and match. That's kind of what
10:02	5	that means to me.
	6	Q. So it's your opinion that Saxler provides
	7	support for any gallium nitride transistor?
	8	MS. SPECHT: Objection;
	9	mischaracterization.
10:02	10	Q. Based on Paragraph 52?
	11	A. No.
	12	Q. Okay. So what are the parameters that are
	13	limited in Paragraph 52?
	14	A. What they describe in this patent.
10:02	15	So, Figures 1A through 6, I read that as
	16	it's fair game to pull the recess out of any of
	17	those figures. And they give a variety of
	18	discussion of dopants, different types of dopants,
	19	different distributions.
10:03	20	So I think all those embodiments could be
	21	brought into 1A, modified.
	22	Q. That also talks about different
	23	thicknesses in the recessed and nonrecessed. Right?
	24	A. It in those paragraphs, it did say the
10:03	25	cap layer was a different thickness.

10:03	1	Q. So in your opinion, you can mix and match
	2	all of that?
	3	MS. SPECHT: Objection;
	4	mischaracterizes prior testimony.
10:03	5	A. It means that you can within you can
	6	take what's in the embodiments and mix and match.
	7	That's what I mean, because because of the
	8	language that appears in 52.
	9	They're not these none of these
10:04	10	embodiments are limiting.
	11	Q. Okay. So in your opinion, does Saxler,
	12	based on Paragraph 52, allow for multiple recesses
	13	in the cap layer?
	14	A. That's not in Saxler. I don't really have
10:04	15	an opinion on that. I haven't
	16	So I'm not sure where you know, what
	17	you're getting at, but I don't have an opinion on
	18	it.
	19	Q. You don't have an opinion on that?
10:04	20	A. Multiple recesses? No.
	21	Q. Okay. Could it have vertical sidewalls?
	22	A. Could what have vertical sidewalls?
	23	Could a recess? Or
	24	Q. Could the recess have vertical sidewalls,
10:04	25	yes.

10:04	1	MS. SPECHT: Objection;
	2	foundation.
	3	A. Not generally, no.
	4	Q. Does. Does Saxler
10:04	5	Let's go back to Paragraph 27.
	6	There it's talking about the cap layer
	7	thickness. Right?
	8	A. Yes.
	9	Q. And there is a wide range from about 5 to
10:05	10	about 5000 angstroms for the thickness of the cap
	11	layer. Right?
	12	A. Correct.
	13	Q. And that's in connection with the recessed
	14	embodiment. Correct?
10:05	15	A. Yes.
	16	Q. And then if we go down below, we're
	17	talking about a thickness of 2 to 20 angstroms for
	18	the nonrecessed embodiment. Correct?
	19	A. That's what it says.
10:06	20	Q. Okay. In your opinion, does Paragraph 52
	21	allow for a nonrecessed cap layer to have
	22	5000 angstroms thickness?
	23	MS. SPECHT: Objection; form.
	24	A. As I said before, I think you could take
10:06	25	all the embodiments and bring in which ones you

10:06	1	want, depending on what you're trying to accomplish.
	2	Q. So in your opinion, are there any
	3	transistor are there any gate structures that are
	4	outside the scope of Saxler?
10:07	5	A. You mean, in general
	6	Q. Yes.
	7	A out there in the world?
	8	Of course, there are.
	9	Q. Which ones?
10:07	10	A. How about a T gate for a microwave
	11	transistor? That's not described in Saxler.
	12	Q. I'm not talking about application. I'm
	13	talking about the gate structure shape.
	14	A. There are T gates. There are W gates.
10:07	15	There's V gates used in microwave devices. There
	16	are many types of gate structures.
	17	Q. So there are certain
	18	But in your opinion, aren't Saxler just
	19	isn't Saxler just providing some examples?
10:07	20	A. Of gate structures?
	21	Q. Yes.
	22	A. Yeah, there's examples of gate structures
	23	in Saxler.
	24	Q. So are you saying that T gate structures
10:07	25	are not disclosed by Saxler?

10:08	1	A. Well, Figure 1A has a gate contact that
	2	kind of looks like a T, but those aren't the same
	3	kind of gates used in microwave devices.
	4	So you asked: Are there any other types
10:08	5	of gates? And there are a lot. And they a lot
	6	of the differences appear in microwave devices,
	7	which these are not, generally.
	8	Q. Okay. So are there any gate structures
	9	that fall outside the scope of Saxler, in your
10:08	10	opinion, that would be specific for HEMTs?
	11	A. As I said, there's a lot of other gate
	12	structures used in HEMTs that aren't described in
	13	Saxler.
	14	Q. All right. You mentioned "T gate," but I
10:08	15	think Saxler talks about T gates. Right?
	16	A. Yeah, he does have a gate that looks like
	17	a T gate, but that's not the way you would do it in
	18	a microwave device. So the entire gate structure is
	19	different, even though it kind of is 1A kind of
10:09	20	looks like a T metalization.
	21	Q. What's different about a microwave gate?
	22	A. You're not going to load a microwave gate
	23	with this cap layer. It will introduce too many
	24	parasitics.
10:09	25	Q. In your opinion, does Saxler provide

10:09	1	support for a gate structure having step sidewalls?
	2	MS. SPECHT: Objection;
	3	foundation.
	4	A. Which could you tell me exactly what
10:10	5	you mean by a "step sidewall."
	6	Q. Are you familiar with "step sidewalls"?
	7	A. I think I know what it means. I want to
	8	make sure.
	9	Q. Okay. What's your understanding of that?
10:10	10	A. Well, it means the sidewall would be
	11	basically looking like maybe a staircase or
	12	something.
	13	Q. Okay. So with that understanding, does
	14	Saxler provide support for a gate structure having
10:10	15	step sidewalls?
	16	A. I don't believe so.
	17	I could read Saxler and answer that with a
	18	better certainty, but I don't believe it's in there.
	19	Q. Does Saxler provide any support for a
10:11	20	vertical sidewall in its cap layer?
	21	A. Let's seeif you look at Paragraph 42 of
	22	Saxler.
	23	Q. I'm there.
	24	A. So they're talking about etching these
10:11	25	walls. And they say typically they have tapered,

1	rounded, or curved features which is true.
2	The etching processes that are used to
3	etch that material do not produce the vertical
4	sidewalls.
5	Q. You discuss vertical sidewalls in your
6	declaration. Right?
7	A. I believe there's a discussion
8	ofdescribing walls.
9	Q. Um-hum. And in your opinion
10	A. Do you want to point me to where in the
11	declaration you're talking about?
12	Q. Let me try to find it.
13	Paragraph 72, on Page 35.
14	A. Okay.
15	Q. I'm sorry, 43, 43.
16	A. You said "Paragraph 72"?
17	Q. "35" wait, I'm sorry.
18	You say, "Few structures, if any"
19	I'm on one, two, three, four, five
20	five from the top, "Few structures"
21	Do you see that?
22	A. Yes.
23	Q. You say:
24	Few structures, if any,
25	have perfectly vertical
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

10:14	1	sidewalls in practice.
	2	That's your opinion. Right?
	3	A. It takes extra processing steps to get a
	4	vertical sidewall, and none of those steps are
10:14	5	described in any of these references. So
	6	So, really, there's no vertical walls in
	7	an actual "cell-G" (phonetic) device.
	8	Q. What extra processing steps would be
	9	required to get vertical sidewalls?
10:15	10	A. I'd like to make a drawing to illustrate
	11	that. Is that okay?
	12	It will answer your question.
	13	Q. Sure.
	14	A. Okay. So I'll make a diagram and try to
10:15	15	describe it as I make it.
	16	We start with a semiconductor surface of
	17	gallium nitride or aluminum gallium nitride. We
	18	pattern photoresist on it.
	19	So this is photoresist (indicating).
10:16	20	So, so far, we just have a planar gallium
	21	nitride surface with photoresist on it. Okay?
	22	And then what we do is: We subject this
	23	sample to a plasma etch.
	24	Now, the reason it's a plasma etch is
10:16	25	because this is c-plane gallium phase gallium

10:16	1	nitride. That's what's that top surface on these
	2	structures, except for the structure in Beach.
	3	The c-plane is impervious to wet chemical
	4	etching. So there are no known wet chemical etches
10:16	5	to etch that. So we use a plasma etch to etch it.
	6	And the plasma edge has, depending on the
	7	type of plasma etch but the two most common,
	8	there's very little undercut that occurs under the
	9	mask. And so, I'll schematically illustrate what
10:17	10	these walls generally look like.
	11	So the first part of the figure I'll call
	12	"A." And then what we do is: We subject this to a
	13	plasma etch, and that arrives on the diagram labeled
	14	"B."
10:17	15	Do you see the rounded that's supposed
	16	to be symmetric, but
	17	So you see the rounded shapes that occur.
	18	And then what you have to do, if you want
	19	vertical walls you have to subject this sample to
10:17	20	what's called a "crystallographic etch."
	21	The only known crystallographic etches are
	22	wet etches.
	23	So the next step is: We subject this to
	24	our crystallographic etch. And what that does is
10:18	25	what the term "crystallographic etch" means is that

10:18	1	there is a very strong dependence of etch rate on
	2	crystal orientation or different crystal planes.
	3	Okay?
	4	And so, the slowest etch planes are the
10:18	5	ones that will expose themselves.
10.10	6	So if you do this correctly the
	7	
		crystallographic etch, by the way, would be
	8	common examples is KOH solutions or TMAH solutions.
	9	These are well-known solutions to achieve this. And
10:18	10	so, now we have the same photoresist.
	11	The side surfaces are non-c-plane
	12	surfaces. Those will etch in a chemical etch. The
	13	top surface will not.
	14	So we're going to undercut the mask a
10:19	15	little bit. And when you do this process, you will
	16	end up with something that looks like this
	17	(indicating).
	18	And this wall is because it's a
	19	crystalline plane, is 90 degrees.
10:19	20	And there's still a sloped portion below
	21	that that evolves when you do this.
	22	But that's what happens.
	23	That's how you create a vertical wall in
	24	gallium nitride, c-plane gallium nitride.
10:19	25	MR. DOSHI: Okay. So let's mark
-		

10:19	1	this as
	2	A. That's Diagram C after the etch.
	3	And you will notice there's still some
	4	sloped portions down at the bottom.
10:20	5	When you get near the bottom, it exposes a
	6	plane here. And that's what gives these slopes a
	7	slower edge plane.
	8	MR. DOSHI: Okay. Let's mark
	9	this as 2002.
10:20	10	We'll put it in 1382.
	11	(Whereupon, Exhibit 2002 was marked for
	12	identification.)
	13	MR. DOSHI: Thank you.
	14	BY MR. DOSHI:
10:20	15	Q. And so, this is A, B, and C panels. And
	16	the C panel is in red, which is after the
	17	crystallographic etch.
	18	Is that correct?
	19	A. Yes. It recesses in because it undercuts
10:20	20	the resist a little bit.
	21	It doesn't recess much, but it exposes
	22	that slow etch plane.
	23	All the other planes will be removed
	24	because they etch quickly.
10:21	25	Q. Okay. You earlier testified that there

10:21	1	are no additional processes that are disclosed by
	2	Saxler.
	3	A. None of the references disclose what I put
	4	in that diagram.
10:21	5	And you'll notice there's additional
	6	vertical penetration when you do that
	7	crystallographic etch. And that could be quite
	8	problematic for a HEMT device, because there's so
	9	much going on near the surface.
10:21	10	So it's not surprising that they don't use
	11	this step.
	12	Q. So since they don't use that step, in your
	13	opinion they cannot achieve these 90-degree
	14	sidewalls.
10:21	15	Is that correct?
	16	A. That is the only way it is known to be
	17	done.
	18	Q. Okay. So let me ask again.
	19	So since Saxler doesn't use the steps that
10:22	20	you've described here in Exhibit 2002, Saxler does
	21	not or cannot achieve a 90-degree sidewall.
	22	Correct?
	23	A. That's correct or Yoshida, for that
	24	matter.
10:22	25	COURT REPORTER: Excuse me.

10:22	1	What was that term, "Yoshida"?
	2	THE WITNESS: It's the author of
	3	another primary reference of prior art.
	4	COURT REPORTER: Would you spell
10:22	5	that for me.
	6	THE WITNESS: Y-o-s-h-i-d-a.
	7	COURT REPORTER: Thank you.
	8	BY MR. DOSHI:
	9	Q. So this discussion started with
10:23	10	Paragraph 52. And I believe my question that
	11	started this was whether Saxler candiscloses
	12	or provides support for vertical sidewalls of the
	13	cap layer.
	14	And we went down this path. And your
10:24	15	conclusion is that it does not.
	16	Is that correct?
	17	A. That's what one skilled in the art would
	18	know: Without a crystallographic edge, it doesn't
	19	exist.
10:24	20	Q. Okay. Let's talk about how we get to the
	21	figure that you put together or you asked
	22	somebody to put together for you
	23	A. Okay.
	24	Q on Page 41 of your declaration for
10:24	25	'347.
		·

10:24	1	Would the precursor to that have a gate
	2	contact on top?
	3	MS. SPECHT: Objection;
	4	foundation.
10:24	5	Q. Okay.
	6	A. I don't know what you mean by "precursor"?
	7	Q. Okay. So if we were to make the structure
	8	that is depicted on Page 41, it would start with the
	9	substrate. Correct?
10:25	10	A. Yes.
	11	Q. And a channel layer on top of that?
	12	A. Yes.
	13	Q. And a barrier layer on top of that?
	14	A. Yes.
10:25	15	Q. And then a cap layer, probably, extending
	16	all the way through, right, across the top of the
	17	structure, over the barrier layer?
	18	A. It doesn't contact it doesn't come in
	19	contact with the Ohmic contacts. But
10:25	20	Q. Not yet.
	21	A. Huh?
	22	Q. Not yet.
	23	I'm trying to go through the fabrication
	24	process for this.
10:25	25	A. Oh, okay.

10:25	1	Q. Does that make sense to you?
	2	A. The fabrication process?
	3	Q. Yes.
	4	A. Sure, yeah.
10:25	5	Q. So then what you have in green on Page 41
	6	would likely go across. Correct?
	7	A. Yes. That layer has to be removed to
	8	place the Ohmic contacts.
	9	Q. Okay. So once the contacts are in, would
10:25	10	it look a lot like Figure 1B of Saxler?
	11	A. No.
	12	Q. No?
	13	A. No. 1B is a strange cartoon. It's not
	14	let me make sure I'm talking about the right figure.
10:26	15	It's an idealized cartoon.
	16	I've never seen a device built that way,
	17	where the sides of the Ohmics are able to butt up
	18	against the cap layer you're not going to be able
	19	to fabricate that.
10:26	20	You could fabricate something that is
	21	intended to you know, this can be like a, I don't
	22	know, some sort of a crude design.
	23	But there's no way to place Ohmic contacts
	24	and butt them up against that cap layer with no gap
10:26	25	in between, as shown.

10:26	1	There's no standard process to do that.
	2	Q. Okay. And then once the Ohmic contacts
	3	are in, then the gate contact how is that formed
	4	on top of the cap layer?
10:27	5	A. That can be formed multiple ways, but
	6	the
	7	Probably the most straightforward is: You
	8	pattern that you do this before you place the
	9	Ohmics. You can put the Ohmics after and they
10:27	10	can go in either order. But to me, it looks
	11	straightforward to
	12	The green goes all the way across. Then
	13	you etch the you plasma etch the green layer.
	14	And then you one way to do it.
10:27	15	And remember, there's always multiple ways
	16	of building these things.
	17	So then youyou, with some technique,
	18	evaporate or sputter metal on the surface. And you
	19	put resist on that and etch the metal away.
10:28	20	And in other embodiments where we bring in
	21	other references, we'll use a self-aligned structure
	22	to place that gate.
	23	But it can be done multiple ways.
	24	Q. And so, that would involve masking and
10:28	25	etching steps, I think you said. Right?

10:28	1	A. Yeah. You have to mask the gate.
	2	But you can etch the green and the gate
	3	metal using the same mask. That would be what we
	4	would refer to as a "self-aligned" process.
10:29	5	Q. And where is that? in Saxler?
	6	A. No. We bring in the self-aligned with
	7	other references: Beach and Ahn.
	8	Wait Ahn's only in one of these cases.
	9	I don't want to get confused.
10:29	10	Where is that grounds that thing right
	11	there.
	12	Q. I'll represent Ahn is in '347. So
	13	And that's what we're talking about right
	14	now.
10:29	15	A. All right. I'm just going to
	16	double-check.
	17	Q. Yeah.
	18	(Witness reading.)
	19	A. And, yes, Ahn you're correct.
10:29	20	So Ahn's in this case.
	21	Q. Okay. So Saxler does not talk about
	22	self-alignment?
	23	A. It may be in there, but I don't I don't
	24	recall it's in there. I don't think it is.
10:30	25	Saxler has other references that like

10:30	1	Sheppard, Smith that give a lot of details on
	2	fabrication, if you're interested.
	3	Q. And you discussed those in your
	4	declaration. Correct?
10:30	5	A. Correct.
	6	Q. Figure 1A has a cap layer that is higher
	7	than the Ohmic contact. And in 1B, it shows that
	8	it's about the same height.
	9	Do you see that?
10:31	10	A. Yes.
	11	Q. That's different thicknesses of the cap
	12	layer?
	13	(No response.)
	14	Q. Does that represent different thicknesses
10:31	15	of the cap layer? Sorry.
	16	A. To be honest with you, I don't know what
	17	1B represents because it's not something you can
	18	fab.
	19	What it clearly shows is: There's no
10:31	20	recess.
	21	Q. And what about Figure 1A; do you think
	22	that's a fair representation of what Saxler's trying
	23	to achieve?
	24	A. Yes. You'll note that the vertical scale
10:32	25	of these diagrams is exaggerated, so you could see

1	details of the epitaxial layer.
2	But aside from that, yes.
3	Q. Do you expect the gate contact of
4	Figure~1A to be centered, as depicted?
5	A. There are without self-alignment, it's
6	certainly possible to use lithographic techniques to
7	place that in the center, yes.
8	Q. But for 1B, it's not possible to be
9	abutting the cap layer abutting on the contact.
10	Right?
11	A. Yeah. I just don't know how you build
12	something like that.
13	MR. DOSHI: All right. Good
14	time for a break?
15	THE WITNESS: Okay.
16	MR. DOSHI: Off the record.
17	(Whereupon, a recess was taken
18	from 10:33 a.m. until 10:47 a.m.)
19	BY MR. DOSHI:
20	Q. We are still talking about Saxler. I want
21	to take you to Figure 1A.
22	Are you there?
23	A. Figure 1A?
24	Q. Yeah.
25	A. Yeah. We were on Page 41, I guess?
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

10:47	1	Q. Well, I'm going to take you to Saxler,
	2	actually.
	3	A. Oh, okay.
	4	Q. Figure 1A.
10:47	5	A. All right.
	6	(Pause.)
	7	A. Okay.
	8	Q. Okay. And in your opinion, is that an
	9	enhancement mode transistor?
10:48	10	A. Figure 1A?
	11	Q. Yeah let's back up.
	12	You opine on enhancement mode and
	13	depletion. Right?
	14	A. Yes.
10:48	15	Q. Okay. And you know what "enhancement
	16	mode" means. Correct?
	17	A. Yes, I do.
	18	Q. What is an enhancement mode transistor?
	19	generally speaking.
10:48	20	A. Generally speaking, when there's 0 volts
	21	applied to the gate, it
	22	The device is in an off state, and you
	23	have to apply a positive bias to the gate to turn
	24	the device on.
10:49	25	And that's generally what people would

10:49	1	call "enhancement mode" although, it has other
	2	meanings as well.
	3	But in the context of this, I think that's
	4	a good representation.
10:49	5	Q. Okay. In your opinion, is Figure 1A an
	6	enhancement mode transistor?
	7	A. As it's drawn, it would be a depletion
	8	mode device unless the gate contact penetrated deep
	9	into the barrier layer, which that's not the way
10:49	10	it's shown.
	11	Q. And I think you state that in
	12	Paragraph 146 of your declaration, which I believe
	13	is on Page it is on Page 75.
	14	A. Yes. On the fourth line from the bottom,
10:50	15	yeah.
	16	Q. Great. And then if we turn back to
	17	Saxler, Figure 1B.
	18	Now, before the break, we were talking
	19	about how the cap layer that this is let me
10:50	20	rephrase.
	21	Before the break, you testified that
	22	Figure 1B may not have a cap layer that abuts the
	23	Ohmic contact.
	24	Is that a fair representation?
10:50	25	A. I think what I said was: It would not be

10:50	1	straightforward at all to fabricate such a
	2	structure.
	3	Q. Okay. Is it possible to etch the cap
	4	layer, deposit a metal over the cap layer and into
10:51	5	the vias, if you will, next to the cap layer?
	6	A. Wait a minute. Are we talking 1B? Or
	7	Q. Yeah, I'm talking 1B.
	8	I'm just I'm trying to understand.
	9	You said that there aren't any mechanisms
10:51	10	by which processes by which you can form 1B.
	11	Is that right?
	12	A. Yes. It's basically because the Ohmic
	13	contacts button and are perfectly aligned and butt
	14	up against the cap layer. That's the way it's
10:51	15	drawn.
	16	Q. Okay.
	17	A. And they're also the same thickness
	18	which would rarely be the case.
	19	Q. So if we go to 72, though Paragraph 72
10:52	20	of Saxler.
	21	A. Oh, Saxler.
	22	Q. Yeah.
	23	A. Okay.
	24	Q. At the fourth from the bottom, it says:
10:52	25	In such a case

10:52	1	Do you see that?
10101	2	A. Yes.
	3	Q. It says:
	4	A dope region would not
10:52	5	extend to the Ohmics contacts,
	6	which may be isolated from the
	7	dope region by an insulating
	8	region such as a silicon
	9	nitride layer or gap.
10:52	10	Do you see that?
	11	A. Yes.
	12	Q. Does that imply that there are instances
	13	where the dope region would contact the Ohmic
	14	contacts?
10:52	15	MS. SPECHT: Objection; form.
	16	A. I would say no. It will do the device no
	17	good to do that. It'll only potentially introduce
	18	some shunt conductance to the 2D gas, a very bad
	19	thing. So I don't think so.
10:53	20	You'd have a gap.
	21	Q. So 72 says:
	22	Further, in certain
	23	embodiments of the present
	24	invention
10:53	25	Right?

10:53	1	And then, it continues that:
	2	the doped region would
	3	not extend to the Ohmic
	4	contacts.
10:53	5	Are there instances are there
	6	embodiments contemplated by Saxler where the cap
	7	layer extends from Ohmic contact to Ohmic contact
	8	without the doped layer Dope Region 40?
	9	MS. SPECHT: Objection; form.
10:53	10	A. So your question was would you just
	11	repeat the question, please.
	12	Q. Sure. Does Saxler contemplate a cap layer
	13	that contacts both Ohmic contacts?
	14	A. That's certainly what's shown in 1B.
10:54	15	But, remember, Saxler has a lot of
	16	different structures for cap layers and some of them
	17	are insulating.
	18	So if the cap layer's insulating, it would
	19	function.
10:54	20	Q. Okay.
	21	A. If it's conducting, it would be a
	22	disaster.
	23	Q. Why would it be a disaster?
	24	A. Because when you apply a gate potential,
10:54	25	you're trying to modify the two-dimensional electron

10:54	1	gas. And you want all of the conduction, all the
	2	drain current in the device, to come from the
	3	two-dimensional electron gas, because that's what's
	4	gated.
10:54	5	If you have a conducting cap layer in 1B,
	6	there would always be current flowing from source
	7	to or electron flow or current from drain to
	8	source that would be going through the cap layer
	9	that wouldn't be affected, necessarily, by the gate
10:55	10	bias.
	11	So you never want a parallel conduction
	12	path to the two-dimensional electron gas.
	13	Q. And so, going back to 1B, is that in
	14	your well, is Figure 1B an enhancement mode
10:56	15	transistor?
	16	A. If the cap layer were p-doped at the
	17	correct amount and the thickness was correct, it
	18	could be an enhancement mode device.
	19	Q. When you say "thickness is" I think you
10:56	20	said "correct" what do you mean by that?
	21	"Thickness," meaning the height or the
	22	width?
	23	A. The height.
	24	Q. Okay. Does Saxler say "enhancement mode"?
10:57	25	I think you said it does not. Right?

	I	
10:57	1	COURT REPORTER: Did you say
	2	what?
	3	MR. DOSHI: Sorry.
	4	COURT REPORTER: I'm sorry.
10:57	5	Q. Does Saxler say that does Saxler use
	6	the term "enhancement mode"?
	7	A. My recollection is it doesn't, but I'll be
	8	happy to look for it.
	9	Q. No. I think Paragraph 99 on Page 53 of
10:57	10	your declaration, I believe you say well, you do
	11	say:
	12	Although Saxler does not
	13	use the phrase "enhancement
	14	mode," this transistor indeed
10:57	15	constitutes a normally off
	16	enhancement mode gallium
	17	nitride transistor when these
	18	p-type dopants are placed in
	19	the cap layer.
10:57	20	Do you see that?
	21	A. You're on Page 53?
	22	Q. Yes; Paragraph 99.
	23	A. Okay. Well, that's
	24	If you remove the recess and add p-doping
10:58	25	to the cap layer, you can turn you can easily

10:58	1	turn Saxler's device into an enhancement mode
	2	device.
	3	That p-cap layer is what that's the
	4	primary difference between a depletion and
10:58	5	enhancement mode device.
	6	So they're very compatible with each other
	7	because they only differ by, you know, that one
	8	feature to go from a depletion mode to an
	9	enhancement mode.
10:58	10	So, you know, one skilled in the art would
	11	be familiar with both.
	12	Q. In your opinion, would that be would
	13	Figure 1B be a reasonably well working enhancement
	14	mode transistor?
10:59	15	A. I think you'd want to separate the Ohmics
	16	from the cap layer, because that structure, as
	17	shown, would have these shunt problems I was talking
	18	about, potentially.
	19	Q. And the 2DEG where is the 2DEG depleted
10:59	20	in Figure 1B?
	21	A. I think it'd be useful to make another
	22	drawing.
	23	Q. Okay.
	24	A. I think if I if I do the drawing for
11:00	25	1A, it will encompass everything in both figures.

	•	
11:00	1	Q. I'm specifically asking about 1B, because
	2	you said that it could be in enhancement mode.
	3	I'm trying to understand
	4	A. Well, so can 1A if you remove the recess
11:00	5	and p-dope the cap.
	6	So
	7	Q. Right.
	8	A what I was going to do is do it for the
	9	modified structure, because
11:00	10	Q. No yeah, but I'm more interested in 1B,
	11	because I understand your position in
	12	Paragraph 146
	13	A. Okay.
	14	Q regarding 1A.
11:00	15	But I'm talking about 1B and how that
	16	would function as an enhancement mode transistor.
	17	A. Okay. All I'm doing in Diagram A is
	18	trying to reproduce Figure 1B.
	19	Okay. So I'm going to indicate the
11:01	20	boundaries between the Ohmics and I forgot to put
	21	the gate on.
	22	And so, you could now think about
	23	producing a profile of the electron gas, which is
	24	getting at the heart of your question, across a
11:02	25	device from source to drain.

11:02	1	So I'll call this the "source" over here,
	2	and "gate," and the "drain."
	3	Okay. So the 2D gas is, more or less, the
	4	same under the Ohmic contact. So you have a 2D gas
11:02	5	here and here (indicating).
	6	So no matter what biases you apply, you're
	7	always going to have a 2D gas in those regions.
	8	Q. So just for the record, "2DEG," right, is
	9	what you're referring to?
11:02	10	A. 2-Dimensional Electron Gas "2DEG."
	11	I don't like that term, but that's all
	12	right.
	13	And then so this is when the device is
	14	in the off state. Okay?
11:03	15	And so, the negative charge associated
	16	with that p-type layer, that comes from the acceptor
	17	impurities you dope it with.
	18	That negative charge and so, we're not
	19	applying any gate bias that negative charge is
11:03	20	sufficient in density to deplete all of the 2D
	21	the "2DEG," if you like out of the channel.
	22	So theit would look something like this
	23	(indicating).
	24	And so, this is a I'll call it the
11:03	25	sheet concentration of the 2D electron gas as a

11:04	1	function of position.
	2	This is for it's in the off state and
	3	low drain bias, just because it's easier to draw
	4	that way. Okay?
11:04	5	And then you apply a
	6	And by the way, it doesn't matter if
	7	there's gaps between the source and the gate. It's
	8	just it's just not something that matters.
	9	So in other words, you can have gaps in
11:04	10	this channel, and the 2D gas will still be induced
	11	when it's in the on state.
	12	So now on Diagram C, we'll draw in the on
	13	state. Nothing's changed about the Ohmic contacts
	14	and the 2D gas concentration under them.
11:05	15	So this is meant to be the same. The 2D
	16	gas hasn't changed under the Ohmics.
	17	Now, if you forward biases to turn this
	18	on, you can actually and you will actually increase
	19	the 2D gas concentration it depends on how hard
11:05	20	you turn it on over what's under the Ohmic
	21	contacts.
	22	So at low drain bias, it would actually
	23	look like this when it's on.
	24	And that same figure would apply to 1A.
11:05	25	But you have to modify it because there's sloped

11:05	1	sidewall shown.
	2	So the acceptor densities the sheet
	3	density, which is a product of the volume density
	4	times the thickness, it changes as you move through.
11:05	5	So there's a more gradual transition in
	6	1A, but it basically looks the same.
	7	MR. DOSHI: Okay. Let's mark
	8	this drawing as Exhibit 2003 for 1382
	9	2003.
11:06	10	COURT REPORTER: Should I put
	11	"1382" on there for you?
	12	No? Okay.
	13	MS. SPECHT: You can use the
	14	same exhibit in both proceedings if you
11:06	15	want. So just leave it.
	16	(Whereupon, Exhibit 2003 was marked for
	17	identification.)
	18	BY MR. DOSHI:
	19	Q. Okay. In your explanation, you said it
11:06	20	depends on how hard you turn it on.
	21	What did you mean by that?
	22	A. Okay. There's something called a
	23	"threshold voltage." That's the onset of
	24	conduction.
11:06	25	Q. Um-hum.

11:06	1	A. And as you increase the gate voltage above
	2	the threshold voltage, you're inducing more and more
	3	2D gas under that gate region.
	4	Q. Okay. And earlier you had indicated that
11:07	5	the thickness may need to be reduced for 1B and for
	6	the for it to operate as enhancement mode?
	7	A. I can't say anything about that. There's
	8	no dimensions on here.
	9	But I'm just saying, you have to have the
11:07	10	right sheet density of negative charge to fully
	11	deplete the 2D gas out of the channel if you want it
	12	to be normally off.
	13	Q. Okay. And a gate, as depicted in
	14	Figure~1B, would that require additional voltage for
11:07	15	it to be turned on as an enhancement mode?
	16	A. Well, you'll design the enhancement mode
	17	device by placing the proper amount of negative
	18	charge negative sheet charge is what counts to
	19	deplete the 2D gas.
11:07	20	So thethat will produce a threshold
	21	greater than zero if it's in enhancement mode.
	22	So the further you drive it beyond
	23	0 volts say you drive it at 1 volt in fact, we
	24	could add another feature to that diagram, if you
11:08	25	want, to illustrate that.

11:08	1	Q. Okay. Can we put that in red?
	2	A. Yeah.
	3	Q. So you're going to take back 2003
	4	I'm just stating this for the
11:08	5	A. No, I gotcha.
	6	Q for the record.
	7	I'm going to hand you back 2003, and
	8	you're going to add red.
	9	A. Yeah, we'll put it in red.
11:08	10	Sosay this is a gate voltage. That's
	11	approximately equal or greater than the threshold
	12	voltage.
	13	And then in blue which I seem to have
	14	lost oh, there it is the threshold the gate
11:09	15	voltage is considerably larger than that. So, I
	16	don't know, say it's approximately the threshold
	17	voltage plus a couple of volts.
	18	There is a limit to how hard you can drive
	19	the gate. And so, 2 volts would be driving it
11:09	20	pretty hard if the threshold was near zero.
	21	So it might look something like that.
	22	And by the way, this is both all of
	23	these are for low drain bias, these diagrams.
	24	Q. Okay. Thank you.
11:09	25	A. Um-hum.

11:09	1	Q. Let's go back to Paragraph 72 of the
	2	Saxler reference you have so many paragraphs, you
	3	don't know which one to reach for.
	4	And specifically right in the middle of
11:11	5	the paragraph, it talks about a "JHEMT."
	6	A. Yes.
	7	Q. Are you familiar with "JHEMTs," Junction
	8	HEMTs?
	9	A. Of course.
11:11	10	Q. Okay. Is that in enhancement mode?
	11	A. No.
	12	Q. Okay.
	13	A. That's not to say they can't be.
	14	But the way it's described here, it would
11:11	15	be in depletion mode and it's a bad idea.
	16	Q. Let's go to Paragraph 63 of Saxler.
	17	Okay. And this Paragraph 63, this acts
	18	as the cap layer. Correct?
	19	A. Yes.
11:13	20	Q. And the formation of the cap layer.
	21	Right?
	22	A. The Paragraph 63?
	23	Q. Yes.
	24	A. Yeah, it's suggesting you use epitaxial
11:13	25	growth techniques to produce it.

11:13	1	Q. And we talked about that earlier.
	2	It's basically putting down that cap layer
	3	in green and you modify it bigger, Saxler.
	4	Right?
11:13	5	A. Yes. There's no lithographic processing
	6	that occurs yet. So it's a planar film.
	7	Q. So in 64, we're talking about KOH and
	8	etching.
	9	And is in 2002 in Exhibit 2002,
11:14	10	which is the drawing that you made, you I
	11	think oh, you have I think you have before you
	12	2002, the drawing the first drawing that you
	13	made.
	14	Do you have it?
11:14	15	A. Where is it?
	16	I thought I gave it up, but oh, it's
	17	over here.
	18	MS. SPECHT: There it is.
	19	Q. I apologize. Here it is.
11:14	20	A. Okay.
	21	Q. I see "KOH" in your notations there.
	22	So
	23	A. Yes.
	24	Q is that the same KOH etching materials?
11:14	25	A. As soon as you add that's KOH with UV

11:15	1	stimulation of the etch. And that's not how
	2	crystallographic etches are done, usually. So it's
	3	kind of a different animal.
	4	If they you could have KOH solutions
11:15	5	that don't effectively crystallographic etch. If
	6	it's a crystallographic etch, it'll say it.
	7	Q. And do you understand Paragraph 64 to be
	8	etching the cap layer to drop in the Ohmic contacts?
	9	A. Well, they said this etch is done to
11:16	10	expose the underlying barrier layer.
	11	And that's where the contacts are placed,
	12	either directly on the barrier or, if you look at
	13	Figure 1A, they're actually recessed into the
	14	barrier.
11:16	15	Generally, you get better Ohmic contacts
	16	if you recess them into the barrier.
	17	In fact well, I won't go into any more
	18	detail on that.
	19	MR. DOSHI: I'm handing you
11:18	20	what's been previously marked as
	21	Exhibit 1006, which is Yoshida.
	22	(Whereupon, Exhibit 1006, previously
	23	marked, was presented to the witness.)
	24	BY MR. DOSHI:
11:18	25	Q. Have you seen this document before?

11:18	1	A. Yes.
	2	Q. Okay.
	3	A. It's in the binder here.
	4	Q. Okay. If you want to use your binder
11:18	5	copy, that's fine, so long as there are no notes on
	6	it.
	7	A. Okay.
	8	Q. We've been talking about Saxler
	9	enhancement mode.
11:18	10	Is Yoshida an enhancement mode transistor?
	11	A. Yes. There's support for that in here.
	12	Q. And Yoshida has a gate structure. Right?
	13	A. Yes.
	14	Q. Yeah. And do you agree that Yoshida
11:19	15	deposits and etches the gate material first, before
	16	the gate contact?
	17	MS. SPECHT: Objection; form.
	18	A. I don't recall. So I'd like to look.
	19	Q. Sure.
11:19	20	A. It can certainly be done either way,
	21	but
	22	(Witness reading.)
	23	A. Okay. I'm ready to answer the question,
	24	but I forgot the exact language. I don't know if
11:22	25	you could repeat the question.

11:22	1	Q. Yoshida has a fairly clear process,
	2	correct? in terms of creating a structure?
	3	MS. SPECHT: Objection; form.
	4	A. He has several paragraphs describing
11:22	5	fabrication.
	6	And in the conventional art, he describes
	7	one scenario.
	8	The source electrode and
	9	drain electrode are loaded
11:23	10	as a further example, a gate
	11	electrode is loaded via a
	12	p-type layer.
	13	I'm not sure that implies the order of
	14	process for that particular paragraph.
11:23	15	And then there's paragraph so that was
	16	Paragraph 2. Paragraph 6, it says:
	17	After performing
	18	conventional photolithography
	19	and etching of the n-type AlGaN
11:23	20	layer, a gate electrode,
	21	source, and drain electrode are
	22	loaded on.
	23	That's certainly
	24	And that particular paragraph doesn't
11:23	25	imply any order of processing. One skilled in the

	_	
11:23	1	art would read that as you could do it either way.
	2	And then there's another if I can find
	3	it discussion of the fabrication, which appears
	4	in Paragraph 23.
11:24	5	In 23 it would seem to suggest source and
	6	drain contacts come in first, I think. It's not
	7	like do you see what it says?
	8	Lastly, etching away and
	9	masking the opening of the SiO2
11:24	10	film beneath it, the source and
	11	drain electrodes were masked
	12	with the SiO2 film.
	13	And then later, the gate electrodes were
	14	loaded.
11:25	15	So that suggests the gate came after the
	16	source and drain.
	17	Does that answer your question?
	18	But the other disclosures seem to imply
	19	you could do it in any order.
11:25	20	Q. And the others you're talking about
	21	paragraphs 2 and 6. Correct?
	22	A. Well, 2 is conventional art. So maybe we
	23	shouldn't
	24	But 6 there's one sentence that says
11:25	25	you do all this stuff. It doesn't tell you it

	Í	
11:25	1	seems to suggest any order will work.
	2	Q. Is 6 under the heading of "Conventional
	3	Art"?
	4	A. It may be well, I don't
11:25	5	Q. Because I'm looking at Paragraph 8 at the
	6	bottom there. It says:
	7	Problems the invention
	8	seeks to solve.
	9	A. Okay.
11:26	10	(Witness reading.)
	11	A. Okay. Well, anyway, the Paragraph 23
	12	seems to suggest that the gate came
	13	(Witness reading.)
	14	A. Even in 23, it's not clear what the order
11:26	15	of the process is, because it almost suggests that
	16	what they're doing is: They said they've got an
	17	SiO2 film, which is an insulator over the whole
	18	thing. And then they mask it and open up holes in
	19	that film.
11:26	20	And then the source, drain electrodes were
	21	masked
	22	(Witness reading.)
	23	A. Okay. It says:
	24	The source, drain
11:27	25	source and source electrode,

11:27	1	drain electrode
	2	They call that "G." I don't know why. I
	3	think that's a typo.
	4	are masked with the
11:27	5	film and gold was deposited
	6	Somewhere along the line, they got to
	7	expose the Ohmic contacts.
	8	And so, the entire process isn't here.
	9	So the gate's formed. It seems to suggest
11:28	10	the Ohmic contacts are covered up with SiO2.
	11	So the Ohmic contacts really aren't
	12	completed until you expose the metal so that you can
	13	operate the device.
	14	So that, by itself
11:28	15	You know you get my point?
	16	The source-drain contact process wasn't
	17	finished until after the gate. It was started
	18	before the gate. So you call that "gate first, gate
	19	last"? How about "first or last"?
11:28	20	Q. Okay. Could we go to Paragraph 19.
	21	A. Yeah.
	22	Q. Okay. So Paragraph 19 and actually,
	23	through 21 it talks abouttalks about the
	24	process. Correct?
11:29	25	A. That's all talking about the epitaxial

	ĺ	
11:29	1	part of the process.
	2	Q. Got it.
	3	And then Paragraph 22, what is it
	4	referring to there?
11:29	5	A. You're dry etching to etch away the p-type
	6	GaN, except where the gate except where the gate
	7	electrode was to be loaded, exposing the n-type.
	8	(Witness reading.)
	9	A. So
11:29	10	(Witness reading.)
	11	A. Okay. They clearly start the Ohmic
	12	process before the gate.
	13	But the lastly, Paragraph 23, they
	14	don't seem to finish the Ohmic process till after
11:30	15	the gate.
	16	So I guess you could call it either way.
	17	Q. What significance does that last in the
	18	last two sentences I mean, that last sentence
	19	say?
11:31	20	And I'm in Paragraph 22
	21	A. Okay.
	22	Q second-to-the-last line.
	23	And it starts with:
	24	and metal Al deposited
11:31	25	on the exposed n-type

11:31	1	A. Wait a minute. Which I thought you
	2	said "22"?
	3	Q. "22," yeah second-to-last line.
	4	A. Okay.
11:31	5	Q. And
	6	A. Okay. I see it now.
	7	Q. Is that metal aluminum?
	8	A. Yes.
	9	Q. And so, that's deposited on the exposed
11:31	10	n-type indium gallium nitride layer 4?
	11	A. Yes.
	12	So that's the Ohmic metal.
	13	Q. That's the
	14	A. It's not a usual Ohmic metal, but on
11:31	15	n-GaN, it'll work.
	16	Q. So 4 is aluminum. Okay.
	17	And then it says, in 23:
	18	Lastly, after etching away
	19	the masking and opening the
11:32	20	silicon dioxide film beneath
	21	it, the source electrode and
	22	drain electrode locations were
	23	masked with silicon dioxide
	24	film.
11:32	25	Do you see that?

11:32	1	A. Yes.
	2	Q. And then it says:
	3	Au
	4	Gold?
11:32	5	A. Yes.
	6	Q. (Continued reading:)
	7	was deposited in the
	8	opening portions, and gate
	9	electrodes G were loaded above
11:32	10	the p-type GaN layer 5 to
	11	fabricate the HEMT shown in
	12	Figure 1.
	13	Do you see that?
	14	A. Yes.
11:32	15	Q. Okay. And, if we turn to
	16	A. But that's Figure 1 doesn't appear like
	17	what's described in 23, because the SiO2 isn't shown
	18	there. And it obviously was removed to get to that
	19	figure.
11:33	20	So one could conclude that the Ohmic
	21	contact process wasn't finished until the SiO2 was
	22	removed, which is not shown here.
	23	I mean, it certainly started before the
	24	gate was deposited.
11:33	25	I'm just pointing that out. That's all.

11:34	1	Q. Okay. Let's go to Paragraph 17. And that
	2	talks a little bit about the gate material.
	3	Do you agree?
	4	A. Yes.
11:34	5	Q. Okay. So here it says:
	6	The operation of the p-n
	7	junction immediately under the
	8	gate electrode G enables
	9	voltage control
11:34	10	Do you see that?
	11	A. Yes.
	12	Q. Okay. And so, that is describing the
	13	operation of Figure 1?
	14	A. The operation of what?
11:34	15	Q. "Figure 1."
	16	A. Yes.
	17	Q. Okay. So for Yoshida to be turned on, you
	18	would need to apply a positive voltage to the gate.
	19	Is that correct?
11:36	20	A. Yeah.
	21	There's additional support for that in
	22	Paragraph 23.
	23	Q. Okay. I'm there.
	24	A. They apply a gate voltage of 3 volts, and
11:36	25	that's the device is turned on, and it exhibits a

```
drain saturation voltage -- meaning, it's acting
11:36
        1
        2
            like an enhancement mode transistor.
        3
                       That's really the purpose of the p-type
            region under the gate.
        4
                                 MR. DOSHI: All right. Let's go
11:36
        5
        6
                       off the record.
        7
                       (Whereupon, the deposition recessed for
            lunch at 11:36 a.m.)
        8
        9
       10
       11
       12
       13
       14
       15
       16
       17
       18
       19
       20
       21
       22
       23
       24
       25
```

	1	AFTERNOON SESSION
	2	(12:28 p.m.)
	3	BY MR. DOSHI:
	4	Q. Welcome back, Dr. Shealy.
12:28	5	A. Thank you.
	6	Q. We went to can we go to this is
	7	Exhibit 1003, your declaration. And go to
	8	Exhibit 1020 I mean, I'm sorry Paragraph
	9	A. This is the '347 still?
12:29	10	Q. Yes yeah.
	11	It's Page 53. It's Paragraph 100.
	12	At the bottom there, you cite Sheppard.
	13	And this is in relation to the enhancement mode
	14	issue.
12:29	15	And does Sheppard use the term
	16	"enhancement mode"?
	17	A. I don't recall.
	18	Q. Okay.
	19	A. It's been a while since I've read
12:29	20	Sheppard.
	21	MR. DOSHI: Okay.
	22	All right. I'm handing you
	23	what's been previously marked as
	24	Exhibit 1021.
12:30	25	(Whereupon, Exhibit 1021, previously

```
12:30
        1
            marked, was presented to the witness.)
        2
            BY MR. DOSHI:
        3
                 0.
                       And do you recognize this document?
        4
                       Yes. This is Sheppard.
                 Α.
12:31
                       And if you look at....
        5
                 Q.
                       On Page 53, you cite to Figure 1F.
        6
        7
                       And 1F seems --
        8
                 Α.
                       Yes.
                       -- to look a lot like Saxler's 1A.
        9
                 Q.
12:31
       10
                       Do you agree?
       11
                                    (Pause.)
       12
                       It seems to be nearly identical.
                 Α.
       13
                 Q.
                       Okay.
       14
                                    (Pause.)
12:33
       15
                 Q.
                       Thanks for bearing with me. I lost my
       16
            place here.
       17
                       All right. Let's switch topics a little
       18
            bit.
       19
                       Paragraph 95 of '347, which is on Page 50,
12:34
       20
            you have -- you refer to Beach. Correct?
       21
                 Α.
                       Correct.
       22
                                 MR. DOSHI:
                                              Okay.
       23
                       (Whereupon, Exhibit 1008, previously
       24
            marked, was presented to the witness.)
12:34
       25
                 Q.
                       I'm handing you what's been previously
```

12:34	1	marked as 1008.
	2	A. Okay. Thank you.
	3	Q. All right. And that's Beach yes?
	4	A. Yes, it is.
12:35	5	Q. Okay. And in 95, you rely on Beach for an
	6	alleged self-aligned etching technique.
	7	Is that right?
	8	A. That's correct.
	9	Q. And in Paragraph 96 on Page 51 of your
12:35	10	declaration, Beach does not disclose horizontal
	11	ledges. Right?
	12	A. That's correct.
	13	Q. Okay. And Beach Figure 1 doesn't disclose
	14	side surfaces that extend horizontally. Right?
12:36	15	A. What Beach figure shows is a you know,
	16	it's drawn as a vertical wall. It's an idealized
	17	drawing, of course.
	18	Well, one would expect it to have some
	19	curvature.
12:37	20	Q. And that is I think you use the word
	21	"machine tolerance" in your declaration.
	22	Is that right?
	23	A. You might want to point me to that. I
	24	don't remember using that term.
12:37	25	Q. Okay. "Manufacturing tolerances," maybe?

12:37	1	A. That I remember, yeah.
	2	Q. Okay. And is that why you would are
	3	the manufacturing tolerances why you would why
	4	you it's your opinion that a person of ordinary
12:38	5	skill in the art would have understood Beach to have
	6	some slope to its sidewalls?
	7	MS. SPECHT: Objection; vague.
	8	A. Beach is used for the self-aligned
	9	process. And the shape of the wall is not really
12:38	10	relevant to the way it's used in the combination.
	11	Q. Okay. I'm going to switch to your other
	12	declaration. So this is '355.
	13	This is for 1482 1382 1884.
	14	I'm sorry. Third time's a charm.
12:41	15	Okay. And I'm on Page 34.
	16	And there you have petitioner's claim
	17	construction. Do you see that, up at the top of
	18	A. Yes.
	19	Q Page 34?
12:42	20	And you use that for your analysis?
	21	Well, let me rephrase that.
	22	You use that in your analysis, that claim
	23	construction.
	24	Is that right?
12:42	25	A. Yes. But I we considered both

12:42	1	constructions. And the patents are invalid under
	2	both construction.
	3	Q. Okay. And this relates to the
	4	substantially this relates to side surfaces
12:42	5	extending.
	6	Is that right?
	7	A. Yes.
	8	Q. Okay. And here you say that:
	9	The bottom of the p-type
12:42	10	gate material is more than 10%
	11	wider than the top of the
	12	material.
	13	Right?
	14	A. That's what yes, that's what's there.
12:42	15	Q. Okay. And is in your opinion, is 10%
	16	within manufacturing tolerance?
	17	A. I think you need to explain that a little
	18	better.
	19	Q. Okay. So you used the term "manufacturing
12:43	20	tolerance" in your declaration. Right?
	21	A. "Manufacturing" and "alignment accuracy"
	22	or something along those lines.
	23	Q. Okay. And I'm just trying to understand
	24	how much of a variation would that be, in your
12:43	25	opinion, in terms of

	1	
12:43	1	A. 10 percent?
	2	Q. Yeah.
	3	A. Well, I still don't know the context of
	4	the question. I'm not quite sure what you're asking
12:43	5	me to
	6	Q. Okay. Let's go back to Exhibit 2002,
	7	which I'm handing you back.
	8	A. Okay.
	9	Q. And in Panel B, you said that there would
12:44	10	be some sloping of the sidewalls. Correct?
	11	A. Yes.
	12	Q. All right. And you said that's a function
	13	of the etching process. Right?
	14	A. Yes.
12:44	15	Q. Okay. How much of a tolerance is there
	16	for the chemicals or the etching processes that are
	17	taking place in Saxler, for example?
	18	MS. SPECHT: Objection; form.
	19	A. The trouble I'm having is the use of the
12:44	20	word "tolerance."
	21	I mean, how to what extent can these
	22	sidewalls extend? is that?
	23	That depends entirely. That can be
	24	vary quite a bit by the etching process.
12:45	25	Okay. You never get, you know, near

12:45	1	vertical. There's always some slope.
	2	But it can be exaggerated, depending on
	3	how you tune the etching process.
	4	Q. All right. If you're trying to etch
12:47	5	vertical sidewalls, how much wider would you expect
	6	the bottom of the material to be than the top, based
	7	on the manufacturing tolerances that you describe in
	8	your declaration?
	9	A. I guess the tolerance to me means the
12:47	10	variation from one you know, if you do it 100
	11	times, how tight is the distribution?
	12	Q. I see.
	13	A. Is that?
	14	Q. Okay. So Paragraph 91 no, page 91
12:47	15	of '335, the same one.
	16	A. Okay.
	17	(Pause.)
	18	Q. You know what, Dr. Shealy I'm sorry
	19	forget that.
12:48	20	A. Okay.
	21	MR. DOSHI: We can go off the
	22	record.
	23	(Whereupon, a recess was taken
	24	from 12:48 p.m. until 12:50 p.m.)
12:48	25	(Whereupon, Exhibit 1009, previously

12:48	1	marked, was presented to the witness.)
	2	BY MR. DOSHI:
	3	Q. I'm handing you what's been previously
	4	marked as Exhibit 1009.
12:50	5	And that is Shenoy, right?
	6	A. Yes.
	7	Q. Okay. So do you understand Shenoy to be a
	8	hypothetical model?
	9	A. Shenoy has a model in it. And the Board
12:51	10	had a few comments on Shenoy, which I'd like to
	11	address.
	12	Can I do that now?
	13	Q. We can get there.
	14	A. Okay.
12:51	15	Q. And then, Shenoy teaches an isotropic
	16	etching process. Right?
	17	A. Yes.
	18	Q. What is "isotropic," in your in your
	19	opinion?
12:51	20	A. It means the material you're etching
	21	etches at the same rate in all directions.
	22	Q. Okay. And what are the materials that
	23	arewhat are the materials that are employed by
	24	Shenoy or that are being etched in Shenoy?
12:51	25	A. It's a metal film.

12:52	1	Q. Um-hum. And it's etching to two films, or
	2	one?
	3	A. Just one.
	4	Q. Okay. And there's an insulator at the
12:52	5	bottom. Correct?
	6	A. Correct.
	7	Q. Okay. Does that spread the etching in the
	8	horizontal way?
	9	A. If the
12:52	10	Whatever it does in this case.
	11	But whatever is under it, if it doesn't
	12	etch, it will enhance the sideways etching or the
	13	"undercut," if you like.
	14	Q. "Undercut" meaning under the photoresist?
12:52	15	A. Yes. It's shown by "U" in this diagram,
	16	Figure 1.
	17	Q. Okay. So
	18	(Pause.)
	19	MR. DOSHI: I'm handing you what
12:53	20	has been previously marked as
	21	Exhibit 1020.
	22	(Whereupon, Exhibit 1020, previously
	23	marked, was presented to the witness.)
	24	BY MR. DOSHI:
12:55	25	Q. And do you recognize the document?

12:55	1	A. Yes.
	2	Q. And what is it?
	3	A. Excuse me?
	4	Q. What do you recognize it to be?
12:55	5	A. The Uemoto reference, which is referenced
	6	in the declaration.
	7	Q. Okay. And turning to Figure 5, which I
	8	believe you referenced in your declaration do you
	9	see that?
12:55	10	A. Yes.
	11	Q. Okay. And Page 101 of the '335
	12	declaration, I think you blow that image up a bit?
	13	A. Yes.
	14	Q. And does Uemoto show substantially equal
12:56	15	widths?
	16	A. Could you explain which widths on the
	17	diagram you're talking about.
	18	Q. Sure. The ledges, basically.
	19	A. Below the brighter metal?
12:56	20	Q. Correct, yeah.
	21	A. I would not call those "substantially
	22	equal ledges," no.
	23	Q. Okay. Let's go back to Beach.
	24	Sorry I'm jumping around a little bit.
12:57	25	I asked you previously whether you rely on

12:57	1	this or I think you testified that this you
	2	relied on this for the self-alignment piece.
	3	Is that right?
	4	A. Yes.
12:57	5	Q. Okay. And when we say "self" when you
	6	say "self-alignment," are you referring to and
	7	I'm looking at Figure 1, which you rely on in your
	8	declaration.
	9	Is that right?
12:57	10	A. Yes.
	11	Q. And 26 and 24 are etched at the same time.
	12	Right?
	13	A. Yes.
	14	Q. Okay. And that presupposes that 26 and 24
12:58	15	have been formed before the etching process. Right?
	16	A. Yes.
	17	Q. Okay. And 24 is the gate electrode?
	18	A. Let's double-check that.
	19	(Witness reading.)
12:58	20	A. 24 is the gate metal.
	21	Q. Which serves as the electrode?
	22	A. Yes.
	23	MR. DOSHI: Let's take ten
	24	minutes. I might be wrapping up.
12:59	25	Off the record.

12:59	1	(Whereupon, a recess was taken
	2	from 12:59 p.m. until 1:11 p.m.)
	3	MR. DOSHI: I'll pass the
	4	witness.
01:11	5	MS. SPECHT: Then we're going to
	6	take one more break.
	7	MR. DOSHI: Say it again?
	8	MS. SPECHT: Ten minutes.
	9	MR. DOSHI: Oh, okay.
01:25	10	(Whereupon, a recess was taken
	11	from 1:11 p.m. until 1:25 p.m.)
	12	MS. SPECHT: Ready?
	13	MR. DOSHI: Yep.
	14	MS. SPECHT: All right.
01:25	15	EXAMINATION
	16	BY MS. SPECHT:
	17	Q. Okay, Dr. Shealy. Do you recall, just a
	18	moment ago, counsel for EPC asking you about the
	19	Shenoy reference, which is Exhibit 1020?
01:26	20	A. 1009.
	21	Q. Exhibit 1009, yes.
	22	A. Yes, I do recall.
	23	Q. And you mentioned during your testimony
	24	you actually asked permission during your testimony
01:26	25	to explain the model in Shenoy.
		·

01:26	1	Do you remember asking that?
	2	A. Yes.
	3	Q. And since you were denied your request to
	4	explain Shenoy's model, can you explain Shenoy's
01:26	5	model now?
	6	A. Yes. Shenoy describes isotropic etching
	7	through a photoresist window.
	8	So a POSITA would know that isotropic
	9	etching can be done a variety of ways, and one way
01:27	10	is the example given in Shenoy: EMM.
	11	There's other techniques of isotropic
	12	etching which involve using liquid metal etches that
	13	are especially formulated for specific metals.
	14	And they've been around a very long time,
01:27	15	common metals that would be used in a process like
	16	this nickel, aluminum, tungsten. There's a long
	17	list of solutions that have been developed for this
	18	purpose.
	19	And these solutions, unlike the technique
01:27	20	used in Shenoy, do not require an external applied
	21	potential.
	22	So in any case, Shenoy's model also
	23	possesses symmetry. And that same symmetry is
	24	present in the Yoshida and Saxler reference.
01:28	25	So the Board was interested in symmetry

01:28	1	because it was listed under "Assumptions."
	2	And the if you're because symmetry
	3	is present in the structure, symmetry is a valid
	4	assumption. It doesn't need to be assumed, but it
01:28	5	cuts down the number of computations to complete the
	6	model.
	7	So symmetry is built in by the structure
	8	that's being modeled. Okay? And it mirrors the
	9	symmetry of, as I said, Yoshida and Saxler.
01:29	10	The other point about Shenoy is: The
	11	metal film that's being etched is under the
	12	insulator or is over the insulator. The
	13	insulator's under the metal.
	14	When we make this combination and of
01:29	15	Yoshida, Saxler, or vice versa, with Beach
	16	Beach is used for the self-alignment.
	17	Shenoy is used for the undercut.
	18	So when we make this combination, there's
	19	not a insulator under the metal, there's a
01:29	20	semiconductor layer, as the Board pointed out.
	21	In our case, it's either a p-type gallium
	22	nitride or it could be p-type aluminum gallium
	23	nitride cap capping layer in the terminology of
	24	Saxler.
01:30	25	However, the metal that sits on that

01:30	1	top of that semiconductor surface and the
	2	sidewalls, presumably, have already been exposed
	3	those surfaces deplete the semiconductor of holes.
	4	This is a p-type semiconductor dope of
01:30	5	magnesium, and it would normally have holes. But
	6	because of these side surfaces, the holes are
	7	depleted away from the surface where the etching is
	8	occurring.
	9	And what that means is, is that the
01:30	10	semiconductor layer behaves as an insulator just
	11	like Shenoy's structure, because there are no mobile
	12	charges near the etching region in the
	13	semiconductor. Okay?
	14	The other point that affects the edge is
01:31	15	that the fact that and the majority of these
	16	liquid metal etches that I've referred to, they
	17	don't touch the gallium nitride.
	18	Gallium nitride is a pretty tough material
	19	to etch, and a lot of these etches will not etch it.
01:31	20	So that that's, again, like Shenoy:
	21	The insulator is not being etched in Shenoy. In
	22	this case, the p-type cap below the metal was not
	23	being etched when we make the combination.
	24	Okay. The other thing the Board had to
01:31	25	say was, they commented on Shenoy's model does

01:31	1	focus on the angle of the metal that results from
	2	the etch, which is related to the angle of the
	3	photoresist.
	4	The angle of the metal is not what we're
01:32	5	relying for in this combination.
	6	We're using Shenoy to provide the undercut
	7	of the metal. Okay? So we're not relying on it for
	8	the for anything related to the mask-wall angle.
	9	The undercut, as shown in Shenoy, is not
01:32	10	really a strong function of that angle anyway. So
	11	we're relying on it for undercut. So
	12	And the other comment they made is
	13	something about the film thickness.
	14	I say "something" because they have
01:32	15	concerns. And so, I'm not sure exactly what they
	16	are. But the film thickness, when you do an
	17	undercut like this as you increase the film
	18	thickness, the undercut increases. That's the major
	19	effect of the film thickness.
01:32	20	So the undercut, in general, is on the
	21	order that lateral dimension, on the order of the
	22	thickness of the metal not exactly, but it's on
	23	the same order.
	24	I don't know if that answered your
01:33	25	question.

	1	
01:33	1	Q. That answers my question very thoroughly.
	2	But I do have a couple of followups.
	3	So at the very beginning of your earlier
	4	answer, you mentioned that Shenoy had techniques
01:33	5	other than EMM.
	6	Is that what you testified to?
	7	A. Well, when a
	8	MR. DOSHI: Objection.
	9	A. When a person of skill looks at Shenoy,
01:33	10	they're going to see that there are many other
	11	isotropic etching techniques that can benefit from
	12	Shenoy's work I mean, that's one way to say it.
	13	And furthermore, the EMM technique that
	14	Shenoy employs, there's nothing wrong with applying
01:33	15	that in our combination with Yoshida and Saxler and
	16	Beach and Shenoy. The EMM technique will work fine
	17	to do that. It's an option for the fabrication
	18	engineer.
	19	MS. SPECHT: So let's switch
01:34	20	gears and talk about Exhibit 2002 that you
	21	drew for EPC's counsel earlier.
	22	So we can just grab that and
	23	go ahead and pass 2003 as well. And I'll
	24	hand him that one.
01:34	25	Thank you.

01:34	1	BY MS. SPECHT:
	2	Q. So Dr. Shealy, looking at 2002, does
	3	Step~B apply to the prior art in this case?
	4	A. Yes.
01:34	5	Q. Are there any references that you've
	6	relied on in this case that Step B is not
	7	representative of?
	8	A. No. I mean, you said, Are there any
	9	references that represent something other than this?
01:35	10	The only way to etch these surfaces in
	11	these references is a plasma etch, and all plasma
	12	etches produce this sloped sidewall.
	13	Q. And can you explain what Step C is as well
	14	and which references Step C is representative of.
01:35	15	A. Step C has been known in the art for quite
	16	a while. It's a it's called a crystallographic
	17	etch. And there are specific etch chemistries used
	18	to do it.
	19	But it will expose those it can expose
01:35	20	a perfect 90-degree plane because it's based on the
	21	crystal itself.
	22	And so, it's this is you know,
	23	literally, this is an exposed plane with not many
	24	atomic steps in it. So that's why we say it's
01:36	25	almost a perfect 90-degree angle.

01:36	1	The other part of your question: This
	2	does not appear in any of the art in this case.
	3	Q. Let's now talk about Exhibit 2003, which
	4	I'm going to pass to you as well.
01:36	5	Exhibit 2003 is based on Figure 1B?
	6	A. Yes.
	7	Q. Of the Saxler reference. Right?
	8	A. Yes.
	9	Q. And do you recall asking EPC's counsel if
01:36	10	you could instead draw a figure related to your
	11	modified 1A of Saxler's reference?
	12	A. Yes.
	13	Q. Can you draw a representative diagram
	14	using your modified 1A?
01:37	15	A. Okay. So we need to start with the
	16	modified
	17	I'll label this "A" in this diagram.
	18	All I'm doing in the "A" illustration is
	19	attempt to reproduce the in fact, it wouldn't be
01:37	20	a bad idea to look at it.
	21	(Witness reading.)
	22	A. Okay. This is the simplified diagram of
	23	the modified Figure 1A, where the recess is removed
	24	and p-dopants are added in the capping layer.
01:38	25	And so, now we need to identify the
01:30	43	And so, now we need to identity the

01:38	1	regions where the sloped walls are.
	2	And now we'll draw the in
	3	Illustration~B, we'll draw what was where is
	4	the other one? we'll draw the off condition to
01:39	5	correspond to the other diagram.
	6	Okay. So again, we have an electron gas
	7	underneath the source and drain contact.
	8	As you enter the slope part of the region,
	9	you're picking up negative charge. So that causes a
01:40	10	gradual depletion of the electrons out of the 2D gas
	11	in that region.
	12	And so, basically, it looks very similar
	13	to the other diagram of 1A, except the there's a
	14	broader transition because of the sloped regions on
01:40	15	that p-type cap.
	16	That's assuming it's, more or less,
	17	uniformly doped which is the way it appears in
	18	Yoshida anyway, by the way.
	19	Okay. And then there's one other diagram
01:40	20	we can make we'll call "C."
	21	And this is for the Ahn condition. Both
	22	are for low drain bias.
	23	Okay. So in this case, you have a 2D
	24	electron gas under the source and drain contacts,
01:41	25	just like we had before.

01:41	1	And now we'll assume that we're driving
	2	the gate to a reasonable level, where we've actually
	3	increased the concentration over what's in the
	4	over what's in the under the contacts.
01:41	5	And so, it looks something like this
	6	(indicating).
	7	Very similar, except during in these
	8	regions, the distribution of electrons is smeared
	9	out.
01:42	10	So other than that, it's very similar.
	11	Q. And in the diagram that you've just drawn,
	12	which I'm going to label Exhibit 1032 in just a
	13	minute, is there a gap between the cap layer and the
	14	Ohmic contacts?
01:42	15	A. Yeah, I kind of I mean, it's a little
	16	more exaggerated than what it was in the original
	17	drawing. But it's basically the same.
	18	MS. SPECHT: Okay. So let's
	19	mark that paper Petitioner's Exhibit 1032.
01:42	20	And we'll use the same one in
	21	both proceedings no need to put a
	22	proceeding number on.
	23	(Whereupon, Exhibit 1032 was marked for
	24	identification.)
01:42	25	MS. SPECHT: And with that, pass

01:42	1	the witness.
	2	FURTHER EXAMINATION
	3	BY MR. DOSHI:
	4	Q. Just a couple of questions.
01:42	5	You were talking about Shenoy and the
	6	insulator. Right?
	7	A. Yes.
	8	Q. Okay. And is there an insulator in
	9	Saxler?
01:42	10	A. The
	11	Semiconductors behave as conductors
	12	sometimes and insulators in others.
	13	If you deplete the mobile charge out of
	14	the semiconductor, it behaves as an insulator. It
01:43	15	won't support any current flow, because there's no
	16	mobile charge in it.
	17	And that's what happens when you surround
	18	this p-type layer with surfaces and a metal.
	19	Metal depletes mobile charge. And a
01:43	20	surface terminated with air or even a liquid
	21	etch, for that matter will also deplete the
	22	mobile charge.
	23	So that layer is more or less devoid of
	24	mobile charge. So it behaves like an insulator.
01:43	25	Q. And what about the underlying barrier

01:43	1	layer?
	2	A. The underlying barrier layer has it
	3	basically is used to confine electrons below it.
	4	It's devoid there's no charge in that layer.
01:43	5	What it's there for is to provide a
	6	potential barrier to confine the electrons below
	7	that barrier.
	8	Q. Would it serve as an insulator?
	9	A. What's that?
01:44	10	Q. Would the barrier layer serve as an
	11	insulator?
	12	A. It would not conduct if you there's no
	13	mobile charge. So in that sense, you could say it
	14	behaves like an insulator.
01:44	15	Most people wouldn't call a semiconductor
	16	an insulator. But they certainly can behave like an
	17	insulator.
	18	Q. So you were saying that the etching
	19	process of Shenoy, it uses the insulator to spread
01:44	20	the horizontal etching.
	21	Is that is my understanding correct?
	22	A. The fact that it doesn't etch
	23	Q. Yeah.
	24	A enhances the lateral etching.
01:44	25	Q. Well, isn't it going to etch the barrier

01:44	1	layer, though?		
	2	A. No. The barrier layer is covered up.		
	3	Q. With what?		
	4	A. It's covered up with the when you do		
01:45	5	this gate processing, if the Ohmics are there,		
	6	they're going to be covered up.		
	7	If it's done first, they're not there.		
	8	But it's still that surface is going to be		
	9	covered up.		
01:45	10	Q. Isn't there a cap between the p-n and the		
	11	Ohmic contacts? Didn't you just testify to that?		
	12	A. Are we talking vertically?		
	13	Q. You were talking about 1A, right? right		
	14	now		
01:45	15	A. Yeah.		
	16	Q recently.		
	17	And what I'm asking is the barrier		
	18	layer		
	19	A. Oh, no		
01:45	20	(Simultaneous speaking.)		
	21	A. No, there's there's no conduction		
	22	there.		
	23	And when you perform this process of		
	24	etching this metal, this if you do Ohmic first,		
01:45	25	you're going to cover those up with a and you'll		

01:45	1	cover them up with a you typically would cover it		
	2	up, just as you read in Yoshida, with SiO2. It's a		
	3	very common material to		
	4	If you want to process something over here		
01:45	5	and have this not influence the process, you cover		
	6	it up with an insulator.		
	7	Q. And when you cover it up, you're doing		
	8	selective covering. Correct?		
	9	So you're using a masking process, in		
01:46	10	other words?		
	11	A. You would have to it would take a		
	12	masking process to open a window where you're going		
	13	to do the gate work and cover up the Ohmics.		
	14	Q. So you'd have to put in the silicon		
01:46	15	oxide		
	16	A. That's one way to do it, yeah.		
	17	Q and then you're going to etch the		
	18	window. Right?		
	19	A. And the SiO2		
01:46	20	Q. Right.		
	21	A to expose the gate region.		
	22	Q. Okay. And then you expose the gate		
	23	region. Correct?		
	24	A. Yeah.		
01:46	25	Q. All right. You do your etching process.		

	1			
01:46	1	And then do you		
	2	A.	You got to put the metal down first.	
	3	Q.	Okay. And then do you remove the silicon	
	4	oxide?		
01:46	5	A.	Yes.	
	6		MR. DOSHI: Okay. All right.	
	7		That's it.	
	8		MS. SPECHT: No further	
	9		questions on our side.	
01:46	10		MR. DOSHI: Okay.	
	11		COURT REPORTER:	
	12		Confidentiality? Read and sign?	
	13		Anything I need to know?	
	14		MS. SPECHT: We'll say read and	
01:46	15		sign, but	
	16		The Board doesn't really let you	
	17		read and sign, but we'll say we will just	
	18		in case.	
	19		COURT REPORTER: Okay.	
01:46	20		MR. DOSHI: Off the record.	
	21		(Time noted: 1:46 p.m.)	
	22			
	23			
	24			
	25			

1	DEPONENT'S SIGNATURE
2	
3	Please be advised I have read the
4	foregoing deposition, pages 1 through 110,
5	inclusive. I hereby state there are:
6	(Check one)
7	No corrections
8	Corrections per attached
9	corrections per decidence
10	
11	
12	JAMES RICHARD SHEALY, PH.D.
13	
14	(X) Reading and signing was requested.
15	() Reading and signing was waived.
16	() Reading and signing was not requested.
17	
18	
19	Should the signature of the witness not
20	be affixed to the deposition, the witness shall not
21	have availed himself of the opportunity to sign or
22	the signature has been waived.
23	
24	000
25	

1	ERRATA SHEET
2	NAME OF CASE: Innoscience, et al. v. EPC
3	Corporation
4	DATE OF DEPOSITION: May 16, 2024
5	NAME OF WITNESS: JAMES RICHARD SHEALY, PH.D.
6	Reason Codes:
7	1: To clarify the record.
8	2: To conform to the facts.
9	3: To correct transcription error.
10	Page Line Reason
11	From to
12	Page Line Reason
13	From to
14	Page Line Reason
15	From to
16	Page Line Reason
17	From to
18	Page Line Reason
19	From to
20	Page Line Reason
21	From to
22	
23	
24	JAMES RICHARD SHEALY, PH.D. DATE
25	

1	DECLARATION UNDER PENALTY OF PERJURY
2	I am the witness in the foregoing
3	deposition.
4	I have read the foregoing deposition or
5	have had read to me the foregoing deposition, and
6	having made such changes and corrections as I
7	desired, I certify that the same is true in my own
8	knowledge.
9	I hereby declare under penalty of perjury
10	that the foregoing is true and correct.
11	In witness whereof, I hereby subscribe my
12	name this, 2024.
13	
14	
15	JAMES RICHARD SHEALY, PH.D.
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	CERTIFICATE
2	
3	I, SUSAN ASHE, a Registered Merit
4	Reporter and Notary Public, hereby certify that the
5	foregoing is a true and accurate transcript of the
6	deposition of said witness, who was first duly sworn
7	by me on the date and place hereinbefore set forth.
8	I FURTHER CERTIFY that I am neither
9	attorney nor counsel, nor related to or employed by
10	any of the parties to the action in which this
11	deposition was taken, and further that I am not a
12	relative or employee of any attorney or counsel
13	employed in this action, nor am I financially
14	interested in this case.
15	Dated this 20th day of May 2024.
16	
17	
18	
19	Susan Ashe, Notary Public
20	for the Commonwealth of Virginia
21	
22	My commission expires: January 31, 2027.
23	Notary Registration Number: 100809.
24	
25	

	1009	88:13	103:3,5
Exhibits	91:25 92:4 96:20,21		·
Shooly Eyhibit 2004 /	101	19 17:17,24,25 18:3 22:1	2019 17:21
Shealy Exhibit 2001-(347)	94:11	79:20,22	
5:11 11:2	1020	1:11	2023 14:23 15:1
Shealy Exhibit 1032	85:8 93:21,22 96:19	96:2,11	
5:10 105:12,19,23	1021	1:25	2024 7:1
Shealy Exhibit 2001-(85:24,25	96:11	
335)	1032	1:46	21 79:23
5:15 11:13	105:12,19,23	110:21	
Shealy Exhibit 2002	10:33	1A	80:3,20 81:2,3
5:19 49:11 50:20 73:9	57:18	29:13 31:8 37:11,21	
90:6 101:20	10:47	39:15,21 43:1,19 56:6,	23 77:4,5 78:11,14 80:13
Shealy Exhibit 2003	57:18	21 57:21,23 58:4,10	81:17 82:17 83:22
5:20 69:8,16 103:3,5	11:36	59:5 65:25 66:4,14 68:24 69:6 74:13 86:9	24
	84:8	103:11,14,23 104:13	35:12 95:11,14,17,20
-	122	108:13	26
000	35:10	1B	95:11,14
7:3	12:28	29:17,20,23,24 53:10,	27
	85:2	13 56:7,17 57:8 59:17, 22 60:6,7,10 62:14	35:4,7,13,16 36:24 41:5
0	12:48	63:5,13,14 65:13,20	2A
0	91:24	66:1,10,15,18 70:5	30:4,10
58:20 70:23	12:50	103:5	2B
	91:24	1F	30:4,13,15,16
1	12:59	86:6,7	2D
4	96:2		61:18 67:3,4,7,20,25
1 70:23 82:12,16 83:13,	13	2	68:10,14,15,19 70:3,11,
15 87:13 93:16 95:7	33:2,3,10,22 34:25 35:2	2	19 104:10,23
10	1382	30:4 36:17 41:17 71:19	2DEG
90:1	11:4,20,25 28:16 49:10	76:16 77:21,22	65:19 67:8,10,21
10%	69:8,11 88:13	2-dimensional	
89:10,15	1384	67:10	3
10,312,335	11:7 12:8 28:17	2.5	3
10:2	146	34:16	15:3,14,15 83:24
100	59:12 66:12	20	30
85:11 91:10	1482	41:17	34:5
1003	88:13	20-angstroms	335
11:25 12:1,9 85:7	15	36:18	9:17 10:1 12:15 91:15 94:11
1006	34:18	2001	
74:21,22	16	11:1,2,5,7,9,13,20	34 88:15,19
1007	7:1	2002 49:9,11 50:20 73:9,12	·
28:15,16,24	17	90:6 101:20 102:2	347 9:17,20 12:7 15:4
1008	83:1	2003	17:19,20 24:20 51:25
86:23 87:1	1884	69:8,9,16 71:3,7 101:23	55:12 85:9 86:19
		, , , , , , , , , , , , , ,	

Index: --00o---347

35	64	abouttalks	55:8,20
45:13,17	73:7 74:7	79:23	
	70.7 1.11		air
355	7	abstract	106:20
88:12	/	32:17,21 33:1	airport
	72	abuts	22:22
4	45:13,16 60:19 61:21	59:22	Alex
	72:1	abutting	24:17
4	75	57:9	
81:10,16	75	37.9	Algan
40	59:13	acceptor	76:19
62:8	750	67:16 69:2	aligned
41	15:8	accomplish	60:13
30:18 31:1 35:6 51:24		42:1	
52:8 53:5 57:25	8		alignment
		accuracy	89:21
42	8	89:21	alleged
44:21	78:5	accurate	87:6
43		14:22	
45:15	9		aluminum
	9	achieve	35:20 36:2,11,12,14
45	9,748,347	48:9 50:13,21 56:23	46:17 81:7,16 97:16
8:7	9:20	acting	98:22
		84:1	Ameya
5	90	acts	7:12
-	48:19	72:17	amount
5	90-degree	12.11	63:17 70:17
17:24 22:1 36:3 41:9	50:13,21 102:20,25	actual	
82:10 94:7		46:7	analysis
50	90s 19:16 20:4	add	88:20,22
86:19	19:16 20:4	64:24 70:24 71:8 73:25	angle
	91		100:1,2,4,8,10 102:25
5000	91:14	added	
34:6 36:4 41:10,22	95	103:24	angstroms
51	86:19 87:5	additional	34:5,6,17,18 36:4,17
87:9		50:1,5 70:14 83:21	41:10,17,22
	96		animal
24,40,27,5,7,40,20,20	87:9	address	19:4 74:3
31:19 37:5,7,10 38:20	99	92:11	answers
39:10,13 40:8,12 41:20 51:10	64:9,22	affected	101:1
		63:9	101.1
53	9:03	affects	apologize
64:9,21 85:11 86:6	7:2	99:14	73:19
	9:37	33.14	appears
6	28:4	agree	40:8 77:3 104:17
•	9:49	10:3 37:4 75:14 83:3	
6	28:4	86:10	application
37:11 39:15 76:16	20.4	ahead	42:12
77:21,24 78:2		101:23	applied
60	Α		58:21 97:20
8:8		Ahn	
	a.m.	55:7,12,19 104:21	apply
63	7:2 28:4 57:18 84:8	Ahn's	37:21 58:23 62:24 67:6
35:9 72:16,17,22		Aiiii 3	68:5,24 83:18,24 102:3

Index: 35-apply

applying

67:19 101:14

approached

22:12 25:2,5

approximately

71:11,16

are...what

92:23

arrangement

21:17

arrays

22:8 25:9,17

arrives

47:13

art

15:20 19:10,11,12 29:8 51:3,17 65:10 76:6 77:1,22 78:3 88:5

102:3,15 103:2

assigned

associate

18:24

assume

105:1

assumed

98:4

assuming

104:16

assumption

98:4

Assumptions

98:1

atomic

102:24

attempt

103:19

attorneys

13:9 14:14

Au

82:3

author

51:2

authored

10:9 29:8

В

back

15:23 19:15 20:8 22:23 23:14 24:2 28:6 35:15 41:5 58:11 59:16 63:13 71:3,7 72:1 85:4 90:6,7

94:23

bad

61:18 72:15 103:20

barrier

30:14,16 52:13,17 59:9 74:10,12,14,16 106:25 107:2,6,7,10,25 108:2,

17

based

25:16 39:10 40:12 91:6 102:20 103:5

basically

38:3 44:11 60:12 69:6 73:2 94:18 104:12

105:17 107:3

basis

19:18

batteries

25:25

Beach

47:2 55:7 86:20 87:3,5, 10,13,15 88:5,8 94:23

98:15,16 101:16

Bear

10:22

bearing 14:16 86:15

beginning

101:3

behave

106:11 107:16

h a h a . . . a

behaves

99:10 106:14,24 107:14

Bell

23:14

beneath

77:10 81:20

benefit

101:11

bias

58:23 63:10 67:19 68:3, 22 71:23 104:22

biases

67:6 68:17

big

26:23

bigger 73:3

bills

22:9

binder

75:3,4

binders 8:20 9:9

bit

48:15 49:20 83:2 86:18 90:24 94:12,24

Blank

7:10

blow

94:12

blue

71:13

Board 13:17 92:9 97:25 98:20

99:24 110:16

bottom

36:8 49:4,5 59:14 60:24 78:6 85:12 89:9 91:6

93:5

boundaries

66:20

break

8:7,8,9 27:23 28:8 57:14 59:18,21 96:6

brighter

94:19

bring

41:25 54:20 55:6

broader

104:14

brought 39:21

Buffalo

25:24

build

19:15,20 57:11

building

18:12,25 25:25 26:19

54:16

built

19:17 21:2 25:16 26:15 27:8 53:16 98:7

business

18:9

But...i

23:9

butt 53:17,24 60:13

button

60:13

С

c-plane

46:25 47:3 48:24

Caitlin

7:17

call

25:14 32:8 47:11 59:1 67:1,24 79:2,18 80:16 94:21 104:20 107:15

called

25:12 47:20 69:22 102:16

can...discloses

51:11

Canadian

25:18

сар

34:4,16 35:11,21 36:11, 13,15,22 39:25 40:13 41:6,10,21 43:23 44:20 51:13 52:15 53:18,24 54:4 56:6,11,15 57:9 59:19,22 60:3,4,5,14

62:6,12,16,18 63:5,8,16 64:19,25 65:16 66:5 72:18,20 73:2 74:8

72:18,20 73:2 74:8 98:23 99:22 104:15

105:13 108:10

THE SULLIVAN GROUP OF COURT REPORTERS

Index: applying-cap

capping

98:23 103:24

carried

26:20

cartoon

53:13,15

case

13:21 14:5 17:11,14 55:20 60:18,25 93:10 97:22 98:21 99:22

102:3,6 103:2 104:23

110:18

cases

55:8

cell-g

46:7

center

57:7

centered

57:4

certainty

44:18

change

31:10

changed

68:13,16

channel

52:11 67:21 68:10

70:11

charge

67:15,18,19 70:10,18 104:9 106:13,16,19,22,

24 107:4,13

charges

99:12

charm

88:14

chemical

47:3,4 48:12

chemicals

90:16

chemistries

102:17

circuits

24:13

cite

13:12 32:13 35:2,3,5,13

85:12 86:6

claim

88:16,22

clarify

28:9

clear

9:14 17:12 38:18 76:1

78:14

co-founded 17:21 18:5

collaborating

20:22

colleagues 17:7,13

combination

88:10 98:14,18 99:23 100:5 101:15

comfortable 13:3

comment

100:12

commented

99:25

comments

92:10

commercial

23:23

common

47:7 48:8 97:15 109:3

companies

22:11,13 25:1,4,7,10

26:4

company

25:12,18,24 26:10,18,

21,23,25 27:5

comparison

26:13

compatible

65:6

compensated

15:4

complete

98:5

completed

79:12

complicated

11:5.12

computations

98:5

computer

32:7

concentration

67:25 68:14,19 105:3

concerns

100:15

conclude

82:20

conclusion

32:14 51:15

condition

104:4,21

conduct

18:19 107:12

conductance

61:18

conducting

21:21 62:21 63:5

conduction

19:2,3,12 63:1,11 69:24

108:21

conductors

106:11

Confidentiality

110:12

confine

107:3,6

confused

55:9

connection

16:14 41:13 considerably

71:15

considered

14:6 88:25

constitutes 64:15

construction

88:17,23 89:2

constructions

89:1

construed

38:7.25

consulted

27:20

consulting

15:5,7

contact

32:23 35:19 36:10 43:1 52:2,18,19 54:3 56:7

57:3,9 59:8,23 61:13 62:7 67:4 75:16 79:16

82:21 104:7

contacted

14:13,17,20

contacts 52:19 53:8,9,23 54:2

60:13 61:5,14 62:4,13

68:13,21 74:8,11,15

77:6 79:7,10,11 104:24 105:4,14 108:11

contemplate

62:12

contemplated 62:6

context

59:3 90:3

continued

35:25 82:6

continues 62:1

control

83:9

conventional 76:6,18 77:22 78:2

Conversion

7:9

сору

12:21,25 75:5

core 22:15

Cornell

19:15 21:2 23:16 26:18

Index: capping-Cornell

THE SULLIVAN GROUP OF COURT REPORTERS

Exhibit 2004 Page 119 of 133

Corporation

7:9

correct

9:22,24,25 10:6,11 13:6,7 15:11 17:22 20:10 27:11 28:10 29:11,15 31:18,24 34:22 35:1,5 36:22 37:2 38:16 41:12,14,18 49:18 50:15,22,23 51:16 52:9 53:6 55:19 56:4,5 58:16 63:17,20 72:18 76:2 77:21 79:24 83:19 86:20,21 87:8,12 90:10 93:5,6 94:20 107:21 109:8,23

correctly

48:6

correspond

104:5

counsel

15:20 16:2 96:18 101:21 103:9

counts

70:18

couple

32:13 71:17 101:2 106:4

court

8:4 11:9 23:6 28:20 50:25 51:4,7 64:1,4 69:10 110:11,19

cover

108:25 109:1,5,7,13

covered

79:10 108:2,4,6,9

covering 109:8

103.0

covers

23:9

Coverstone

7:18

create

18:20 48:23

creating

76:2

crude

53:22

crystal

21:16 48:2 102:21

crystalline

48:19

crystallographic

47:20,21,24,25 48:7 49:17 50:7 51:18 74:2, 5.6 102:16

current

63:2,6,7 106:15

curvature

87:19

curved

45:1 **cuts**

98:5

D

date

14:22

day 9:1

day-to-day

18:15

DAYLIGHT

7:2

decade

24:3

decided

14:18

decision

13:25

decisions

13:18

declaration

12:7,15 15:3 30:18,21, 23,25 31:1 32:10 35:6, 10 45:6,11 51:24 56:4 59:12 64:10 85:7 87:10, 21 88:12 89:20 91:8 94:6,8,12 95:8

declarations

10:10 12:16 13:4,12

deep

59:8

degrees

48:19

denied

97:3

densities

69:2

density

21:17,19 67:20 69:3

70:10

dependence

48:1

depending

42:1 47:6 91:2

depends

68:19 69:20 90:23

depicted

52:8 57:4 70:13

depiction

30:11 31:23

deplete

67:20 70:11,19 99:3

106:13,21

depleted 65:19 99:7

depletes

106:19

depletion

58:13 59:7 65:4,8 72:15

104:10

deposed

7:25 22:24

deposit

60:4

deposited

79:5 80:24 81:9 82:7,24

deposition

8:19 9:5 10:18 11:8 12:18 16:19 18:23 84:7

deposits

75:15

describe

19:10 38:13 39:14

46:15 91:7

describes

19:12 76:6 97:6

describing

76:4 83:12

design

26:4 53:22 70:16

designed

21:2

designing

18:12

detail

74:18

details

26:8 27:18 56:1 57:1

develop

22:7

developed

19:22 22:4 97:17

device

18:25 19:1 20:14,15 26:11 43:18 46:7 50:8

53:16 58:22,24 59:8

61:16 63:2,18 65:1,2,5 66:25 67:13 70:17

79:13 83:25

devices

18:21 19:2 42:15 43:3,6

devoid

106:23 107:4

diagram

46:14 47:13 49:2 50:4

66:17 68:12 70:24

93:15 94:17 103:13,17, 22 104:5,13,19 105:11

diagrams

56:25 71:23

dielectric

18:23 differ

65:7

difference

65:4

differences

21:24 34:21,24 36:21, 25 37:22 38:13 43:6

THE SULLIVAN GROUP OF COURT REPORTERS

Index: Corporation—differences

differently

17:2

dimension

100:21

dimensions

70:8

Diode

22:16

Diodes

23:22 24:10

dioxide

81:20.23

Dipu 7:8

directions

92:21 directly

74:12

disaster

62:22,23

disclose

50:3 87:10,13

disclosed

42:25 50:1

disclosures

77:18

discuss

16:25 17:3 45:5

discussed

14:17 15:20 24:15 56:3

discussion

32:20 39:18 45:7 51:9

77:3

discussions

16:5 27:2

distribution

91:11 105:8

distributions

39:19

district

23:6

document

12:4,12 29:3,10 74:25

86:3 93:25

documents

9:7 11:19 12:17 13:11, 13,16 15:20 16:3

dominating

19:23

dopants

39:18 64:18

dope

38:15 61:4,7,13 62:8

67:17 99:4

doped

20:17 34:3,15 37:25 38:10 62:2,8 104:17

Doshi

7:8,20 10:15,22,25

11:4,11,15,23 12:3 27:22,25 28:5,13,23

29:2 48:25 49:8,13,14

51:8 57:13,16,19 64:3

69:7,18 74:19,24 84:5

85:3,21 86:2,22 91:21

92:2 93:19,24 95:23

96:3,7,9,13 101:8 106:3

110:6,10,20

double-check

55:16 95:18

drain

63:2,7 66:25 67:2 68:3, 22 71:23 76:9,21 77:6,

11,16 78:20,24 79:1

81:22 84:1 104:7,22,24

68:3,12 103:10,13

104:2,3,4

drawing

46:10 65:22,24 69:8

73:10,12 87:17 105:17

drawn

59:7 60:15 87:16

105:11

drew

101:21

drive

24:13 70:22,23 71:18

driving 71:19 105:1

drop 74:8 dry

80:5

duly

7:6

Ε

earlier

24:22 49:25 70:4 73:1 101:3,21

easier 26:14 68:3

easily 64:25

EASTERN

7:2

edge

47:6 49:7 51:18 99:14

effect

19:12 100:19

effectively

31:20 74:5

Efficient

7:9

elaborate

18:14

electrode

76:8,9,11,20,21 78:25 79:1 80:7 81:21,22 83:8

95:17,21

electrodes

77:11,13 78:20 82:9

electron

28:11 62:25 63:3,7,12 66:23 67:10,25 104:6,

electronic

24:13

electrons

104:10 105:8 107:3,6

email

11:22

emails

16:21

embodiment

39:2 41:14,18

embodiments

33:6,12,13,15,20 34:1, 12,22,23 36:1,14,23

37:1,13,18,23 38:5,9, 14,23 39:4,20 40:6,10 41:25 54:20 61:23 62:6

Emitting

22:15 23:22 24:10

FMM

97:10 101:5,13,16

employed

92:23

employees

27:3

employs

101:14

enables 83:8

encompass

65:25

end

18:6 21:5 27:9 48:16

engaged

18:11

engineer 101:18

enhance

93:12

enhancement

58:9,12,15,18 59:1,6 63:14,18,24 64:6,13,16

65:1,5,9,13 66:2,16 70:6,15,16,21 72:10

75:9,10 84:2 85:13,16

enhances 107:24

enter 104:8

entire 43:18 79:8

EPC

10:11 14:4 15:25 24:14

Index: differently-Epc's

96:18

EPC's

101:21 103:9

THE SULLIVAN GROUP OF COURT REPORTERS

Exhibit 2004 Page 121 of 133

epi

20:9,11

epitaxial

20:13,24 27:12,16 57:1 72:24 79:25

epitaxy

18:17 21:5

equal

71:11 94:14,22

etch

45:3 46:23,24 47:5,7, 13,20,24,25 48:1,4,7,12 49:2,17,22,24 50:7 54:13,19 55:2 60:3 74:1,5,6,9 80:5 91:4 93:12 99:19 100:2 102:10,11,17 106:21 107:22,25 109:17

etched

92:24 95:11 98:11 99:21,23

etches

47:4,21,22 74:2 75:15 92:21 97:12 99:16,19 102:12

etching

18:22 44:24 45:2 47:4 54:25 73:8,24 74:8 76:19 77:8 80:5 81:18 87:6 90:13,16,24 91:3 92:16,20 93:1,7,12 95:15 97:6,9,12 99:7,12 101:11 107:18,20,24 108:24 109:25

evaporate

54:18

evolves

48:21

exact

75:24

exaggerated

56:25 91:2 105:16

EXAMINATION

7:19 96:15 106:2

examined

7:6

examples

42:19,22 48:8

Excuse

29:6 50:25 94:3

exemplary

38:8 39:1

exhibit

11:2,13,25 12:1 28:24 49:11 50:20 69:8,14,16 73:9 74:21,22 85:7,8, 24,25 86:23 90:6 91:25 92:4 93:21,22 96:19,21 101:20 103:3,5 105:12, 19,23

exhibits

9:10 83:25

exist

51:19

expect 57:3 87:18 91:5

expert

14:11,18 16:14 23:17

experts

20:25

explain

37:6 89:17 94:16 96:25 97:4 102:13

explanation

69:19

expose

48:5 74:10 79:7,12 102:19 109:21,22

exposed

80:25 81:9 99:2 102:23

exposes

49:5,21

exposing

80:7

extend

61:5 62:3 87:14 90:22

extending

52:15 89:5

extends

34:4,15 62:7

extent

90:21

external

97:20

extra

46:3,8

F

fab

18:16 22:10,21 24:23 25:6 27:10,14 56:18

fabricate

26:14 53:19,20 60:1 82:11

fabrication

19:5 22:5,7,16 27:20 52:23 53:2 56:2 76:5 77:3 101:17

fabs

22:19

fact

70:23 74:17 99:15 103:19 107:22

fair

39:16 56:22 59:24

fairly

76:1

fall

43:9

familiar

44:6 65:11 72:7

feature

65:8 70:24

features

45:1

FETS

18:20

Field

19:12

figure

29:13 31:8,25 37:21 43:1 47:11 51:21 53:10, 14 56:6,21 57:21,23 58:4,10 59:5,17,22 63:14 65:13,20 66:18 68:24 74:13 82:12,16, 19 83:13,15 86:6 87:13, 15 93:16 94:7 95:7

figures

103:5,10,23

30:4 37:11 39:15,17

65:25

Figure~1a 57:4

Figure~1b

70:14

film

73:6 77:10,12 78:17,19 79:5 81:20,24 92:25 98:11 100:13,16,17,19

films

93:1

find

45:12 77:2

fine

7:24 75:5 101:16

finish

80:14

finished

79:17 82:21

Finnegan

7:14,18 9:4 13:9 14:15, 20

flip

35:9

flow

63:7 106:15

flowing

63:6

focus 100:1

focused

27:6

followups

101:2

forget

91:19

forgetting 13:19

forgot

66:20 75:24

37:3 38:17 41:23 60:10 61:15 62:9 75:17 76:3

90:18

Index: epi-form

formalities 11:16 formality 10:16 formation 72:20 formed 54:3,5 79:9 95:15

formulated 97:13 formulating 13:8 27:3

forward 68:17

foundation 41:2 44:3 52:4

foundry 22:9 24:23 25:23

fourth 59:14 60:24

front 23:7 full 10:1

fully 70:10

function 62:19 66:16 68:1 90:12 100:10

G

gallium

18:13,17,25 19:17,21 20:17 21:3,11,14 22:15, 18 24:7 26:4,7 39:7 46:17,20,25 48:24 64:16 81:10 98:21,22 99:17,18

game 39:16

Gan

26:1,14 80:6 82:10

53:24 61:9,20 105:13

gaps

68:7,9

gas

61:18 63:1,3,12 66:23 67:3,4,7,10,25 68:10, 14,16,19 70:3,11,19 104:6,10,24

gate

19:21 29:14 30:1,11,14 31:7,9,10,14 32:20 33:8 34:3,14 35:19 36:10 37:16,17,20 42:3,10,13, 16,20,22,24 43:1,8,11, 14,16,17,18,21,22 44:1, 14 52:1 54:3,22 55:1,2 57:3 58:21,23 59:8 62:24 63:9 66:21 67:2, 19 68:7 70:1,3,13 71:10,14,19 75:12,15, 16 76:10,20 77:13,15 78:12 79:17,18 80:6,12, 15 82:8,24 83:2,8,18,24 84:4 89:10 95:17,20 105:2 108:5 109:13,21, 22

gate's 79:9

gated 63:4

gates 42:14,15 43:3,5,15

gave 73:16

gears 101:20

general 24:8 42:5 100:20

generally

21:23 22:17 41:3 43:7 47:10 58:19,20,25 74:15

Georgia 16:11

give 8:2 14:21 39:17 56:1

gold 79:5 82:4

good 7:21,22 16:12 57:13 59:4 61:17

gotcha 71:5

grab 101:22

gradual 69:5 104:10

great

9:3 10:8,14 59:16

greater 70:21 71:11

green 53:5 54:12,13 55:2 73:3

ground 8:3,15 grounds 55:10

group 21:2

grow 19:24 21:3

grown 21:11

growth 20:12 72:25

guess 14:25 57:25 80:16 91:9

Н

H-E-M-T 28:10

half 8:21

hand 10:16 11:23 71:7 101:24

handed 11:20 13:4

handing 11:6 12:8 28:14 74:19 85:22 86:25 90:7 92:3 93:19

happen 27:19 happy

64:8

hard

68:19 69:20 71:18,20

head 26:22

heading 78:2 hearing

16:23

heart 66:24

heavily 20:6 21:4

height

56:8 63:21,23 **HEMT**

19:17 20:14 26:23 50:8 82:11

HEMTS 19:14,15 21:22 26:6,11, 13,15,19 27:6 28:9 43:10,12 72:8

High 28:11

high-power 18:13

higher 56:6

holes 78:18 99:3,5,6

honest 56:16

horizontal 87:10 93:8 107:20

horizontally 87:14

18:20 hour 15:8

host

hourly 15:5

hypothetical 92:8

Index: formalities-hypothetical

interchangeably 100:18 issues ı 30:20 27:20 indicating 46:19 48:17 67:5,23 interest it's....could idea 105:6 15:10,13,17 29:21 72:15 103:20 indium interested ITC idealized 15:25 16:15 23:3,5,24 81:10 26:10 56:2 66:10 97:25 29:20 53:15 87:16 24:9,12 induced interpret identical 68:10 37:21 Ithaca 86:12 22:21 inducing introduce identification 70:2 43:23 61:17 11:3,14 49:12 69:17 J 105:24 influence invalid 109:5 89:1 identify James 7:5 10:19 103:25 inform invalidity 17:10 16:14 illustrate Japan 46:10 47:9 70:25 21:20 information invention 16:17 33:7 34:2,13 37:14,19 **JHEMT** illustration 38:6,24 61:24 78:7 31:2,5,6,17 103:18 72:5 informed 17:13 inventors Illustration~b **JHEMTS** 24:19 104:3 72:7 Innoscience 7:14 14:4.12 15:25 investigation image iob 16:13 21:7 27:3 15:25 16:3,15 94:12 26:6,9 27:19 Innovation involve immediately iobs 25:12,13 18:21 23:21,25 54:24 25:21 83:7 97:12 instances impervious jumping 61:12 62:5 involved 47:3 94:24 21:4,5,14 22:14 23:22 institution implies junction 24:5,7,9 25:22 13:25 76:13 72:7 83:7 involved...the insulated imply jury 24:1 19:21 61:12 76:25 77:18 23:7,20 involvement insulating important 17:3,10,14 21:23 61:7 62:17,18 Κ 8:6 involving insulator imported 24:13 26:6 Kara 78:17 93:4 98:12,19 26:17 7:13 IPR2023-01382 99:10,21 106:6,8,14,24 impurities 107:8,11,14,16,17,19 9:23 kind 67:17 109:6 22:17 26:17 39:4 43:2. IPR2023-01384 3,19 74:3 105:15 in-office insulator's 10:5 9:2 98:13 **KOH** isolated 48:8 73:7,21,24,25 74:4 include insulators 61:6 35:19 36:10 37:19,20 106:12 isotropic L increase 92:15,18 97:6,8,11 integrating 68:18 70:1 100:17 26:11 101:11 label 103:17 105:12 increased intended issue 105:3 53:21 85:14 labeled increases 47:13

THE SULLIVAN GROUP OF COURT REPORTERS

Index: idea-labeled

Labs

20:23 23:14

lamps

23:23

language

40:8 75:24

larger

71:15

lastly

77:8 80:13 81:18

late

19:16

lateral

19:2,12 100:21 107:24

Lavenue

7:17

lawyers

8:24 9:4 17:5

layer

30:15,16 34:4,16 35:12, 21 36:2,11,13,15,22

39:25 40:13 41:6,11,21

43:23 44:20 51:13 52:11,13,15,17 53:7,18,

24 54:4,13 56:6,12,15 57:1,9 59:9,19,22 60:4,

5,14 61:9 62:7,8,12

63:5,8,16 64:19,25 65:3,16 67:16 72:18,20

73:2 74:8,10 76:12,20

81:10 82:10 98:20,23

99:10 103:24 105:13 106:18,23 107:1,2,4,10

108:1,2,18

layer's 62:18

layers

20:12,16 27:13,16

62:16

leave

31:15 69:15

ledges

87:11 94:18,22

LEDS

24:13

level

20:12 105:2

Levy

16:6,8,10,21

Lidow

24:17

Light

22:15 23:22 24:10

lighting

23:23

limit

71:18 limited

38:7 39:13

limiting

38:25 40:10

lines

33:17 89:22

Lionel

7:17

liauid

97:12 99:16 106:20

list 97:17

listed

98:1

literally

102:23

lithographic

57:6 73:5

litigating

23:18

litigation

14:4,7

live

23:7

load

43:22

loaded

76:9,11,22 77:14 80:7

82:9

located

22:20

locations

81:22

long

21:1 23:13 75:5 97:14.

16

looked

9:11.13 13:22 14:1

lost

71:14 86:15

19:4 20:21 21:24 22:14, 16 25:4,6,21 43:5,11

53:10 56:1 62:15 86:9 99:19

low

68:3,22 71:23 104:22

low-defect

21:16.19

Luke

7:16

lunch 84:8

M

Macdonald

7:17

machine

87:21

made

73:10,13 100:12

magnesium

99:5

mail

8:20

major

100:18

majority

99:15

make

44:8 46:10,14,15 52:7 53:1.14 65:21 98:14.18

making

27:6

manufacturing

99:23 104:20

87:25 88:3 89:16,19,21

91:7

mark

7:11 10:20 12:11 48:25 49:8 69:7 105:19

marked

11:2,13,24 12:2,9,10 28:15,19,23,25 49:11 69:16 74:20,23 85:23 86:1,24 87:1 92:1,4 93:20,23 105:23

Mashack

7:11

mask

47:9 48:14 55:1,3 78:18

mask-wall

100:8

masked

77:11 78:21 79:4 81:23

masking

54:24 77:9 81:19 109:9,

12

match 39:4 40:1,6

material

15:21 18:20 20:20,24 21:7 45:3 75:15 83:2

89:10,12 91:6 92:20 99:18 109:3

materials

19:24 22:18 24:8 73:24

92:22,23

matter 50:24 67:6 68:6 106:21

matters 68:8

meaning

63:21 84:1 93:14

meanings

59:2 means

> 31:14 39:5 40:5 44:7,10 47:25 58:16 91:9 92:20

99:9

meant

68:15

mechanisms 60:9

mentioned

Index: Labs-mentioned

THE SULLIVAN GROUP OF COURT REPORTERS

25:7 33:1 35:7 43:14 96:23 101:4

met

23:15

metal

18:22 54:18,19 55:3 60:4 79:12 80:24 81:7, 12,14 92:25 94:19 95:20 97:12 98:11,13, 19,25 99:16,22 100:1,4, 7,22 106:18,19 108:24 110:2

metalization

43:20

metals

97:13,15

method

20:3

methods

19:22

micro-led

22:8,12 25:9,16

microwave

42:10,15 43:3,6,18,21, 22

mid

20:4

_---

middle

72:4

minute 33:9 60:6 81:1 105:13

minutes

8:8 95:24 96:8

mirrors

98:8

mischaracterization

39:9

mischaracterizes

40:4

mix

39:4 40:1,6

mobile

99:11 106:13,16,19,22,

24 107:13

Mobility

28:11

MOCVD

21:2

mode

58:9,12,16,18 59:1,6,8 63:14,18,24 64:6,14,16 65:1,5,8,9,14 66:2,16 70:6,15,16,21 72:10,15 75:9,10 84:2 85:13,16

model

92:8,9 96:25 97:4,5,22 98:6 99:25

modeled

98:8

modified

31:11,25 32:2 39:21 66:9 103:11,14,16,23

modify

32:6 62:25 68:25 73:3

moment

96:18

morning

7:21,22

move

69:4

multiple

40:12,20 54:5,15,23

Ν

n-gan

81:15

n-type

20:18 76:19 80:7,25 81:10

Nakamura

20:2

necessarily

63:9

negative

67:15,18,19 70:10,17, 18 104:9

nickel

97:16

nitride

18:13,17,25 19:17,21 20:17 21:3,11,14 22:18 24:7 26:5,7 35:21 36:11,13,15 39:7 46:17, 21 47:1 48:24 61:9 64:17 81:10 98:22,23 99:17,18

nitride-based

22:15

non-c-plane

48:11

nonrecessed

29:17,24 30:10 31:6 37:1,17,23 38:14 39:23 41:18,21

notations

73:21

note

56:24

noted 110:21

notes

12:23,24 13:1,2 75:5

Nothing's

68:13

notice

10:18 11:7 49:3 50:5

noun

30:22

nuclear

25:25

nucleate

19:23

nucleation

19:22 20:3

number

10:2 98:5 105:22

0

Objection

37:3 38:17 39:8 40:3 41:1,23 44:2 52:3 61:15 62:9 75:17 76:3 88:7 90:18 101:8

occur

47:17

occurring

99:8

occurs

47:8 73:6

odd

25:21

Odyssey

17:21 18:5,9,11,15 20:8,9,19 21:6 22:3,6,

of...describing

45:8

Ohmic

32:23 52:19 53:8,23 54:2 56:7 59:23 60:12 61:13 62:3,7,13 67:4 68:13,20 74:8,15 79:7, 10,11 80:11,14 81:12, 14 82:20 105:14 108:11,24

Ohmics

53:17 54:9 61:5 65:15 66:20 68:16 108:5 109:13

ongoing

14:4

onset

69:23

open 78:18 109:12

opening

77:9 81:19 82:8

operate

70:6 79:13

operation

83:6,13,14

operations

18:15

opine 58:12

opined 16:14

opinion

31:13 38:20 39:6 40:1, 11,15,17,19 41:20 42:2, 18 43:10,25 45:9 46:2 50:13 58:8 59:5 65:12 88:4 89:15,25 92:19

Index: met-opinion

opinions

13:5,8 27:3 29:11

option

101:17

optional

32:10,15 35:12

order

14:24 54:10 76:13,25 77:19 78:1,14 100:21,

23

ordinary

88:4

orientation

48:2

original

105:16

owner

13:17,23,24

oxide

109:15 110:4

Р

p-cap

65:3

p-dopants

103:24

p-dope

66:5

p-doped

63:16

p-doping

37:25 64:24

p-n

83:6 108:10

p-type

64:18 67:16 76:12 80:5 82:10 84:3 89:9 98:21, 22 99:4,22 104:15

106:18

p.m.

85:2 91:24 96:2,11

110:21

panel

49:16 90:9

panels

49:15

paper

105:19

Paradkar

7:12

paragraph

15:3,14,15 17:17,24,25 18:3 22:1 31:19 33:2,3, 10,21,22 34:25 35:2,4, 8,10,13,16 36:24 37:5, 10 39:10,13 40:12 41:5, 20 44:21 45:13,16 51:10 59:12 60:19 64:9, 22 66:12 72:1,5,16,17,

77:4 78:5,11 79:20,22 80:3,13,20 83:1,22

22 74:7 76:14,15,16,24

85:8,11 86:19 87:9

91:14

paragraphs

32:14 38:12,19 39:24 72:2 76:4 77:21

parallel

63:11

parameters

39:12

parasitics

43:24

part

15:15 25:23 47:11 80:1 103:1 104:8

parties

21:14

nacc

pass

96:3 101:23 103:4

105:25

patent

9:9,20 10:1 12:7,15 13:17,23,24 14:2 23:18

24:5,7,20 39:14

patented

20:6

patents

9:15,17 10:10 13:6 19:8,9 89:1

path

51:14 63:12

pattern

46:18 54:8

Pause

10:21,24 18:1 21:9 37:8 58:6 86:11,14 91:17

93:18

pay

22:9

pending

8:10 15:24

penetrated 59:8

penetration

50:6

people

58:25 107:15

percent

90:1

perfect

102:20,25

perfectly

45:25 60:13 **perform**

108:23

performing

76:17

permission

96:24

person

88:4 101:9

petition

13:23

petitioner

7:15 13:24

petitioner's

88:16 105:19

PH.D.

7:5

phase

46:25

phonetic

46:7

photolithography

18:24 76:18

photoresist

46:18,19,21 48:10 93:14 97:7 100:3

Photoshop

32:4

phrase

17:1 64:13

picking 104:9

piece

95:2

place

53:8,23 54:8,22 57:7

86:16 90:17

places

20:21

placing

70:17

planar

46:20 73:6

plane 48:19 49:6,7,22 102:20,

23

planes

48:2,4 49:23

plasma

18:21,22 46:23,24 47:5, 6,7,13 54:13 102:11

......

players 26:24

. ..

pleadings 9:10 13:21

point

45:10 79:15 87:23

98:10 99:14

pointed 98:20

pointing

19:8 82:25

portion 48:20

_

portions 49:4 82:8

POSITA

Index: opinions-POSITA

97:8

THE SULLIVAN GROUP OF COURT REPORTERS

Exhibit 2004 Page 127 of 133

position

66:11 68:1

positive

58:23 83:18

possesses

97:23

potential

62:24 97:21 107:6

potentially

61:17 65:18

Power

7:9

practice

46.1

precursor

52:1,6

preliminary

13:24

premarked

28:21

prep

8:24 9:2

preparation

12:17

prepare

8:18

preparing

9:4

present

33:7 34:2,13 37:14,19 38:5,24 61:23 97:24

98:3

presented

12:2 28:25 74:23 86:1,

24 92:1 93:23

presupposes

95:14

pretty

31:20 38:18 71:20

99:18

previously

11:24 12:1,10 28:14,24 74:20,22 85:23,25

86:23,25 91:25 92:3

93:20.22 94:25

primary

51:3 65:4

prior

15:19 19:10,11,12 29:8 40:4 51:3 102:3

problematic

50:8

problems

65:17 78:7

proceeding

11:25 15:10,18 105:22

proceedings

17:4 69:14 105:21

process

22:18 48:15 52:24 53:2 54:1 55:4 76:1,14 78:15 79:8,16,24 80:1,12,14

82:21 88:9 90:13,24

91:3 92:16 95:15 97:15

107:19 108:23 109:4,5,

9,12,25

processes

18:19 45:2 50:1 60:10

90:16

processing 46:3,8 73:5 76:25 108:5

procure

18:18

produce

18:17 45:3 70:20 72:25

102:12

producing

66:23

product

69:3

profile

66:23

proper

70:17

prototypes

18:12

provide

15:21 16:2 43:25 44:14,

19 100:6 107:5

provided

16:18 26:12

providing

20:23 42:19

publicly

15:19

pull

39:16

purpose

84:3 97:18

put

31:12 49:10 50:3 51:21, 22 54:9,19 66:20 69:10

71:1.9 105:21 109:14

110:2

putting

73:2

Q

question

8:10,11 16:12 25:8 29:22 46:12 51:10 62:10,11 66:24 75:23, 25 77:17 90:4 100:25

101:1 103:1

questions

106:4 110:9

quickly

49:24

quote

18:3,4,6

R

range

41:9

rarely

60:18

15:6,7 48:1 92:21

reach

72:3

reactors

21:3

38:10 39:15 44:17 77:1 85:19 109:2 110:12,14,

reading

32:19 33:9,23 35:25 37:12 55:18 75:22 78:10,13,22 80:8,10

82:6 95:19 103:21

ready

75:23 96:12

reason

46:24

reasonable

105:2

recall

11:21 13:15 14:19 55:24 75:18 85:17

96:17.22 103:9

received

11:22

recently 22:4,6 108:16

recess

28:3 31:9,10,14,15,16 32:10,21,24 33:8 34:3,

14 35:11 37:20 39:16

40:23,24 49:21 56:20 57:17 64:24 66:4 74:16

91:23 96:1,10 103:23

recessed

29:14 30:2,12,13,14 35:20 36:12 37:1,16,23

38:14 39:23 41:13 74:13 84:7

recesses 40:12,20 49:19

recited

37:24

recognize

12:4,12,14 29:3,5,7 86:3 93:25 94:4

recollection

24:4 64:7

record

9:19 10:18 28:2,9 57:16 67:8 71:6 84:6 91:22

49:16 71:1,8,9

Index: position-reduced

95:25 110:20

reduced

THE SULLIVAN GROUP OF COURT REPORTERS

Exhibit 2004 Page 128 of 133

70:5

refer

30:21,23 55:4 86:20

reference

29:8 37:15 51:3 72:2 94:5 96:19 97:24 103:7,

referenced

94:5,8

references

13:18 19:10 46:5 50:3 54:21 55:7,25 102:5,9, 11,14

referred

19:13 99:16

referring

22:8 37:11 67:9 80:4 95:6

region

34:3,15 61:4,7,8,13 62:2,8 70:3 84:4 99:12 104:8,11 109:21,23

regions

38:15 67:7 104:1,14 105:8

related

22:18 100:2,8 103:10

relates

89:3,4

relation

85:13

relevant

88:10

relied

95:2 102:6

rely

29:10 87:5 94:25 95:7

relying

100:5,7,11

remember

14:13 24:6 26:3 27:1,18 54:15 62:15 87:24 88:1 97:1

91.1

remove

31:8,10,14,16 64:24 66:4 110:3 removed

49:23 53:7 82:18,22 103:23

repeat

29:21 62:11 75:25

rephrase

59:20 88:21

replaced

20:5

reply

13:24,25

report

30:19

reporter

8:4 11:9 28:20 50:25 51:4,7 64:1,4 69:10 110:11,19

reports

13:12

represent

55:12 56:14 102:9

representation

56:22 59:4,24

representative

102:7,14 103:13

represents

56:17

reproduce

66:18 103:19

request

97:3

require

70:14 97:20

required

10 G

46:9

resist

49:20 54:19

responding

25:8

response

13:17,23 56:13

results

100:1

reversed

30:7,9

review

9:7 13:13 16:19

reviewed

10:12 12:17

RICHARD

7:5

Rochester

25:16

Rome

7:10

rounded

45:1 47:15,17

rules

8:3,15

S

sample

46:23 47:19

Sandia

20:23

sapphire

19:24

saturation

84:1

Saxler

29:9,13,24 31:17,24 32:1,12 33:10,11 35:15 37:24 38:12 39:6 40:11,

14 41:4 42:4,11,18,19, 23,25 43:9,13,15,25

44:14,17,19,22 50:2,19, 20 51:11 53:10 55:5,21,

25 57:20 58:1 59:17

60:20,21 62:6,12,15

63:24 64:5,12 72:2,16 73:3 75:8 90:17 97:24 98:9,15,24 101:15

103:7 106:9

Saxler's

35:11 56:22 65:1 86:9

103:11

scale

56:24

scenario 76:7

schematically

47:9

Schubert

23:10

scope 42:4 43:9

second-to-last

81:3

second-to-the-last

80:22

see...if

44:21

seeks

78:8

selective

109:8

self-aligned

54:21 55:4,6 87:6 88:8

self-alignment

55:22 57:5 95:2,6 98:16

semiconductor

17:22 18:6,10,11,15,16, 19 19:25 20:20 22:3,6

46:16 98:20 99:1,3,4, 10,13 106:14 107:15

Semiconductor's

Semiconductors

21:6 106:11

22:19

sense 53:1 107:13

sentence

15:15,16 33:5 34:9

77:24 80:18

sentences

80:18 separate

65:15

serve 107:8.10

serves

95:21

session 9:2

sessions

8:24

THE SULLIVAN GROUP OF COURT REPORTERS

Exhibit 2004 Page 129 of 133

Index: refer-sessions

sets

22:15

shape

42:13 88:9

shapes

47:17

Shealy

7:5,21 10:19 28:6 85:4 91:18 96:17 102:2

sheet

67:25 69:2 70:10,18

Shenoy

92:5,7,9,10,15,24 96:19,25 97:6,10,20 98:10,17 99:20,21 100:6,9 101:4,9,14,16 106:5 107:19

Shenoy's

97:4,22 99:11,25 101:12

Sheppard

56:1 85:12,15,20 86:4

shipped

9:8 27:9,13,17

short

8:2,13 27:23

show

34:24 94:14

shown

53:25 59:10 62:14 65:17 69:1 82:11,17,22 93:15 100:9

shows

29:14,17,23,24 30:1 56:7,19 87:15

shunt

61:18 65:17

side

48:11 87:14 89:4 99:6 110:9

sides

53:17

sidewall

44:5,10,20 46:4 50:21 69:1 102:12

sidewalls

40:21,22,24 44:1,6,15 45:4,5 46:1,9 50:14 51:12 88:6 90:10,22 91:5 99:2

sideways

93:12

sign

110:12,15,17

significance

80:17

silicon

19:18,24 61:8 81:20,23 109:14 110:3

similar

104:12 105:7,10

simplified

103:22

simultaneous

108:20

single 21:16

Sio2

77:9,12 78:17 79:10 82:17,21 109:2,19

sits

98:25

skill

88:5 101:9

skilled

51:17 65:10 76:25

slope

88:6 91:1 104:8

sloped

48:20 49:4 68:25 102:12 104:1,14

slopes

49:6

sloping

90:10

slow

49:22

slower

49:7

slowest

48:4

small

26:25

smeared

105:8

Smith

56:1

So...say

71:10

solutions

48:8,9 74:4 97:17,19

solve

78:8

sort 21:17 29:20 53:22

source

20:20 21:20 63:6,8 66:25 67:1 68:7 76:8,21 77:5,10,16 78:20,24,25 81:21 104:7,24

source-drain

79:16

sourced

20:21 21:6 27:13

speak

9:3 13:9 17:7

speaking

58:19,20 108:20

Specht

7:13 37:3 38:17 39:8 40:3 41:1,23 44:2 52:3 61:15 62:9 69:13 73:18 75:17 76:3 88:7 90:18 96:5,8,12,14,16 101:19 102:1 105:18,25 110:8,

specific

43:10 97:13 102:17

specifically

37:24 66:1 72:4

spell

51:4

spoken

14:3

spread

93:7 107:19

Spring

15:1

sputter

54:18

staircase 44:11

standard

15:5 26:15 54:1

start

31:8 46:16 52:8 80:11

103:15

started 51:9,11 79:17 82:23

starts

80:23

state

15:9 58:22 59:11 67:14

68:2,11,13

stated

38:18

stating 71:4

step

44:1,5,6,15 47:23 50:11,12 102:6,13,14,

15 steps

> 46:3,4,8 50:19 54:25 102:24

Step~b

102:3

stimulation

74:1

straightforward 54:7,11 60:1

strange

53:13

strong 48:1 100:10

structure

20:13 29:14 31:11 37:16,17 42:13 43:18 44:1,14 47:2 52:7,17 54:21 60:2 65:16 66:9

75:12 76:2 98:3,7 99:11

THE SULLIVAN GROUP OF COURT REPORTERS

Index: sets-structure

structures

42:3,16,20,22,24 43:8, 12 45:18,20,24 47:2 62:16

stuff

12:23 77:25

subject

46:22 47:12,19,23

substantially

89:4 94:14,21

substrate

19:25 21:12.18.19.22. 23,25 52:9

substrates

21:15 26:13

sufficient

67:20

suggest

77:5 78:1,12 79:9

suggesting

72:24

suggests

77:15 78:15

support

32:14 39:7 44:1,14,19 51:12 75:11 83:21 106:15

supposed

47:15

sur

13:25

surface

38:1 46:16,21 47:1 48:13 50:9 54:18 99:1,7 106:20 108:8

surfaces

48:11,12 87:14 89:4 99:3,6 102:10 106:18

surprising

50:10

surround

106:17

switch

28:1 86:17 88:11 101:19

sworn

7:6

symmetric

47:16

symmetry

97:23,25 98:2,3,7,9

Т

takes

46:3

taking

8:4 24:2 90:17

talk

8:6 51:20 55:21 101:20 103:3

talked

73:1

talking

9:17 20:11 28:8 41:6,17 42:12,13 44:24 45:11 53:14 55:13 57:20 59:18 60:6,7 65:17 66:15 73:7 75:8 77:20 79:25 94:17 106:5 108:12,13

talks

39:22 43:15 72:5 79:23 83:2

tapered

44:25

teaches

92:15

Tech

16:11

technique

54:17 87:6 97:19 101:13,16

techniques

19:5 22:5,7,16 26:16 57:6 72:25 97:11 101:4,

11

technology

19:19 26:17

ten

23:1 95:23 96:8

term

47:25 51:1 64:6 67:11 85:15 87:24 89:19

terminated

106:20

terminology

98:23

terms

38:14,15 76:2 89:25

tested

27:8

testified

7:7 23:2.20 49:25 59:21 95:1 101:6

testify

108:11

testimony

40:4 96:23,24

the...it 67:22

the...that

70:20

the...there's

25:24

thickness

36:2,16,22 39:25 41:7, 10,17,22 60:17 63:17, 19,21 69:4 70:5 100:13, 16,18,19,22

thicknesses

38:15 39:23 56:11,14

thing

55:10 61:19 78:18 99:24

things 21:5 30:20 54:16

thought

73:16 81:1

threshold

69:23 70:2,20 71:11,14, 16,20

THURSDAY

7:1

tight 91:11

till

80:14

time

7:2 8:8 15:5 21:1 23:13 57:14 95:11 97:14 110:21

time's

88:14

times

22:24 23:1 69:4 91:11

TMAH

48:8

today

8:5 9:17 10:13

today's 8:19 9:5 12:18

told 32:6

tolerance

87:21 89:16,20 90:15,

20 91:9 tolerances

87:25 88:3 91:7

top

26:22 33:18 34:11 35:23 45:20 47:1 48:13 52:2,11,13,16 54:4 88:17 89:11 91:6 99:1

topics

28:1 86:17

total

10:9

totally

19:3

touch 99:17

tough

99:18

town 17:15

transcripts

16:19,23

transistor

19:21 26:14 28:11 29:14,18,25 30:1,10,13 35:18 36:9 39:7 42:3.11 58:9,18 59:6 63:15

THE SULLIVAN GROUP OF COURT REPORTERS

Index: structures-transistor

64:14,17 65:14 66:16 75:10 84:2 transistors 18:13 19:13 21:11 26:5 transition 69:5 104:14 trial 23:2,6,20,21 24:9,12 trials 23:3,5,24 trouble 90:19 true 45:1 tune 91:3 tungsten 97:16 turn 17:17 58:23 59:16 64:25 65:1 68:17,20 69:20 82:15 turned 70:15 83:17,25 turning 30:3 94:7 twenty 23:1 two-dimensional 62:25 63:3,12 type 47:7 types 18:22 39:18 42:16 43:4 typically 20:16 44:25 109:1 typo 79:3 U

Uemoto

94:5,14

Um-hum

45:9 69:25 71:25 93:1

undercut 47:8 48:14 93:13,14 98:17 100:6,9,11,17,18, undercuts 49:19 underlying 74:10 106:25 107:2 underneath 104:7 understand 15:24 60:8 66:3,11 74:7 89:23 92:7 understanding 9:16,21 44:9,13 107:21 understood 10:14 19:6 88:5 uniformly 104:17 unlike 97:19 usual 81:14 UV 73:25 ٧ vague 88:7 98:3 13:5

vague
88:7

valid
98:3

validity
13:5

variation
89:24 91:10

variety
39:17 97:9

vary
90:24

versa
98:15

version
8:3,13 31:25 33:14

vertical
18:12,20 19:3 20:14,15

21:10 26:14 40:21,22, 24 44:20 45:3,5,25 46:4,6,9 47:19 48:23 50:6 51:12 56:24 87:16 91:1,5 vertically 108:12 vias 60:5 vice

vice 98:15 visit 23:15 volt 70:23

voltage69:23 70:1,2,14 71:10,
12,15,17 83:9,18,24
84:1

volts 58:20 70:23 71:17,19 83:24 volume

69:3 **Vuereal** 25:19

wait
33:9 45:17 55:8 60:6
81:1

wall
48:18,23 87:16 88:9

walls
44:25 45:8 46:6 47:10,
19 104:1

ways

W

26:19 54:5,15,23 97:9

week
8:23 17:15

weeks
8:21

well-known

48:9 **wet** 47:3,4,22 wide 41:9 wider 89:11 91:5

width 63:22

widths 94:15,16 window

97:7 109:12,18

word 87:20 90:20

words 8:5 68:9 109:10

work14:15 17:8 21:14 22:9,
12 24:23 25:6,11 78:1
81:15 101:12,16 109:13

24:14,16

working 24:15 65:13

works 20:5 27:12 world

20:3 42:7 wrapping 95:24

wrong 101:14

Y

Y-O-S-H-I-D-A 51:6

year 14:25

yesterday 9:1,2

York 22:22 27:10

Yoshida

50:23 51:1 74:21 75:10, 12,14 76:1 83:17 97:24 98:9,15 101:15 104:18 109:2

THE SULLIVAN GROUP OF COURT REPORTERS

Index: transistors-Yoshida

youyou	
54:17	
Z	
Zoom	
8:24	