

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

CROWDSTRIKE, INC.,
Petitioner

v.

TAASERA LICENSING LLC,
Patent Owner

Case No. IPR2024-00027
Patent No. 7,673,137

PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,673,137

IPR2024-00027
U.S. Patent No. 7,673,137

TABLE OF CONTENTS
I.	 INTRODUCTION	..	1	
II.	 SUMMARY	OF	THE	‘137	PATENT	...	1	
A.	 DESCRIPTION	OF	THE	‘137	PATENT	...	1	
B.	 SUMMARY	OF	THE	PROSECUTION	HISTORY	...	3	
C.	 CLAIM	CONSTRUCTION	UNDER	37	C.F.R.	§42.104(B)(3)	...	4	
D.	 LEVEL	OF	SKILL	OF	A	PERSON	HAVING	ORDINARY	SKILL	IN	THE	ART	...	7	

III.	 REQUIREMENTS	UNDER	37	C.F.R.	§	42.104	...	8	
A.	 GROUNDS	FOR	STANDING	UNDER	37	C.F.R.	§	42.104(A)	..	8	
B.	 IDENTIFICATION	OF	CHALLENGE	UNDER	37	C.F.R.	§	42.104(B)	..	8	

IV.	 SUMMARY	OF	THE	PRIOR	ART	..	8	
A.	 DAN	..	8	
B.	 LAMBERT	...	12	
C.	 SCHMID	..	15	

V.	 THE	CHALLENGED	CLAIMS	ARE	UNPATENTABLE	..	16	
A.	 GROUND	1:	THE	COMBINATION	OF	DAN	AND	LAMBERT	RENDERS	CLAIMS	6,	8,	9,	12,	AND	25	OBVIOUS16	
B.	 GROUND	2:	THE	COMBINATION	OF	LAMBERT,	DAN,	AND	SCHMID	RENDERS	CLAIMS	1	AND	2	OBVIOUS	..	51	

VI.	 DISCRETIONARY	DENIAL	IS	NOT	WARRANTED	..	68	
VII.	 CONCLUSION	...	69	
VIII.	 MANDATORY	NOTICES	UNDER	37	C.F.R.	§	42.8	...	2	
A.	 REAL	PARTIES-IN-INTEREST	UNDER	37	C.F.R.	§	42.8(B)(1)	..	2	
B.	 RELATED	MATTERS	UNDER	37	C.F.R.	§	42.8(B)(2)	...	2	
C.	 LEAD	AND	BACK-UP	COUNSEL	UNDER	37	C.F.R.	§	42.8(B)(3)	...	3	

IPR2024-00027
U.S. Patent No. 7,673,137

 1

I. INTRODUCTION

CrowdStrike, Inc. (“Petitioner”) respectfully requests inter partes review

(“IPR”) of claims 1, 2, 6, 8, 9, 12, and 25 (collectively, the “Challenged Claims”) of

U.S. Patent No. 7,673,137 (the “’137 Patent”).

II. SUMMARY OF THE ‘137 PATENT

A. Description of the ‘137 Patent

The ’137 Patent proposes a system that “implement[s] a two-phased approach

at the kernel level of the computing device’s operating system…[to] provide[] fast

and efficient security that minimizes interruptions for the user.” ’137 Patent (Ex.

1001), 3:25-28. “[T]he pre-execution process, performs a rapid validation check to

determine whether the program has been approved for the computing device or

network.” Id., 3:28-31. The pre-execution phase “occurs as a program is being

loaded into memory, but before it can execute.” Id., 8:30-32. “[T]he binary execution

monitor 125 will respond to the system process-creation hook 170 by suspending

execution of the executable file…until the program can be validated.” Id., 8:58-62.

“The binary execution monitor 125 is an in-kernel driver that monitors the loading

of binary executable files and other executable libraries in real time by recognizing

and validating any executable file that is being loaded.” Id., 6:43-47. If “the binary

execution monitor 125 is able to validate the new executable, the suspended state

will be released…and loading of the executable will continue[.]” Id., 9:4-7.

IPR2024-00027
U.S. Patent No. 7,673,137

 2

“However, if the binary execution monitor 125 is unable to validate the executable

in the pre-execution process, additional precautionary steps will have to be taken in

the execution phase[.]” Id., 9:7-10.

Id., Fig. 1 (excerpt).

In the execution phase, an unvalidated program “can continue to load and

execute, but other execution security modules are responsible for detecting,

monitoring, and responding to suspicious activities.” Id., 3:54-57. “[D]etect drivers

153 can monitor the non-validated program when it is executing and identify

potential threats to the computing device 103 before they are executed.” Id., 6:64-

IPR2024-00027
U.S. Patent No. 7,673,137

 3

67. “[I]f the program is attempting to perform functions that may seriously impair

the computing device 103 or the network 102, the protector system 104 may

immediately terminate execution of the program.” Id., 10:41-45.

B. Summary of the Prosecution History

The application that issued as the ’137 Patent claims priority to a provisional

application filed on January 4, 2002. Because the ’137 Patent claims the benefit of a

filing date before March 16, 2013, Petitioner applies the pre-AIA versions of §§ 102

and 103. Petitioner also adopts January 4, 2002, as the priority date for the

Challenged Claims for purposes of this proceeding.

The ’137 Patent underwent several rounds of rejections during prosecution.

’137 File History (Ex. 1002). However, the primary references considered by the

examiner include USPN 7,398,532 to Barber (“Barber”), USPN. 6,128,774 to

Necula (“Necula”), and USPN 2002/0184520 to Bush (“Bush”). Id., 1358-1360. The

examiner found that none of these references teach the step of “if the new program

is not the same as the allowed program, monitoring the new program while allowing

it to execute on the computing device, wherein the step of monitoring the new

program while allowing it to execute is performed at the operating system kernel of

the computing device.” Id., 1358-1361.

The Examiner found that unvalidated processes in Barber “will not execute,”

which is contrary to the allegedly patentable requirement for “monitoring the new

IPR2024-00027
U.S. Patent No. 7,673,137

 4

program while allowing it to execute on the computing device.” Id., 1358. Likewise,

Necula taught discarding invalid code. Id., 1359. Finally, the examiner found that

while Bush teaches a sandbox where “untrusted code is permitted to execute,” Bush

does so on “a virtual machine, which is separate from the operating system to process

untrusted code.” Id., 1359-1360.

As shown below, the prior art cited in the Petition expressly teaches

monitoring an untrusted program on the operating system kernel of a computing

device while the program executes. Infra.

C. Claim Construction Under 37 C.F.R. §42.104(b)(3)

In this proceeding, claims are interpreted under the same standard applied by

Article III courts. 37 C.F.R. § 42.100(b); Phillips v. AWH Corp., 415 F.3d 1303,

1312 (Fed. Cir. 2005) (en banc). Petitioner applies the ordinary and customary

meaning of the claim terms as understood by a PHOSITA for all terms not expressly

constructed below.

1. “if the new program is validated…”

Claim 6 recites the limitation “if the new program is validated, permitting the

new program to continue loading and to execute in connection with the computing

device.” Claim 25 similarly recites “if the new program is valid, permitting the new

program to execute on the computing device.” Petitioner proposed construing claim

6 as “if the new program is validated, then it is not monitored while it loads and

IPR2024-00027
U.S. Patent No. 7,673,137

 5

executes in connection with the computing device” and claim 25 as “if the new

program is valid, then it is not monitored while it executes on the computing device.”

Consistent with the ’137 Patent’s goal of providing “an effective and efficient

method for implementing security while minimizing the burdens and interruptions

for the user,” if a program is validated, it is not monitored. ’137 Patent, 10:49-54.

PO‘s expert in the co-pending litigation recognizes this. Cole Declaration (EX.

1008), ¶53 (“one of the benefits of the claimed invention is performing a validation

step … to minimize unnecessary monitoring...”).

Petitioner’s proposal is supported by the claim language, which is structured

in a conditional format such that whether monitoring happens depends on whether

the program was validated (e.g., “if the new program is validated, permitting the new

program to continue loading;” “if the new program is not validated, monitoring the

new program while it loads”).

The intrinsic record uniformly describes that programs are monitored if they

are not validated. The specification states that “the present invention employs a two-

step process to validate software programs and monitor non-validated software

programs. . . . In the first phase of the process, the protector system validates

authorized programs to ensure that they have not been corrupted before running

them. For programs that cannot be validated, the protector system can monitor the

IPR2024-00027
U.S. Patent No. 7,673,137

 6

programs as they execute during the second phase.” ’137 Patent, 4:53-65, claims. 6,

13, 14, 24; 3:25-41, 6:64-67, 9:7-11, 9:38-41.

By contrast, validated programs are not monitored and do not need to be. Id.,

4:54-65, cls. 6, 13, 14, 24, 3:28-32. This is common sense in view of the ‘137

Patent’s purpose: a program known to be valid does not need to be monitored, thus

saving resources. Id., 10:54-59; 4:4-11; 8:63-9:7. PO’s claim construction expert

admits that the specification’s execution module is for non-validated programs. Cole

Declaration, ¶53.

In the district court, PO has pointed to a single passage in the specification

that refers to “little… additional security monitoring” to claim that “a program may

still be monitored (either minimally or not at all) as it continues loading and

executes” (Taasera’s Claim Construction Brief (Ex. 1009), 5), but this does not

outweigh the plain claim language and the other intrinsic evidence.

2. “pre-execution monitor”

Claim 1 recites “a pre-execution module” and “the pre-execution monitor.”

In co-pending district court litigation, the parties have agreed that “pre-execution

monitor” refers to the “pre-execution module.”

3. “an execution module”

Claim 1 recites “an execution module coupled to the detection module and

operable for monitoring, at the operating system kernel of the computing device, the

IPR2024-00027
U.S. Patent No. 7,673,137

 7

program in response to the trigger intercepted by the detection module.” In the co-

pending district court litigation, both parties have agreed that this limitation should

be subject to 112(6) and the function is “monitoring, at the operating system kernel

of the computing device, the program in response to the trigger intercepted by the

detection module.” Joint Claim Construction Brief (Ex. 1010), 5. For purposes of

this proceeding, 1 Petitioner proposes that the corresponding structure for this

limitation is “if the program was not validated, then monitor the non-validated

program in response to triggers while the program is executing” for the same reasons

as discussed above with reference to the “if the new program is validated” phrase.

See Section II.C.1.

D. Level of Skill of a Person Having Ordinary Skill in the Art

As of January 4, 2002, a person having ordinary skill in the art (PHOSITA)

would be a person having a bachelor’s degree in computer science, or a related field,

or an equivalent technical degree or equivalent work experience, and an additional

one to two years of education or experience in the field of computer security. More

education can supplement practical experience and vice versa. Declaration (Ex.

1 In the co-pending litigation, Petitioner proposes this limitation is indefinite for

insufficient corresponding structure. Petitioner also provided an alternative structure

in the event the Court did not find the limitation indefinite, which Petitioner applies

here.

IPR2024-00027
U.S. Patent No. 7,673,137

 8

1003), 44.

III. REQUIREMENTS UNDER 37 C.F.R. § 42.104

A. Grounds for Standing Under 37 C.F.R. § 42.104(a)

Petitioner certifies the ‘137 Patent is eligible for IPR.

B. Identification of Challenge Under 37 C.F.R. § 42.104(b)

Petitioner requests the Challenged Claims be found unpatentable on the

following grounds:

Proposed Grounds of Unpatentability Exhibits
Ground 1: Claims 6, 8, 9, 12, and 25 are obvious under § 103(a)

over ChakraVyuha� (CV): A Sandbox Operating System

Environment for Controlled Execution of Alien Code to Dan

(“Dan”) in view of USPN 2002/0099952 to Lambert (“Lambert”).

1005-1006

Ground 2: Claims 1 and 2 are obvious under § 103(a) over

Lambert in view of Dan in further view of USPN 7,085,928 to

Schmid (“Schmid”).
1005-1007

IV. SUMMARY OF THE PRIOR ART

A. Dan

Dan discloses that “[t]he rapid growth in connectivity and sharing of

information via the World-Wide Web has dramatically increased the vulnerability

of client machines to alien codes.” Dan (Ex. 1005), 1. “The alien code can silently

obtain unauthorized access to all the system resources (i.e., logical resources such as

files, network ports) that can be accessed by the invoking user, and “[i]t may also

IPR2024-00027
U.S. Patent No. 7,673,137

 9

propagate itself, attempt illegal break-ins or maliciously alter files in the client

system[.]” Id.

To combat these issues, Dan proposes a system that “combines certification

of alien code together with explicit granting of privileges for execution.” Id., 2.

Dan’s system “consists of one or more code production systems, certification

agencies, servers and clients.” Id., 5.

Id.

“The certification agency issues a certificate for the code identifying its source

and a certificate for the RCL of that code, where the resource capability list (RCL)

is “the set of permissions and resource access privileges required by the code.” Id.,

IPR2024-00027
U.S. Patent No. 7,673,137

 10

4-5. “The RCL enforcer module at the client ensures that the permissions and

resource consumption limits specified in the RCL are not violated.” Id., 9. “The RCL

enforcer monitors all systems calls, i.e., access requests to logical resources in the

system.” Id., 12. “This monitoring requires that the RCL enforcer be invoked for

each system call made by an application,” which is implemented by modifying the

operating system’s call interface. Id., 12, 14-15. Dan� was not cited or considered

during the prosecution of the ’137 Patent.

1. Dan Is Prior Art

The determination of whether a document is a “printed publication” under 35

U.S.C. § 102(b) “involves a case-by-case inquiry into the facts and circumstances

surrounding the reference’s disclosure to members of the public.” In re Klopfenstein,

380 F.3d 1345, 1350 (Fed. Cir. 2004). “A reference will be considered publicly

accessible if it was ‘disseminated or otherwise made available to the extent that

persons interested and ordinarily skilled in the subject matter or art exercising

reasonable diligence, can locate it.’” Blue Calypso, LLC v. Groupon, Inc., 815 F.3d

1331, 1348.

The following facts show Dan was a prior art printed publication as of July

22, 1997:

IPR2024-00027
U.S. Patent No. 7,673,137

 11

• Dan indicates that it was an “IBM Research Report” that “has been

submitted for publication outside of IBM[.]” Dan, 1. These indica suggest

that Dan was to be made public.

• June Munford is a Librarian having a Master of Library and Information

Science and over ten years of experience in the library/information science

field, including experience as a Library Director. Munford Declaration

(Ex. 1004), ¶¶2-4. Ms. Munford located a copy of Dan in the Carnegie

Mellon University Library (“the Library”). Id., ¶9.

• The Library’s MARC record for Dan shows it was acquired and cataloged

by the Library on July 3, 1997. Id., ¶11, ¶14.

• A date stamp on the final page of the Library’s copy of Dan indicates that

it was publicly accessible as of July 22, 1997. Id., ¶12, ¶14.

• In 1997, the Library’s catalog records could be searched via “an online

catalog that allows users to search by words/phrases and review lists of the

library’s authors, titles, subjects, series, keywords, or call numbers.” Id.,

¶20. The Library “implemented Sirsi’s Unicorn and WebCat software to

create a detailed inventory of the library’s holdings and present users with

an interactive library catalog to search this inventory.” Id., ¶26. Dan was

sufficiently indexed to allow any library catalog user to locate Dan via

common search engine practices. Id.

IPR2024-00027
U.S. Patent No. 7,673,137

 12

• Members of the interested public exercising reasonable diligence could

have located the Dan reference as of July 22, 1997. Id.

Thus, a preponderance of the evidence shows Dan is prior art under 35 U.S.C.

§102(b).

2. Dan Is Analogous Art

Because Dan�, like the ‘137 Patent, discloses systems and methods for

analyzing and resolving potential security threats to a computing device, Dan� is in

the same field of endeavor as the ‘137 Patent. Compare Dan�, 21 (discussing alien

code and malicious propagation of alien code), 5, 1 (discussing denial of service

attacks), 2 (discussing active content viruses), 12 (discussing monitoring system

calls), 14-15, Figure 1 with ‘137 Patent, Abstract, 3:5-14, 6:21-24, 7:15-21, 8:20-

27; Declaration, ¶78. Dan� is also directed at solving similar problems, such as

detecting security threats to a computing device. Compare Dan�, 2, 5-6, 12, 14-15,

21, Figure 1 with ‘137 Patent, 3:5-14, 3:25-35, 4:55-60, 10:49-54; Declaration, ¶79.

B. Lambert

Lambert discloses that “[c]omputer users, and particularly business users,

typically rely on a set of programs that are known and trusted.” Lambert (Ex. 1006),

[0003]. “However, in most enterprise environments, particularly in larger

environments in which some flexibility is important with respect to what various

employees need to do with computers to perform their jobs, users are able to run

IPR2024-00027
U.S. Patent No. 7,673,137

 13

unknown and/or untrusted code, that is, programs outside of the supported set.” Id.

“[S]ome of the untrusted code may be malicious code…that intentionally

misrepresents itself to trick users into running it, typically inflicting damage,

corrupting data or otherwise causing mischief to the computers on which the

malicious code runs.” Id., [0004].

To solve this problem, Lambert describes “[a] system and method that

automatically, transparently and securely controls software execution by identifying

and classifying software, and locating a rule and associated security level for

executing executable software.” Id., Abstract. Lambert discloses a pre-execution

phase where a software file is identified and classified as a trusted application that

is allowed to execute without restrictions, a potentially untrusted application that is

allowed to execute with restrictions, or a “bad” application that is not permitted to

execute on the computing device. Id., [0056], Fig. 5A. When an untrusted program

is executing in restricted mode, a security mechanism ensures that the program does

not violate the restrictions defined in a restricted token associated with the program.

Id., [0043], Fig. 3.

1. Lambert Is Prior Art

Lambert was filed on June 8, 2001, and qualifies as prior art to the ‘137 Patent

under 35 U.S.C. §102(e). Lambert was not cited or considered during the prosecution

of the ‘137 Patent.

IPR2024-00027
U.S. Patent No. 7,673,137

 14

Lambert also claims priority to a provisional application filed on July 24,

2000. If PO attempts to antedate Lambert’s June 2001 priority date, Petitioner will

establish that Lambert qualifies as §102(e) art as of the July 24, 2000 provisional

filing date. Since PO would first be required to establish that the Challenged Claims

are entitled to a priority date earlier than Lambert’s June 8, 2001 filing date,

Petitioner is not required to show that Lambert receives the benefit of the July 24,

2000 provisional date until PO has made this showing. In re Magnum Oil Tools Int’l,

Ltd., 829 F.3d 1364, 1375–76 (Fed. Cir. 2016).

2. Lambert Is Analogous Art

Because Lambert, like the ‘137 Patent, discloses systems and methods for

analyzing and resolving potential security threats to a computing device, Lambert is

in the same field of endeavor as the ‘137 Patent. Compare Lambert, Abstract, [0007],

[0009], [0013]-[0014], [0041], [0056], Fig. 5A with ‘137 Patent, Abstract, 3:5-14,

6:21-24, 7:15-21, 8:20-27; Declaration, ¶90. Lambert is also directed at solving

similar problems, such as detecting potential security threats to a computing device.

Compare Lambert, Abstract, [0004]-[0005] (discussing detecting a virus and

unknown code), [0008] (discussing automatically controlling software execution),

[0011] (discussing automatically applying a policy), [0014] (discussing security is

implemented without requiring user forethought or action), with ‘137 Patent, 3:5-14,

3:25-35, 4:55-60, 10:49-54; Declaration, ¶91.

IPR2024-00027
U.S. Patent No. 7,673,137

 15

C. Schmid

“While most well-behaved Windows applications make system calls through

the Win32 API, it is also possible to bypass this interface by making calls directly to

kernel services.” Schmid (Ex. 1007), 5:29-32. “A malicious program…may attempt

to bypass a wrapper implemented between Windows and the Win32 subsystem by

making direct calls to operating system objects, rather than through the Win32 API.”

Id., 5:33-37.

To solve this problem, Schmid discloses a “kernel-level wrapping approach

to executable control” where a device driver is “installed in an I/O subsystem, and

may be used to intercept system service requests.” Id., 5:38-48. The device driver is

“dynamically loaded into a kernel, or may be loaded as part of a boot sequence” and

“modifies an entry in a table consulted by a dispatcher to handle an interrupt

instruction.” Id., 6:6-11. “In the preferred Windows NT embodiment, the modified

entry may cause a dispatcher to call an inserted function[.]” Id., 6:11-15. “When a

substitute function is called by a dispatcher, the function determines whether to

allow or block process creation.” Id., 6:22-24.

1. Schmid Is Prior Art

Schmid was filed on March 30, 2001, and qualifies as prior art to the ‘137

Patent under 35 U.S.C. §102(e). Schmid was not cited or considered during the

prosecution of the ‘137 Patent. Schmid also claims priority to a provisional

IPR2024-00027
U.S. Patent No. 7,673,137

 16

application filed on March 31, 2000. If PO attempts to antedate Schmid’s March

2001 priority date, Petitioner will establish that Schmid qualifies as §102(e) art as of

the March 31, 2000 provisional filing date.

2. Schmid Is Analogous Art

Because Schmid, like the ‘137 Patent, discloses systems and methods for

analyzing and resolving potential security threats to a computing device, Schmid is

in the same field of endeavor as the ‘137 Patent. Compare Schmid, Abstract, 2:20-

23, 2:31-33, 3:21-22, 2:50-54, Fig. 1 with ‘137 Patent, Abstract, 3:5-14, 6:21-

24,7:15-21, 8:20-27; Declaration, ¶95. Schmid is also directed at solving similar

problems, such as detecting potential security threats to a computing device.

Compare Schmid, Abstract (discussing preventing software from executing without

prior approval), 2:20-23 (discussing addressing emerging dangers and unknown

attacks), 2:26-28 (discussing a kernel intercepting process creation requests), 2:50-

54 (discussing providing administrators with defense against hostile or unknown

code), with ‘137 Patent, 3:5-14, 3:25-35, 4:55-60, 10:49-54; Declaration, ¶96.

V. THE CHALLENGED CLAIMS ARE UNPATENTABLE

A. Ground 1: The Combination of Dan and Lambert Renders Claims 6,
8, 9, 12, and 25 Obvious

1. Claim 6

6[Pre]. A computer implemented method for implementing security for a
computing device comprising the steps of:

Dan teaches a system including a client system having a sandbox environment

IPR2024-00027
U.S. Patent No. 7,673,137

 17

installed on it:

Dan, 5; see also, id. (“[T]he RCL may be the default RCL associated with the

sandbox environment in the client system.”).2

The client system includes an “operating system kernel,” logical resources,

such as “files [and] network ports,” and physical resources, such as “disk, physical

memory, [and] CPU.” Id., 5, 7, Abstract. A PHOSITA would have understood that

an operating system kernel and logical and physical resources are all well-known

components of computing devices. Declaration, ¶¶98-99. Therefore, a PHOSITA

would understand that Dan’s client system is a computing device.3 Id.

The combination of Dan and Lambert embodies a computer implemented

2 All emphases added by Petitioner unless stated otherwise.

3 Claim language emphasized for clarity.

IPR2024-00027
U.S. Patent No. 7,673,137

 18

method for implementing security for a computing device, as set forth below.

[6(a)] interrupting the loading of a new program for operation with the computing
device;

Dan teaches a new program. Specifically, Dan teaches a method for

“Installation of Untrusted Applications” where “[t]he application and RCL are

downloaded to the host (via network, diskette, CD-ROM, satellite, etc.).” Dan, 20.

Thus, Dan’s application is new because it is newly downloaded to the host computer.

Declaration, ¶101. A PHOSITA would have understood that an application is a type

of computer program. Id., ¶102-103; see also, Dan, Abstract (“Sharing of unknown

programs…”).

Dan describes “unknown programs” that create “an atmosphere of untrust”

and “exacerbate[] the need to secure information and physical resources from any

alien code.” Dan, Abstract; 20 (describing the “Installation of Untrusted

Applications”). When the computer receives a new program, its resource capability

list (RCL) and certificate, a verifier module “verif[ies] that the code and RCL are

valid (not tampered with).” Id., 5. Once the code is verified, the RCL manager

determines “which subset of parameters within the RCL are to be allowed” and

“stores the code and its modified RCL in a secure location.” Id., 5-6. “The RCL

enforcer is invoked when the code is executed,” and it “monitor[s] accesses by the

code to ensure that the permissions and resource consumption limits are not

violated.” Id., 6. Dan also teaches allowing “downloading (or installing from

IPR2024-00027
U.S. Patent No. 7,673,137

 19

CDROM) of any code without any certificate as in the conventional systems” and

that in these cases, “[s]uch untrusted codes when executed via sandbox environment

will be given minimum default resource capabilities.” Id., 7.

A PHOSITA would have understood that not all applications, including those

without certificates, are unknown and/or untrusted. Declaration, ¶105. For example,

Lambert teaches that “[c]omputer users, and particularly business users, typically

rely on a set of programs that are known and trusted.” Lambert, [0003]. “However,

in most enterprise environments, particularly in larger environments in which some

flexibility is important with respect to what various employees need to do with

computers to perform their jobs, users are able to run unknown and/or untrusted

code, that is, programs outside of the supported set.” Id. To address the presence of

trusted and untrusted programs, Lambert teaches applying different “security levels

for execution” including “normal (unrestricted), constrained (restricted) or

disallowed (revoked).” Id., [0013]. Per Lambert, “known good code…is allowed to

execute” in either “unrestricted (normal) or restricted” modes while “known bad

code…will not be allowed to execute at all.” Id., [0056].

Lambert proposes determining “access to resources based on an identification

(classification) of software that may contain executable content.” Id., [0052].

Software “may be identified and classified, with rules set and maintained for the

software classifications that automatically and transparently determine the ability of

IPR2024-00027
U.S. Patent No. 7,673,137

 20

software to execute.” Id. “[W]hen software is to be loaded (e.g., its file opened and

some or all thereof read into memory), one or more rules are located that

correspond to the classification for that software, (or if none corresponds, the default

rule), and a selected rule[] is used to determine whether the software can be

loaded, and if so, to what extent any processes of the software will be restricted.”

Id.; [0014] (describing identifying rules “prior to loading a file”).

Figure 5A depicts interrupting the loading of the software file for

identification/classification. “When the process 508 wants to load and possibly

execute the software file 510, it identifies itself and provides information 514

identifying the software file to an appropriate function 516 (of a set) that can open,

load and/or execute the file 510.” Id., [0066]. “[I]nstead of simply loading the file

and executing any executable code…each of the functions 516 is arranged to first

provide the software file information 514 to an enforcement mechanism (circled

numeral two (2) in FIG. 5A).” Id., [0067]. After the loading of the software file is

interrupted by function 516 sending the software file information to the enforcement

mechanism 518 in step 2, “the enforcement mechanism consults the effective policy

502 to determine which rule applies for the file 510, and from the rule determines

whether to open/execute the file, and if so, the extent of any restricted execution

context for the file 510.” Id. Thus, Lambert teaches interrupting the loading of

IPR2024-00027
U.S. Patent No. 7,673,137

 21

software so that it can be identified/classified and an appropriate security policy may

be applied:

Declaration, ¶108.

Based on the teachings of Lambert, it would have been obvious, and a

PHOSITA would have been motivated to configure Dan’s RCL enforcer to interrupt

the loading of a new program for operation with the computing device so that the

program can be identified/classified to determine the appropriate security level prior

to execution. Id., ¶111. A PHOSITA would have understood that this modification

would have had multiple benefits. Id., ¶112. First, this modification would have

IPR2024-00027
U.S. Patent No. 7,673,137

 22

enabled Dan’s RCL enforcer to block known malware from executing. Id., ¶113.

Dan allows “downloading (or installing from CDROM) of any code without any

certificate as in the conventional systems.” Dan, 7. Thus, a user may download

known malware that does not have a certificate/RCL to the computing device.

Declaration, ¶113. Configuring Dan’s RCL enforcer to interrupt the loading of the

new program would have enabled the RCL enforcer to identify the program as “bad”

code prior to it executing and potentially harming the computing device. Id., ¶¶113-

114.

Second, this modification would provide solutions for validating conventional

programs that lack Dan’s certifications/RCLs. Id., ¶115. A PHOSITA would have

understood that a program may be obtained directly from a trusted developer instead

of a third-party certification agency. Id. Incorporating Lambert’s

identification/classification process would have allowed Dan’s sandbox to select an

appropriate security policy rather than unnecessarily restricting these trusted

programs to one-size-fits-all “minimum default resource capabilities.” Id.

Another benefit would have been increasing the performance of Dan’s

sandbox by configuring it not to monitor trusted applications. Id., ¶117. A PHOSITA

would have understood that a trusted program that is allowed to execute in an

unrestricted manner, as taught by Lambert, would not need to be monitored by the

RCL enforcer. Id., ¶116. Dan’s RCL enforcer is “invoked for each system call made

IPR2024-00027
U.S. Patent No. 7,673,137

 23

by an application.” Dan, 12. A PHOSITA would have understood that system call

interception was costly and impacted the performance of kernel monitoring systems.

Declaration, ¶117. Configuring the RCL enforcer to not intercept the system calls

of a trusted application would have predictably increased the sandbox’s performance

and would have reduced the computational costs associated with running the

sandbox on the computing device. Id. A PHOSITA would have been motivated to

avoid consuming resources by monitoring trusted programs unnecessarily. Id.

For these reasons, a PHOSITA would have been motivated to improve similar

computer security methods in the same way by configuring Dan’s RCL enforcer to

interrupt the loading of a new program on the computing device so that it can be

identified/classified prior to execution, as taught by Lambert. Id., ¶118. A PHOSITA

would have understood that this modification would not have changed the principle

of operation of Dan’s client sandbox because Dan’s RCL enforcer would still

monitor untrusted applications per Dan’s stated purpose. Id., ¶119. Rather, this

modification would have served to provide additional safeguards and performance

improvements to Dan’s client sandbox. Id., ¶118. Thus, there would have been a

reasonable expectation of success configuring Dan’s RCL enforcer to interrupt the

loading of a new program for operation with the computing device. Id., ¶119.

IPR2024-00027
U.S. Patent No. 7,673,137

 24

[6(b)] validating the new program;

Lambert teaches that “[t]o identify and classify software,…various selectable

classification criteria are made available to an administrator, including a unique

hash value of the file’s content (e.g., via an MD5 image hash)…” Lambert,

[0053]. Per Lambert, “one way that a software file can be identified (and thus

matched to a corresponding rule) is by a hash of its contents, which is essentially a

fingerprint that uniquely identifies a file regardless of whether the file is moved or

renamed.” Id., [0055]. “[B]efore opening a file for execution, a hash value is

determined from that file’s contents, and the set of hash value information (e.g.,

in the policy object) searched to determine if a rule exists for that hash value. If so,

that rule provides the security level for the software.” Id.

Regarding the validating step, the ’137 Patent discloses “the validation

module can represent the MD5 software module commonly known to those in the

art,” which “calculates a checksum for each allowed program and that checksum is

stored for later comparison.”’137 Patent, 8:13-17. Lambert similarly teaches

comparing the MD5 hash of a software file to a set of stored hash values for known

software files having rules associated with them. Lambert, [0053], [0055]. Per

Lambert, “an administrator can set a rule for any file based on its unique hash value,

with the rule specifying whether (and if so, how) a software file having that hash

value will execute.” Id., [0056]. “In the case of known bad code, the administrator

IPR2024-00027
U.S. Patent No. 7,673,137

 25

may set the rule to specify that any file with that hash will not be allowed to execute

at all (i.e., ‘disallowed’ or ‘revoked’ status).” Id. “Since the rule along with the hash

value is maintained or distributed to the machine, (e.g., via a policy object),

whenever a request to open that file is received, a hash of the file matches the saved

hash and rule, and that file will not be run.” Id. “Alternatively, in the case of known

good code that is allowed to execute, a hash rule can specify how it will be executed,

e.g., unrestricted (normal) or restricted (and to what extent).” Id. If no rules apply,

configurable default rules apply. Id., [0052],[0058],[0065],[0068],[0083]. Thus,

Lambert uses the software file’s hash to validate whether it should be allowed to

execute in an unrestricted manner, restricted manner, or not at all. Declaration, ¶122.

Lambert’s validating step is also depicted in Figure 5A. Once the enforcement

mechanism receives the software file’s information from the software loading

function 516, it calls “a hash function 520 or the like to obtain a hash value from the

contents of the software file 510, as generally represented in FIG. 5A by the arrows

labeled with circled numerals three (3) to six (6).” Lambert, [0068]. “[A] suitable

hash function 520 provides a unique fingerprint of the software file 510, while the

effective policy 502 may have a specific rule for that hash.” Id. Arrows seven (7)

and eight (8) “represent[] accessing the policy to get the rule or rules” by looking for

a rule corresponding to “the hash value.” Id. Therefore, steps 3-8 of Figure 5A

collectively qualify as validating the software within the meaning of the ’137 Patent:

IPR2024-00027
U.S. Patent No. 7,673,137

 26

Declaration, ¶123.

For the reasons discussed above, it would have been obvious to a PHOSITA

to configure Dan’s sandbox to identify and classify applications as bad (i.e., no

execution), good (unrestricted execution), or untrusted (restricted execution) as

taught by Lambert. See Claim 6(a). Since Lambert’s identification/classification

process qualifies as validating, Dan’s RCL enforcer modified in view of Lambert

also renders obvious validating the new program for the same reasons. Id.

It would have also been obvious, and a PHOSITA would have been motivated

to configure Dan’s RCL enforcer to validate the new application by comparing its

hash value to a list of hashes for known applications, as taught by Lambert.

Declaration, ¶125. A PHOSITA would have understood that comparing a hash of

IPR2024-00027
U.S. Patent No. 7,673,137

 27

the new application to a list of hashes for known applications would have been a

reliable way to validate whether the new application is trusted or untrusted. Id.

Therefore, a PHOSITA would have been motivated to combine the prior art elements

of Dan’s RLC enforcer and Lambert’s method of using hashes to identify and

classify a software file according to known methods to yield the predictable result

of allowing Dan’s sandbox to validate the new application by identifying it as bad

(i.e., no execution), good (unrestricted execution), or untrusted (restricted execution)

even when no certificate is provided. Id.

The ’137 Patent acknowledges that the MD5 software modules were

“commonly known to those in the art.” ’137 Patent, 8:14-15. A PHOSITA would

have understood that an MD5 hash is a well-known type of cryptographic hash.

Declaration, ¶126. Therefore, there would have been a reasonable expectation of

success configuring Dan’s RCL enforcer to validate the new application using a

“commonly known” MD5 hash. Id.

[6(c)] if the new program is validated, permitting the new program to continue
loading and to execute in connection with the computing device;

Petitioner construes this limitation to mean “if the new program is validated,

then it is not monitored while it loads and executes in connection with the computer

device.” See Section II.C.1.

Lambert describes a case where the software is validated in that it is identified

as “good code” that is allowed “unrestricted” execution. Lambert, [0056] (“[I]n the

IPR2024-00027
U.S. Patent No. 7,673,137

 28

case of known good code that is allowed to execute, a hash rule can specify how it

will be executed, e.g., unrestricted (normal)…”); see also, id., [0008].

Unrestricted execution is different from restricted execution in that a restricted

execution environment “reduces software’s access to resources, and/or removes

privileges, relative to a user’s normal access token.” Id., Abstract. When it is

determined that software should be restricted, “the enforcement mechanism 518 can

compute and associate a restricted token with the software file 510, whereby if

creation of a process is requested for the software file, (it includes executable

content), any process of the software file is restricted in its access rights and

privileges according to the restricted token.” Id., [0070]. When the user requests to

load a software file, “the enforcement mechanism 518 completes the call and returns

information back to the software function 516 that called it, the returned information

essentially including an instruction on whether to open the file, and if so, the token

to associate with the file.” Id., [0071]. “If a token is returned, it may be the parent

token (unchanged) if no restricted execution environment is required by the rule, or

a restricted token that establishes a restricted execution environment/context for the

processes of the software file 510.” Id. “If the computed token 526 is a restricted

token, the process of the software file can now execute, but only in association with

the restricted token, thus providing the rule-determined secure execution

environment.” Id. Lambert’s Figure 3 and the related disclosure describe how a

IPR2024-00027
U.S. Patent No. 7,673,137

 29

restricted program is monitored based on its restricted token. Declaration, ¶129, ¶88

(citing Lambert, [0042]-[0043], Fig. 3). Specifically, every time a restricted program

attempts to access an object (e.g., a file object), access is approved or denied based

on the restrictions in the program’s restricted token. Id. Thus, Lambert teaches that

restricted mode requires monitoring the restricted program, which is not required in

unrestricted mode. Id., ¶130.

For these reasons, Lambert teaches determining that the software is validated

for unrestricted execution, which results in it not being monitored while it loads and

executes on the computer. Id.

As discussed above, it would have been obvious to a PHOSITA to configure

Dan’s RLC enforcer to validate the new program by comparing its hash to the hashes

of other known programs. See Claim 6(b). For the same reasons, it would have been

obvious to configure Dan’s RLC enforcer to determine if the program is validated

if its hash matches the hash of a known trusted application. Id. As discussed above,

configuring the RCL enforcer to not monitor a trusted application would have

predictably improved the performance of Dan’s sandbox. See Claim 6(a). A

PHOSITA would have understood that a trusted application would not pose a serious

security risk to the computing device and monitoring a trusted application would be

a waste of the computing device’s resources. Declaration, ¶132. Therefore, a

PHOSITA would have been motivated to improve similar computer-implemented

IPR2024-00027
U.S. Patent No. 7,673,137

 30

security methods in the same way by configuring Dan’s RLC enforcer to allow a

trusted application to load and execute without monitoring the application’s use of

the client system’s resources, thereby improving the sandbox’s performance.4 Id.

Modifying Dan’s RLC enforcer to not monitor trusted applications would also

not have changed the principle of operation because Dan would still monitor

untrusted applications per Dan’s stated purpose. Id., ¶133. Given these factors and

the predicably of computer programming at the time of the ’137 Patent, a PHOSITA

would have had a reasonable expectation of success configuring Dan’s RLC enforcer

to not monitor a trusted application while it is loading and executing on the

computing device. Id.

[6(d)(i)] if the new program is not validated, monitoring the new program while it
loads and executes in connection with the computing device,

Lambert also teaches a case where the software is not validated and must be

executed “in a restricted execution environment.” Lambert, [0008]. For any software

that does not have a specific rule associated with it, “an administrator may set up a

default rule that generally restricts files[.]” Id., [0058]. Lambert teaches that

4 Petitioner notes that in co-pending district court litigation PO has alleged this limitation

means “that validated programs can still be monitored, but it is not required.” Taasera’s

Claim Construction Brief, 1. Thus, the prior art also teaches this limitation under PO’s

broader interpretation of the claim.

IPR2024-00027
U.S. Patent No. 7,673,137

 31

applications executing in a restricted execution environment are monitored. See

Claim 6(c).

Dan’s sandbox monitors the new program while it loads and executes on the

computer. Specifically, the RCL enforcer “ensures that the permissions and resource

consumption limits specified in the RCL are not violated.” Dan, 9. “The module for

enforcing system resource capabilities monitors two types of resources: physical and

logical.” Id. “Access control information about physical and logical resources of the

processing executing an alien application code is maintained in data structures called

the Runtime Physical Resources Table (RPRT) and the Runtime Logical Resources

Table (RLRT).” Id. “When an application is initially loaded for execution, the

RPRT and RLRT data structures are initiated from the information specified in the

RCL configuration file associated with this application.” Id. “During process

execution, the RCL enforcer references and updates the information stored in the

RPRT data structure using the algorithm outlined in Figure 5 to allow or deny the

request for accessing physical resources.” Id. “Similar to the RPRT, access control

information for the logical resources is maintained in a data structure called the

Runtime Logical Resources Table (RLRT).” Id., 12. “The logical resources

constitute file, directories, communication ports and various other system service

calls.” Id. “The RCL enforcer monitors all systems calls, i.e., access requests to

logical resources in the system.” Id. “This monitoring requires that the RCL enforcer

IPR2024-00027
U.S. Patent No. 7,673,137

 32

be invoked for each system call made by an application.” Id. “The RCL enforcer

then validates the parameters of the system call against those specified in the RLRT

data structures and either allows or disallows the call from continuing.” Id. Thus,

Dan teaches monitoring the new program while it loads and executes in connection

with the computing device. Declaration, ¶¶135-136.

When modifying Dan in view of Lambert, it would have been obvious, and a

PHOSITA would have been motivated to configure Dan’s RCL enforcer to perform

monitoring of the new program while it loads and executes on the host computer

when the program fails validation for unrestricted execution, including for programs

that lack Dan’s certificates. Id., ¶137. A PHOSITA would have understood this

modification simply amounts to making the monitoring conditional on the validation

outcome and to not perform monitoring on new programs that are determined to be

trusted, as discussed with regard to Claim 6(c). Id. Dan teaches monitoring untrusted

new programs while they load and execute on the client device. Id. It would have

been obvious to configure the sandbox to perform monitoring on new applications,

as described by Dan, based on the outcome of the validation. Id. A PHOSITA would

have been motivated to combine prior art elements according to known methods to

yield the predictable result of Dan’s sandbox monitoring the untrusted application

when it fails the validity check. Id. Since the purpose of Dan’s sandbox is to monitor

untrusted applications, there would have been a reasonable expectation of success

IPR2024-00027
U.S. Patent No. 7,673,137

 33

configuring Dan’s RCL enforcer to monitor the new application when it fails the

validity check. Id.

[6(d)(ii)] wherein the step of monitoring the new program while it executes is
performed at the operating system kernel of the computing device.

Dan teaches that “[t]he RCL enforcer monitors all systems calls, i.e., access

requests to logical resources in the system.” Dan, 12. Dan teaches three different

approaches to monitoring system calls and selects “system call modification.” Id,

14. “In this approach, the operating system’s call interface is modified to call the

CheckAccessRequest() upon entry to verify the parameters of the system call.” Id.

“Thus, regardless of how the applications are structured, the system call entry point

in the operation systems will ensure consistent security checks for all applications

that are executed on the machine.” Id. As shown in Figure 10, this the system call

modification technique performs monitoring at the operating system kernel of the

client system:

IPR2024-00027
U.S. Patent No. 7,673,137

 34

Id., 15; Declaration, ¶138.

Thus, Dan teaches that the step of monitoring the new program while it

executes is performed at the operating system kernel of the computing device.

Declaration, ¶139.

The CAFC requires an obviousness analysis when “selecting from large lists

of elements in a single reference.” In re Stepan, 868 F.3d 1342, 1346 n.1 (Fed. Cir.

2017). While a list of three alternative implementations is not a “large list of

elements,” it nonetheless would have been obvious, and a PHOSITA would have

been motivated, to implement Dan’s sandbox using the expressly suggested system

call modification method. Declaration, ¶140. Given Dan’s express teaching,

suggestion, and motivation, a PHOSITA would have been motivated to implement

IPR2024-00027
U.S. Patent No. 7,673,137

 35

Dan’s sandbox using the system call modification method. Id. Since Dan teaches

that this is the most consistent way to enforce security, there would have been a

reasonable expectation of success configuring Dan’s sandbox to use the system call

modification method. Id., ¶141.

2. Claim 8

8. The method of claim 6, wherein the step of monitoring the new program
comprises intercepting a signal from the computing device’s operating system.

Dan teaches monitoring the new application by intercepting a signal from the

computing device’s operating system by modifying the operating system’s call

interface. See Claim 6(d)(ii).

3. Claim 9

9. The method of claim 6, wherein the step of validating the new program
comprises determining whether the new program corresponds with an approved
program.

It would have been obvious to a PHOSITA to configure Dan to incorporate

Lambert’s validating step. See Claim 6(b). As part of this validating step, Lambert

teaches comparing the hash of a software file to the hashes of other known software

files to determine if the software file being loaded corresponds to an approved

program that is allowed to execute in unrestricted mode. Id. Thus the combination

of Dan and Lambert also teaches wherein the step of validating the new program

comprises determining whether the new program corresponds with an approved

program. Id.

IPR2024-00027
U.S. Patent No. 7,673,137

 36

4. Claim 12

12. The method of claim 6, wherein the step of monitoring the new program
comprises controlling the files the new program attempts to access during
execution of the new program.

Dan teaches that “[t]he RCL enforcer monitors all systems calls, i.e., access

requests to logical resources in the system” where “logical resources constitute file,

directories, communication ports and various other system service calls.” Dan, 12,

8 (restrictions on files that can be accessed in read-write mode), 9 (“files to which

access needs to be restricted”), 10 (“Files/directories”), 14 (system calls to file

system). After the RCL enforcer is invoked by a system call attempting to access a

logical resource, such as a file, “The RCL enforcer then validates the parameters of

the system call against those specified in the RLRT data structures and either allows

or disallows the call from continuing.” Id., 12. Thus, Dan teaches wherein the step

of monitoring the new program comprises controlling the files the new program

attempts to access during execution of the new program. Declaration, ¶¶144-145.

5. Claim 25

25[Pre]. A computer-implemented method for performing security for a computer
device during a pre-execution phrase [sic] comprising the steps of:5

5 There appears to be a typographical error in the preamble of Claim 25. If the Board

determines that the preamble of Claim 25 is limiting, Petitioner interprets “phrase” to mean

“phase.”

IPR2024-00027
U.S. Patent No. 7,673,137

 37

As discussed above regarding Claim 6, Dan teaches a computer-implemented

method for performing security for a computer device. See Claim 6[Pre]. As set forth

below, the combination of Dan and Lambert embodies a computer-implemented

method for performing security for a computer device during a pre-execution phase.

[25(a)] identifying an allowed program that is permitted to execute with the
computing device;

Dan primarily focuses on unknown/untrusted programs and automatically

assumes that any program without a certificate/RCL should be given with minimum

resource capabilities. See Claim 6(a). However, a PHOSITA would have understood

that not all applications without certificates are unknown and/or untrusted. Id.

Lambert teaches a pre-execution step where the system administrator

identifies a software file as being allowed to execute on a computing device in either

a restricted or unrestricted mode. “Via a user interface or the like operably connected

to a suitable hash mechanism, an administrator can select any software file, obtain a

hash value from its contents, and enter and associate a rule (that specifies a security

level) with that hash value.” Lambert, [0055]. “Multiple files can have their

corresponding hash values and rules maintained in a policy object, or otherwise

made available to the system, whereby for any given instance of any file, the set of

maintained hash values can be queried to determine whether a rule exists for it.” Id.

“In this manner, an administrator can set a rule for any file based on its unique hash

value, with the rule specifying whether (and if so, how) a software file having that

IPR2024-00027
U.S. Patent No. 7,673,137

 38

hash value will execute.” Id., [0056]. “[I]n in the case of known good code that is

allowed to execute, a hash rule can specify how it will be executed, e.g., unrestricted

(normal) or restricted (and to what extent).” Id. Thus, Lambert teaches a user

interface that allows the administrator to identify an allowed program that is

permitted to execute with the computing device. Declaration, ¶148.

Based on the teachings of Lambert, it would have been obvious, and a

PHOSITA would have been motivated to configure Dan’s system to include a user

interface that allows the system administrator to identify an allowed program that is

permitted to execute with the computing device. Id., ¶149. Specifically, it would have

been obvious to a PHOSITA to configure Dan’s system to allow the system

administrator to identify “good” programs that are allowed to execute in an

unrestricted or less restricted manner even if they do not have certificates/RCLs. Id.

Configuring Dan’s system to include a user interface where an administrator can

identify allowed applications would have enabled the administrator to define

security policies for applications that do not have certificates/RCLs. Id. It was a well-

known practice for administrators to maintain lists or databases of hashes associated

with known applications. Id. A PHOSITA would have understood that allowing an

administrator of Dan’s system to identify allowed programs in advance would have

predictably made it easier to ascertain whether a given application should be allowed

to execute and, if so, what (if any) restrictions should apply in the absence of a

IPR2024-00027
U.S. Patent No. 7,673,137

 39

certificate/RCL. Id. Therefore, a PHOSITA would have been motivated to combine

the prior art elements of Dan’s security method with Lambert’s step of allowing a

system administrator to identify an allowed program that is permitted to execute to

yield the predictable result of a security system that applies appropriate security

policies to applications that do not have certificates/RCLs. Id.

Dan teaches providing utilities for the administrator, including an InstallCop

utility that the administrator uses to edit configuration files and manage the system-

wide installation of software applications. Dan, 20 (“[T]he InstallCop can allow the

system administrator to edit the system default configuration file before the

application is made available to users.”). Thus, a PHOSITA would have understood

that adding another utility for the system administrator to identify programs that are

allowed to execute on the computing device would have only required minor

software changes. Declaration, ¶150. Allowing an administrator to identify

applications that are allowed to execute in either unrestricted or restricted mode

would not have changed the principle of operation of Dan’s sandbox since it would

still execute untrusted code having associated restrictions. Id. Given these factors,

there would have been a reasonable expectation of success configuring Dan’s

sandbox to include a user interface that allows a system administrator to identify an

allowed program that is permitted to execute with the computing device. Id.

[25(b)] receiving a signal that a new program is being loaded for execution with
the computing device;

IPR2024-00027
U.S. Patent No. 7,673,137

 40

Dan teaches a new program. See Claim 6(a). Lambert teaches receiving a

signal that a software file is being loaded for execution with the computing device.

“[I]n FIG. 5A, a process 508 such as a process of a user or application requesting to

open a software file 510 has an access token 5121 associated with it[.]” Lambert,

[0066]. “When the process 508 wants to load and possibly execute the software

file 510, it identifies itself and provides information 514 identifying the software file

to an appropriate function 516 (of a set) that can open, load and/or execute the

file 510.” Id. “For example, this can be accomplished by placing an application

programming interface (API) call to the operating system, wherein the file

information 514, typically in the form a path and filename is passed, as a parameter.”

Id. “Further note that such function calls are already the typical way in which

files are loaded, and thus the process 508…need not be modified in any way.” Id.

“[I]nstead of simply loading the file and executing any executable code therein with

the parent token’s rights and privileges, each of the functions 516 is arranged to first

provide the software file information 514 to an enforcement mechanism (circled

numeral two (2) in FIG. 5A).” Id., [0067]. Thus, Lambert teaches that the

enforcement mechanism 518 receives a signal that a software file is being loaded

for execution with the computer device from the software opening function 516:

IPR2024-00027
U.S. Patent No. 7,673,137

 41

Declaration, ¶152.

The combination of Dan and Lambert renders obvious the step of receiving a

signal that a new program is being loaded for execution with the computing device.

Id. ¶153. Dan teaches an RLC enforcer module that “monitors all system calls” and

further teaches that “the operating system’s call interface is modified to call the

CheckAccessRequest() upon entry to verify the parameters of the system call.” Id.,

12, 14. In one example, Dan teaches modifying an “open() system call” to send a

signal to the RCL enforcer by calling the RCL enforcer’s CheckAccessRequest()

function instead of opening the file:

IPR2024-00027
U.S. Patent No. 7,673,137

 42

Dan, 14-15; Declaration, ¶153.

This is similar to Lambert’s teaching of the operating system function 516

passing information about the software file to the enforcement mechanism 518 rather

than loading the software file. Declaration, ¶154.

Based on the teachings of Lambert, it would have been obvious, and a

PHOSITA would have been motivated to configure Dan’s RCL enforcer to receive

a signal that a new application is being loaded for execution with the computing

device via the system call functions associated with loading and executing a new

program. Id., ¶155. For the reasons described above, it would have been obvious to

a PHOSITA to configure Dan’s system to allow an administrator to identify

applications that are allowed to execute and define their corresponding security

IPR2024-00027
U.S. Patent No. 7,673,137

 43

policies to account for applications that do not have certificates/RCLs. See Claim

25(a). For the same reasons, it would have also been obvious to configure the RCL

enforcer to receive a signal when the new application is being loaded so that the RCL

enforcer may determine what security policy should apply. Id.; Declaration, ¶155.

A PHOSITA would have understood that configuring Dan’s RLC enforcer to receive

a signal would have predictably allowed it to determine whether an application

without a certificate is allowed to execute and, if so, whether it may execute in a

restricted or unrestricted manner, prior to loading. Id. Therefore, a PHOSITA would

have been motivated to combine prior art elements according to known methods to

yield the predictable result of allowing Dan’s sandbox to determine whether the new

application needs to be monitored prior to it being loaded and executed on the

computing device even if it does not have a certificate/RCL. Id.

Since Dan’s RCL enforcer module is already configured to monitor “all

system calls” [Dan, 12], there would have been a reasonable expectation of success

configuring Dan’s RCL enforcer to receive a signal that a new application is being

loaded for execution with the computing device from the operating system call

functions associating with loading and executing a new program, as taught by

Lambert. Id., ¶156.

[25(c)] suspending the loading of the new program;

IPR2024-00027
U.S. Patent No. 7,673,137

 44

Per Lambert, “when software is to be loaded (e.g., its file opened and some

or all thereof read into memory), one or more rules are located that correspond to

the classification for that software, (or if none corresponds, the default rule), and a

selected rules is used to determine whether the software can be loaded, and if so,

to what extent any processes of the software will be restricted.” Lambert, [0052]; see

also, id., [0014] (describing finding an associated rule prior to loading the software

file). Once the enforcement mechanism 518 receives the software file information

514 from the software loading/execution functions 516, “the enforcement

mechanism consults the effective policy 502 to determine which rule applies for the

file 510, and from the rule determines whether to open/execute the file, and if so, the

extent of any restricted execution context for the file 510.” Id., [0067]. Thus,

Lambert teaches suspending the loading of the software so that the enforcement

mechanism 518 can determine the rules that apply to the software:

IPR2024-00027
U.S. Patent No. 7,673,137

 45

Declaration, ¶¶158-159.

The combination of Dan and Lambert teaches suspending the loading of the

new program. Id., ¶160. For the same reasons as discussed above, configuring Dan’s

sandbox to identify and classify a new program would have allowed it to select the

appropriate security policy even if it does not have a certificate/RCL. See Claim

25(b). A PHOSITA would have been motivated to improve similar computer-

implemented security methods in the same way by configuring Dan’s RLC enforcer

to suspend the loading of the new application until the RLC enforcer identifies the

application and the security rules that apply to it. Declaration, ¶160.

IPR2024-00027
U.S. Patent No. 7,673,137

 46

As described above, Dan’s RCL enforcer module is configured to monitor “all

system calls.” Dan, 12. Thus, there would have been a reasonable expectation of

success configuring Dan’s RCL enforcer to suspend the loading of the new program

upon receipt of a signal from the operating system call interface to allow the RCL

enforcer to determine the appropriate security policy for the application even if it

does not have a certificate/RCL. Declaration, ¶161.

[25(d)] comparing the new program to the allowed program; and

Lambert teaches that the enforcement mechanism 518 “consults the effective

policy 502 to determine which rule applies for the file 510, and from the rule

determines whether to open/execute the file, and if so, the extent of any restricted

execution context for the file 510.” Lambert, [0067]. “[T]he enforcement mechanism

518 may call (or include in its own code) a hash function 520 or the like to obtain a

hash value from the contents of the software file 510, as generally represented in

FIG. 5A by the arrows labeled with circled numerals three (3) to six (6).” Id., [0068];

see also, id., Fig. 5A. “[A] suitable hash function 520 provides a unique fingerprint

of the software file 510, while the effective policy 502 may have a specific rule for

that hash.” Id. For example, Lambert teaches that the hash is “a unique hash value

of the file’s content (e.g., via an MD5 image hash).” Id., [0053].

To determine if the software file’s hash matches the hash of a known software

file, “the set of maintained hash values can be queried to determine whether a rule

IPR2024-00027
U.S. Patent No. 7,673,137

 47

exists for it.” Id., [0055]. “[B]efore opening a file for execution, a hash value is

determined from that file’s contents, and the set of hash value information (e.g., in

the policy object) [is] searched to determine if a rule exists for that hash value.” Id.

The set of maintained hash values includes the hash value of the “known good code

that is allowed to execute” (i.e., the allowed program) that was previously identified

by the system administrator. See Claim 25(a). “Note that while FIG. 5A essentially

represents accessing the policy to get the rule or rules via arrows labeled seven (7)

and eight (8),…e.g., to look first for a rule for the hash value[.]” Lambert, [0068].

Thus, Lambert teaches comparing the hash value of the software file to a set of

maintained hash values, including the hash value of the allowed program.

Declaration, ¶163.

IPR2024-00027
U.S. Patent No. 7,673,137

 48

The combination of Dan and Lambert teaches comparing the new program to

the allowed program. Id., ¶164. For the reasons discussed above, it would have been

obvious to a PHOSITA to configure Dan’s sandbox to be able to identify/classify a

new program to allow the sandbox to select the appropriate security policy even if

the program does not have a certificate/RCL. See Claim 25(b). Based on the

teachings of Lambert, it would have been obvious, and a PHOSITA would have been

motivated to configure Dan’s RCL enforcer to determine if the new application is

an allowed application by comparing its hash value to a list of hashes for known

applications (including the allowed program). Declaration, ¶164. A PHOSITA

would have understood that using a hash of the new application and comparing it to

a list of hashes for known applications would have been a reliable way to identify

the application. Id. Therefore, a PHOSITA would have been motivated to combine

prior art elements according to known methods to yield the predictable result of

allowing Dan’s RCL enforcer module to determine whether the new application

corresponds to an allowed application. Id. There would have been a reasonable

expectation of success configuring Dan’s RCL enforcer module to validate the new

application using “commonly known” MD5 hashes. Id., ¶165 (citing ’137 Patent,

8:14-15).

[25(e)] determining whether the new program is valid;

IPR2024-00027
U.S. Patent No. 7,673,137

 49

Lambert teaches determining whether the software file is valid based on

comparing the software file’s hash value to the set of maintained hash values “to

determine whether a rule exists for it.” Lambert, [0055]. “[B]efore opening a file for

execution, a hash value is determined from that file’s contents, and the set of hash

value information (e.g., in the policy object) searched to determine if a rule exists

for that hash value. If so, that rule provides the security level for the software.” Id.

“[I]n the case of known good code that is allowed to execute, a hash rule can specify

how it will be executed[.]” Id., [0056]. As shown below in Fig. 5A, the enforcement

mechanism 518 determines whether the software file is valid based on the hash rule

returned from the effective policy 502:

Declaration, ¶166.

IPR2024-00027
U.S. Patent No. 7,673,137

 50

The combination of Dan and Lambert renders obvious determining whether

the new program is valid. Id., ¶167. Based on the teachings of Lambert, it would

have been obvious, and a PHOSITA would have been motivated to configure Dan’s

RCL enforcer to determine whether the new program is valid based on a rule

associated with the new program’s hash value. Id. Specifically, it would have been

obvious to configure Dan’s RCL enforcer to determine if the new program is valid

(even in the absence of a certificate/RCL) and does not need monitoring or if the

new application is not valid and must operate in a restricted environment where its

access to the physical and logical resources of the computing device is monitored.

Id. A PHOSITA would have understood that using a rule associated with the new

application’s hash value to determine whether the new application is valid would

have been an effective and reliable way to distinguish trusted applications that do

not need to be monitored from untrusted applications that do need to be monitored

even if the program does not have an associated certificate/RCL. Id. Therefore, a

PHOSITA would have been motivated to combine prior art elements according to

known methods to yield the predictable result of allowing Dan’s RCL enforcer

module to determine whether the new application is valid/trusted and does not need

to be monitored or whether the new application is not valid/untrusted and needs to

be monitored. Id.

IPR2024-00027
U.S. Patent No. 7,673,137

 51

A PHOSITA would have understood that configuring Dan’s RCL enforcer to

determine whether the new application is valid would have represented a minor

software change. Id., ¶168. Thus, there would have been a reasonable expectation of

success configuring Dan’s RCL enforcer to determine whether the new application

is valid based on a rule associated with its hash value. Id.

[25(f)] if the new program is valid, permitting the new program to execute on the
computing device; and

See Claim 6(c).

[25(g)(i)] if the new program is not valid, monitoring the new program while
allowing it to execute on the computing device,

See Claim 6(d)(i).

[25(g)(ii)] wherein the step of monitoring the new program while allowing it to
execute is performed at the operating system kernel of the computing device.

See Claim 6(d)(ii).

B. Ground 2: The Combination of Lambert, Dan, and Schmid Renders
Claims 1 and 2 Obvious

1. Claim 1

1[Pre]. A system for managing security of a computing device comprising:

Lambert teaches “[a] system…that automatically, transparently and securely

controls software execution by identifying and classifying software, and locating a

rule and associated security level for executing executable software.” Lambert,

Abstract. Lambert’s system operates on a “computing system environment 100,”

which includes “a general purpose computing device in the form of a computer 110.”

IPR2024-00027
U.S. Patent No. 7,673,137

 52

Id., [0026], [0029], Fig. 1. Thus, Lambert teaches a system for managing security of

a computing device. Declaration, ¶172.

[1(a)] a pre-execution module operable for receiving notice from the computing
device’s operating system that a new program is being loaded onto the computing
device;

Lambert’s system includes an enforcement mechanism 518 that receives

notice from the computing device’s operating system that a software file 510 is being

loaded onto the computing device. “[I]n FIG. 5A, a process 508 such as a process of

a user or application requesting to open a software file 510 has an access token 5121

associated with it[.]” Lambert, [0066]. “When the process 508 wants to load and

possibly execute the software file 510, it identifies itself and provides information

514 identifying the software file to an appropriate function 516 (of a set) that can

open, load and/or execute the file 510.” Id. “For example, this can be accomplished

by placing an application programming interface (API) call to the operating system,

wherein the file information 514[.]” Id. “Note that in a typical implementation, the

software opening function 516 comprises an operating system component[.]” Id.

“[I]nstead of simply loading the file and executing any executable code…each of

the functions 516 is arranged to first provide the software file information 514 to

an enforcement mechanism (circled numeral two (2) in FIG. 5A).” Id., [0067].

Thus, Lambert’s enforcement mechanism 518 is a pre-execution module operable

for receiving notice (i.e., software file information 514) from the computing device’s

IPR2024-00027
U.S. Patent No. 7,673,137

 53

operating system (i.e., software loading/executing functions 516) that a software file

is being loaded onto the computing device:

Declaration, ¶173.

Lambert teaches that the software file 510 is a program. Declaration, ¶174.

For example, Lambert teaches an example where the software file is an “e-mail

program.” Lambert, [0053]. A PHOSITA would understand that Lambert does not

distinguish between old and new programs and encompasses both. Declaration,

¶174. For the reasons discussed above, Dan teaches a new program that is

downloaded to a host computer “via network, diskette, CD-ROM, satellite, etc.” See

Section V.A.1 at Claim 6(a); Dan, 20.

IPR2024-00027
U.S. Patent No. 7,673,137

 54

Based on the teachings of Dan, it would have been obvious to a PHOSITA

that Lambert’s software file 510 would correspond to a newly downloaded program.

Declaration, ¶175. Lambert acknowledges that “with the rise in the usage of

networks, email and the Internet for business computing, users find themselves

exposed to a wide variety of executable programs including content that is not

identifiable as being executable in advance.” Lambert, [0007]. A PHOSITA would

have understood that the computing device would receive software files via

networks, email, and the Internet and that, in this instance, the software file would

represent a new program. Declaration, ¶175.

A PHOSITA would have understood that Lambert’s enforcement mechanism

is operable to receive notice when any software file is being loaded for execution on

the computing device. Id., ¶176. For these reasons, a PHOSITA would have been

motivated to combine prior art elements according to known methods to yield the

predictable result of notifying Lambert’s enforcement mechanism when a new

program is loading. Id. There would have been a reasonable expectation of success

since Lambert’s enforcement mechanism is notified when any software file (new or

otherwise) is loading. Id.

[1(b)] a validation module coupled to the pre-execution monitor operable for
determining whether the program is valid;

Petitioner construes the pre-execution monitor as the pre-execution module.

See Section II.C.2. Lambert teaches an effective policy 502 that is coupled to the

IPR2024-00027
U.S. Patent No. 7,673,137

 55

enforcement mechanism 518 (i.e., the pre-execution module) that is operable for

determining whether a software file is valid. Lambert, Fig. 5A. After the

enforcement mechanism 518 receives the notification from the software

loading/executing functions 516, it “call[s]…a hash function 520 or the like to obtain

a hash value from the contents of the software file 510, as generally represented in

FIG. 5A by the arrows labeled with circled numerals three (3) to six (6).” Id., [0068].

“[A] suitable hash function 520 provides a unique fingerprint of the software file

510, while the effective policy 502 may have a specific rule for that hash.” Id. The

hash is “a unique hash value of the file’s content (e.g., via an MD5 image hash).”

Id., [0053].

To determine if the software file’s hash matches the hash of known software,

“the set of maintained hash values can be queried to determine whether a rule exists

for it.” Id., [0055]. “[B]efore opening a file for execution, a hash value is determined

from that file’s contents, and the set of hash value information (e.g., in the policy

object) [is] searched to determine if a rule exists for that hash value.” Id. The

effective policy 502 includes the set of hash value information for known software

files and their associated rules. “[T]he effective policy 502 generally comprises the

general (default) rule 504 and a set of specific rules 506 which set forth the

exceptions to the default rule 502.” Id., [0065]. “Note that while FIG. 5A essentially

represents accessing the policy to get the rule or rules via arrows labeled seven (7)

IPR2024-00027
U.S. Patent No. 7,673,137

 56

and eight (8),…e.g., to look first for a rule for the hash value[.]” Id., [0068].

The rules stored in the policy 502 dictate whether the software file is valid.

Specifically, “an administrator can select any software file, obtain a hash value from

its contents, and enter and associate a rule (that specifies a security level) with that

hash value.” Id., [0055]. “Multiple files can have their corresponding hash values

and rules maintained in a policy object…whereby for any given instance of any file,

the set of maintained hash values can be queried to determine whether a rule exists

for it.” Id. “In this manner, an administrator can set a rule for any file based on its

unique hash value, with the rule specifying whether (and if so, how) a software file

having that hash value will execute.” Id., [0056]. “In the case of known bad code,

the administrator may set the rule to specify that any file with that hash will not be

allowed to execute at all (i.e., ‘disallowed’ or ‘revoked’ status).” Id. “[I]n in the case

of known good code that is allowed to execute, a hash rule can specify how it will

be executed, e.g., unrestricted (normal) or restricted (and to what extent).” Id.

Thus, Lambert’s effective policy 502 and hash mechanism 520 collectively

qualify as a validation module coupled to the pre-execution module operable for

determining whether the program is valid:

IPR2024-00027
U.S. Patent No. 7,673,137

 57

Declaration, ¶181.

[1(c)] a detection module coupled to the pre-execution monitor operable for
intercepting a trigger from the computing device’s operating system; and

Petitioner construes the pre-execution monitor as the pre-execution module.

See Section II.C.2. Lambert teaches an instance where the application is allowed to

execute in a restricted environment. Lambert, [0008]. A restricted execution

environment “reduces software’s access to resources, and/or removes privileges,

relative to a user’s normal access token.” Id., Abstract. When it is determined that

software should be restricted, “the enforcement mechanism 518 can compute and

IPR2024-00027
U.S. Patent No. 7,673,137

 58

associate a restricted token with the software file 510, whereby if creation of a

process is requested for the software file, (it includes executable content), any

process of the software file is restricted in its access rights and privileges according

to the restricted token.” Id., [0070]. “If the computed token 526 is a restricted token,

the process of the software file can now execute, but only in association with the

restricted token, thus providing the rule-determined secure execution environment.”

Id.

In Fig. 3, an untrusted process 300 having a restricted token 210 attempts to

access object 302. Id., Fig. 3, [0042].6 “When the process 300 desires access to an

object 302, the process 300 specifies the type of access it desires (e.g., obtain

read/write access to a file object), and the operating system (e.g., kernel) level

provides its associated token to an object manager 304.” Id. Thus, Lambert’s system

presumes that an untrusted process will notify the object manager 304 when

attempting to access a file object 302. However, a PHOSITA would have understood

6 A PHOITA would have understood that the disclosures of Figure 3 and Figure 5A are

not different embodiments because Figure 5A depicts pre-execution processes used to

determine whether a program must execute in restricted mode via a restricted token and

Figure 3 describes how a restricted program executes in conjunction with a restricted token.

Declaration, ¶185.

IPR2024-00027
U.S. Patent No. 7,673,137

 59

that an untrusted process may attempt to bypass the object manager and directly

access the operating system kernel to access the file object 302. Declaration, ¶187.

Schmid recognizes that “While most well-behaved Windows applications

make system calls through the Win32 API, it is also possible to bypass this interface

by making calls directly to kernel services.” Schmid, 5:29-32. “System services are

operations performed by an operating system kernel on behalf of applications or

other kernel components.” Id., 5:49-51. “For instance, manipulating CPU hardware,

starting and stopping processes, and manipulating files are sensitive operations

generally implemented by services at the kernel level.” Id., 5:53-56. Given

Lambert’s system can also be implemented in a Windows environment, a PHOSITA

would have understood that an untrusted and potentially malicious software process

may bypass Lambert’s object manager 304 and access the file object 302 directly

via the Windows operating system kernel. Lambert, [0037]; Declaration, ¶187.

To prevent an untrusted application from bypassing protections, Schmid

teaches a device driver that is used “[t]o implement a non-bypassable kernel

wrapper” that “intercept[s] system service requests.” Schmid, 5:40-48. Schmid’s

device driver intercepts triggers from the computer’s operating system. Specifically,

Schmid teaches that in a Windows environment, “user applications invoke system

services by executing an interrupt instruction.” Id., 5:57-59. “A kernel entity, known

as a dispatcher, initially responds to an interrupt instruction, determines the nature

IPR2024-00027
U.S. Patent No. 7,673,137

 60

of an interrupt, and calls a function to handle the request.” Id., 5:62-64. “Two tables

in kernel memory describe locations and parameter requirements of all functions

available to a dispatcher,” including a table that “specifies handlers for user

requests.” Id., 5:63-65. Schmid teaches “constructing a device driver that may be

dynamically loaded into a kernel, or may be loaded as part of a boot sequence.” Id.,

6:6-9. “When a device driver loads, it modifies an entry in a table consulted by a

dispatcher to handle an interrupt instruction.” Id., 6:9-11. “[T]he modified entry may

cause a dispatcher to call an inserted function” instead of the intended operating

system function. Id., 6:11-15. Schmid further teaches “that the driver modifies only

tables relevant to requests from user applications.” Id., 6:15-16. Thus, a PHOSITA

would understand that Schmid’s device driver intercepts a trigger from the operating

system’s dispatcher by modifying entries in the table consulted by the dispatcher to

handle an interrupt instruction. Declaration, ¶188. As such, Schmid’s device driver

qualifies as a detection module operable for intercepting a trigger from the

computing device’s operating system. Id.

Lambert only provides a functional description of the object manager 304 and

does not provide details as to how it is to be implemented. Id., ¶189. For example,

Lambert does not describe whether the object manager is implemented in user mode

or kernel mode or how the object manager is notified when the untrusted program

attempts to access an object 302. Id. Based on the teachings of Schmid, it would

IPR2024-00027
U.S. Patent No. 7,673,137

 61

have been obvious, and a PHOSITA would have been motivated to implement

Lambert’s object manager using Schmid’s device driver (i.e., a detection module).

Id. Specifically, it would have been obvious to configure Lambert’s system to

implement the object manager by loading a device driver that modifies entries in a

table consulted by the operating system’s dispatcher and inserts corresponding

functions that access the untrusted process’s restricted token and the object 302’s

security descriptor. Id. A PHOSITA would have understood that this would have

ensured that Lambert’s object manager is notified when the untrusted process

attempts to access an object 302 by making calls either via the Win32 API or via the

operating system kernel. Id. Since the object manager accesses the untrusted

process’s restricted token and the restricted token is generated by the enforcement

mechanism (i.e., the pre-execution module), the object manager is coupled to the

enforcement mechanism. Id. Thus, the combination of Lambert and Schmid teaches

a detection module coupled to the pre-execution monitor operable for intercepting

a trigger from the computing device’s operating system. Id.

IPR2024-00027
U.S. Patent No. 7,673,137

 62

Id.

Given the above-described advantages of implementing Lambert’s object

manager such that it cannot be bypassed by a malicious program, a PHOSITA would

have been motivated to implement Lambert’s object manager using Schmid’s device

driver to improve similar computer security systems in the same way. Id., ¶190. This

modification would have ensured that Lambert’s object manager would be aware

when an untrusted program is attempting to access resources it is restricted from

accessing. Id. Thus, this modification would have predictably enhanced the

IPR2024-00027
U.S. Patent No. 7,673,137

 63

robustness of Lambert’s computer security system by ensuring that a malicious

program is not able to bypass its protections by making calls directly to the operating

system kernel. Id.

Writing a device driver, such as described by Schmid, was a well-known and

predictable way to inject custom code into the kernel space of a Windows computing

device. Id., ¶191, ¶51. Likewise, the operation of the Windows operating system,

including the operation of the dispatcher, was well documented and understood by

PHOSITAs. Id., ¶191. For these reasons, there would have been a reasonable

expectation of success implementing Lambert’s object manager using Schmid’s

device driver. Id.

1[(d)] an execution module coupled to the detection module and operable for
monitoring, at the operating system kernel of the computing device, the program
in response to the trigger intercepted by the detection module.

Lambert teaches a security mechanism 308 that receives the untrusted

process’s restricted token 210 and object 302’s security descriptor 306 from the

object manager 304 (i.e., the detection module). Lambert, [0043]. “The security

mechanism 308 compares the security IDs in the restricted token 210 along with the

type of action or actions requested by the process 300 against the entries in the

DACL [discretionary access control list] 312,” where the DACL includes “access

control entries, and for each entry, one or more access rights (allowed or denied

actions) corresponding to that entry.” Id., [0043]. “If a match is found with an

IPR2024-00027
U.S. Patent No. 7,673,137

 64

allowed user or group, and the type of access desired is allowable for the user or

group, a handle to the object 302 is returned to the process 300, otherwise access is

denied.” Id. Again, Lambert provides a functional description of the security

mechanism but does not provide implementation details, such as whether the

security mechanism is implemented in user mode or kernel mode.

Dan teaches a similar monitoring system, including an RCL enforcer that

“ensures that the permissions and resource consumption limits specified in the RCL

are not violated.” Dan, 9. To accomplish this, Dan’s “RCL enforcer monitors all

systems calls, i.e., access to requests to logical resources in the system.” Id., 12.

“This monitoring requires the RCL enforcer to be invoked for each system call made

by an application.” Id. “The RCL enforcer then validates the parameters of the

system call against those specified in the RLRT data structures and either allows or

disallows the call from continuing.” Id. Unlike Lambert, Dan does provide

implementation details for the RCL enforcer. Specifically, Dan teaches a system call

modification approach where “the operating system’s call interfaces is modified to

call the CheckAccessRequest() upon entry to verify the parameters of the system

call.” Id., 14. As shown in the figure below, this monitoring occurs on the operating

system kernel:

IPR2024-00027
U.S. Patent No. 7,673,137

 65

Id., 15. Dan prefers this approach “because of the consistency it offers for enforcing

security,” and it “will ensure consistent security checks for all applications that are

executed on the machine.” Id., 14-15.

The combination of Lambert and Schmid teaches that the object manager 304

is implemented via a device driver loaded into the operating system kernel. See

Claim 1(c). Since Lambert’s security mechanism works in tandem with the object

manager to monitor the untrusted process’s behavior, it would have been obvious to

a PHOSITA to implement the security mechanism at the computing device’s

operating system kernel level, as taught by Dan. Declaration, ¶194. Implementing

the security mechanism in the kernel would have allowed it to monitor the operating

system calls intercepted by the object manager and ensure that the untrusted process

is in compliance with its restricted token. Id. Thus, the combination of Lambert,

Schmid, and Dan teaches an execution module coupled to the detection module and

IPR2024-00027
U.S. Patent No. 7,673,137

 66

operable for monitoring, at the operating system kernel of the computing device, the

program in response to the trigger intercepted by the detection module:

Id.

As discussed above, Petitioner interprets this limitation under 112(6) where

the function is “monitoring, at the operating system kernel of the computing device,

the program in response to the trigger intercepted by the detection module” and the

corresponding structure is “if the program was not validated, then monitor the

nonvalidated program in response to triggers while the program is executing.” See

Section II.C.3 For the reasons discussed above, the Lambert-Schmid-Dan

combination teaches a security mechanism 308 that monitors an untrusted (i.e., not

validated) program in response to triggers intercepted by the object manager while

the untrusted program is executing. Declaration, ¶195. Additionally, this structure

IPR2024-00027
U.S. Patent No. 7,673,137

 67

performs the function of “monitoring, at the operating system kernel of the

computing device, the program in response to the trigger intercepted by the detection

module” for the same reasons. Id.

A PHOSITA would have understood that implementing Lambert’s security

monitor on the kernel level, as taught by Dan, would have allowed the object

manager, which is also operating in the computing device’s kernel space, to

efficiently communicate with the security mechanism without requiring

communication between kernel mode and user mode. Id., ¶196. Moreover, a

PHOSITA would have understood that maintaining the security mechanism in the

kernel mode as opposed to the user mode would have decreased the probability of a

malicious program or user attempting to disable or tamper with the security

mechanism. Id. As taught by Dan, a PHOISTA would have recognized that

implementing Lambert’s security mechanism in the kernel would have offered

increased consistency for enforcing security. Id. For these reasons, a PHOSITA

would have been motivated to combine prior art elements according to known

methods and implement Lambert’s security mechanism in the operating system

kernel so that it can monitor the program in response to triggers intercepted by the

object manager. Id. Due to the increased security and the predictable art, there would

have been a reasonable expectation of success implementing Lambert’s security

monitor in the operating system kernel. Id.

IPR2024-00027
U.S. Patent No. 7,673,137

 68

2. Claim 2

2. The system of claim 1, wherein the pre-execution module is further operable for
suspending loading of the program onto the computing device.

 As discussed with regard to Claim 25(c), Lambert’s enforcement mechanism

518 (i.e., the pre-execution module) is further operable for suspending the loading

of the program onto the computing device. See Section V.A.5 at Claim 25(c).

VI. DISCRETIONARY DENIAL IS NOT WARRANTED

There is no basis to discretionarily deny institution under §314(a), at least

because there is no operative trial date set between the parties. Beginning on August

3, 2022, pursuant to 28 U.S.C. §1407(a), the United States Judicial Panel on

Multidistrict Litigation (“MDL Panel”) centralized several litigations from various

districts involving PO in the Eastern District of Texas (“EDTX”), including the

litigation involving the parties to this proceeding. Ex. 1011. The centralized

proceedings were assigned to Judge Gilstrap for pretrial management only and must

be statutorily remanded to the originating court before trial. 28 U.S.C. §1407(a)

(“Each action so transferred shall be remanded by the panel at or before the

conclusion of such pretrial proceedings to the district from which it was transferred

unless it shall have been previously terminated”). While Judge Gilstrap has set trial

for EDTX cases on April 15, 2024, no trial has been set in the originating district.

Ex. 1012, 1 (noting the “trial date applies only to cases originally filed in [EDTX]”).

Therefore, trial must be set by the eventual trial court pending that court’s trial

IPR2024-00027
U.S. Patent No. 7,673,137

 69

calendar. Furthermore, the schedule in EDTX may also be extended. Petitioner also

intends to file a motion to transfer the case to California once the case is remanded

to the originating court, followed by a motion to stay the case at the originating court

pending transfer determination and pending IPR, leaving a trial date even more

uncertain.

Further, Petitioner stipulates that if instituted, Petitioner will not seek

resolution in the District Court of any ground of invalidity for the ’137 Patent that

utilizes the prior art references relied upon in the grounds of the instant petition.

Petitioner’s proposal is comprehensive and addresses the concern of narrowing the

issues, as this stipulation ensures there is no overlap between the ’137 Patent

invalidity theories before the Board and at issue in the District Court. Petitioner’s

proposed stipulation is far more restrictive than a Sand Revolution stipulation, which

excludes only the same grounds advanced in the IPR, allowing the Petitioner to rely

on the same references in the two tribunals so long as the reliance is not identical.

Therefore, with an unknown trial date and any overlap mitigated by

stipulation, denial under § 314(a) is not warranted.

VII. CONCLUSION

For the forgoing reasons, Petitioner respectfully requests inter partes review

of the Challenged Claims.

 Respectfully submitted,
 /s/ Adam P. Seitz

IPR2024-00027
U.S. Patent No. 7,673,137

 70

 ERISE IP, P.A.
 Adam P. Seitz, Reg. No. 52,206
 COUNSEL FOR PETITIONER

IPR2024-00027
U.S. Patent No. 7,673,137

 1

IPR2024-00027
U.S. Patent No. 7,673,137

VIII. MANDATORY NOTICES UNDER 37 C.F.R. § 42.8

A. Real Parties-in-Interest Under 37 C.F.R. § 42.8(b)(1)

Petitioner and CrowdStrike Holdings, Inc. are the real parties in interest.

B. Related Matters Under 37 C.F.R. § 42.8(b)(2)

The ‘137 Patent has been asserted in the following patent infringement

lawsuits:

• In re: Taasera Licensing LLC, Patent Litigation, 2:22-md-03042

(Judicial Panel On Multidistrict Litigation);

• Taasera Licensing LLC v. CrowdStrike, Inc. et al., 6:22-cv-01094

(WDTX);

• Taasera Licensing LLC v. CrowdStrike, Inc. et al., 2:22-cv-00468

(EDTX);

• Taasera Licensing LLC v. Musarubra US LLC, dba Trellix, 2:22-cv-

00427 (EDTX);

• Trend Micro Incorporated et al. v. Taasera Licensing LLC, 3:22-cv-

00477 (NDTX);

• Trend Micro Incorporated v. Taasera Licensing LLC, 3:22-cv-00518

(NDTX);

• Trend Micro Inc v. Taasera Licensing LLC, 2:22-cv-00303 (EXTX);

IPR2024-00027
U.S. Patent No. 7,673,137

• Taasera Licensing LLC v. Trend Micro Incorporated, 2:21-cv-00441

(EDTX);

• Palo Alto Networks, Inc. v. Taasera Licensing LLC, et al., 2:22-cv-0314

(EDTX);

• Palo Alto Networks, Inc. v. Taasera Licensing LLC, et al., 1:22-02306

(SDNY);

• Taasera Licensing LLC v. Palo Alto Networks, Inc., 2:22-cv-00062

(EDTX); and

• Taasera Licensing LLC v. Palo Alto Networks, Inc., 2:23-cv-00113

(EDTX).

C. Lead and Back-Up Counsel Under 37 C.F.R. § 42.8(b)(3)

Petitioner provides the following designation and service information for lead

and backup counsel. 37 C.F.R. § 42.8(b)(3) and (b)(4).

Lead Counsel Back-Up Counsel
Adam P. Seitz (Reg. No. 52,206)
Adam.Seitz@eriseip.com
PTAB@eriseip.com

Postal and Hand-Delivery Address:
ERISE IP, P.A.
7015 College Blvd., Suite 700
Overland Park, Kansas 66211
Telephone: (913) 777-5600
Fax: (913) 777-5601

Paul R. Hart, (Reg. No. 59,646)
Paul.Hart@eriseip.com
PTAB@eriseip.com

Postal and Hand-Delivery Address:
ERISE IP, P.A.
717 17th Street, Suite 1400
Denver, Colorado 80202
Telephone: (913) 777-5600
Fax: (913) 777-5601

IPR2024-00027
U.S. Patent No. 7,673,137

APPENDIX OF EXHIBITS

1001 U.S. Patent No. 7,673,137
1002 File History of U.S. Patent No. 7,673,137
1003 Declaration of Markus Jakobsson, Ph.D.
1004 Declaration of June Munford
1005 Asit Dan, Ajay Mohindra, Rajiv Ramaswami and Dinkar Sitaram,

ChakraVyuja (CV): A Sandbox Operating System Environment for
Controlled Execution of Alien Code, IBM Research Division (February
20, 1997)

1006 U.S. Patent Publication No. 2002/0099952 to Lambert et al.
1007 U.S. Patent No. 7,085,928 to Schmid et al.
1008 Declaration of Dr. Eric Cole Regarding Claim Construction dated July 13,

2023
1009 Taasera Licensing LLC’s Opening Claim Construction Brief
1010 Defendants’ Joint Claim Construction Brief
1011 United States Judicial Panel on Multidistrict Litigation Transfer Order

dated August 3, 2022
1012 Eighth Amended Docket Control Order
1013 Webster’s New World Dictionary of Computer Terms, Simon & Schuster,

Inc. (5th ed., 1994)
1014 Intel Architecture Software Developer’s Manual Volume 3: System

Programming, Intel Corporation (1999)
1015 David A. Solomon, The Windows NT Kernel Architecture, 31 Computer

40-47 (October 1998)
1016 Carol Neshevich, NT 5.0 becomes Windows 2000, 8 New World Canada

6,
https://www.proquest.com/openview/fa3551c04de4b0e4a14ccee74eb12f
0f/1?pq-origsite=gscholar&cbl=43820 (November 20, 1998)

1017 Microsoft Releases Windows 2000 to Manufacturing, Microsoft
Corporation (December 15, 1999)
https://news.microsoft.com/1999/12/15/microsoft-releases-windows-
2000-to-manufacturing/

1018 Terrance Mitchem, Raymond Lu, Richard O’Brien, Kent Larson, Linux
Kernel Loadable Wrappers, in Proceedings DARPA Information
Survivability Conference and Exposition (IEEE, January 2000)

1019 Microsoft Press Computer Dictionary, Microsoft Corporation (3rd ed.,
1997)

IPR2024-00027
U.S. Patent No. 7,673,137

1020 Gary Wiggins, Living with MalWare, Security Essentials version 1.2d,
(SANS Institute, 2001)

1021 Saliman Manap, Rootkit: Attacker undercover tools., Global Information
Assurance Certification Paper, (10/21/2001)

1022 Massimo Bernaschi, Emanuele Gabrielli, Luigi V. Mancini, Operating
System Enhancement to Prevent Misuse of System Calls, ACM CCS’00
(2000)

1023 Pietro Iglio, TrustedBox: a Kernel-Level Integrity Checker, in Proceedings
15th Annual Computer Security Applications Conference (ACSAC’99)
(IEEE, December 1999)

1024 F. De Paoli, A. L. Dos Santos, R. A. Kemmerer, Vulnerability of “Secure”
Web Browsers, In Proceedings of the National Information Systems
Security Conference (May 26, 1997)

1025 Bart Preneel, Cryptographic Hash Functions, 5 European Transactions on
Telecommunications (1994)

1026 karlrupp, Microprocessor Trend Data, GitHub,
https://github.com/karlrupp/microprocessor-trend-data#readme (Feb 22,
2022)

1027 Why is Sandboxing important?, STL Tech (October 14, 2022)

IPR2024-00027
U.S. Patent No. 7,673,137

CERTIFICATION OF WORD COUNT

The undersigned certifies pursuant to 37 C.F.R. §42.24 that the foregoing
Petition for Inter Partes Review, excluding any table of contents, mandatory notices
under 37 C.F.R. §42.8, certificates of service or word count, or appendix of exhibits,
contains 13,927 words according to the word-processing program used to prepare
this document (Microsoft Word).

Dated: October 24, 2023 Respectfully submitted,

 BY: /s/ Adam P. Seitz
 Adam P. Seitz, Reg. No. 52,206
 Adam.Seitz@eriseip.com
 Erise IP, P.A.
 7015 College Blvd., Suite 700
 Overland Park, KS 66211
 P: (913) 777-5600

F: (913) 777-5601

 COUNSEL FOR PETITIONER

IPR2024-00027
U.S. Patent No. 7,673,137

CERTIFICATE OF SERVICE ON PATENT OWNER

UNDER 37 C.F.R. § 42.105(a)

Pursuant to 37 C.F.R. §§ 42.6(e) and 42.105(b), the undersigned certifies that

on October 24, 2023, a complete and entire copy of this Petition for Inter Partes
Review and Exhibits were provided via Federal Express to the Patent Owner by
serving the correspondence address of record for the ’137 Patent:

International Business Machines Corporation
Intellectual Property Law Department (Maintenance)
T.J. Watson Research Center
1101 Kitchawan Road, Route 134, P.O. Box 218
YORKTOWN, NY 10598
UNITED STATES

Petitioner has also served copies of this Petition on Patent Owner’s litigation counsel
via e-mail:

Alfred Ross Fabricant
ffabricant@fabricantllp.com;

Joseph Michael Mercadante
jmercadante@fabricantllp.com;

Vincent J Rubino , III
vrubino@fabricantllp.com;

Peter Lambrianakos
plambrianakos@fabricantllp.com;
Fabricant LLP
411 Theodore Fremd Avenue
Suite 206 South
Rye, NY 10580
212-257-5797
Fax: 212-257-5796

Julian Glenn Pymento
jpymento@fabricantllp.com
Fabricant LLP

IPR2024-00027
U.S. Patent No. 7,673,137

51 JFK Parkway
Short Hills, NJ 07078
646-797-4341

Jennifer Leigh Truelove
jtruelove@mckoolsmith.com;

Samuel Franklin Baxter
sbaxter@mckoolsmith.com
McKool Smith, P.C. - Marshall
104 East Houston St
Suite 300
Marshall, TX 75670
903-923-9000
Fax: 903-923-9099

Justin Kurt Truelove
kurt@truelovelawfirm.com
Truelove Law Firm
207 N Wellington
P O Box 1409
Marshall, Tx 75671
903-938-8321
Fax: 903-215-8510

Raymond W Mort, III
raymort@austinlaw.com;
The Mort Law Firm, PLLC
501 Congress Ave, Suite 150
Austin, TX 78701
512-865-7950
Fax: 512-865-7950

 Respectfully submitted,

 BY: /s/ Adam P. Seitz
 Adam P. Seitz, Reg. No. 52,206
 Adam.Seitz@eriseip.com
 Erise IP, P.A.

IPR2024-00027
U.S. Patent No. 7,673,137

 7015 College Blvd., Suite 700
 Overland Park, KS 66211
 P: (913) 777-5600

F: (913) 777-5601

 COUNSEL FOR PETITIONER

