
UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

CROWDSTRIKE, INC.
Petitioner

v.

TAASERA
Patent Owner

Case No. IPR2024-00027
Patent No. 7,673,137

DECLARATION OF DR. MARKUS JAKOBSSON, PH.D.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 1

IPR2024-00027
U.S. Patent 7,673,137

 ii

TABLE OF CONTENTS
I. Introduction ... 5

A. Materials Reviewed ... 5

B. Background and Qualifications ... 7

II. Legal Framework .. 15

III. Opinion .. 22

A. Overview of the ’137 Patent .. 22

B. Level of a Person Having Ordinary Skill in the Art 26

C. Background of the Prior Art .. 28

1. Overview of Operating Systems .. 28

2. Computer Viruses and Malware in the Internet Era 32

3. Computer Monitoring Systems ... 35

D. Claim Construction ... 38

E. Summary of the Prior Art References ... 39

1. Dan ... 39

2. Lambert ... 49

3. Schmid ... 59

F. Ground 1: The Combination of Dan and Lambert Renders Claims 6, 8, 9,
12, and 25 Obvious .. 62

1. Claim 6 ... 62
(a) 6[Pre]. – A computer implemented method for implementing security for a
computing device comprising the steps of: ... 62
(b) 6(a) – interrupting the loading of a new program for operation with the computing
device; 65
(c) 6(b) – validating the new program; ... 77
(d) 6(c) – if the new program is validated, permitting the new program to continue
loading and to execute in connection with the computing device; 82
(e) 6(d)(i) – if the new program is not validated, monitoring the new program while it
loads and executes in connection with the computing device, ... 86
(f) 6(d)(ii) – wherein the step of monitoring the new program while it executes is
performed at the operating system kernel of the computing device. 89

2. Claim 8 - The method of claim 6, wherein the step of monitoring the
new program comprises intercepting a signal from the computing
device’s operating system. ... 92

IPR2024-00027
CrowdStrike Exhibit 1003 Page 2

IPR2024-00027
U.S. Patent 7,673,137

 iii

3. Claim 9 - The method of claim 6, wherein the step of validating the
new program comprises determining whether the new program
corresponds with an approved program. .. 92

4. Claim 12 - The method of claim 6, wherein the step of monitoring the
new program comprises controlling the files the new program
attempts to access during execution of the new program. 92

5. Claim 25 ... 93
(a) 25[Pre]. – A computer-implemented method for performing security for a
computer device during a pre-execution phrase comprising the steps of: 93
(b) 25(a) – identifying an allowed program that is permitted to execute with the
computing device; ... 94
(c) 25(b) – receiving a signal that a new program is being loaded for execution with
the computing device; ... 97
(d) 25(c) – suspending the loading of the new program; .. 102
(e) 25(d) – comparing the new program to the allowed program; and 105
(f) 25(e) – determining whether the new program is valid; 108
(g) 25(f) – if the new program is valid, permitting the new program to execute on the
computing device; and .. 111
(h) 25(g)(i) – if the new program is not valid, monitoring the new program while
allowing it to execute on the computing device, ... 112
(i) 25(g)(ii) – wherein the step of monitoring the new program while allowing it to
execute is performed at the operating system kernel of the computing device. 112

G. Ground 2: The Combination of Dan, Lambert, and Schmid Renders
Claims 1 and 2 Obvious .. 112

1. Claim 1 ... 112
(a) 1[Pre]. – A system for managing security of a computing device comprising: .. 112
(b) 1(a) – a pre-execution module operable for receiving notice from the computing
device’s operating system that a new program is being loaded onto the computing device;
 112
(c) 1(b) – a validation module coupled to the pre-execution monitor operable for
determining whether the program is valid; ... 116
(d) 1(c) – a detection module coupled to the pre-execution monitor operable for
intercepting a trigger from the computing device’s operating system; 119
(e) 1(d) – and an execution module coupled to the detection module and operable for
monitoring, at the operating system kernel of the computing device, the program in
response to the trigger intercepted by the detection module. .. 126

IPR2024-00027
CrowdStrike Exhibit 1003 Page 3

IPR2024-00027
U.S. Patent 7,673,137

 iv

2. Claim 2 - The system of claim 1, wherein the pre-execution module is
further operable for suspending loading of the program onto the
computing device. .. 131

IV. Conclusion .. 131

IPR2024-00027
CrowdStrike Exhibit 1003 Page 4

IPR2024-00027
U.S. Patent 7,673,137

 5

I, Dr. Markus Jakobsson, declare the following:

I. INTRODUCTION

1. I have been retained by counsel for Petitioner as a technical expert in

the above-captioned case. Specifically, I have been asked to render certain opinions

in regard to the IPR petition with respect to U.S. Patent No. 7,673,137 (the “’137

Patent”). I understand that the Challenged Claims are claims 1, 2, 6, 8, 9, 12, and 25,

and my opinions are limited to those claims. My compensation in this matter is not

based on the substance of my opinions or the outcome of this matter. I have no

financial interest in Petitioner.

A. Materials Reviewed

2. In reaching my opinions in this matter, I have reviewed the following

materials:

• Exhibit 1001 – U.S. Patent No. 7,673,137 (“’137 Patent”);

• Exhibit 1002 – File History of U.S. Patent No. 7,673,137 (“’137 Patent
File History”);

• Exhibit 1005 – Asit Dan, Ajay Mohindra, Rajiv Ramaswami and Dinkar
Sitaram, ChakraVyuja (CV): A Sandbox Operating System Environment
for Controlled Execution of Alien Code, IBM Research Division (“Dan”);

• Exhibit 1006 – U.S. Patent Publication No. 2002/0099952 to Lambert et
al. (“Lambert”);

• Exhibit 1007 – U.S. Patent No. 7,085,928 to Schmid et al. (“Schmid”);

• Exhibit 1013 – Webster’s New World Dictionary of Computer Terms,
Simon & Schuster, Inc. (5th ed., 1994) (“Dictionary”);

IPR2024-00027
CrowdStrike Exhibit 1003 Page 5

IPR2024-00027
U.S. Patent 7,673,137

 6

• Exhibit 1014 – Intel Architecture Software Developer’s Manual Volume
3: System Programming, Intel Corporation (1999) (“Intel System
Programming Manual”);

• Exhibit 1015 – David A. Solomon, The Windows NT Kernel Architecture,
31 Computer 40-47 (October 1998) (“Solomon”);

• Exhibit 1016 – Carol Neshevich, NT 5.0 becomes Windows 2000, 8 New
World Canada 6,
https://www.proquest.com/openview/fa3551c04de4b0e4a14ccee74eb12f
0f/1?pq-origsite=gscholar&cbl=43820 (November 20, 1998)
(“Neshevich”);

• Exhibit 1017 – Microsoft Releases Windows 2000 to Manufacturing,
Microsoft Corporation (December 15, 1999)
https://news.microsoft.com/1999/12/15/microsoft-releases-windows-
2000-to-manufacturing/ (“Microsoft Windows 2000 Press Release”);

• Exhibit 1018 – Terrance Mitchem, Raymond Lu, Richard O’Brien, Kent
Larson, Linux Kernel Loadable Wrappers, in Proceedings DARPA
Information Survivability Conference and Exposition (IEEE, January
2000) (“Mitchem”);

• Exhibit 1019 – Microsoft Press Computer Dictionary, Microsoft
Corporation (3rd ed., 1997) (“Microsoft Computer Dictionary”);

• Exhibit 1020 – Gary Wiggins, Living with MalWare, Security Essentials
version 1.2d, (SANS Institute, 2001) (“Wiggins”);

• Exhibit 1021 – Saliman Manap, Rootkit: Attacker undercover tools.,
Global Information Assurance Certification Paper, (10/21/2001)
(“Manap”);

• Exhibit 1022 – Massimo Bernaschi, Emanuele Gabrielli, Luigi V. Mancini,
Operating System Enhancement to Prevent Misuse of System Calls, ACM
CCS’00 (2000) (“Bernaschi”);

• Exhibit 1023 – Pietro Iglio, TrustedBox: a Kernel-Level Integrity Checker,
in Proceedings 15th Annual Computer Security Applications Conference
(ACSAC’99) (IEEE, December 1999) (“Iglio”);

IPR2024-00027
CrowdStrike Exhibit 1003 Page 6

IPR2024-00027
U.S. Patent 7,673,137

 7

• Exhibit 1024 – F. De Paoli, A. L. Dos Santos, R. A. Kemmerer,
Vulnerability of “Secure” Web Browsers, In Proceedings of the National
Information Systems Security Conference (May 26, 1997) (“De Paoli”);

• Exhibit 1025 – Bart Preneel, Cryptographic Hash Functions, 5 European
Transactions on Telecommunications (1994) (“Preneel”);

• Exhibit 1026 – karlrupp, Microprocessor Trend Data, GitHub,
https://github.com/karlrupp/microprocessor-trend-data#readme (Feb 22,
2022) (“Microprocessor Trend Data”); and

• Exhibit 1027 –Why is Sandboxing important?, STL Tech
https://stl.tech/blog/what-is-sandboxing-and-why-do-we-need-it/
(October 14, 2022) (“STL Tech”).

B. Background and Qualifications

3. I have summarized in this section my educational background, career

history, and other qualifications relevant to this matter. I have also included a current

version of my curriculum vitae, which is attached as Appendix A.

4. I received a Master of Science degree in Computer Engineering from

the Lund Institute of Technology in Sweden in 1993, a Master of Science degree in

Computer Science from the University of California at San Diego in 1994, and a

Ph.D. in Computer Science from the University of California at San Diego in 1997,

specializing in Cryptography. During and after my Ph.D. studies, I was also a

researcher at the San Diego Supercomputer Center and General Atomics, where I

did research on authentication, privacy, and security. Much of my work was on

distributed protocols to enable security and privacy, and my Ph.D. thesis described

a distributed electronic payment system.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 7

IPR2024-00027
U.S. Patent 7,673,137

 8

5. Since earning my doctorate degree over twenty-six years ago, I have

been an employee, entrepreneur, and consultant in the computer systems, security,

and the anti-fraud industry. I have worked extensively with technologies related to

computer security, mobile security, phishing, malware detection, quantitative and

qualitative fraud analysis, and disruptive security. I have worked as an engineer,

researcher or technical advisor at a number of leading companies in the computer

industry, including PayPal, Qualcomm, Bell Labs, and LifeLock. I have also taught

and performed research at several prestigious universities, including New York

University (NYU) and Indiana University (IU). Further, I have been materially

involved in designing, developing, testing, and assessing technologies for computer

and network security, digital rights management, trust establishment, randomness,

cryptography, socio-technical fraud, malware detection, detection of malicious

emails, user interfaces, authentication, and fraud detection for over twenty years.

6. From 1997 to 2001, I was a Member of Technical Staff at Bell Labs,

where I did research on authentication, privacy, multi-party computation, contract

exchange, digital commerce including crypto payments, and fraud detection and

prevention. An example publication of mine from this time period includes “Secure

distributed computation in cryptographic applications” (U.S. Patent No. 6,950,937,

2001 priority date.) At the end of my tenure at Bell Labs, I had started to research

IPR2024-00027
CrowdStrike Exhibit 1003 Page 8

IPR2024-00027
U.S. Patent 7,673,137

 9

identity theft years before the banking industry became aware of the existence of

phishing attacks.

7. From 2001 to 2004, I was a Principal Research Scientist at RSA Labs,

where I worked on predicting future fraud scenarios in commerce and authentication

and developed solutions to those problems. Much of my work related to the

development of anti-fraud mechanisms, addressing authentication abuse and identity

theft. During that time, I predicted the rise of what later became known as phishing.

I also laid the groundwork for what I termed “proof of work,” and described how

this could be applied in the context of distributed computations such as mining of

crypto payments; this work later came to influence the development of BitCoin. I

was also an Adjunct Associate Professor in the Computer Science department at

New York University from 2002 to 2004, where I taught cryptographic protocols,

with an emphasis on authentication.

8. From 2004 to 2016, I held a faculty position at Indiana University at

Bloomington, first as an Associate Professor of Computer Science, Associate

Professor of Informatics, Associate Professor of Cognitive Science, and Associate

Director of the Center for Applied Cybersecurity Research (CACR) from 2004 to

2008; and then as an Adjunct Associate Professor from 2008 to 2016. I was the most

senior security researcher at Indiana University, where I built a research group

focused on online fraud and countermeasures, resulting in over 50 publications and

IPR2024-00027
CrowdStrike Exhibit 1003 Page 9

IPR2024-00027
U.S. Patent 7,673,137

 10

two books. One of these books, “Crimeware: Understanding New Attacks and

Defenses” (Wiley, 2008), described malware-based attacks, online abuse in general,

and countermeasures to attacks and abuses of these types.

9. While a professor at Indiana University, I was also employed by Xerox

PARC, PayPal, and Qualcomm to provide thought leadership to their security

groups. I was a Principal Scientist at Xerox PARC from 2008 to 2010, a Director

and Principal Scientist of Consumer Security at PayPal from 2010 to 2013, a Senior

Director at Qualcomm from 2013 to 2015, Chief Scientist at Agari from 2016 to

2018, and Chief of Security and Data Analytics at Amber Solutions from 2018 to

2020.

10. I was hired by Qualcomm as they acquired a startup I founded,

FatSkunk. FatSkunk had developed algorithms for retroactive detection of malware,

with applications to low-power platforms such as mobile devices. Example

publications include “Retroactive Detection of Malware With Applications to

Mobile Platforms” by Markus Jakobsson and Karl-Anders Johansson, “Practical and

Secure Software-Based Attestation” by Markus Jakobsson and Karl-Anders

Johansson, and U.S. Patent 8,370,935, titled “Auditing a Device”. My work at

Qualcomm related to authentication of users and detection of malware, and the

integration of the FatSkunk technology in Qualcomm products.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 10

IPR2024-00027
U.S. Patent 7,673,137

 11

11. Agari is a cybersecurity company that develops and commercializes

technology to protect enterprises, their partners and customers from advanced email

phishing attacks. At Agari, my research studied and addressed trends in online fraud,

especially as related to email, including problems such as Business Email

Compromise, Ransomware, and other abuses based on social engineering and

identity deception. My work primarily involved identifying trends in fraud and

computing before they affected the market, and developing and testing

countermeasures, including technological countermeasures, user interaction and

education. Example publications include “Detecting computer security risk based on

previously observed communications” (U.S. Patent No. 10,715,543 B2, 2016

priority date) and “Using message context to evaluate security of requested data”

(U.S. Patent No. 10,805,314 B2, 2017 priority date).

12. In 2020, after leaving Agari, I was the Chief of Security and Data

Analytics at Amber Solutions, an IoT startup in the San Francisco Bay Area. Amber

Solutions is a cybersecurity company that develops home and office automation

technologies. At Amber Solutions, my research addressed privacy, user interfaces

and authentication techniques in the context of ubiquitous and wearable computing.

My work often related to security in constrained computing environments, as

exemplified in “Configuration and management of smart nodes with limited user

interfaces” (U.S. Patent No. 10,887,447).

IPR2024-00027
CrowdStrike Exhibit 1003 Page 11

IPR2024-00027
U.S. Patent 7,673,137

 12

13. I left Amber Solutions to take the role of Chief Scientist at ByteDance

in 2019, where I guided the security research both for ByteDance and TikTok until

I left to co-found Artema Labs, where I am the Chief Scientist. My work at

ByteDance involved identifying new threats, developing new solutions, and guiding

research in areas relating to cryptography and Internet security.

14. I am also the Chief Technology Officer at ZapFraud, a cybersecurity

company that develops techniques to detect deceptive emails, such as Business

Email Compromise (“BEC”) emails. At ZapFraud, my research studies and

addresses computer abuse, including social engineering, malware and privacy

intrusions, and has also involved studying security aspects related to cloud

computing. My work primarily involves identifying risks, developing protocols and

user experiences, and evaluating the security of proposed approaches.

15. I also work as an independent security researcher and consultant in the

fields of computer/mobile security, fraud detection/prevention, digital rights

management, malware, phishing, crimeware, mobile malware, and cryptographic

protocols. In addition, I am a visiting research fellow of the Anti-Phishing Working

Group, an international consortium focused on unifying the global response to

cybercrime in the public and private sectors.

16. I have also served on the advisory board of several companies,

including Metaforic, a company that developed technology for watermarking

IPR2024-00027
CrowdStrike Exhibit 1003 Page 12

IPR2024-00027
U.S. Patent 7,673,137

 13

software and provided security software with a built-in framework that resists

attacks from malware, bots, hackers and other attempts. Metaforic was acquired by

Inside Secure in 2014.

17. I have founded or co-founded several successful computer security

companies. In 2005, I co-founded RavenWhite Security, a provider of authentication

solutions, and I am currently its Chief Technical Officer. RavenWhite owns

intellectual property related to authentication, such as “Performing authentication”

(U.S. Patent No. 10,079,823 2007 priority date). In 2007 I co-founded Extricatus,

one of the first companies to address consumer security education. In 2009 I founded

FatSkunk, a provider of mobile malware detection software; I served as Chief

Technical Officer of FatSkunk from 2009 to 2013, when FatSkunk was acquired by

Qualcomm, and I became a Qualcomm employee. FatSkunk developed anti-virus

technology. In 2013 I founded ZapFraud—the same company described above,

where I currently serve as Chief Technical Officer. In 2014 I co-founded

RightQuestion, a security consulting company.

18. I have additionally served as a member of the fraud advisory board at

LifeLock (an identity theft protection company); a member of the technical advisory

board at CellFony (a mobile security company); a member of the technical advisory

board at PopGiro (a user reputation company); a member of the technical advisory

board at MobiSocial dba Omlet (a social networking company); and a member of

IPR2024-00027
CrowdStrike Exhibit 1003 Page 13

IPR2024-00027
U.S. Patent 7,673,137

 14

the technical advisory board at Stealth Security (an anti-fraud company). I have

provided anti-fraud consulting to KommuneData (a Danish government entity), J.P.

Morgan Chase, PayPal, Boku, and Western Union.

19. I have authored seven books and over 100 peer-reviewed publications

and have been a named inventor on over 200 patents and patent applications. A large

number of these relate to Internet security, authentication, malware, spoofing and

related topics.

20. Examples of textbooks I have authored or co-authored on the topic of

Internet security include:

• “Crimeware: Understanding New Attacks and Defenses” (Symantec Press,
2008)

• “Phishing and Countermeasures: Understanding the Increasing Problem of
Electronic Identity Theft” (Wiley, 2006);

• “The Death of the Internet” (Wiley, 2012);

• “Understanding Social Engineering Based Scams” (Springer 2016);

• “Towards Trustworthy Elections: New Directions in Electronic Voting”
(Springer, 2010).

21. Books translated to Chinese and Korean have separate titles and years

of release.

22. I have authored numerous publications regarding Internet security,

including Internet security and malware detection. Relevant examples include:

IPR2024-00027
CrowdStrike Exhibit 1003 Page 14

IPR2024-00027
U.S. Patent 7,673,137

 15

• Tamper-Evident Digital Signatures: Protecting Certification Authorities

Against Malware Jong Youl Choi, Philippe Golle, and Markus Jakobsson;

• “Remote Harm-Diagnostics”, (PDF) Privacy-preserving history mining for

web browsers (researchgate.net);

• “Server-Side Detection of Malware Infection”, NSPW Proceedings on New

Security Paradigms Workshop (2009).

23. An exemplary relevant patent publication includes U.S. Patent No.

8,578,174. This patent was assigned to Palo Alto Research Center Incorporated

arising out of my employment.

24. My opinions are based on my years of education, research, and

experience, as well as my study of relevant materials. In forming my opinions, I have

also considered the materials identified in this declaration and in the Petition.

25. In sum, I have extensive experience both as a developer and a

researcher relating to computer security.

II. LEGAL FRAMEWORK

26. I am a technical expert and do not offer any legal opinions. However,

counsel has informed me as to certain legal principles regarding patentability and

related matters under United States patent law, which I have applied in performing

my analysis and arriving at my technical opinions in this matter.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 15

IPR2024-00027
U.S. Patent 7,673,137

 16

27. I have been informed that claim terms are to be given the meaning they

would have to a person having ordinary skill in the art at the time of the invention,

taking into consideration the patent, its file history, and, secondarily, any applicable

extrinsic evidence (e.g., dictionary definitions).

28. I have also been informed that the implicit or inherent disclosures of a

prior art reference may anticipate the claimed invention. Specifically, if a person

having ordinary skill in the art at the time of the invention would have known that

the claimed subject matter is necessarily present in a prior art reference, then the

prior art reference may “anticipate” the claim. Therefore, a claim is “anticipated” by

the prior art if each and every limitation of the claim is found, either expressly or

inherently, in a single item of prior art.

29. I have also been informed that a person cannot obtain a patent on an

invention if the differences between the invention and the prior art are such that the

subject matter as a whole would have been obvious at the time the invention was

made to a person having ordinary skill in the art. I have been informed that a

conclusion of obviousness may be founded upon more than a single item of prior art.

I have been further informed that obviousness is determined by evaluating the

following factors: (1) the scope and content of the prior art, (2) the differences

between the prior art and the claim at issue, (3) the level of ordinary skill in the

pertinent art, and (4) secondary considerations of non-obviousness. In addition, the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 16

IPR2024-00027
U.S. Patent 7,673,137

 17

obviousness inquiry should not be done in hindsight. Instead, the obviousness

inquiry should be done through the eyes of a person having ordinary skill in the

relevant art at the time the patent was filed.

30. In considering whether certain prior art renders a particular patent claim

obvious, counsel has informed me that I can consider the scope and content of the

prior art, including the fact that one of skill in the art would regularly look to the

disclosures in patents, trade publications, journal articles, industry standards,

product literature and documentation, texts describing competitive technologies,

requests for comment published by standard setting organizations, and materials

from industry conferences, as examples. I have been informed that for a prior art

reference to be proper for use in an obviousness analysis, the reference must be

“analogous art” to the claimed invention. I have been informed that a reference is

analogous art to the claimed invention if: (1) the reference is from the same field of

endeavor as the claimed invention (even if it addresses a different problem); or (2)

the reference is reasonably pertinent to the problem faced by the inventor (even if it

is not in the same field of endeavor as the claimed invention). In order for a reference

to be “reasonably pertinent” to the problem, it must logically have commended itself

to an inventor's attention in considering his problem. In determining whether a

reference is reasonably pertinent, one should consider the problem faced by the

inventor, as reflected either explicitly or implicitly, in the specification. I believe that

IPR2024-00027
CrowdStrike Exhibit 1003 Page 17

IPR2024-00027
U.S. Patent 7,673,137

 18

all of the references that my opinions in this IPR are based upon are well within the

range of references a person having ordinary skill in the art would consult to address

the type of problems described in the Challenged Claims.

31. I have been informed that, in order to establish that a claimed invention

was obvious based on a combination of prior art elements, a clear articulation of the

reason(s) why a claimed invention would have been obvious must be provided.

Specifically, I am informed that a combination of multiple items of prior art renders

a patent claim obvious when there was an apparent reason for one of ordinary skill

in the art, at the time of the invention, to combine the prior art, which can include,

but is not limited to, any of the following rationales: (A) combining prior art methods

according to known methods to yield predictable results; (B) substituting one known

element for another to obtain predictable results; (C) using a known technique to

improve a similar device in the same way; (D) applying a known technique to a

known device ready for improvement to yield predictable results; (E) trying a finite

number of identified, predictable potential solutions, with a reasonable expectation

of success; (F) identifying that known work in one field of endeavor may prompt

variations of it for use in either the same field or a different one based on design

incentives or other market forces if the variations are predictable to one of ordinary

skill in the art; or (G) identifying an explicit teaching, suggestion, or motivation in

IPR2024-00027
CrowdStrike Exhibit 1003 Page 18

IPR2024-00027
U.S. Patent 7,673,137

 19

the prior art that would have led one of ordinary skill to modify the prior art reference

or to combine the prior art references to arrive at the claimed invention.

32. I am informed that the existence of an explicit teaching, suggestion, or

motivation to combine known elements of the prior art is a sufficient, but not a

necessary, condition to a finding of obviousness. This so-called “teaching

suggestion-motivation” test is not the exclusive test and is not to be applied rigidly

in an obviousness analysis. In determining whether the subject matter of a patent

claim is obvious, neither the particular motivation nor the avowed purpose of the

patentee controls. Instead, the important consideration is the objective reach of the

claim. In other words, if the claim extends to what is obvious, then the claim is

invalid. I am further informed that the obviousness analysis often necessitates

consideration of the interrelated teachings of multiple patents, the effects of demands

known to the technological community or present in the marketplace, and the

background knowledge possessed by a person having ordinary skill in the art. All of

these issues may be considered to determine whether there was an apparent reason

to combine the known elements in the fashion claimed by the patent.

33. I also am informed that in conducting an obviousness analysis, a precise

teaching directed to the specific subject matter of the challenged claim need not be

sought out because it is appropriate to take account of the inferences and creative

steps that a person of ordinary skill in the art would employ. The prior art considered

IPR2024-00027
CrowdStrike Exhibit 1003 Page 19

IPR2024-00027
U.S. Patent 7,673,137

 20

can be directed to any need or problem known in the field of endeavor at the time of

invention and can provide a reason for combining the elements of the prior art in the

manner claimed. In other words, the prior art need not be directed towards solving

the same specific problem as the problem addressed by the patent. Further, the

individual prior art references themselves need not all be directed towards solving

the same problem. I am informed that common sense is important and should be

considered. Common sense teaches that familiar items may have obvious uses

beyond their primary purposes.

34. I also am informed that the fact that a particular combination of prior

art elements was “obvious to try” may indicate that the combination was obvious

even if no one attempted the combination. If the combination was obvious to try

(regardless of whether it was actually tried) or leads to anticipated success, then it is

likely the result of ordinary skill and common sense rather than innovation. I am

further informed that in many fields it may be that there is little discussion of obvious

techniques or combinations, and it often may be the case that market demand, rather

than scientific literature or knowledge, will drive the design of an invention. I am

informed that an invention that is a combination of prior art must do more than yield

predictable results to be non-obvious.

35. I am informed that for a patent claim to be obvious, the claim must be

obvious to a person of ordinary skill in the art at the time of the invention. I am

IPR2024-00027
CrowdStrike Exhibit 1003 Page 20

IPR2024-00027
U.S. Patent 7,673,137

 21

informed that the factors to consider in determining the level of ordinary skill in the

art include (1) the educational level and experience of people working in the field at

the time the invention was made, (2) the types of problems faced in the art and the

solutions found to those problems, and (3) the sophistication of the technology in the

field.

36. I am informed that it is improper to combine references where the

references teach away from their combination. I am informed that a reference may

be said to teach away when a person of ordinary skill in the relevant art, upon reading

the reference, would be discouraged from following the path set out in the reference,

or would be led in a direction divergent from the path that was taken by the patent

applicant. In general, a reference will teach away if it suggests that the line of

development flowing from the reference’s disclosure is unlikely to be productive of

the result sought by the patentee. I am informed that a reference teaches away, for

example, if (1) the combination would produce a seemingly inoperative device, or

(2) the references leave the impression that the product would not have the property

sought by the patentee. I also am informed, however, that a reference does not teach

away if it merely expresses a general preference for an alternative invention but does

not criticize, discredit, or otherwise discourage investigation into the invention

claimed.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 21

IPR2024-00027
U.S. Patent 7,673,137

 22

37. I am informed that the final determination of obviousness must also

consider “secondary considerations” if presented. In most instances, the patentee

raises these secondary considerations of non-obviousness. In that context, the

patentee argues an invention would not have been obvious in view of these

considerations, which include: (a) commercial success of a product due to the merits

of the claimed invention; (b) a long-felt, but unsatisfied need for the invention; (c)

failure of others to find the solution provided by the claimed invention; (d) deliberate

copying of the invention by others; (e) unexpected results achieved by the invention;

(f) praise of the invention by others skilled in the art; (g) lack of independent

simultaneous invention within a comparatively short space of time; (h) teaching

away from the invention in the prior art.

38. I am further informed that secondary considerations evidence is only

relevant if the offering party establishes a connection, or nexus, between the

evidence and the claimed invention. The nexus cannot be based on prior art features.

The establishment of a nexus is a question of fact. While I understand that the Patent

Owner here has not offered any secondary considerations at this time, I will

supplement my opinions if the Patent Owner raises secondary considerations during

this proceeding.

III. OPINION

A. Overview of the ’137 Patent

IPR2024-00027
CrowdStrike Exhibit 1003 Page 22

IPR2024-00027
U.S. Patent 7,673,137

 23

39. The ’137 Patent is directed to a protector system that includes “a two-

step process to ensure that software programs do not perform malicious activities

which may damage the computing device.” ’137 Patent, Abstract. The ’137 Patent

describes a need for “early detection of security threats to a computing device or

network before any harm can be done.” Id. at 3:1-8. “[T]here is a need in the art for

a security system which will provide early detection of security threats to a

computing device or network before any harm can be done.” Id. at 3:5-16.

40. To purportedly solve this problem, the ’137 Patent describes a protector

system that uses “a two-phased approach at the kernel level of the computing

device’s operating system” to analyze and detect potential malware “before it can

execute.” Id. at 3:22-35, 8:30-33. The first phase is a “pre-execution process.” Id. at

Fig. 4A, 3:28-32. Within the pre-execution process, an operating system kernel

notifies a “pre-execution module” when “a new program begins to load into memory

so that it can be validated before execution.” Id. at 3:45-47. After it is determined

that a program is trying to load, a binary execution monitor suspends execution of

the executable file “until the program can be validated.” Id. at 8:52-62.

41. The pre-execution process includes a validation module that validates

the program by comparing the program to a “predetermined list of approved

programs.” If the validation module determines that the program is valid (i.e.,

matches an entry in a predetermined list of approved programs), “little to no

IPR2024-00027
CrowdStrike Exhibit 1003 Page 23

IPR2024-00027
U.S. Patent 7,673,137

 24

additional security monitoring needs to be performed on the program while it is

executing.” Id. at 3:47-54. If the program is found within the predetermined list of

approved programs, “the suspended state will be released.” Id. at 9:4-6. A figure of

the pre-execution process is shown below:

Id. at Fig. 4A.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 24

IPR2024-00027
U.S. Patent 7,673,137

 25

42. The second phase of the protector system is concerned with “if the

program is not validated.” Id. at 3:54-57. After the pre-execution process terminates

and the suspended state is lifted, “in step 605 the protector application 115 will

consult the database 110 to determine if the user has been previously queried about

the new non-validated executable file.” Id. at 9:43-54. If the “user has previously

approved the loading of this executable file,” then execution of the non-validated

file will proceed. Id. If the program is not found in the database, the program is

allowed to execute while detect drivers “perform additional monitoring while the

new program is executing” and “identify potential threats to the computing device

before they are executed” at the operating system kernel of the computing device.

Id. at 4:7-11, see also 6:64-67. “If the program is not validated, it can be monitored

at the kernel level of the operating system during the second phase, while the

program is executing.” Id. at 3:30-35. Detection and monitoring modules “monitor

the activities before they are able to cause harm to the computing device” and

“identify suspicious activities triggered by the program.” Id. An example of a non-

validated execution process is shown below:

IPR2024-00027
CrowdStrike Exhibit 1003 Page 25

IPR2024-00027
U.S. Patent 7,673,137

 26

Id. at Fig. 6.

B. Level of a Person Having Ordinary Skill in the Art

43. I have been asked to provide my opinion as to the level of skill of a

person having ordinary skill in the art at the time of the ’137 Patent, which I have

IPR2024-00027
CrowdStrike Exhibit 1003 Page 26

IPR2024-00027
U.S. Patent 7,673,137

 27

been instructed to assume is January 4, 2002. In determining the characteristics of a

hypothetical person having ordinary skill in the art at the time of the claimed

invention, I was told to consider several factors, including the type of problems

encountered in the art, the solutions to those problems, the rapidity with which

innovations are made in the field, the sophistication of the technology, and the

education level of active workers in the field. I also placed myself back in the time

frame of the claimed invention and considered the colleagues with whom I had

worked at that time.

44. In my opinion, a person having ordinary skill in the art, as of January

4, 2002, would have been a person having a bachelor’s degree in computer science,

or a related field, or an equivalent technical degree or equivalent work experience,

and an additional one to two years of education or experience in the field of computer

security. More education can supplement practical experience and vice versa. Such

a person would have been capable of understanding the ’137 Patent and the prior art

references discussed below.

45. Based on my education, training, and professional experience in the

field of the claimed invention, I am familiar with the level and abilities of a person

of ordinary skill in the art at the time of the claimed invention. Additionally, I met

at least these minimum qualifications to be a person having ordinary skill in the art

as of the time of the claimed invention of the ’137 Patent.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 27

IPR2024-00027
U.S. Patent 7,673,137

 28

C. Background of the Prior Art

46. I was asked to briefly summarize the background of the prior art from

the standpoint of a person having ordinary skill in the art prior to January 4, 2002.

1. Overview of Operating Systems

47. An operating system is “[t]he master set of programs that manage the

computer.” Dictionary at 411. “Among other things, an operating system controls

input and output to and from the keyboard, screen, disks, and other peripheral

devices; loads and begins the execution of other programs; manages the storage of

data on disks; and provides scheduling and accounting services.” Id. The kernel is

the set of programs in the operating system “that implement the most primitive of

that system’s functions” and constitutes “the core of the operating system.” Id. at

318.

48. Operating systems typically have multiple layers of privilege to protect

the computer’s resources. For example, in the 1990s, Intel released x86 processors

having four “protection rings.” Intel System Programming Manual at 4-8 (“The

processor’s segment-protection mechanism recognizes 4 privilege levels, numbered

from 0 to 3. The greater numbers mean lesser privileges. Figure 4-2 shows how these

levels of privilege can be interpreted as rings of protection.”). “The processor uses

privilege levels to prevent a program or task operating at a lesser privilege level from

accessing a segment with a greater privilege, except under controlled situations.” Id.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 28

IPR2024-00027
U.S. Patent 7,673,137

 29

As shown in the figure below, “[t]he center (reserved for the most privileged code,

data, and stacks) is used for the segments containing the critical software, usually

the kernel of an operating system,” while the “[o]uter rings are used for less critical

software.” Id.

Id.

49. Not all operating systems implemented all four protection rings. For

example, the Microsoft Windows NT 5.0 operating system (aka Windows 2000),

which was launched on February 17, 2000, only utilized ring 0 (i.e., kernel mode)

and ring 3 (i.e., user mode):

IPR2024-00027
CrowdStrike Exhibit 1003 Page 29

IPR2024-00027
U.S. Patent 7,673,137

 30

Solomon at 41; see also, Neshevich (“Microsoft has changed the name of its

Windows NT 5.0 platform to Windows 2000, with the intent to make it Microsoft’s

mainstream operating system for both consumers and businesses in the new

millennium.”); see also, Microsoft Windows 2000 Press Release at 1 (“Microsoft

plans general availability of Windows 2000 with a worldwide launch on Feb. 17,

2000.”).

50. As shown in the figure above, user applications, services, and other user

mode components accessed the kernel mode via the NTDLL.DLL. Solomon at 41.

The NTDLL “is a special system support library” that contains “architecture-specific

IPR2024-00027
CrowdStrike Exhibit 1003 Page 30

IPR2024-00027
U.S. Patent 7,673,137

 31

instruction that causes a transition into kernel mode to invoke the actual kernel-mode

system service[.]” Id. at 45.

51. Programmers could directly access the kernel by writing custom device

drivers that would be loaded into the kernel. Id. at 44 (“Because installing a device

driver is the only way to add user-written kernel-mode code to the system, some

programmers have written device drivers simply as a way to access internal

operating system functions or data structures that are not accessible from user

mode.”).

52. Like the Windows NT architecture, the Linux operating system’s

architecture similarly includes separate kernel and user spaces as illustrated in the

figure below:

IPR2024-00027
CrowdStrike Exhibit 1003 Page 31

IPR2024-00027
U.S. Patent 7,673,137

 32

Mitchem at 3.

2. Computer Viruses and Malware in the Internet Era

53. A virus is “[a]n intrusive program that infects computer files by

inserting in those files copies of itself. The copies are usually executed when the file

is loaded into memory, allowing the virus to infect still other files, and so on. Viruses

often have damaging side effects[.]” Microsoft Computer Dictionary at 500.

54. “In the early days of computing and certainly before the advent of the

Internet, viruses and all of their variations were usually spread physically, through

IPR2024-00027
CrowdStrike Exhibit 1003 Page 32

IPR2024-00027
U.S. Patent 7,673,137

 33

the loading of files from a floppy disk.” Wiggins at 4. For example, in 1986, a virus

called the “Brain” replaced the boot sector of a floppy disk with a copy of the virus.

Id. at 2 (“1986 – Two brothers from Pakistan analyzed the boot sector of a floppy

disk and developed a method of infecting it with a virus dubbed ‘Brain’.”). Thus,

spreading viruses and malware was harder in the early days of computing since it

required the user to physically load an infected floppy disk into their computer.

55. As the internet’s popularity and availability grew in the late 1990s and

early 2000s, so did the threat of malware. By the year 2001, e-mail had “become the

most popular form of transmission.” Id. at 4. For example, in 1999, the “Bubbleboy”

virus became “the first worm that would activate when a user simply opened an e-

mail message in Microsoft Outlook and previewed the message in Outlook Express.”

Id. at 3.

56. In the year 2000, “the first major distributed denial of service attacks

shut down major websites such as Yahoo! and Amazon.com.” Id. at 3. At the same

time, the Loveletter worm “became the fastest-spreading worm; shutting down e-

mail systems around the world.” Id. A worm is a form of malware that self-replicates

over a network, adding itself to a vulnerable system, and using the network to start

scanning for other vulnerable systems. See, e.g., Microsoft Computer Dictionary at

261 (defining “Internet worm” as “A string of self-replicating computer code that

was distributed through the Internet in November 1988. In a single night, it

IPR2024-00027
CrowdStrike Exhibit 1003 Page 33

IPR2024-00027
U.S. Patent 7,673,137

 34

overloaded and shut down a large portion of the computers connected to the Internet

at that time by replicating itself over and over on each computer it accessed,

exploiting a bug in UNIX systems.); 512 (defining “worm” as “A program that

propagates itself across computers, usually by creating copies of itself in each

computer’s memory.”).

57. At this time, attacks on the kernel of an operating system, often in the

form of trojan horses, became more common. Iglio at 1. (“On many hacker Web

sites it is explained how to use any executable program as a trojan horse to

infect a Windows system using NetBus or BackOrifice. Some software tools are

even publicly available to simplify this task. Once the system has been infected,

hackers can remotely read all keystrokes, read and upload files, etc. on the infected

machine.”) A trojan horse is “[a] destructive program disguised as a game, utility,

or application. When run, a Trojan horse does something harmful to the computer

system while appearing to do something useful.” Microsoft Computer Dictionary at

478. “The earliest Trojan horse programs were bundled together in the form of “Root

Kits”.” Manap at 4.

58. Another type of malware that was seeing an increase of deployment

was the rootkit. Rootkits “hide an attacker[’s] presence and at the same time give the

attacker ability to keep full control [of] the server or host continuously without being

detected.” Manap at 1. There are two categories of rootkits, including an

IPR2024-00027
CrowdStrike Exhibit 1003 Page 34

IPR2024-00027
U.S. Patent 7,673,137

 35

“Application rootkit – established at the application layer” and a “Kernel rootkit –

establish more deep into kernel layer.” Id. at 5. The application rootkit replaces “the

good system application with a trojaned system file,” which provides a “backdoor,

hiding the attackers presence, and it also will not log any connection and activity

done by the attacker.” Id. A Kernel rootkit manipulates and exploits the kernel and

is the hardest type of rootkit “to detect because it can bypass conventional system

integrity checker at [the] application layer.” Id. at 6.

59. Unfortunately, restricted security policies were often not practical

because of “the need of using the same personal computer to edit documents, to surf

the Web, to exchange e-mail, to run multimedia applications, and to perform critical

tasks.” Igilo at 1. “For example, it is a common practice to use the same personal

computer to run untrusted applications (such as applications downloaded from the

network) and to buy products through sites offering e-commerce services.” Id.

However, this practice was “very dangerous” and gave hackers the opportunity to

“break into systems and replace critical components to gain remote control of the

system and to leave hidden backdoors for future access.” Id.

3. Computer Monitoring Systems

60. Monitoring systems were developed in response to the rapid increase

of the malware threats described above. Specifically, kernel monitoring systems

were developed to block malicious attacks from harming the computing device. For

IPR2024-00027
CrowdStrike Exhibit 1003 Page 35

IPR2024-00027
U.S. Patent 7,673,137

 36

example, Mitchem proposed using kernel hypervisors to “provide unbypassable

security wrappers for application specific security requirements[.]” Mitchem at

Abstract. Mitchem proposed using such kernel hypervisors for “a number of

potential applications,” including, for example, “protecting user systems from

malicious active content downloaded via a Web browser.” Id. “Kernel hypervisors

are loadable kernel modules that intercept system calls to perform pre-call and post-

call processing.” Id. at 175. Kernel hypervisors are also “easy to install, requiring no

modification to the kernel or to the COTS [Commercial Off The Shelf] applications

that they are monitoring.” Id. Moreover, “[k]ernel hypervisors can be used on any

operating system that supports kernel loadable modules,” including “Linux, Solaris,

and other modern Unix systems, as well as Windows NT.” Id. at 177.

61. The monitoring of the system calls is “performed by redirecting the

links in the kernel system call table to point to system call wrappers[.]” Id. at 178.

“The wrapper code is invoked when the system call is made and performs the

processing illustrated in Figure 4.” Id.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 36

IPR2024-00027
U.S. Patent 7,673,137

 37

Id. at Figure 4.

62. A similar kernel monitoring system was proposed by Bernaschi. Per

Bernaschi, “immediate detection of security rules violations can be achieved by

monitoring the system calls made by processes, and blocking any malicious

invocations of system calls from being completed.” Bernaschi at 174. To accomplish

this, Bernaschi proposes “to ‘instrument’ the system calls so that the system call

itself once invoked checks whether the invoking process and the value of the

arguments comply with the rules kept in a small access control database within the

kernel.” Id. As a proof of concept, Bernaschi “implemented a prototype for

monitoring system calls which blocks buffer overflow attacks before they can

complete.” Id. However, Bernaschi’s “OS reference monitor is intended to protect

IPR2024-00027
CrowdStrike Exhibit 1003 Page 37

IPR2024-00027
U.S. Patent 7,673,137

 38

against any technique that allows an attacker to hijack the control of a privileged

process.” Id. (emphasis in original).

63. Thus, it was well understood that kernel-level system call monitoring

was an effective technique for detecting and blocking many different types of

malware attacks well prior to the ’137 Patent.

D. Claim Construction

64. I have been asked to apply the following claim constructions in my

analysis:

Claim Limitation Construction
“if the new program is validated,
permitting the new program to continue
loading and to execute in connection
with the computing device” (Claim 6)

“if the new program is validated, then it
is not monitored while it loads and
executes in connection with the
computing device”

“if the new program is valid, permitting
the new program to execute on the
computing device” (Claim 25)

“if the new program is valid, then it is
not monitored while it executes on the
computing device”

“pre-execution monitor” (Claim 1) “pre-execution module”
“an execution module coupled to the
detection module and operable for
monitoring, at the operating system
kernel of the computing device, the
program in response to the trigger
intercepted by the detection module”
(Claim 1)

Means-plus-function applies.

Function: “monitoring, at the operating
system kernel of the computing device,
the program in response to the trigger
intercepted by the detection module”

Structure: “if the program was not
validated, then monitor the non-
validated program in response to
triggers while the program is executing”

IPR2024-00027
CrowdStrike Exhibit 1003 Page 38

IPR2024-00027
U.S. Patent 7,673,137

 39

65. For all other claim limitations, I have applied the ordinary and

customary meaning of the claim terms as understood by a person having ordinary

skill in the art.

E. Summary of the Prior Art References

1. Dan

66. Dan recognizes that the “[s]haring of unknown programs creates an

atmosphere of untrust and hence exacerbates the need to secure information and

physical resources from any alien code.” Dan at Abstract (emphasis in original).

According to Dan, “[t]he rapid growth in connectivity and sharing of information

via the World-Wide Web has dramatically increased the vulnerability of client

machines to alien codes.” Id. at 1 (emphasis in original). “Once the alien code is

installed on the client machine, it can run with all the privileges of the invoking

user.” Id. “The alien code can silently obtain unauthorized access to all the system

resources (i.e., logical resources such as files, network ports) that can be accessed

by the invoking user.” Id. (emphasis in original)

67. To solve this problem, Dan proposes “a generic framework that allows

the operating system to authenticate and verify installed applications, dynamically

control access to both logical and physical resources, and allow privileges associated

with an application to be transferred to any other application and/or system.” Id. at

4. Dan’s “system consists of one or more code production systems, certification

IPR2024-00027
CrowdStrike Exhibit 1003 Page 39

IPR2024-00027
U.S. Patent 7,673,137

 40

agencies, servers and clients.” Id. at 5. “A code production system communicates

with a certification agency, which is a trusted third party,” and “[t]he certification

agency issues a certificate for the code identifying its source and a certificate for the

RCL of that code.” Id. A Resource Capability List (RCL) is “the set of permissions

and resource access privileges required by the code.” Id. at 4. “The code and its RCL

are stored on a server along with their certificates.” Id. at 5. As shown in Figure 1

below, the code, the code’s certificate, the RCL, and the RCL’s certificate are

downloaded to a client system:

Id. at Figure 1.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 40

IPR2024-00027
U.S. Patent 7,673,137

 41

68. The client system includes a sandbox environment having three

primary components including the verifier, RCL manager, and RCL enforcer. Id.; see

also, id. at 5 (“[T]he RCL may be the default RCL associated with the sandbox

environment in the client system.”). “When a client receives the code and its RCL, it

invokes the verifier to verify that the code and RCL are valid (not tampered with).”

Id. at 5. For example, the verifier module on the client system may first check to see

if the Certification Agency (CA)’s “signature on the certificate is valid (using the

CA’s known public key)” and “then compute the cryptographic hash of the code/RCL

and verif[y] that it matches that in the certificate.” Id. at 7.

69. “Once the code is verified, the RCL manager is responsible for

determining which subset of parameters within the RCL are to be allowed.” Id. at 5-

6. The RCL manager “then stores the code and its modified RCL in a secure location.”

Id. at 6.

70. “The RCL enforcer is invoked when the code is executed.” Id. “The

RCL enforcer module at the client ensures that the permissions and resource

consumption limits specified in the RCL are not violated.” Id. at 9. The RCL enforcer

“monitors two types of resources: physical and logical.” Id. For example, the “RCL

enforcer protects physical resources such as memory and CPU usage, disk storage,

and disk bandwidth utilization.” Id.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 41

IPR2024-00027
U.S. Patent 7,673,137

 42

71. The RCL enforcer also monitors logical resources such as “file,

directories, communication ports and various other system service calls.” Id. at 12.

To accomplish this, “[t]he RCL enforcer monitors all system calls, i.e., access to

requests to logical resources in the system.” Id. “This monitoring requires that the

RCL enforcer be invoked for each system call made by an application.” Id. “The RCL

enforcer then validates the parameters of the system call against those specified in

the RLRT [Runtime Logical Resources Table] data structures and either allows or

disallows the call from continuing.” Id.

72. Dan describes “three different approaches to monitoring system calls,”

including “Binary code modification,” “Modification of service libraries,” and

“System call modification.” Id. at 13-14.

73. The binary code modification approach requires the downloaded

application code to be “preprocessed and modified to insert hooks in the binary code

for calling RCL enforcer (i.e., CheckAccessRequest() function. See, Figure 7 and

8).” Id. at 14. However, this approach requires “the user to preprocess all untrusted

applications,” which “may incur a lot of overhead.” Id. “Also, this is not a full [sic]

proof solution, since a program may use encryption to hide system calls in its code.”

Id.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 42

IPR2024-00027
U.S. Patent 7,673,137

 43

Id. at Figure 8.

74. The service library modification approach requires providing “in each

machine a duplicate set of libraries for various services that may make system calls

(e.g., file system, language support, etc.).” Id. “The new set of libraries calls the

CheckAccessRequest() routine to verify the parameters before making any

system call.” Id. However, “the system cannot enforce security for applications that

have system call libraries statically linked into the application.” Id.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 43

IPR2024-00027
U.S. Patent 7,673,137

 44

Id. at Figure 9.

75. In the system call modification approach, “the operating system’s call

interface is modified to call the CheckAccessRequest() upon entry to verify the

parameters of the system call.” Id. at 14. “Thus, regardless of how the applications

are structured, the system call entry point in the operating systems will ensure

consistent security checks for all applications that are executed on the machine.”

While this approach requires modifying the operating system, Dan “selected this

approach to manage logical resources in the system primarily because of the

consistency it offers for enforcing security.” Id. at 14-15.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 44

IPR2024-00027
U.S. Patent 7,673,137

 45

Id. at Figure 10.

76. I note that in more recent times, the term “sandbox” can sometimes

refer to a virtual environment that simulates a computer’s operating system and

hardware. See, e.g., STL Tech (describing full-system emulation, integration with

operating systems, full virtualization, browser-based sandboxing at 1). However, it

is clear from Dan’s disclosure that the client sandbox is not operating in a virtual

environment because Dan’s RCL enforcer directly monitors a program’s access of

the computer’s real physical resources, including consumption of disk, CPU, and

memory. Dan at 4, 9-11. Dan’s RCL enforcer also monitors system calls made to

the computer’s operating system – not an emulated version of the operating system.

Id. at 14-15.

77. As I discussed above, I have been informed that for a prior art reference

to be proper for use in an obviousness analysis, the reference must be “analogous

IPR2024-00027
CrowdStrike Exhibit 1003 Page 45

IPR2024-00027
U.S. Patent 7,673,137

 46

art” to the claimed invention. I have been informed that a prior art reference is

analogous to the claimed invention if, for example, the reference is from the same

field of endeavor as the claimed invention, and/or directed at solving similar

problems.

78. Both Dan and the ‘137 Patent are related to systems and methods for

analyzing and resolving potential security threats to a computing device. Compare

‘137 Patent at Abstract (“[m]anaging and controlling the execution of software

programs with a computing device to protect the computing device from malicious

activities”), 3:5-14 (“there is a need in the art for a security system which will

provide early detection of security threats”), 6:21-24 (“the command line interface

120 is to configure various security settings, such as how to respond to certain

threat”), 7:15-21 (“the behavior monitor 128 can take direct action to address a

security threat or instruct the protector application 115 to query the user for

instructions on how to handle the threat”), 8:20-27 (“the configuration settings can

include predetermined responses to particular threats and decision rules as to when

the user should be queried about a security threat”) with Dan, 21 (“[h]ence, the alien

code can silently obtain unauthorized accesses to all the system resources (e.g. files,

network ports) that can be accessed by the invoking user. The alien code may

propagate itself, attempt illegal break-ins or maliciously alter files”), 5 (“[w]hen a

client receives the code and its RCL, it invokes the verifier to verify that the code

IPR2024-00027
CrowdStrike Exhibit 1003 Page 46

IPR2024-00027
U.S. Patent 7,673,137

 47

and RCL are valid (not tampered with)”), 1 (“it may still engage in a denial of

service attack by monopolizing physical resources such as disk, physical memory,

CPU, network bandwidth”), 2 (“[a] similar security problem exists with importing

data for word processors and spreadsheets, where the imported data could be

infected with active content macro viruses, and these viruses in turn, could try to

access system resources without the knowledge of the user”), 12 (“[t]he RCL

enforcer monitors all systems calls, i.e., access requests to logical resources in the

system.” “The RCL enforcer then validates the parameters of the system call against

those specified in the RLRT data structures and either allows or disallows the call

from continuing”), 14-15 (“[t]hus, regardless of how the applications are structured,

the system call entry point in the operating systems will ensure consistent security

checks for all applications that are executed on the machine” “The common entry

point to the Kernel for all system calls provides an effective mechanism for

enforcing access control for logical resources”). A person having ordinary skill in

the art would have recognized Dan is in the same field of endeavor as the ‘137

Patent.

79. Dan is also directed at solving similar problems to those of the ’137

Patent, such as detecting potential security threats to a computing device. Compare

‘137 Patent at 3:5-14 (“there is a need in the art for a security system which will

provide early detection of security threats”), 3:25-35(“[i]mplementing a two-phased

IPR2024-00027
CrowdStrike Exhibit 1003 Page 47

IPR2024-00027
U.S. Patent 7,673,137

 48

approach at the kernel level of the computing device’s operating system, the present

invention provides fast and efficient security that minimizes interruptions for the

user”), 4:55-60 (“[t]he two-step process provides an efficient and effective means

for protecting a computing device or network while minimizing disruptions for the

user”), 10:49-54 (“the present invention enables and supports security from

malicious software programs for a computing device”) with Dan at 2 (“we propose

a solution to the above security problem. The solution combines certification of

alien code together with explicit granting of privileges for execution”), 5-6 (“[w]hen

a client receives the code and its RCL, it invokes the verifier to verify that the code

and RCL are valid (not tampered with)”), 12 (“[t]he RCL enforcer monitors all

systems calls, i.e., access requests to logical resources in the system.” “The RCL

enforcer then validates the parameters of the system call against those specified in

the RLRT data structures and either allows or disallows the call from continuing”),

14-15 (“[t]hus, regardless of how the applications are structured, the system call

entry point in the operating systems will ensure consistent security checks for all

applications that are executed on the machine” “The common entry point to the

Kernel for all system calls provides an effective mechanism for enforcing access

control for logical resources”), 21 (“[s]haring of unknown programs creates an

atmosphere of untrust and hence, exacerbates the need to secure information and

physical resources from alien codes”), Figure 1. For these reasons, a person having

IPR2024-00027
CrowdStrike Exhibit 1003 Page 48

IPR2024-00027
U.S. Patent 7,673,137

 49

ordinary skill in the art would have recognized Dan is directed to solving similar

problems to those of the ’137 Patent.

2. Lambert

80. Lambert recognizes that “[c]omputer users, and particularly business

users, typically rely on a set of programs that are known and trusted.” Lambert at

[0003]. “For example, in enterprise computing environments, system administrators

and helpdesk personnel are trained in supporting a core set of programs used in

operating the business.” Id. “However, in most enterprise environments, particularly

in larger environments in which some flexibility is important with respect to what

various employees need to do with computers to perform their jobs, users are able

to run unknown and/or untrusted code, that is, programs outside of the supported

set.” Id. These untrusted programs are problematic because “some of the untrusted

code may be malicious code (e.g., a computer virus possibly in the form of a Trojan

horse) that intentionally misrepresents itself to trick users into running it, typically

inflicting damage, corrupting data or otherwise causing mischief to the computers

on which the malicious code runs.” Id. at [0004]. “The problem or running unknown

code is compounded by recent developments in computing, wherein many types of

content that formerly consisted of only passive data (e.g., documents and web pages)

have potentially become executable code, due to the scripts and/or macros they may

contain.” Id. at [0005].

IPR2024-00027
CrowdStrike Exhibit 1003 Page 49

IPR2024-00027
U.S. Patent 7,673,137

 50

81. To solve these problems, Lambert “provides an improved computer

security system and method wherein software that possibly includes executable code

is identified and classified, and then a rule corresponding to the classification (or if

none correspond, a default rule) automatically and transparently determines the

software’s ability to execute.” Id. at [0008]. First, “[a]n administrator

identifies/classifies the software and sets the rules, including a default rule that

applies to any software file not classified under a specific rule.” Id. at [0052]. “[O]ne

way that a software file can be identified (and thus matched to a corresponding rule)

is by a hash of its contents, which is essentially a fingerprint that uniquely identifies

a file regardless of whether the file is moved or renamed.” Id. at [0055]. “Via a user

interface or the like operably connected to a suitable hash mechanism, an

administrator can select any software file, obtain a hash value from its contents, and

enter and associate a rule (that specifies a security level) with that hash value.” Id.

82. The rule associated with the software file dictates whether the software

file is allowed to execute in an unrestricted manner, allowed execute in a restricted

manner, or not allowed to execute at all. “In the case of known bad code, the

administrator may set the rule to specify that any file with that hash will not be

allowed to execute at all (i.e., ‘disallowed’ or ‘revoked’ status).” Id. at [0056].

“Alternatively, in the case of known good code that is allowed to execute, a hash

IPR2024-00027
CrowdStrike Exhibit 1003 Page 50

IPR2024-00027
U.S. Patent 7,673,137

 51

rule can specify how it will be executed, e.g., unrestricted (normal) or restricted (and

to what extent).” Id.

83. “Multiple files can have their corresponding hash values and rules

maintained in a policy object, or otherwise made available to the system, whereby

for any given instance of any file, the set of maintained hash values can be queried

to determine whether a rule exists for it.” Id. at [0055]. “In other words, before

opening a file for execution, a hash value is determined from that file's contents, and

the set of hash value information (e.g., in the policy object) searched to determine if

a rule exists for that hash value. If so, that rule provides the security level for the

software.” Id.

84. The process of identifying and classifying a software file is depicted in

Figure 5A. Specifically, “When the process 508 wants to load and possibly execute

the software file 510, it identifies itself and provides information 514 identifying the

software file to an appropriate function 516 (of a set) that can open, load and/or

execute the file 510.” Id. at [0066]. “For example, this can be accomplished by

placing an application programming interface (API) call to the operating system,

wherein the file information 514, typically in the form a path and filename is passed,

as a parameter.” Id.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 51

IPR2024-00027
U.S. Patent 7,673,137

 52

Id. at Fig. 5A.

85. “[I]nstead of simply loading the file and executing any executable code

therein with the parent token’s rights and privileges, each of the functions 516 is

arranged to first provide the software file information 514 to an enforcement

mechanism (circled numeral two (2) in FIG. 5A).” Id. at [0067]. “[B]ased on this

information the enforcement mechanism consults the effective policy 502 to

determine which rule applies for the file 510, and from the rule determines whether

to open/execute the file, and if so, the extent of any restricted execution context for

the file 510.” Id.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 52

IPR2024-00027
U.S. Patent 7,673,137

 53

86. If the software file is associated with a rule that restricts its execution,

“the enforcement mechanism 518 can compute and associate a restricted token with

the software file 510, whereby if creation of a process is requested for the software

file, (it includes executable content), any process of the software file is restricted in

its access rights and privileges according to the restricted token.” Id. at [0070].

“[T]he enforcement mechanism 518 completes the call and returns information back

to the software function 516 that called it, the returned information essentially

including an instruction on whether to open the file, and if so, the token to associate

with the file.” Id. at [0071]. “If the computed token 526 is a restricted token, the

process of the software file can now execute, but only in association with the

restricted token, thus providing the rule-determined secure execution environment.”

Id.

87. Thus, Lambert describes a pre-execution phase where the system

determines whether a software file may execute and, if so, whether it may execute

in an unrestricted or restricted manner.

88. Lambert also discloses an execution phase where a restricted program

is monitored to determine whether it may access a resource based on its restricted

token. “[I]n FIG. 3, a process 300 may be associated with the restricted token 210

rather than the user’s normal token 200, as determined by the operating system, such

as when the process is untrusted.” Id. at [0042]. “When the process 300 desires

IPR2024-00027
CrowdStrike Exhibit 1003 Page 53

IPR2024-00027
U.S. Patent 7,673,137

 54

access to an object 302, the process 300 specifies the type of access it desires (e.g.,

obtain read/write access to a file object), and the operating system (e.g., kernel) level

provides its associated token to an object manager 304.” Id. “The object 302 has a

security descriptor 310 associated therewith, and the object manager 304 provides

the security descriptor 306 and the restricted token 210 to a security mechanism

308.” Id. at [0043]. “The security mechanism 308 compares the security IDs in the

restricted token 210 along with the type of action or actions requested by the process

300 against the entries in the DACL [Discretionary Access Control List] 312.” Id.

“If a match is found with an allowed user or group, and the type of access desired is

allowable for the user or group, a handle to the object 302 is returned to the process

300, otherwise access is denied.” Id.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 54

IPR2024-00027
U.S. Patent 7,673,137

 55

Id. at Fig. 3.

89. As I discussed above, I have been informed that for a prior art reference

to be proper for use in an obviousness analysis, the reference must be “analogous

art” to the claimed invention. I have been informed that a prior art reference is

analogous to the claimed invention if, for example, the reference is from the same

field of endeavor as the claimed invention, and/or directed at solving similar

problems.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 55

IPR2024-00027
U.S. Patent 7,673,137

 56

90. Lambert and the ‘137 Patent are related to systems and methods for

analyzing and resolving potential security threats to a computing device. Compare

‘137 Patent at Abstract (“[m]anaging and controlling the execution of software

programs with a computing device to protect the computing device from malicious

activities”), 3:5-14 (“there is a need in the art for a security system which will

provide early detection of security threats”), 6:21-24 (“the command line interface

120 is to configure various security settings, such as how to respond to certain

threat”), 7:15-21 (“the behavior monitor 128 can take direct action to address a

security threat or instruct the protector application 115 to query the user for

instructions on how to handle the threat”), 8:20-27 (“the configuration settings can

include predetermined responses to particular threats and decision rules as to when

the user should be queried about a security threat”) with Lambert at Abstract (“[a]

system and method that automatically, transparently and securely controls software

execution by identifying and classifying software, and locating a rule and associated

security level for executing executable software”), [0007] (“in contemporary

computer systems, running unknown code cannot be prevented, and indeed is

necessary to an extent in many enterprises”), [0009](“[t]he present invention

provides various ways to identify/classify software, along with a highly flexible

policy-based infrastructure to enforce decisions about whether software can run,

and if so, how much the software will be restricted when it runs”), [0013]-[0014]

IPR2024-00027
CrowdStrike Exhibit 1003 Page 56

IPR2024-00027
U.S. Patent 7,673,137

 57

(“[t]ypical security levels for execution (arbitrarily named herein) may include

normal (unrestricted), constrained (restricted) or disallowed (revoked), although

other levels such as end-user and untrusted are possible, and customized levels can

be defined” “prior to loading a file, the various functions (such as of an operating

system) that enable software to be loaded or otherwise executed are arranged to

automatically and transparently communicate with an enforcement mechanism that

determines the rule to apply for each file, based on the identification/classification

information of the file”), [0041] (“a restricted token is derived from a parent token

by removing at least one privilege therefrom relative to its parent token”), [0056]

(“in the case of known good code that is allowed to execute, a hash rule can specify

how it will be executed, e.g., unrestricted (normal) or restricted (and to what

extent)” “one way that a software file can be identified (and thus matched to a

corresponding rule) is by a hash of its contents”), Fig. 5A. For the reasons above, a

person having ordinary skill in the art would have recognized Lambert is in the

same field of endeavor as the claimed invention of the ’137 Patent.

91. Lambert is also directed at solving similar problems to those of the ’137

Patent, such as detecting potential security threats to a computing device. Compare

‘137 Patent at 3:5-14 (“there is a need in the art for a security system which will

provide early detection of security threats”), 3:25-35(“[i]mplementing a two-phased

approach at the kernel level of the computing device’s operating system, the present

IPR2024-00027
CrowdStrike Exhibit 1003 Page 57

IPR2024-00027
U.S. Patent 7,673,137

 58

invention provides fast and efficient security that minimizes interruptions for the

user”), 4:55-60 (“[t]he two-step process provides an efficient and effective means

for protecting a computing device or network while minimizing disruptions for the

user”), 10:49-54 (“the present invention enables and supports security from

malicious software programs for a computing device”) with Lambert at [0004]-

[0005] (“[t]he problem or running unknown code is compounded by recent

developments in computing, wherein many types of content that formerly consisted

of only passive data (e.g., documents and web pages) have potentially become

executable code, due to the scripts and/or macros they may contain” “One problem

with this approach is that it is reactive rather than proactive, in that a virus first needs

to be individually identified and characterized by virus detection experts, after which

it can have its appropriate signature information distributed to various computers to

allow the automated detection thereof”), [0008] (“[t]he present invention provides

an improved computer security system and method wherein software that possibly

includes executable code is identified and classified, and then a rule corresponding

to the classification (or if none correspond, a default rule) automatically and

transparently determines the software's ability to execute”), [0011] (“[a] software

restriction policy comprising a set of rules is provided to correlate the classification

information for any software to a security level that may restrict or prevent the

software from running. A policy can be per machine and per user, and can be

IPR2024-00027
CrowdStrike Exhibit 1003 Page 58

IPR2024-00027
U.S. Patent 7,673,137

 59

automatically applied to network users via group policy technology.”), [0014]

(“[t]he computation of the token or failing of the open may be automatic and

transparent to the user, whereby security is implemented without requiring user

forethought or action”). For the reasons above, a person having ordinary skill in the

art would have recognized Lambert is directed at solving similar problems as the

claimed invention of the ’137 Patent.

3. Schmid

92. Schmid is generally directed to an execution management utility to

“prevent software from executing without the prior approval of system

administrator.” Schmid at Abstract. Schmid describes, “most well-behaved

Windows applications make system calls through the Win32 API, it is also possible

to bypass this interface by making calls directly to kernel services.” Id. at 5:29-32.

On the other hand, a malicious program “may attempt to bypass a wrapper

implemented between Windows and the Win32 subsystem by making direct calls to

operating system objects, rather than through the Win32 API.” Id. at 5:33-37.

93. To solve this problem, Schmid describes a “kernel-level wrapping

approach to executable control” where a device driver is “installed in an I/O

subsystem, and may be used to intercept system service requests.” Id. at 5:38-48.

The device driver is “dynamically loaded into a kernel, or may be loaded as part of

a boot sequence” and “modifies an entry in a table consulted by a dispatcher to

IPR2024-00027
CrowdStrike Exhibit 1003 Page 59

IPR2024-00027
U.S. Patent 7,673,137

 60

handle an interrupt instruction.” Id. at 6:6-11. “In the preferred Windows NT

embodiment, the modified entry may cause a dispatcher to call an inserted function

rather than ZwCreateProcess, the NT function responsible for creating new user- and

kernel-mode processes.” Id. at 6:11-15. Schmid describes “[a] kernel entity, known

as a dispatcher, initially responds to an interrupt instruction, determines the nature

of an interrupt, and calls a function to handle the request.” Id. at 5:62-64. “When a

substitute function is called by a dispatcher, the function determines whether to

allow or block process creation.” Id. at 6:22-24.

94. As I discussed above, I have been informed that for a prior art reference

to be proper for use in an obviousness analysis, the reference must be “analogous

art” to the claimed invention. I have been informed that a prior art reference is

analogous to the claimed invention if, for example, the reference is from the same

field of endeavor as the claimed invention, and/or directed at solving similar

problems.

95. Schmid and the ‘137 Patent are related to systems and methods for

analyzing and resolving potential security threats to a computing device. Compare

Schmid at Abstract (“execution management utility designed to prevent software

from executing without the prior approval of system administrative or other security

staff”), 2:20-23 (“The present invention improves upon prior malicious software

protection applications by not only resolving the problems discussed above, but also

IPR2024-00027
CrowdStrike Exhibit 1003 Page 60

IPR2024-00027
U.S. Patent 7,673,137

 61

by addressing emerging dangers and unknown attacks”), 2:31-33 (“For example, the

present invention can assist corporations by enforcing policies regarding

unauthorized, unlicensed, or pirated software”), 3:21-22 (“Using hashes for

identification has the additional benefit of preventing modified applications from

executing”), 2:50-54 (“improves upon existing executable control software, and

provides administrators with a valuable defense against the introduction of hostile

or unknown code”), Fig. 1 with ‘137 Patent at Abstract (“[m]anaging and controlling

the execution of software programs with a computing device to protect the

computing device from malicious activities”), 3:5-14 (“there is a need in the art for

a security system which will provide early detection of security threats”), 6:21-24

(“the command line interface 120 is to configure various security settings, such as

how to respond to certain threat”), 7:15-21 (“the behavior monitor 128 can take

direct action to address a security threat or instruct the protector application 115 to

query the user for instructions on how to handle the threat”), 8:20-27 (“the

configuration settings can include predetermined responses to particular threats and

decision rules as to when the user should be queried about a security threat”). For

the reasons above, a person having ordinary skill in the art would have recognized

Schmid is in the same field of endeavor as the claimed invention of the ’137 Patent.

96. Schmid is also directed at solving similar problems to those of the ’137

Patent, such as detecting potential security threats to a computing device. Compare

IPR2024-00027
CrowdStrike Exhibit 1003 Page 61

IPR2024-00027
U.S. Patent 7,673,137

 62

Schmid at Abstract (discussing preventing software from executing without prior

approval), 2:20-23 (discussing addressing emerging dangers and unknown attacks),

2:26-28 (discussing a kernel intercepting process creation requests), 2:50-54

(discussing providing administrators with defense against hostile or unknown code),

with ‘137 Patent at 3:5-14 (“there is a need in the art for a security system which will

provide early detection of security threats”), 3:25-35(“[i]mplementing a two-phased

approach at the kernel level of the computing device’s operating system, the present

invention provides fast and efficient security that minimizes interruptions for the

user”), 4:55-60 (“[t]he two-step process provides an efficient and effective means

for protecting a computing device or network while minimizing disruptions for the

user”), 10:49-54 (“the present invention enables and supports security from

malicious software programs for a computing device.”) For the reasons above, a

person having ordinary skill in the art would have recognized Schmid is directed at

solving similar problems as the claimed invention of the ’137 Patent.

F. Ground 1: The Combination of Dan and Lambert Renders Claims
6, 8, 9, 12, and 25 Obvious

1. Claim 6

(a) 6[Pre]. – A computer implemented method for
implementing security for a computing device comprising
the steps of:

IPR2024-00027
CrowdStrike Exhibit 1003 Page 62

IPR2024-00027
U.S. Patent 7,673,137

 63

97. Dan discloses a client system that includes a sandbox environment

having three primary components, including the verifier, RCL manager, and RCL

enforcer:

Dan at Figure 1; see also, id. at 5 (“[T]he RCL may be the default RCL associated

with the sandbox environment in the client system.”); Section III.E.1.

98. Dan’s client system is clearly a computing device.1 For example, Dan

teaches that the client system includes an “operating system kernel,” logical

resources, such as “files [and] network ports,” and physical resources, such as “disk,

physical memory, [and] CPU.” Dan at 5, 7; see also, id. at 1 (describing a client

1 I have underlined and italicized claim language for clarity.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 63

IPR2024-00027
U.S. Patent 7,673,137

 64

machine as having “system resources (i.e., logical resources such as files, network

ports)” and “physical resources such as disk, physical memory, CPU, network

bandwidth.”). As I discussed above, the operating system is the master set of

programs that manage a computer, and the kernel is the set of programs in the

operating system that implement the most primitive of that system’s functions. See,

Section III.C.1. In fact, an operating system kernel makes no sense without a

computing device, including a processor executing the operating system kernel,

which would be stored in an associated storage.

99. Likewise, the disk, memory, and CPU are all well-known components

of computers. See, e.g., Dictionary at 79 (defining “central processing unit (CPU)”

as “[t]he major component of a computer system with the circuitry to control the

interpretation and execution of instructions.”), 179 (defining “disk” as “[a] magnetic

device for storing information and programs accessible by a computer.”), 364

(defining “memory” as “[s]torage facilities of the computer, capable of storing vast

amounts of data.”). As such, a person having ordinary skill in the art would have

understood that Dan’s client system is a computing device.

100. The sandbox components on Dan’s client system perform a computer

implemented method for implementing security for a computing device. As I

discussed above in my summary of Dan, the client system “invokes the verifier to

verify that the code and RCL are valid (not tampered with)” when the client receives

IPR2024-00027
CrowdStrike Exhibit 1003 Page 64

IPR2024-00027
U.S. Patent 7,673,137

 65

the code and its RCL. See, Section III.E.1; Dan at 5. “Once the code is verified, the

RCL manager is responsible for determining which subset of parameters within the

RCL are to be allowed.” Dan at 5-6. “The RCL enforcer is invoked when the code is

executed,” and it “monitors accesses by the code to ensure that the permissions and

resources consumptions limits are not violated.” Id. at 6. Indeed, a person having

ordinary skill in the art would understand that monitoring permissions and resource

consumption limits are examples of security tasks performed to detect malicious

software (or malware).

(b) 6(a) – interrupting the loading of a new program for
operation with the computing device;

101. Dan teaches a method for “Installation of Untrusted Applications”

where “[t]he application and RCL are downloaded to the host (via network, diskette,

CD-ROM, satellite, etc.).” Dan at 20. Dan’s application is new because it is newly

downloaded to the host computer. Downloaded applications may also be new in the

sense that they have not been executed by the client computing device before.

102. A person having ordinary skill in the art would have understood that an

application is a computer program that performs a specific task. See, e.g., Microsoft

Computer Dictionary at 27 (defining “application” as “[a] program designed to assist

in the performance of a specific task, such as word processing, accounting, or

inventory management.”). Indeed, the terms “program” and “application” are often

used interchangeably. Thus, a person having ordinary skill in the art would have

IPR2024-00027
CrowdStrike Exhibit 1003 Page 65

IPR2024-00027
U.S. Patent 7,673,137

 66

understood that Dan’s application is a program because an application is a type of

computer program.

103. For these reasons, a person having ordinary skill in the art would

understand that Dan’s application is a new program.

104. Dan is primarily focused on “unknown programs” that create “an

atmosphere of untrust” and “exacerbate[] the need to secure information and

physical resources from any alien code. Dan at Abstract; 20 (describing the

“Installation of Untrusted Applications”). When the computer receives a new

program, its resource capability list (RCL) and certificate, a verifier module

“verif[ies] that the code and RCL are valid (not tampered with).” Id. at 5. Once the

code is verified, the RCL manager determines “which subset of parameters within

the RCL are to be allowed” and “stores the code and its modified RCL in a secure

location.” Id. at 5-6. “The RCL enforcer is invoked when the code is executed,” and

it “monitor[s] accesses by the code to ensure that the permissions and resource

consumption limits are not violated.” Id. at 6. The RCL enforcer is “invoked for each

system call made by an application.” Id. at 12. Dan also teaches allowing

“downloading (or installing from CDROM) of any code without any certificate as in

the conventional systems” and that in these cases, “[s]uch untrusted codes when

executed via sandbox environment will be given minimum default resource

capabilities.” Id. at 7.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 66

IPR2024-00027
U.S. Patent 7,673,137

 67

105. However, a person having ordinary skill in the art would have

understood that not all applications, including applications without certificates, are

untrusted applications that deserve minimum resource capabilities. An application

from a trusted developer, for example, could be considered trusted. Dan’s system

relies on a third-party certification agency (or “certificate authority”) to issue

certificates for the code and RCL. Dan at 6 (“A code production system

communicates with a Certification Agency (CA), which is a trusted third party. The

CA issues a certificate for the code and a certificate for the resource list of that

code.”). However, not all trusted developers communicate with a certification

agency to authenticate the code. For example, Dan teaches an exemplary

environment for the sandbox system may be a “network computer environment …

customized for a specific organization[.]” Id. at 2. In such an enterprise environment,

the organization may obtain programs directly from a trusted developer and not

through the third-party certification agency.

106. It was well known that an enterprise organization may identify a

collection of approved applications as trusted on behalf of all its employees. For

example, Lambert teaches that “[c]omputer users, and particularly business users,

typically rely on a set of programs that are known and trusted.” Lambert at [0003]

(emphasis added). “However, in most enterprise environments, particularly in larger

environments in which some flexibility is important with respect to what various

IPR2024-00027
CrowdStrike Exhibit 1003 Page 67

IPR2024-00027
U.S. Patent 7,673,137

 68

employees need to do with computers to perform their jobs, users are able to run

unknown and/or untrusted code, that is, programs outside of the supported set.”

Id. To address the presence of trusted and untrusted programs, Lambert teaches

applying different “security levels for execution” including “normal (unrestricted),

constrained (restricted) or disallowed (revoked).” Id. at [0013]. Lambert further

teaches that “known good code…is allowed to execute” in either “unrestricted

(normal) or restricted” modes while “known bad code…will not be allowed to

execute at all.” Id. at [0056].

107. Acknowledging the existence of “good” and “bad” programs needing

varying levels of security, Lambert proposes “a method and system that determines

access to resources based on an identification (classification) of software that may

contain executable content.” Id. at [0052]. “To this end, various types of software

and specific software files (or other suitable data structures) may be identified and

classified, with rules set and maintained for the software classifications that

automatically and transparently determine the ability of software to execute.” Id.

“[W]hen software is to be loaded (e.g., its file opened and some or all thereof read

into memory), one or more rules are located that correspond to the classification for

that software, (or if none corresponds, the default rule), and a selected rules is used

to determine whether the software can be loaded, and if so, to what extent any

processes of the software will be restricted.” Id. (emphasis added); see also, id., at

IPR2024-00027
CrowdStrike Exhibit 1003 Page 68

IPR2024-00027
U.S. Patent 7,673,137

 69

[0014] (“In one implementation, prior to loading a file, the various functions (such

as of an operating system) that enable software to be loaded or otherwise executed

are arranged to automatically and transparently communicate with an enforcement

mechanism that determines the rule to apply for each file, based on the

identification/classification information of the file… Based on located rule, the

enforcement mechanism either returns the normal access token, a ‘disallowed’ error

that fails the request, (e.g., the function does not load the software), or computes and

returns a restricted access token that restricts the software to an extent that

corresponds to the security level determined by the rule.”) (emphasis added).

108. This is also depicted in the flowchart of Figure 5A. “When the process

508 wants to load and possibly execute the software file 510, it identifies itself and

provides information 514 identifying the software file to an appropriate function 516

(of a set) that can open, load and/or execute the file 510.” Id. at [0066] (emphasis

added). “[I]nstead of simply loading the file and executing any executable code

therein with the parent token’s rights and privileges, each of the functions 516 is

arranged to first provide the software file information 514 to an enforcement

mechanism (circled numeral two (2) in FIG. 5A).” Id. at [0067] (emphasis added).

After the loading of the software file is interrupted by function 516 sending the

software file information to the enforcement mechanism 518 in step 2, “the

enforcement mechanism consults the effective policy 502 to determine which rule

IPR2024-00027
CrowdStrike Exhibit 1003 Page 69

IPR2024-00027
U.S. Patent 7,673,137

 70

applies for the file 510, and from the rule determines whether to open/execute the

file, and if so, the extent of any restricted execution context for the file 510.” Id. In

other words, the loading function 516 is invoked by the requesting process 508, and

the loading process is interrupted by the loading function 516 sending the software

file information to the enforcement mechanism 518 in step 2 of Figure 5A. Thus,

Lambert teaches interrupting the loading of the software file so that it can be

identified/classified, and an appropriate security policy may be applied:

Id. at Fig. 5A (annotated).

IPR2024-00027
CrowdStrike Exhibit 1003 Page 70

IPR2024-00027
U.S. Patent 7,673,137

 71

109. In my opinion, a person having ordinary skill in the art would have

understood the combination of Dan and Lambert renders obvious the step of

interrupting the loading of a new program for operation with the computing device.

As I discussed above, Dan teaches an RCL enforcer module that “monitors all

system calls.” Dan at 12; see also Section III.E.1. Specifically, Dan teaches that “the

operating system’s call interface is modified to call the CheckAccessRequest()

upon entry to verify the parameters of the system call.” Id. at 14 (emphasis added).

Dan expressly teaches intercepting an “open() system call” by modifying the

operating system’s call interface to call the CheckAccessRequest() routine:

Id. at Fig. 10 (excerpt).

IPR2024-00027
CrowdStrike Exhibit 1003 Page 71

IPR2024-00027
U.S. Patent 7,673,137

 72

110. This is very similar to Lambert’s teaching of the operating system

function 516 passing information about the software file to the enforcement

mechanism 518 rather than loading the software file. Lambert at [0066] (“When the

process 508 wants to load and possibly execute the software file 510, it identifies

itself and provides information 514 identifying the software file to an appropriate

function 516 (of a set) that can open, load and/or execute the file 510. For example,

this can be accomplished by placing an application programming interface (API) call

to the operating system, wherein the file information 514, typically in the form a

path and filename is passed, as a parameter.”), [0067] (“[I]nstead of simply loading

the file and executing any executable code therein with the parent token's rights and

privileges, each of the functions 516 is arranged to first provide the software file

information 514 to an enforcement mechanism (circled numeral two (2) in FIG.

5A).”), Fig. 5A.

111. Based on the teachings of Lambert, it would have been obvious to

modify Dan’s RCL enforcer to interrupt the loading of a new program for operation

with the computing device. As noted above, Lambert teaches classifying a program

as “bad” code that is not allowed to execute, “good” code that is allowed to execute

without restriction, or “good” yet still untrusted code that is allowed to execute with

restrictions. Lambert at [0042] (“A process 300 may be associated with the restricted

token 210…such as when the process is untrusted[.]”) (emphasis added), [0056]

IPR2024-00027
CrowdStrike Exhibit 1003 Page 72

IPR2024-00027
U.S. Patent 7,673,137

 73

(“In the case of known bad code, the administrator may set the rule to specify that

any file with that hash will not be allowed to execute at all… Alternatively, in the

case of known good code that is allowed to execute, a hash rule can specify how it

will be executed, e.g., unrestricted (normal) or restricted (and to what extent).”)

(emphasis added).

112. A person having ordinary skill in the art would have understood that

configuring Dan’s RCL enforcer to interrupt the loading of a new application so that

it can be identified and classified prior to execution would have had multiple

benefits.

113. First, this modification would have enabled Dan’s RCL enforcer to

block known malware from executing. As I discussed above, Dan allows

“downloading (or installing from CDROM) of any code without any certificate as in

the conventional systems.” A user may accidentally (or intentionally) download

known malware to the computer that does not have a certificate or RCL. Configuring

Dan’s RCL enforcer to interrupt the loading of the new program would have enabled

the RCL enforcer to identify the program as “bad” code prior to it executing and

potentially harming the computing device.

114. A person having ordinary skill in the art would have recognized making

a security determination prior to loading the application would reduce the amount of

potential damage that could be done by a malicious program compared to if the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 73

IPR2024-00027
U.S. Patent 7,673,137

 74

malicious program was allowed to execute – even if the malicious program only had

access to minimum resource capabilities. It was well understood (and common

sense) that running malicious code was harmful to computer systems. See e.g.,

Lambert at [0004]. (“[S]ome of the untrusted code may be malicious code (e.g., a

computer virus possibly in the form of a Trojan horse) that intentionally

misrepresents itself to trick users into running it, typically inflicting damage,

corrupting data or otherwise causing mischief to the computers on which the

malicious code runs.”). Thus, configuring Dan’s RCL enforcer to interrupt the

loading of a new application so that it may be identified as known as “bad” code, as

taught by Lambert, would have allowed Dan’s sandbox to block the execution of

known malware.

115. Second, this modification would provide solutions for validating

conventional programs that lack Dan’s certifications/RCLs. As I discussed above, a

person having ordinary skill would have understood that a program may be obtained

directly from a trusted developer instead of a third-party certification agency.

Incorporating Lambert’s identification/classification process would have allowed

Dan’s sandbox to select an appropriate security policy rather than unnecessarily

restricting these trusted programs to one-size-fits-all “minimum default resource

capabilities” because they do not have certificates/RCLs. Dan at 7 (“Finally, CV

allows downloading (or installing from CDROM) of any code without any certificate

IPR2024-00027
CrowdStrike Exhibit 1003 Page 74

IPR2024-00027
U.S. Patent 7,673,137

 75

as in the conventional systems. Such untrusted codes when executed via the sandbox

environment will be given minimum default resource capabilities.”).

116. Third, configuring Dan’s RCL enforcer to interrupt the loading of a new

application so that may be identified as either a trusted application that is allowed to

run without restrictions or an untrusted application that is allowed to run with

restrictions would have also been beneficial. As demonstrated by Lambert, it was

well-known that computer users execute both trusted and untrusted programs. For

example, a program obtained directly from a trusted developer may be an example

of a known “good” application that is trusted to execute without restriction. On the

other hand, a web browser is an example of a known “good” program that is

nevertheless untrusted because it is vulnerable to malicious exploits. See e.g., De

Paoli at 2 (“[T]he host computer is open to a variety of attacks, ranging from attacks

that simply monitor the environment to export information, to attacks that change

the configuration or behavior of the host (changing files, consuming resources), and

finally to attacks that open a back door to let intruders get into the host. Attacks

succeed either because the implementation of the browser is weak (from flaws in the

specification and/or from poor implementation) or because the environment in which

the browser is executed has flaws.”).

117. Configuring Dan’s RCL enforcer to interrupt the loading of the new

application to allow it to determine whether the new application is a trusted

IPR2024-00027
CrowdStrike Exhibit 1003 Page 75

IPR2024-00027
U.S. Patent 7,673,137

 76

application that does not need to be monitored by the RCL enforcer or an untrusted

application that does need to be monitored by the RCL enforcer would have allowed

Dan’s sandbox to utilize the computing device’s resources more efficiently. Indeed,

Dan’s RCL enforcer is “invoked for each system call made by an application.” Dan

at 12. It was understood that system call interception was costly and impacted the

performance of kernel monitoring systems. See e.g., Bernaschi at 175 (“This reduces

the cost of system call interception since the invocation of most system calls is not

checked, and thus improves the performance of the present prototype.”). Not

invoking the RCL enforcer for the system calls of a trusted application would have

predictably increased the sandbox’s performance and would have reduced the

computational costs associated with running the sandbox on the client system. In

2002, processors were less powerful than they are today. See, e.g., Microprocessor

Trend Data (depicting transistors, performance frequency, power, and logical core

at 1970-2020). This means that in 2002, a person having ordinary skill in the art

would have been motivated to make Dan’s sandbox as efficient as possible to ensure

that it does not unnecessarily consume resources by monitoring programs that need

not be monitored.

118. For these reasons, a person having ordinary skill in the art would have

been motivated to improve similar computer security methods in the same way by

configuring Dan’s RCL enforcer to interrupt the loading of a new application on the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 76

IPR2024-00027
U.S. Patent 7,673,137

 77

computing device so that it can be identified/classified prior to execution, as taught

by Lambert. As discussed above, this would have predictably provided additional

safeguards and performance improvements to Dan’s client sandbox.

119. Configuring Dan’s RCL enforcer to interrupt the loading of the new

application so that it can be classified prior to execution would not have changed the

principle of operation of Dan’s client sandbox. Indeed, Dan’s sandbox would still

monitor untrusted applications, as described by Dan. The only change would be that

known malicious applications would be blocked from execution, and trusted

applications would not be monitored. Given this and the predictability of computing

programming techniques at the time of the ’137 Patent and Dan’s teachings

regarding modifying the operating system’s call interface, there would have been a

reasonable expectation of success configuring Dan’s RCL enforcer to interrupt the

loading of a new program for operation with the computing device.

(c) 6(b) – validating the new program;

120. Regarding the validating step, the ’137 Patent discloses “the validation

module can represent the MD5 software module commonly known to those in the

art,” which “calculates a checksum for each allowed program and that checksum is

stored for later comparison.”’137 Patent at 8:13-17.

121. As I described above, it would have been obvious to a person having

ordinary skill in the art to configure Dan’s RCL enforcer to interrupt the loading of

IPR2024-00027
CrowdStrike Exhibit 1003 Page 77

IPR2024-00027
U.S. Patent 7,673,137

 78

the new application (i.e., the new program) so that that application may be identified

and classified, and an appropriate security policy may be selected as taught by

Lambert. See Claim 6(a). Lambert’s identification/classification process is very

similar to the ’137 Patent’s validating step. Specifically, Lambert teaches that “[t]o

identify and classify software, (e.g., maintained in a file), various selectable

classification criteria are made available to an administrator, including a unique

hash value of the file’s content (e.g., via an MD5 image hash)…” Lambert at

[0053] (emphasis added). Per Lambert, “one way that a software file can be

identified (and thus matched to a corresponding rule) is by a hash of its contents,

which is essentially a fingerprint that uniquely identifies a file regardless of whether

the file is moved or renamed.” Id. at [0055] (emphasis added). “[B]efore opening a

file for execution, a hash value is determined from that file’s contents, and the

set of hash value information (e.g., in the policy object) searched to determine if a

rule exists for that hash value. If so, that rule provides the security level for the

software.” Id. (emphasis added). Thus, like the ’137 Patent, Lambert also teaches

comparing the hash of the software file to the hashes of known programs.

122. Per Lambert, “an administrator can set a rule for any file based on its

unique hash value, with the rule specifying whether (and if so, how) a software file

having that hash value will execute.” Id. at [0056]. “In the case of known bad code,

the administrator may set the rule to specify that any file with that hash will not be

IPR2024-00027
CrowdStrike Exhibit 1003 Page 78

IPR2024-00027
U.S. Patent 7,673,137

 79

allowed to execute at all (i.e., ‘disallowed’ or ‘revoked’ status).” Id. “Since the rule

along with the hash value is maintained or distributed to the machine, (e.g., via a

policy object), whenever a request to open that file is received, a hash of the file

matches the saved hash and rule, and that file will not be run.” Id. “Alternatively, in

the case of known good code that is allowed to execute, a hash rule can specify how

it will be executed, e.g., unrestricted (normal) or restricted (and to what extent).” Id.

Thus, Lambert compares the software file’s hash to the hashes of known programs

to validate whether it should be allowed to execute in an unrestricted manner,

restricted manner, or not at all.

123. Lambert’s validating step is also depicted in Figure 5A. Once the

enforcement mechanism receives the software file’s information from the software

loading function 516, it “may call (or include in its own code) a hash function 520

or the like to obtain a hash value from the contents of the software file 510, as

generally represented in FIG. 5A by the arrows labeled with circled numerals three

(3) to six (6).” Id. at [0068]. “As described above, a suitable hash function 520

provides a unique fingerprint of the software file 510, while the effective policy 502

may have a specific rule for that hash.” Id. Arrows seven (7) and eight (8)

“represent[] accessing the policy to get the rule or rules” by looking for a rule

corresponding to “the hash value.” Id. Therefore, steps 3-8 of Figure 5A collectively

qualify as validating the software within the meaning of the ’137 Patent:

IPR2024-00027
CrowdStrike Exhibit 1003 Page 79

IPR2024-00027
U.S. Patent 7,673,137

 80

Id. at Fig. 5A (annotated).

124. For all the reasons discussed above, it would have been obvious to

person having ordinary skill in the art to configure Dan’s sandbox to identify and

classify applications as bad (i.e., no execution), good (unrestricted execution), or

untrusted (restricted execution) as taught by Lambert. See Claim 6(a). Since

Lambert’s identification/classification step qualifies as validating, Dan’s sandbox

modified in view of Lambert also renders obvious validating the new program for

the same reasons. Id.

125. Moreover, it would have been obvious to a person having ordinary skill

in the art to configure Dan’s RCL enforcer to validate the new application by

comparing its hash value to a list of hashes for known applications so that the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 80

IPR2024-00027
U.S. Patent 7,673,137

 81

sandbox can distinguish between trusted and untrusted applications, as taught by

Lambert. A person having ordinary skill in the art would have understood that using

a hash of the new application and comparing it to a list of hashes for known

applications would have been a reliable way to validate the application. As noted by

Lambert, the hash serves as “a fingerprint that uniquely identifies a file regardless

of whether the file is moved or renamed.” Lambert at [0055]. For these reasons, a

person having ordinary skill in the art would have been motivated to combine the

prior art elements of Dan’s RCL enforcer and Lambert’s method of using hashes to

uniquely identify and classify a software file according to known methods to yield

the predictable result of allowing Dan’s sandbox to validate the new application by

identifying it as bad (i.e., no execution), good (unrestricted execution), or untrusted

(restricted execution).

126. The ’137 Patent acknowledges that the MD5 software modules were

“commonly known to those in the art.” ’137 Patent at 8:14-15. A person having

ordinary skill in the art would have understood that an MD5 hash was a well-known

type of cryptographic hash. See, e.g., Preneel at 20-21 (listing MD5 as a type of

dedicated cryptographic hash function). Therefore, there would have been a

reasonable expectation of success configuring Dan’s sandbox to validate the new

application using “commonly known” MD5 hashes.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 81

IPR2024-00027
U.S. Patent 7,673,137

 82

(d) 6(c) – if the new program is validated, permitting the new
program to continue loading and to execute in connection
with the computing device;

127. I have been asked to interpret this limitation as “if the new program is

validated, then it is not monitored while it loads and executes in connection with the

computing device.” See Section III.D.

128. As I described above, Lambert teaches comparing the hash of a

software file to the hashes of known software files. See Claim 6(b). Lambert also

teaches a case where the software file is determined to be “good code” that is allowed

“unrestricted” execution based on this comparison. Lambert at [0056] (“[I]n the case

of known good code that is allowed to execute, a hash rule can specify how it will

be executed, e.g., unrestricted (normal)…”); see also, id. at [0008] (“Depending on

what the rule specifies for the classification that is determined for any given software

module (e.g., software file), the software may execute in a normal (unrestricted)

execution environment (context)…”).

129. Unrestricted execution is different from restricted execution in that

restricted execution “reduces software’s access to resources, and/or removes

privileges, relative to a user’s normal access token.” Id. at Abstract. When it is

determined that software should be restricted, “the enforcement mechanism 518 can

compute and associate a restricted token with the software file 510, whereby if

creation of a process is requested for the software file, (it includes executable

IPR2024-00027
CrowdStrike Exhibit 1003 Page 82

IPR2024-00027
U.S. Patent 7,673,137

 83

content), any process of the software file is restricted in its access rights and

privileges according to the restricted token.” Id. at [0070]. When the user requests

to load a software file, “the enforcement mechanism 518 completes the call and

returns information back to the software function 516 that called it, the returned

information essentially including an instruction on whether to open the file, and if

so, the token to associate with the file.” Id. at [0071]. “If a token is returned, it may

be the parent token (unchanged) if no restricted execution environment is required

by the rule, or a restricted token that establishes a restricted execution

environment/context for the processes of the software file 510.” Id. “If the computed

token 526 is a restricted token, the process of the software file can now execute, but

only in association with the restricted token, thus providing the rule-determined

secure execution environment.” Id.

130. As I discussed above, Lambert’s Figure 3 and the related disclosure

describe how a restricted program is monitored based on its restricted token. See

Section III.E.2. Specifically, every time a restricted program attempts to access an

object (e.g., a file object), the access must be approved or denied based on the

restrictions in the program’s restricted token. Id.

131. In contrast, Lambert teaches that unrestricted code is not monitored or

restricted. Lambert at [0008] (“[T]he software may execute in a normal

(unrestricted) execution environment (context)…”), [0098] (“If not disallowed, step

IPR2024-00027
CrowdStrike Exhibit 1003 Page 83

IPR2024-00027
U.S. Patent 7,673,137

 84

904 tests whether the security level is unrestricted. If so, the enforcement mechanism

effectively returns the parent access token (e.g., the token itself, a pointer to it, or

permission to use the parent access token), possibly along with a return code having

a value indicative of success.” In other words, Lambert teaches that monitoring is

only required when a program has a restricted token. Thus, Lambert teaches

determining that the software is validated for unrestricted execution, which results

in it not being monitored while it loads and executes on the computing device.

132. For the reasons discussed above, it would have been obvious to a person

having ordinary skill in the art to configure Dan’s RCL enforcer to validate the new

program by comparing its hash to the hashes of other known programs. See Claim

6(b). For the same reasons, it would have been obvious to configure Dan’s RCL

enforcer to determine that the program is validated if its hash matches the hash of a

known trusted application. Id. As I discussed above, it would have been obvious to

configure Dan’s sandbox to determine whether the new application is a trusted

application that does not need to be monitored by the RCL enforcer to allow Dan’s

sandbox to utilize the computing device’s resources more efficiently. See Claim 6(a).

As I noted above, a person having ordinary skill in the art would have been motivated

to make Dan’s sandbox as efficient as possible to ensure that it does not

unnecessarily consume resources by monitoring programs that need not be

monitored. Id. This was especially critical in 2002 because processor speeds much

IPR2024-00027
CrowdStrike Exhibit 1003 Page 84

IPR2024-00027
U.S. Patent 7,673,137

 85

slower than today. Id. In my opinion, a person having ordinary skill in the art would

have understood that a trusted application would not pose a serious security risk to

the client system. Therefore, monitoring a trusted application would be a waste of

the computing device’s resources. Therefore, a person having ordinary skill in the

art would have been motivated to improve similar computer-implemented security

methods in the same way by configuring Dan’s RCL enforcer to not monitor a

trusted application during loading and execution.

133. Configuring Dan’s RCL enforcer to not monitor trusted programs

would have represented a minor change to the sandbox software. Modifying Dan’s

RCL enforcer to not monitor trusted applications would also not have changed the

principle of operation because Dan would still monitor untrusted applications per

Dan’s stated purpose. Dan at Abstract (“Sharing of unknown programs creates an

atmosphere of untrust and hence exacerbates the need to secure information and

physical resources from alien code. A sandbox approach to execution of such foreign

code is proposed in this paper.”). Dan also proposes an embodiment where only

programs with trusted certificates execute and they are not monitored, which would

have further encouraged or suggested to a skilled artisan to not monitor when a

certificateless program was identified for unrestricted execution using Lambert’s

features. Id. at 2 (“allowing execution…without further monitoring”). Given these

factors and the predicably of computer programming at the time of the ’137 Patent,

IPR2024-00027
CrowdStrike Exhibit 1003 Page 85

IPR2024-00027
U.S. Patent 7,673,137

 86

a person having ordinary skill in the art would have had a reasonable expectation of

success configuring Dan’s RCL enforcer to not monitor a trusted application while

it is loading and executing on the client system.

(e) 6(d)(i) – if the new program is not validated, monitoring
the new program while it loads and executes in connection
with the computing device,

134. Lambert also teaches comparing the hash of a software file to the hashes

of known software files and determining that the software must be executed “in a

restricted execution environment.” Lambert at [0008]; see also, id., at [0014]

(“Based on located rule, the enforcement mechanism … computes and returns a

restricted access token that restricts the software to an extent that corresponds to the

security level determined by the rule. If allowed but restricted, the returned restricted

token is associated with the code’s processes, constraining the code accordingly.”),

[0054] (“By enabling the identification of software via these or other classification

criteria, and then locating and enforcing an appropriate security rule established for

the software based on its classification, the present invention automatically controls

whether content is executable, and if so, the extent (if any) to which it is restricted.”).

As discussed above, Lambert teaches that applications executing in a restricted

execution environment are monitored. See Claim 6(c).

135. Dan’s RCL enforcer monitors the new program while it loads and

executes on the computing device. Specifically, the RCL enforcer “ensures that the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 86

IPR2024-00027
U.S. Patent 7,673,137

 87

permissions and resource consumption limits specified in the RCL are not violated.”

Dan at 9. “The module for enforcing system resource capabilities monitors two types

of resources: physical and logical.” Id. Regarding the monitoring of physical

resources, the “RCL enforcer protects physical resources such as memory and CPU

usage, disk storage, and disk bandwidth utilization.” Id. “Access control information

about physical and logical resources of the processing executing an alien application

code is maintained in data structures called the Runtime Physical Resources Table

(RPRT) and the Runtime Logical Resources Table (RLRT).” Id. “When an

application is initially loaded for execution, the RPRT and RLRT data structures

are initiated from the information specified in the RCL configuration file associated

with this application.” Id. (emphasis added). “During process execution, the RCL

enforcer references and updates the information stored in the RPRT data structure

using the algorithm outlined in Figure 5 to allow or deny the request for accessing

physical resources.” Id. (emphasis added).

136. “Similar to the RPRT, access control information for the logical

resources is maintained in a data structure called the Runtime Logical Resources

Table (RLRT).” Id. at 12. “The logical resources constitute file, directories,

communication ports and various other system service calls.” Id. “The RLRT data

structure is also initialized when an application is loaded into memory.” Id.

(emphasis added). “The RLRT contains a row for each system service access

IPR2024-00027
CrowdStrike Exhibit 1003 Page 87

IPR2024-00027
U.S. Patent 7,673,137

 88

capabilities.” Id. “Each row has a flag that indicates whether this service call is

allowed always, never or needs to be verified[.]” Id. “The RCL enforcer monitors

all systems calls, i.e., access requests to logical resources in the system.” Id. “This

monitoring requires that the RCL enforcer be invoked for each system call made by

an application.” Id. “The RCL enforcer then validates the parameters of the system

call against those specified in the RLRT data structures and either allows or

disallows the call from continuing.” Id. Thus, Dan teaches monitoring the new

program while it loads and executes in connection with the computing device.

137. When modifying Dan in view of Lambert, it would have been obvious

to a person having ordinary skill in the art to configure Dan’s sandbox to perform

monitoring of the new program while it loads and executes on the host computer

when the program fails validation for unrestricted execution, including for programs

that lack Dan’s certificate. A person having ordinary skill in the art would have

understood this modification simply amounts to making the monitoring conditional

on the validation outcome and to not perform monitoring on new programs that are

determined to be trusted, as discussed with regard to Claim 6(c), while monitoring

non-validated programs with an appropriately configured RCL similar to how

Lambert customizes monitoring by restricted tokens. Lambert at [0037]. As

explained above, Dan teaches monitoring untrusted new programs while they load

and execute on the client device. It would have been obvious to configure the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 88

IPR2024-00027
U.S. Patent 7,673,137

 89

sandbox to perform monitoring on new applications as described by Dan, based on

the outcome of the validation. Thus, a person having ordinary skill in the art would

have been motivated to combine prior art elements according to known methods to

yield the predictable result Dan’s sandbox monitoring the untrusted application

when it fails the validity check. Since the purpose of Dan’s sandbox is to monitor

untrusted applications, and this is a highly predictable art, there would have been a

reasonable expectation of success configuring Dan’s sandbox to monitor the new

application when it fails the validity check.

(f) 6(d)(ii) – wherein the step of monitoring the new program
while it executes is performed at the operating system
kernel of the computing device.

138. Dan teaches that “[t]he RCL enforcer monitors all systems calls, i.e.,

access requests to logical resources in the system.” Dan at 12. As discussed above,

Dan teaches three different approaches to monitoring system calls, including binary

code modification, service library modification, and system call modification. Id at

14; see also, Section III.E.1. In Dan’s preferred system call modification approach,

“the operating system’s call interface is modified to call the

CheckAccessRequest() upon entry to verify the parameters of the system call.”

Dan at 14 (emphasis added). “Thus, regardless of how the applications are

structured, the system call entry point in the operation systems will ensure

consistent security checks for all applications that are executed on the machine.” Id.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 89

IPR2024-00027
U.S. Patent 7,673,137

 90

(emphasis added). As shown in Figure 10, the system call modification technique

performs monitoring at the operating system kernel of the client system:

Id. at Fig. 10 (excerpt).

139. A person having ordinary skill in the art would have understood the

portion of Figure 10 reproduced above shows that when the operating system kernel

system call function is invoked, the enforcer module’s CheckAccessRequest()

routine determines whether the call is allowed. Id. at 13 (depicting pseudocode for

the CheckAccessRequest() routine). Indeed, a person having ordinary skill in

the art would have understood, that the new program is identified by the system call

number using the call table, and is monitored by means of analyzing the passed

parameters and the identity of the new program, after which a conditional action is

IPR2024-00027
CrowdStrike Exhibit 1003 Page 90

IPR2024-00027
U.S. Patent 7,673,137

 91

taken based on the determination (i.e., the system call is either allowed or

disallowed). Id. Thus, Dan teaches that the step of monitoring the new program while

it executes is performed at the operating system kernel of the computing device.

140. A person having ordinary skill in the art would have found it obvious

to implement Dan’s sandbox using the expressly suggested system call modification

method. Dan expressly recognizes that using the system call modification method is

preferred because it would have ensured consistent security checks for all untrusted

applications that are executed on the client system. Dan at 14 (“Thus, regardless of

how the applications are structured, the system call entry point in the operation

systems will ensure consistent security checks for all applications that are executed

on the machine.”); 15 (“We selected this approach to manage logical resources in

the system primarily because of the consistency it offers for enforcing security.”).

Given Dan’s express teaching, suggestion, and motivation, a person having ordinary

skill in the art would have been motivated to implement Dan’s sandbox using the

system call modification method.

141. As discussed above, Dan teaches the system call modification method

is the most consistent way to enforce security. Thus, a skilled artisan would have

understood that there would have been a reasonable expectation of success

configuring Dan’s sandbox to use the system call modification method since it was

the most consistent way to enforce security.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 91

IPR2024-00027
U.S. Patent 7,673,137

 92

2. Claim 8 - The method of claim 6, wherein the step of monitoring
the new program comprises intercepting a signal from the
computing device’s operating system.

142. As I described above, Dan teaches monitoring the new application by

intercepting a signal from the computing device’s operating system by modifying

the operating system’s call interface to call the RCL enforcer module’s

CheckAccessRequest() routine. See Claim 6(d)(ii).

3. Claim 9 - The method of claim 6, wherein the step of validating
the new program comprises determining whether the new
program corresponds with an approved program.

143. As I discussed above, it would have been obvious to a person having

ordinary skill in the art to configure Dan to incorporate Lambert’s validating step to

identify and classify the new program. See Claim 6(b). As part of this step, Lambert

teaches comparing the hash of a software file to the hashes of other known software

files to determine if the software file being loaded corresponds to an approved

program that is allowed to execute in unrestricted mode. Id. Thus, a person having

ordinary skill in the art would have understood the combination of Dan and Lambert

also teaches wherein the step of validating the new program comprises determining

whether the new program corresponds with an approved program for the same

reasons as discussed with regard to Claim 6(b). Id.

4. Claim 12 - The method of claim 6, wherein the step of monitoring
the new program comprises controlling the files the new
program attempts to access during execution of the new
program.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 92

IPR2024-00027
U.S. Patent 7,673,137

 93

144. Dan teaches that “[t]he RCL enforcer monitors all systems calls, i.e.,

access requests to logical resources in the system.” Dan at 12. Dan describes,

“logical resources constitute file, directories, communication ports and various other

system service calls.” Id. (emphasis added); see also, id. at 17 (“Following this

syntax specification, a list of comma-separated entries are described which specify

the application privileges for an open call to files in various directories. The

example shows that the open call should be allowed in any mode for all files in the

/tmp directory and not be allowed for any files in the /tmp/admin subdirectory.”)

(emphasis added). After the RCL enforcer is invoked by a system call attempting to

open a file, “The RCL enforcer then validates the parameters of the system call

against those specified in the RLRT data structures and either allows or disallows

the call from continuing.” Id. at 12.

145. For this reason, a person having ordinary skill in the art would have

understood that Dan teaches the step of monitoring the new program comprises

controlling the files the new program attempts to access during execution of the new

program.

5. Claim 25

(a) 25[Pre]. – A computer-implemented method for
performing security for a computer device during a pre-
execution phrase comprising the steps of:2

2 I have been informed that the preamble of claim 25 includes a typographical error and that the term

“phrase” should be interpreted to mean “phase.”

IPR2024-00027
CrowdStrike Exhibit 1003 Page 93

IPR2024-00027
U.S. Patent 7,673,137

 94

146. As I discussed above in Claim 6, Dan teaches a computer-implemented

method for performing security for a computer device. See Claim 6[Pre].

Additionally, the combination of Dan and Lambert teaches a computer-implemented

method for performing security for a computer device during a pre-execution phase

as described below.

(b) 25(a) – identifying an allowed program that is permitted
to execute with the computing device;

147. As I discussed above, Dan primarily focuses on unknown/untrusted

programs and automatically assumes that any program without a certificate/RCL

should be given with minimum resource capabilities. See Claim 6(a). However, a

person having ordinary skill in the art would have understood that not all

applications without certificates are unknown and/or untrusted. Id.

148. Lambert teaches a step where the system administrator identifies a

software file as being allowed to execute on a computing device in either a restricted

or unrestricted mode. “Via a user interface or the like operably connected to a

suitable hash mechanism, an administrator can select any software file, obtain a hash

value from its contents, and enter and associate a rule (that specifies a security level)

with that hash value.” Id at [0055]. “Multiple files can have their corresponding hash

values and rules maintained in a policy object, or otherwise made available to the

system, whereby for any given instance of any file, the set of maintained hash values

can be queried to determine whether a rule exists for it.” Id. “In this manner, an

IPR2024-00027
CrowdStrike Exhibit 1003 Page 94

IPR2024-00027
U.S. Patent 7,673,137

 95

administrator can set a rule for any file based on its unique hash value, with the rule

specifying whether (and if so, how) a software file having that hash value will

execute.” Id at [0056]. “In the case of known bad code, the administrator may set the

rule to specify that any file with that hash will not be allowed to execute at all (i.e.,

‘disallowed’ or ‘revoked’ status).” Id. “[I]n in the case of known good code that is

allowed to execute, a hash rule can specify how it will be executed, e.g., unrestricted

(normal) or restricted (and to what extent).” Id. (emphasis added). Thus, Lambert’s

teaching of an administrator identifying a “good” program that is allowed to execute

in either restricted or unrestricted mode qualifies as identifying an allowed program

that is permitted to execute with the computing device.

149. Based on the teachings of Lambert, it would have been obvious to

configure Dan’s system to include a user interface that allows the system

administrator to identify an allowed program that is permitted to execute with the

computing device. Specifically, it would have been obvious to a PHOSITA to

configure Dan’s system to allow the system administrator to identify “good”

programs that are allowed to execute in an unrestricted or less restricted manner even

if they do not have certificates/RCLs. Indeed, configuring Dan’s system to include

a user interface where an administrator can identify allowed applications would have

enabled the administrator to define security policies for applications that do not have

certificates/RCLs. It was a well-known practice for system administrators to

IPR2024-00027
CrowdStrike Exhibit 1003 Page 95

IPR2024-00027
U.S. Patent 7,673,137

 96

maintain lists or databases of hashes associated with known applications. See, e.g.,

Schmid 4:36-38 (“To make an administrator’s job easier, an AS may maintain a

database of known application hashes.”). A skilled artisan would have understood

that allowing a system administrator of Dan’s system to identify allowed programs

in advance would have predictably made it easier to ascertain whether a given

application should be allowed to be executed and, if so, what (if any) restrictions

should apply in the absence of a certificate/RCL. Therefore, person having ordinary

skill in the art would have been motivated to combine the prior art elements of Dan’s

security method with Lambert’s step of allowing a system administrator to identify

an allowed program that is permitted to execute with the computing device to yield

the predictable result of a security system that applies appropriate security policies

to applications that do not have certificates/RCLs.

150. Dan teaches providing utilities for the system administrator, including

an InstallCop utility that the system administrator uses to edit configuration files

and manage the system-wide installation of software applications. Dan at 20 (“In

case of system wide installation (by the super user)…”), (“[T]he InstallCop can

allow the system administrator to edit the system default configuration file before

the application is made available to users.”). A person having ordinary skill in the

art would have understood that adding another utility for the system administrator to

identify programs that are allowed to execute on the computing device would have

IPR2024-00027
CrowdStrike Exhibit 1003 Page 96

IPR2024-00027
U.S. Patent 7,673,137

 97

only required minor software changes. Lambert likewise describes administrators

configuring hash-based rules by a user interface, further teaching, suggesting, and

motivating a person having ordinary skill in the art. Lambert at Abstract (describing

rules “distributable over a network”), [0010]-[0011], [0052]-[0056], [0078].

Moreover, allowing an administrator to identify applications that are allowed to

execute in either unrestricted or restricted mode would not have changed the

principle of operation of Dan’s sandbox since Dan’s sandbox would still execute

untrusted code having associated restrictions. Given these factors, there would have

been a reasonable expectation of success configuring Dan’s sandbox to include a

user interface that allows a system administrator to identify an allowed program that

is permitted to execute with the computing device.

(c) 25(b) – receiving a signal that a new program is being
loaded for execution with the computing device;

151. For the reasons discussed above, Dan teaches a new program. See

Claim 6(a).

152. Lambert teaches receiving a signal that a software file is being loaded

for execution with the computing device. For example, “in FIG. 5A, a process 508

such as a process of a user or application requesting to open a software file 510 has

an access token 5121 associated with it[.]” Lambert at [0066]. “When the process

508 wants to load and possibly execute the software file 510, it identifies itself

and provides information 514 identifying the software file to an appropriate function

IPR2024-00027
CrowdStrike Exhibit 1003 Page 97

IPR2024-00027
U.S. Patent 7,673,137

 98

516 (of a set) that can open, load and/or execute the file 510.” Id. (emphasis added).

“For example, this can be accomplished by placing an application programming

interface (API) call to the operating system, wherein the file information 514,

typically in the form a path and filename is passed, as a parameter.” Id. “Note that

in a typical implementation, the software opening function 516 comprises an

operating system component, and thus has access to a copy 5122 of the parent access

token.” Id. “Further note that such function calls are already the typical way in

which files are loaded, and thus the process 508 (which may be of an existing

application program or other type of component) need not be modified in any way.”

Id. (emphasis added). “[I]nstead of simply loading the file and executing any

executable code therein with the parent token’s rights and privileges, each of the

functions 516 is arranged to first provide the software file information 514 to an

enforcement mechanism (circled numeral two (2) in FIG. 5A).” Id at [0067].

(emphasis added). Thus, Lambert teaches that the enforcement mechanism 518

receives a signal that a software file is being loaded for execution with the computer

device from the software opening function 516 as shown in Figure 5A below:

IPR2024-00027
CrowdStrike Exhibit 1003 Page 98

IPR2024-00027
U.S. Patent 7,673,137

 99

Lambert at Fig. 5A (annotated).

153. In my opinion, a person having ordinary skill in the art would have

understood the combination of Dan and Lambert renders obvious the step of

receiving a signal that a new program is being loaded for execution with the

computing device. As I discussed above, Dan teaches an RCL enforcer module that

“monitors all system calls.” Dan at 12; see also Section III.E.1. Specifically, Dan

teaches that “the operating system’s call interface is modified to call the

CheckAccessRequest() upon entry to verify the parameters of the system call.”

Id. at 14 (emphasis added). Indeed, Dan expressly teaches intercepting an “open()

IPR2024-00027
CrowdStrike Exhibit 1003 Page 99

IPR2024-00027
U.S. Patent 7,673,137

 100

system call” by modifying the operating system’s call interface to call the

CheckAccessRequest() routine:

Id. at Fig. 10 (excerpt).

154. This is very similar to Lambert’s teaching of the operating system

function 516 passing information about the software file to the enforcement

mechanism 518 rather than loading the software file. Lambert at [0066] (“When the

process 508 wants to load and possibly execute the software file 510, it identifies

itself and provides information 514 identifying the software file to an appropriate

function 516 (of a set) that can open, load and/or execute the file 510. For example,

this can be accomplished by placing an application programming interface (API) call

to the operating system, wherein the file information 514, typically in the form a

IPR2024-00027
CrowdStrike Exhibit 1003 Page 100

IPR2024-00027
U.S. Patent 7,673,137

 101

path and filename is passed, as a parameter.”), [0067] (“[I]nstead of simply loading

the file and executing any executable code therein with the parent token's rights and

privileges, each of the functions 516 is arranged to first provide the software file

information 514 to an enforcement mechanism (circled numeral two (2) in FIG.

5A).”), Fig. 5A.

155. Based on the teachings of Lambert, it would have been obvious to a

person having ordinary skill in the art to configure Dan’s RCL enforcer module to

receive a signal that a new application is being loaded for execution with the

computing device via the system call functions associated with loading and

executing a new program. For the reasons described above, it would have been

obvious to a person having ordinary skill in the art to configure Dan’s system to

allow an administrator to identify applications that are allowed to execute on the

computer and define their corresponding security policies to account for applications

that do not have certificates/RCLs. See Claim 25(a). For the same reasons, it would

have also been obvious to configure the RCL enforcer to receive a signal when the

new application is being loaded so that the RCL enforcer may check to see if the

application is an allowed application and what security policy should apply. Indeed,

a person having ordinary skill in the art would have understood that configuring

Dan’s RLC enforcer to receive a signal (e.g., via modifying the operating system’s

call interface functions responsible for loading programs) would have predictably

IPR2024-00027
CrowdStrike Exhibit 1003 Page 101

IPR2024-00027
U.S. Patent 7,673,137

 102

allowed the sandbox to determine whether an application without a certificate is

allowed to execute and if so, whether it may execute in a restricted or unrestricted

manner, prior to loading it. Therefore, a skilled artisan would have been motivated

to combine prior art elements according to known methods to yield the predictable

result of allowing Dan’s sandbox to determine whether the new application needs to

be monitored prior to it being loaded and executed on the computing device even if

it does not have a certificate/RCL.

156. Since Dan’s RCL enforcer module is already configured to monitor “all

system calls,” there would have been a reasonable expectation of success

configuring Dan’s RCL enforcer to receive a signal that a new application is being

loaded for execution with the computing device from the operating system call

functions associating with loading and executing a new program, as taught by

Lambert. Dan at 12.

(d) 25(c) – suspending the loading of the new program;

157. Lambert teaches that the enforcement mechanism suspends the loading

of the software file. Specifically, Lambert teaches that “when software is to be

loaded (e.g., its file opened and some or all thereof read into memory), one or

more rules are located that correspond to the classification for that software, (or if

none corresponds, the default rule), and a selected rules is used to determine

whether the software can be loaded, and if so, to what extent any processes of the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 102

IPR2024-00027
U.S. Patent 7,673,137

 103

software will be restricted.” Lambert at [0052] (emphasis added); see also, id at

[0014] (“In one implementation, prior to loading a file, the various functions (such

as of an operating system) that enable software to be loaded or otherwise executed

are arranged to automatically and transparently communicate with an enforcement

mechanism that determines the rule to apply for each file, based on the

identification/classification information of the file…Based on located rule, the

enforcement mechanism either returns the normal access token, a ‘disallowed’ error

that fails the request, (e.g., the function does not load the software), or computes and

returns a restricted access token that restricts the software to an extent that

corresponds to the security level determined by the rule.”) (emphasis added).

158. Referring again to Figure 5A, once the enforcement mechanism 518

receives the software file information 514 from the software loading/execution

functions 516, “the enforcement mechanism consults the effective policy 502 to

determine which rule applies for the file 510, and from the rule determines whether

to open/execute the file, and if so, the extent of any restricted execution context for

the file 510.” Id at [0067].

IPR2024-00027
CrowdStrike Exhibit 1003 Page 103

IPR2024-00027
U.S. Patent 7,673,137

 104

Id. at Fig. 5A (annotated).

159. Thus, Lambert teaches suspending the loading of the software file so

that the enforcement mechanism 518 can determine whether the loading of the

software is allowed by the rules.

160. Based on the teachings of Lambert, it would have been obvious to a

person having ordinary skill in the art to modify Dan’s RCL enforcer to suspend the

loading of a new program to identify and classify it as either a “bad” program that

should not be allowed to execute or a “good” program that is allowed to execute in

either unrestricted or restricted mode. For the same reasons as discussed above,

configuring Dan’s sandbox to be able to identify and classify a new program would

IPR2024-00027
CrowdStrike Exhibit 1003 Page 104

IPR2024-00027
U.S. Patent 7,673,137

 105

have allowed it to select the appropriate security policy even if it does not have a

certificate/RCL. See Claim 25(b). Thus, a person having ordinary skill in the art

would have been motivated to improve similar computer-implemented security

methods in the same way by configuring Dan’s RLC enforcer to suspend the loading

of the new application until the RLC enforcer identifies the application and the

security rules that apply to it.

161. As described above, Dan’s RCL enforcer module is already configured

to monitor “all system calls.” Dan at 12. As shown in Dan’s Figure 10, the system

call is not completed unless allowed by the CheckAccessRequest() routine,

which shows that the modified approach would suspend the call. Dan at Fig. 10.

Thus, a person having ordinary skill in the art would have had a reasonable

expectation of success configuring Dan’s RCL enforcer to suspend the loading of

the new program upon receipt of a signal from the operating system call interface to

allow the RCL enforcer to determine the appropriate security policy for the

application even if it does not have a certificate/RCL.

(e) 25(d) – comparing the new program to the allowed
program; and

162. Lambert teaches that the enforcement mechanism compares the

software file to the allowed program. The enforcement mechanism 518 “consults

the effective policy 502 to determine which rule applies for the file 510, and from

the rule determines whether to open/execute the file, and if so, the extent of any

IPR2024-00027
CrowdStrike Exhibit 1003 Page 105

IPR2024-00027
U.S. Patent 7,673,137

 106

restricted execution context for the file 510.” Lambert at [0067]. “More particularly,

the enforcement mechanism 518 may call (or include in its own code) a hash

function 520 or the like to obtain a hash value from the contents of the software file

510, as generally represented in FIG. 5A by the arrows labeled with circled numerals

three (3) to six (6).” Id. at [0068]; see also, id., at Fig. 5A. “[A] suitable hash function

520 provides a unique fingerprint of the software file 510, while the effective policy

502 may have a specific rule for that hash.” Id. For example, Lambert teaches that

the hash is “a unique hash value of the file’s content (e.g., via an MD5 image hash).”

Id. at [0053].

163. To determine if the software file’s hash matches the hash of a known

software file, “the set of maintained hash values can be queried to determine whether

a rule exists for it.” Id. at [0055]. “In other words, before opening a file for execution,

a hash value is determined from that file’s contents, and the set of hash value

information (e.g., in the policy object) [is] searched to determine if a rule exists for

that hash value.” Id. The set of maintained hash values includes the hash value of

the “known good code that is allowed to execute” (i.e., the allowed program) that

was previously identified by the system administrator. See Claim 25(a). “Note that

while FIG. 5A essentially represents accessing the policy to get the rule or rules via

arrows labeled seven (7) and eight (8),…e.g., to look first for a rule for the hash

value[.]” Lambert, [0068]. Thus, Lambert teaches comparing the hash value of the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 106

IPR2024-00027
U.S. Patent 7,673,137

 107

software file to a set of maintained hash values, including the hash value of the

allowed program.

Id. at Fig. 5A (annotated).

164. The combination of Dan and Lambert teaches comparing the new

program to the allowed program. For the reasons discussed above, it would have

been obvious to a person having ordinary skill in the art to configure Dan’s sandbox

to be able to identify and classify a new program to allow the sandbox to select the

appropriate security policy even if the program does not have a certificate/RCL. See

Claim 25(b). Based on the teachings of Lambert, it would have been obvious to a

person having ordinary skill in the art to configure Dan’s RCL enforcer to determine

if the new application is an allowed application by comparing its hash value to a list

of hashes for known applications. As recognized by Lambert, a hash “is essentially

IPR2024-00027
CrowdStrike Exhibit 1003 Page 107

IPR2024-00027
U.S. Patent 7,673,137

 108

a fingerprint that uniquely identifies a file regardless of whether the file is moved or

renamed.” Lambert at [0055]. Thus, a person having ordinary skill in the art would

have understood that comparing a hash of the new application to the hash of the

allowed application would have been a reliable way to determine if the new

application is the allowed application. For these reasons, a person having ordinary

skill in the art would have been motivated to combine prior art elements of Dan’s

RCL enforcer and Lambert’s method of comparing the hash of a software file to the

hash of an allowed program according to known methods to yield the predictable

result of allowing Dan’s RCL enforcer module to determine whether the new

application is the allowed application.

165. The ’137 Patent itself acknowledges that the MD5 software modules

were “commonly known to those in the art.” ’137 Patent at 8:14-15. A person having

ordinary skill in the art would have had a reasonable expectation of success

configuring Dan’s RCL enforcer module to compute the hash of the new application

using “commonly known” MD5 hash and compare it to the hash of the allowed

program as taught by Lambert.

(f) 25(e) – determining whether the new program is valid;

166. Lambert describes determining whether the software file is valid based

on comparing the software file’s hash value to the set of maintained hash values “to

determine whether a rule exists for it.” Lambert at [0055]. “In other words, before

IPR2024-00027
CrowdStrike Exhibit 1003 Page 108

IPR2024-00027
U.S. Patent 7,673,137

 109

opening a file for execution, a hash value is determined from that file's contents, and

the set of hash value information (e.g., in the policy object) searched to determine if

a rule exists for that hash value. If so, that rule provides the security level for the

software.” Id. “[I]n the case of known good code that is allowed to execute, a hash

rule can specify how it will be executed[.]” Id. at [0056]. Per Lambert, “a suitable

hash function 520 provides a unique fingerprint of the software file 510, while the

effective policy 502 may have a specific rule for that hash.” Id. at [0068]. For

example, the hash rule may determine that the application is trusted and may

therefore executed in an unrestricted manner. Id. at [0008] (“Depending on what the

rule specifies for the classification that is determined for any given software module

(e.g., software file), the software may execute in a normal (unrestricted) execution

environment (context)…”). Alternatively, the hash rule may determine that the

application is untrusted and must be executed in a restricted manner. Id. (“Depending

on what the rule specifies for the classification that is determined for any given

software module (e.g., software file), the software may execute … in a restricted

execution environment…”). If there are no rules associated with the hash value,

configurable default rules apply. Id. at [0052] (“An administrator identifies/classifies

the software and sets the rules, including a default rule that applies to any software

file not classified under a specific rule.”). As shown below in Fig. 5A, the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 109

IPR2024-00027
U.S. Patent 7,673,137

 110

enforcement mechanism 518 determines whether the software file is valid based on

the hash rule returned from the effective policy 502:

Id. at Fig. 5A (annotated).

167. The combination of Dan and Lambert renders obvious determining

whether the new program is valid. Based on the teachings of Lambert, it would have

been obvious, and a person having ordinary skill in the art would have been

motivated to configure Dan’s RCL enforcer to determine whether the new

application (even in the absence of a certificate/RCL) is valid based on a rule

associated with the new application’s hash value. Specifically, it would have been

obvious to configure Dan’s RCL enforcer to determine if the new application is valid

and does not need monitoring or if the new application is not valid and must operate

in a restricted environment where its access to the computing device’s physical and

IPR2024-00027
CrowdStrike Exhibit 1003 Page 110

IPR2024-00027
U.S. Patent 7,673,137

 111

logical resources is monitored. A person having ordinary skill in the art would have

understood that using a rule associated with the new application’s hash value to

determine whether the new application is valid would have been an effective and

reliable way to distinguish trusted applications that do not need to be monitored from

untrusted applications that do need to be monitored. Therefore, a person having

ordinary skill in the art would have been motivated to combine prior art elements of

Dan’s RCL enforcer and Lambert’s method of determining of whether a software

file is valid based on a rule associated with its hash value according to known

methods to yield the predictable result of allowing Dan’s RCL enforcer module to

determine whether the new program is trusted and does not need to be monitored

during execution or whether the new program is untrusted and needs to be monitored

during execution.

168. A person having ordinary skill in the art would have understood that

configuring Dan’s RCL enforcer to perform an initial check to determine whether

the new application is valid would have represented a minor software change. Given

the predictability of computer programming at the time of the ’137 Patent, a person

having ordinary skill in the art would have had a reasonable expectation of success

configuring Dan’s RCL enforcer to determine whether the new application is valid

based on a rule associated with its hash value.

(g) 25(f) – if the new program is valid, permitting the new
program to execute on the computing device; and

IPR2024-00027
CrowdStrike Exhibit 1003 Page 111

IPR2024-00027
U.S. Patent 7,673,137

 112

169. See Claim 6(c).

(h) 25(g)(i) – if the new program is not valid, monitoring the
new program while allowing it to execute on the
computing device,

170. See Claim 6(d)(i).

(i) 25(g)(ii) – wherein the step of monitoring the new
program while allowing it to execute is performed at the
operating system kernel of the computing device.

171. See Claim 6(d)(ii).

G. Ground 2: The Combination of Dan, Lambert, and Schmid
Renders Claims 1 and 2 Obvious

1. Claim 1

(a) 1[Pre]. – A system for managing security of a computing
device comprising:

172. Lambert describes “[a] system…that automatically, transparently and

securely controls software execution by identifying and classifying software, and

locating a rule and associated security level for executing executable software.”

Lambert at Abstract (emphasis added). Lambert’s system operates on a “computing

system environment 100,” which includes “a general purpose computing device in

the form of a computer 110.” Id. at [0026], [0029], Fig. 1. Lambert describes a

system for managing security of a computing device.

(b) 1(a) – a pre-execution module operable for receiving
notice from the computing device’s operating system that
a new program is being loaded onto the computing device;

IPR2024-00027
CrowdStrike Exhibit 1003 Page 112

IPR2024-00027
U.S. Patent 7,673,137

 113

173. Lambert’s system incorporates an enforcement mechanism 518 that

receives notice from the computing device’s operating system that a software file

510 is being loaded onto the computing device. Specifically, “in FIG. 5A, a process

508 such as a process of a user or application requesting to open a software file 510

has an access token 5121 associated with it[.]” Lambert at [0066]. “When the process

508 wants to load and possibly execute the software file 510, it identifies itself and

provides information 514 identifying the software file to an appropriate function 516

(of a set) that can open, load and/or execute the file 510.” Id. (emphasis added).

“For example, this can be accomplished by placing an application programming

interface (API) call to the operating system, wherein the file information 514,

typically in the form a path and filename is passed, as a parameter.” Id. (emphasis

added). “Note that in a typical implementation, the software opening function 516

comprises an operating system component, and thus has access to a copy 5122 of

the parent access token.” Id. (emphasis added). “Further note that such function

calls are already the typical way in which files are loaded, and thus the process

508 (which may be of an existing application program or other type of component)

need not be modified in any way.” Id. (emphasis added). “[I]nstead of simply loading

the file and executing any executable code therein with the parent token’s rights and

privileges, each of the functions 516 is arranged to first provide the software file

information 514 to an enforcement mechanism (circled numeral two (2) in FIG.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 113

IPR2024-00027
U.S. Patent 7,673,137

 114

5A).” Id. at [0067] (emphasis added). In summary, Lambert’s enforcement

mechanism 518 is a pre-execution module operable for receiving notice (i.e.,

software file information 514) from the computing device’s operating system (i.e.,

software loading/executing functions 516) that a software file is being loaded onto

the computing device:

Id. at Fig. 5A. (annotated).

174. Lambert teaches that the software file 510 is a program. As an example,

Lambert teaches where the software file is an “e-mail program.” Id. at [0053].

However, Lambert does not distinguish between old and new programs and

encompasses both. Dan teaches a method for “Installation of Untrusted

IPR2024-00027
CrowdStrike Exhibit 1003 Page 114

IPR2024-00027
U.S. Patent 7,673,137

 115

Applications” where “[t]he application and RCL are downloaded to the host (via

network, diskette, CD-ROM, satellite, etc.).” Dan at 20. Dan’s application is new

because it is newly downloaded to the host computer. Downloaded applications may

also be new in the sense that they have not been executed by the client computing

device before. For the reasons discussed above, Dan teaches a new program that is

downloaded to a host computer “via network, diskette, CD-ROM, satellite, etc.” See

Claim 6(a); Dan at 20.

175. Based on the teachings of Dan, it would have been obvious to a person

having ordinary skill in the art that Lambert’s software file 510 would correspond to

a newly downloaded program. Lambert acknowledges that “with the rise in the usage

of networks, email and the Internet for business computing, users find themselves

exposed to a wide variety of executable programs including content that is not

identifiable as being executable in advance.” Lambert at [0007]. A person having

ordinary skill in the art would have understood that the computing device would

receive software files via networks, email, and the Internet, and that, in this instance,

the software file would represent a new program.

176. Moreover, a person having ordinary skill in the art would have

understood that Lambert’s enforcement mechanism is operable to receive notice

when any software file – new or preexisting – is being loaded for execution on the

computing device. For these reasons, a person having ordinary skill in the art would

IPR2024-00027
CrowdStrike Exhibit 1003 Page 115

IPR2024-00027
U.S. Patent 7,673,137

 116

have been motivated to combine prior art elements according to known methods to

yield the predictable result of notifying Lambert’s enforcement mechanism when a

new program is loading. There would have been a reasonable expectation of success

since Lambert’s enforcement mechanism is notified when any software file (new or

otherwise) is loading.

(c) 1(b) – a validation module coupled to the pre-execution
monitor operable for determining whether the program is
valid;

177. I have been asked to interpret the pre-execution monitor as the pre-

execution module. See Section Error! Reference source not found..

178. Lambert teaches an effective policy 502 that is coupled to the

enforcement mechanism 518 (i.e., the pre-execution module) that is operable for

determining whether a software file is valid. Lambert at Fig. 5A. Specifically,

Lambert teaches that after the enforcement mechanism 518 receives the notification

from the software loading/executing functions 516, it “call[s] (or include in its own

code) a hash function 520 or the like to obtain a hash value from the contents of the

software file 510, as generally represented in FIG. 5A by the arrows labeled with

circled numerals three (3) to six (6).” Id. at [0068]. “[A] suitable hash function 520

provides a unique fingerprint of the software file 510, while the effective policy 502

may have a specific rule for that hash.” Id. For example, Lambert teaches that the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 116

IPR2024-00027
U.S. Patent 7,673,137

 117

hash is “a unique hash value of the file’s content (e.g., via an MD5 image hash).” Id.

at [0053].

179. To determine if the software file’s hash matches the hash of a known

software file, “the set of maintained hash values can be queried to determine whether

a rule exists for it.” Id. at [0055]. “In other words, before opening a file for execution,

a hash value is determined from that file’s contents, and the set of hash value

information (e.g., in the policy object) [is] searched to determine if a rule exists for

that hash value.” Id. The effective policy 502 includes the set of hash value

information for known software files and their associated rules. Specifically, “the

effective policy 502 generally comprises the general (default) rule 504 and a set of

specific rules 506 which set forth the exceptions to the default rule 502.” Id. at

[0065]. “Note that while FIG. 5A essentially represents accessing the policy to get

the rule or rules via arrows labeled seven (7) and eight (8),…e.g., to look first for a

rule for the hash value[.]” Id. at [0068].

180. The rules stored in the policy 502 dictate whether the software file is

valid. Specifically, “Via a user interface or the like operably connected to a suitable

hash mechanism, an administrator can select any software file, obtain a hash value

from its contents, and enter and associate a rule (that specifies a security level) with

that hash value.” Id. at [0055]. “Multiple files can have their corresponding hash

values and rules maintained in a policy object…whereby for any given instance of

IPR2024-00027
CrowdStrike Exhibit 1003 Page 117

IPR2024-00027
U.S. Patent 7,673,137

 118

any file, the set of maintained hash values can be queried to determine whether a

rule exists for it.” Id. “In this manner, an administrator can set a rule for any file

based on its unique hash value, with the rule specifying whether (and if so, how) a

software file having that hash value will execute.” Id. at [0056]. “In the case of

known bad code, the administrator may set the rule to specify that any file with that

hash will not be allowed to execute at all (i.e., ‘disallowed’ or ‘revoked’ status).” Id.

“[I]n in the case of known good code that is allowed to execute, a hash rule can

specify how it will be executed, e.g., unrestricted (normal) or restricted (and to what

extent).” Id.

181. Thus, Lambert’s effective policy 502 and hash mechanism 520

collectively qualify as a validation module coupled to the pre-execution monitor

operable for determining whether the program is valid:

IPR2024-00027
CrowdStrike Exhibit 1003 Page 118

IPR2024-00027
U.S. Patent 7,673,137

 119

Id. at Fig. 5A (annotated).

(d) 1(c) – a detection module coupled to the pre-execution
monitor operable for intercepting a trigger from the
computing device’s operating system;

182. I have been asked to interpret the pre-execution monitor as the pre-

execution module. See Section Error! Reference source not found..

183. Lambert teaches an instance where the application is allowed to execute

in a restricted environment. Lambert at [0008] (“Depending on what the rule

specifies for the classification that is determined for any given software module (e.g.,

software file), the software may execute … in a restricted execution

IPR2024-00027
CrowdStrike Exhibit 1003 Page 119

IPR2024-00027
U.S. Patent 7,673,137

 120

environment…”). Per Lambert, a restricted execution environment “reduces

software’s access to resources, and/or removes privileges, relative to a user’s normal

access token.” Id. at Abstract. When it is determined that software should be

restricted, “the enforcement mechanism 518 can compute and associate a restricted

token with the software file 510, whereby if creation of a process is requested for the

software file, (it includes executable content), any process of the software file is

restricted in its access rights and privileges according to the restricted token.” Id. at

[0070]. When the user requests to load a software file, “the enforcement mechanism

518 completes the call and returns information back to the software function 516

that called it, the returned information essentially including an instruction on

whether to open the file, and if so, the token to associate with the file.” Id. at [0071].

“If the computed token 526 is a restricted token, the process of the software file can

now execute, but only in association with the restricted token, thus providing the

rule-determined secure execution environment.” Id.

184. In Figure 3, an untrusted process 300 having an associated restricted

token 210 attempts to access object 302. Id. at Fig. 3, [0042]. “When the process 300

desires access to an object 302, the process 300 specifies the type of access it desires

(e.g., obtain read/write access to a file object), and the operating system (e.g., kernel)

level provides its associated token to an object manager 304.” Id. Thus, Lambert’s

IPR2024-00027
CrowdStrike Exhibit 1003 Page 120

IPR2024-00027
U.S. Patent 7,673,137

 121

system presumes that an untrusted process will notify the object manager 304 when

attempting to access a file object 302.

185.

Id. at Fig. 3.

186. As I discussed above, Lambert describes a two-phase system including

a pre-execution phase, which is represented by Figure 5A and its corresponding

disclosure, and an execution phase, which is represented by Figure 3 and its

corresponding disclosure, which describes how the system operates during restricted

program execution. See Section III.E.2. Thus, a person having ordinary skill in the

IPR2024-00027
CrowdStrike Exhibit 1003 Page 121

IPR2024-00027
U.S. Patent 7,673,137

 122

art would understand that the disclosures of Figures 3 and 5A are clearly related and

do not represent different embodiments of Lambert.

187. A person having ordinary skill in the art would have understood that an

untrusted process may attempt to bypass the object manager and directly access the

operating system kernel to access the file object 302. For example, Schmid

recognizes that “While most well-behaved Windows applications make system calls

through the Win32 API, it is also possible to bypass this interface by making calls

directly to kernel services.” Schmid at 5:29-32. “System services are operations

performed by an operating system kernel on behalf of applications or other kernel

components.” Id. at 5:49-51. “For instance, manipulating CPU hardware, starting

and stopping processes, and manipulating files are sensitive operations generally

implemented by services at the kernel level.” Id. at 5:53-56. Given Lambert’s system

is also implemented in a Windows environment, a person having ordinary skill in

the art would have understood that an untrusted and potentially malicious software

process may bypass Lambert’s object manager 304 and access the file object 302

directly via the Windows operating system kernel. Lambert at [0037] (“One way that

this can be accomplished with an operating system (e.g., Microsoft Corporation’s

Windows® 2000)…”).

188. To prevent an untrusted application from bypassing user mode

protections, Schmid teaches a device driver that is used “[t]o implement a non-

IPR2024-00027
CrowdStrike Exhibit 1003 Page 122

IPR2024-00027
U.S. Patent 7,673,137

 123

bypassable kernel wrapper” that “intercept[s] system service requests.” Schmid at

5:40-48. Schmid’s device driver intercepts triggers from the computer’s operating

system. Specifically, Schmid teaches that in a Windows environment, “user

applications invoke system services by executing an interrupt instruction.” Id. at

5:57-59. “A kernel entity, known as a dispatcher, initially responds to an interrupt

instruction, determines the nature of an interrupt, and calls a function to handle the

request.” Id. at 5:62-64. “Two tables in kernel memory describe locations and

parameter requirements of all functions available to a dispatcher,” including a table

that “specifies handlers for user requests.” Id. at 5:63-65. Schmid teaches

“constructing a device driver that may be dynamically loaded into a kernel, or may

be loaded as part of a boot sequence.” Id. at 6:6-9. “When a device driver loads, it

modifies an entry in a table consulted by a dispatcher to handle an interrupt

instruction.” Id. at 6:9-11. “[T]he modified entry may cause a dispatcher to call an

inserted function” instead of the intended operating system function. Id. at 6:11-15.

Schmid further teaches “that the driver modifies only tables relevant to requests from

user applications.” Id. at 6:15-16. Thus, a person having ordinary skill in the art

would understand that Schmid’s device driver intercepts a trigger from the operating

system’s dispatcher by modifying entries in the table consulted by the dispatcher to

handle an interrupt instruction. As such, Schmid’s device driver qualifies as a

IPR2024-00027
CrowdStrike Exhibit 1003 Page 123

IPR2024-00027
U.S. Patent 7,673,137

 124

detection module operable for intercepting a trigger from the computing device’s

operating system.

189. Lambert only provides a functional description of the object manager

304 and does not provide details as to how it is to be implemented. For example,

Lambert does not describe whether the object manager is implemented in user mode

or kernel mode or how the object manager is notified when the untrusted program

attempts to access an object 302. Based on the teachings of Schmid, it would have

been obvious, and a person having ordinary skill in the art would have been

motivated to implement Lambert’s object manager using Schmid’s device driver

(i.e., a detection module). Specifically, it would have been obvious to configure

Lambert’s system to implement the object manager by loading a device driver that

modifies entries in a table consulted by the operating system’s dispatcher and inserts

corresponding functions that access the untrusted process’s restricted token and the

object 302’s security descriptor. Lambert at [0042]-[0043]. A person having

ordinary skill in the art would have understood that this would have ensured that

Lambert’s object manager is notified when the untrusted process attempts to access

an object 302 by making calls either via the Win32 API or via the operating system

kernel. Since the object manager accesses the untrusted process’s restricted token

and the restricted token is generated by the enforcement mechanism (i.e., the pre-

execution module), the object manager is coupled to the enforcement mechanism.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 124

IPR2024-00027
U.S. Patent 7,673,137

 125

Thus, the combination of Lambert and Schmid teaches a detection module coupled

to the pre-execution monitor operable for intercepting a trigger from the computing

device’s operating system as illustrated in the following annotated figure:

Lambert at Fig. 3A (annotated).

190. Given the above-described advantages of implementing Lambert’s

object manager such that it cannot be bypassed by a malicious program, a person

having ordinary skill in the art would have been motivated to implement Lambert’s

object manager using Schmid’s device driver to improve similar computer security

IPR2024-00027
CrowdStrike Exhibit 1003 Page 125

IPR2024-00027
U.S. Patent 7,673,137

 126

systems in the same way. Indeed, this modification would have ensured that

Lambert’s object manager would be aware when an untrusted program is attempting

to access a physical or logical object that it may be restricted from accessing via its

restricted token. Thus, this modification would have predictably enhanced the

robustness of Lambert’s computer security system by ensuring that a malicious

program is not able to bypass its protections by making calls directly to the operating

system kernel.

191. Writing a device driver, such as described by Schmid, was a well-

known and predictable way to inject custom code into the kernel space of a Windows

computing device. See Section III.C.1. Likewise, the operation of the Windows

operating system, including the operation of the dispatcher, was well documented

and understood by a person having ordinary skill in the art. For these reasons, there

would have been a reasonable expectation of success implementing Lambert’s object

manager using Schmid’s device driver.

(e) 1(d) – and an execution module coupled to the detection
module and operable for monitoring, at the operating
system kernel of the computing device, the program in
response to the trigger intercepted by the detection
module.

192. Lambert teaches a security mechanism 308 that receives the untrusted

process’s restricted token 210 and object 302’s security descriptor 306 from the

object manager 304 (i.e., the detection module). Lambert at [0043] (“The object 302

IPR2024-00027
CrowdStrike Exhibit 1003 Page 126

IPR2024-00027
U.S. Patent 7,673,137

 127

has a security descriptor 310 associated therewith, and the object manager 304

provides the security descriptor 306 and the restricted token 210 to a security

mechanism 308.”). “The security mechanism 308 compares the security IDs in the

restricted token 210 along with the type of action or actions requested by the process

300 against the entries in the DACL [discretionary access control list] 312,” where

the DACL includes “access control entries, and for each entry, one or more access

rights (allowed or denied actions) corresponding to that entry.” Id. at [0043]. “If a

match is found with an allowed user or group, and the type of access desired is

allowable for the user or group, a handle to the object 302 is returned to the process

300, otherwise access is denied.” Id. Again, Lambert provides a functional

description of the security mechanism but does not provide implementation details,

such as whether the security mechanism is implemented in user mode or kernel

mode.

193. Dan teaches a similar monitoring system, including an RCL enforcer

module that “ensures that the permissions and resource consumption limits specified

in the RCL are not violated.” Dan at 9. To accomplish this, Dan teaches that the

“RCL enforcer monitors all systems calls, i.e., access to requests to logical resources

in the system.” Id. at 12. “This monitoring requires the RCL enforcer to be invoked

for each system call made by an application.” Id. “The RCL enforcer then validates

the parameters of the system call against those specified in the RLRT data structures

IPR2024-00027
CrowdStrike Exhibit 1003 Page 127

IPR2024-00027
U.S. Patent 7,673,137

 128

and either allows or disallows the call from continuing.” Id. Unlike Lambert, Dan

does provide implementation details for the RCL enforcer. Specifically, Dan teaches

a system call modification approach where “the operating system’s call interfaces is

modified to call the CheckAccessRequest() upon entry to verify the parameters

of the system call.” Id. at 14. As shown in the figure below, this monitoring occurs

on the operating system kernel:

Id. at 15. Per Dan, this approach is preferred “because of the consistency it offers for

enforcing security” and it “will ensure consistent security checks for all applications

that are executed on the machine.” Id. at 14-15.

194. As described above, the combination of Lambert and Schmid teaches

that the object manager 304 is implemented via a device driver loaded into the

operating system kernel. See Claim 1(c). Since the security mechanism works in

tandem with the object manager to monitor the untrusted process’s behavior, it

IPR2024-00027
CrowdStrike Exhibit 1003 Page 128

IPR2024-00027
U.S. Patent 7,673,137

 129

would also been obvious to a person having ordinary skill in the art to also implement

the security mechanism at the computing device’s operating system kernel level as

taught by Dan. Implementing the security mechanism in the kernel would have

allowed it to monitor the operating system calls intercepted by the object manager

and ensure that the untrusted process is in compliance with its associated restricted

token. Thus, the combination of Lambert, Schmid, and Dan teaches an execution

module coupled to the detection module and operable for monitoring, at the

operating system kernel of the computing device, the program in response to the

trigger intercepted by the detection module as illustrated in the following annotated

figure:

Lambert at Fig. 3 (annotated).

IPR2024-00027
CrowdStrike Exhibit 1003 Page 129

IPR2024-00027
U.S. Patent 7,673,137

 130

195. I have been asked to interpret this limitation as means-plus-function

where the function is “monitoring, at the operating system kernel of the computing

device, the program in response to the trigger intercepted by the detection module”

and the corresponding structure is “if the program was not validated, then monitor

the nonvalidated program in response to triggers while the program is executing.”

See Section Error! Reference source not found. For the reasons discussed above,

the Lambert-Schmid-Dan combination teaches a security mechanism 308 that

monitors an untrusted (i.e., not validated) program in response to triggers intercepted

by the object manager while the untrusted program is executing. Additionally, this

structure performs the function of “monitoring, at the operating system kernel of the

computing device, the program in response to the trigger intercepted by the detection

module” for the same reasons.

196. A person having ordinary skill in the art would have understood that

implementing Lambert’s security mechanism on the kernel level, as taught by Dan,

would have allowed the object manager, which is also operating in the computing

device’s kernel space, to efficiently communicate with the security mechanism

without requiring communication between kernel mode and user mode. Moreover,

a person having ordinary skill in the art would have understood that maintaining the

security mechanism in the kernel mode as opposed to the user mode would have

decreased the probability of a malicious program or user attempting to disable or

IPR2024-00027
CrowdStrike Exhibit 1003 Page 130

IPR2024-00027
U.S. Patent 7,673,137

 131

tamper with the security mechanism. As taught by Dan, a person of ordinary skill

would have further recognized that implementing Lambert’s security mechanism in

the kernel would have offered increased consistency for enforcing security. For these

reasons, a person having ordinary skill in the art would have been motivated to

combine prior art elements according to known methods and implement Lambert’s

security mechanism in the operating system kernel so that it can monitor the program

in response to triggers intercepted by the object manager. Due to the increased

security, there would have been a reasonable expectation of success implementing

Lambert’s security mechanism in the operating system kernel.

2. Claim 2 - The system of claim 1, wherein the pre-execution
module is further operable for suspending loading of the
program onto the computing device.

197. As I discussed above in Claim 25(c), Lambert’s enforcement

mechanism 518 (i.e., the pre-execution module) is suspends the loading of the

program onto the computing device. See Claim 25(c).

IV. CONCLUSION

198. I declare that all statements made herein of my knowledge are true, and

that all statements made on information and belief are believed to be true, and that

these statements were made with the knowledge that willful false statements and the

like so made are punishable by fine or imprisonment, or both, under Section 1001 of

Title 18 of the United States Code.

IPR2024-00027
CrowdStrike Exhibit 1003 Page 131

IPR2024-00027
U.S. Patent 7,673,137

132

Date: October 24, 2023

By: ____________________________
Dr. Markus Jakobsson

IPR2024-00027
CrowdStrike Exhibit 1003 Page 132

CV and Research Statement

Markus Jakobsson
www.linkedin.com/in/markusjakobsson

www.markus-jakobsson.com

1 At a Glance

• Focus. Identification of security problems, trends and solution along four

axes – computational, structural, physical and social; quantitative and

qualitative fraud analysis; development of disruptive security technologies.

• Education. PhD (Computer Science/Cryptography, University of Cali-
fornia at San Diego, 1997); MSc (Computer Science, University of Cali-
fornia at San Diego, 1994); MSc (Computer Engineering, Lund Institute
of Technology, Sweden, 1993).

• Large research labs. San Diego Supercomputer Center (Researcher,
1996-1997); Bell Labs (Member of Technical Sta↵, 1997-2001); RSA Labs

(Principal Research Scientist, 2001-2004); Xerox PARC (Principal Scien-
tist, 2008-2010); PayPal (Principal Scientist of Consumer Security, Di-
rector, 2010-2013); Qualcomm (Senior Director, 2013-2015); Agari (Chief
Scientist, 2016–2018); Amber Solutions Inc (Chief of Security and Data
Analytics, 2018 – 2019); ByteDance (Principal Scientist, 2020-2021)

• Academia. New York University (Adjunct Associate Professor, 2002-
2004); Indiana University (Associate Professor & Associate Director, 2004-
2008; Adjunct Associate Professor, 2008-2016).

• Entrepreneurial activity. ZapFraud (Anti-scam technology; CTO and
founder, 2012-current); RavenWhite Security (Authentication solutions;
CTO and founder, 2005-); RightQuestion (Consulting; Founder, 2007-
current); FatSkunk (Malware detection; CTO and founder, 2009-2013 –
FatSkunk was acquired by Qualcomm); LifeLock (Id theft protection;
Member of fraud advisory board, 2009-2013); CellFony (Mobile security;
Member of technical advisory board, 2009-2013); PopGiro (User Reputa-
tion; Member of technical advisory board, 2012-2013); MobiSocial (Social
networking, Member of technical advisory board, 2013); Cequence Security
(Anti-fraud, Member of technical advisory board, 2013–current)

• Anti-fraud consulting. KommuneData [Danish govt. entity] (1996);
J.P. Morgan Chase (2006-2007); PayPal (2007-2011); Boku (2009-2010);
Western Union (2009-2010).

1

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 133

• Intellectual Property, Testifying Expert Witness. Inventor of 100+
patents; expert witness in 25+ patent litigation cases (McDermott, Will
& Emery; Bereskin & Parr; WilmerHale; Hunton & Williams; Quinn
Emanuel Urquhart & Sullivan; Freed & Weiss; Berry & Domer; Fish &
Richardson; DLA Piper; Cipher Law Group; Keker & Van Nest). Details
and references upon request.

• Publications. Books: Phishing and Countermeasures: Understanding

the Increasing Problem of Electronic Identity Theft (Wiley, 2006); Crime-

ware: Understanding New Attacks and Defenses (Symantec Press, 2008);
Towards Trustworthy Elections: New Directions in Electronic Voting (Springer
Verlag, 2010); Mobile Authentication: Problems and Solutions)Springer
Verlag, 2012); The Death of the Internet (Wiley, 2012); Understanding

Social Engineering (Springer Verlag, 2016); Security, Privacy and User

Interaction (Springer Verlag, 2020); 100+ peer-reviewed publications

2 At a Glance

Ten years before Bitcoin was created, I formalized the notion of Proof of Work
and described its use for mining of crypto payments. I later developed energy-
e�cient alternatives to this paradigm, and showed how to enable mining on
mobile devices, which is not possible for Bitcoin. I am the founder of the aca-
demic discipline of phishing and have developed techniques to predict fraud
trends years before they emerge, enabling countermeasures to be developed be-
fore they are needed. I developed the notion of implicit authentication, which
is now ubiquitous; I also founded a company that developed the first retroac-
tive virus detection technology, with guarantees of detection; the company was
acquired by Qualcomm in 2013. I have worked as chief scientist and similar
positions in startups as well as industry behemoths, such as PayPal. I have
several hundred patents to my name and am a prominent security researcher
with hundreds of peer reviewed publications and an array of textbooks. My
1997 PhD thesis, from University of California at San Diego, was on distributed
electronic payment systems with revocable privacy.

3 Work History (Highlights)

1. Member of Technical Sta↵, Bell Labs (1997-2001). Markus was
part of the security research group at Bell Labs. He formalized the notion
of proof of work, later an integral part of BitCoin.

2. Principal Scientist, RSA Labs (2001-2005). Markus posited that
phishing would become a mainstream problem, and developed ethical tech-
niques for identifying likely trends based on human subject experiments.

3. Associate Professor, Indiana University (2005-2008). Markus was
hired to lead the newly formed security group at Indiana University, and

2

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 134

created a research group comprising approximately 10 professors and 30
students, studying social engineering and fraud.

4. Principal Scientist, Xerox PARC (2008-2010). Markus was hired to
lead the research e↵orts of the Xerox PARC security group, and developed
the notion of implicit authentication, a technology that is now ubiquitous.

5. Principal Scientist, PayPal (2010-2013). Markus did research on
security and user interfaces, and developed techniques to reduce the losses
associated with liar buyer fraud.

6. Senior Director, Qualcomm (2013-2016). Qualcomm acquires FatSkunk,
a company founded by Markus. At FatSkunk, Markus developed retroac-

tive malware detection with provable security guarantees. A simplified
version of this is now deployed with almost all Qualcomm chipsets.

7. Chief Scientist, Agari (2016-2018). Markus developed a technique to
acquire fraudster intelligence by compromising scammer email accounts –
while staying within the law – resulting in the extradition of several African
scam lords to the U.S.

8. Chief of Security and Data Analytics, Amber Solutions (2018-
2020). Markus developed usable configuration methods supporting im-
proved security and privacy for IoT installations.

9. Chief Scientist, ByteDance (2020-2021). Markus oversaw the estab-
lishment of a research group and a research agenda at ByteDance, and
contributed to their intellectual property and product security.

10. Chief Scientist, Artema LABS (2021-). Managing the research,
product strategy, and patent strategy for Artema LABS, a Los Angeles
based startup in the Crypto/NFT sector.

4 Publication List

Books (1-8); book chapters, journals, conference publications and other scientific
publications (9-147), issued /published U.S. patents (148-234). For an updated
list, and for international patents, please see www.markus-jakobsson.com/publications
and appropriate patent search engines.

References

[1] M. Jakobsson, Security, Privacy and User Interaction, ISBN 978-3-030-
43753-4, 110 pages, 2020.

[2] M. Jakobsson, Understanding Social Engineering Based Scams, ISBN 978-
1-4939-6457-4, 130 pages, Springer, 2016.

3

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 135

[3] M. Jakobsson, Mobile Authentication: Problems and Solutions, ISBN
1461448778, 125 pages, Springer, 2013.

[4] M. Jakobsson, (editor) The Death of the Internet, ASIN B009CN2JVE, 359
pages, IEEE Computer Society Press, 2012.

[5] D. Chaum, M. Jakobsson, R. L. Rivest, P. Y. Ryan, J. Benaloh, and M.
Kutylowski, (editors), Towards Trustworthy Elections: New Directions in

Electronic Voting, 411 pages, (Vol. 6000), Springer, 2010.

[6] M. Jakobsson and Z. Ramzan (editors), Crimeware: Trends in Attacks

and Countermeasures, ISBN 0321501950, Hardcover, 582 pages, Symantec
Press / Addison Wesley, 2008.

[7] M. Jakobsson and S. A. Myers (editors), Phishing and Countermeasures:

Understanding the Increasing Problem of Electronic Identity Theft, ISBN
0-471-78245-9, Hardcover, 739 pages, Wiley, 2006.

[8] M. Jakobsson, M. Yung, J. Zhou, Applied Cryptography and Network Se-

curity: Second International Conference , Yellow Mountain, China, 2004,
511 pages, Lecture Notes in Computer Science (Book 3089), 2004.

[9] M. Jakobsson, “Permissions and Privacy,” in IEEE Security & Privacy, vol.
18, no. 2, pp. 46-55, March-April 2020

[10] M. Jakobsson, “The Rising Threat of Launchpad Attacks,” in IEEE Secu-
rity & Privacy, vol. 17, no. 5, pp. 68-72, Sept.-Oct. 2019

[11] J Koven, C Felix, H Siadati, M Jakobsson, E Bertini, “Lessons learned
developing a visual analytics solution for investigative analysis of scamming
activities,” IEEE transactions on visualization and computer graphics 25
(1), 225-234

[12] M Jakobsson, “Two-factor inauthentication?the rise in SMS phishing at-
tacks” Computer Fraud & Security 2018 (6), 6-8

[13] M. Dhiman, M. Jakobsson, T.-F. Yen, “Breaking and fixing content-based
filtering,” 2017 APWG Symposium on Electronic Crime Research (eCrime),
52-56

[14] M. Jakobsson, “Addressing sophisticated email attacks,” 2017 International
Conference on Financial Cryptography and Data Security, 310-317

[15] M. Jakobsson, “User trust assessment: a new approach to combat decep-
tion,” Proceedings of the 6th Workshop on Socio-Technical Aspects in Se-
curity and Trust, 2016, pages 73-78

[16] H. Siadati, T. Nguyen, P. Gupta, M. Jakobsson, “Mind your SMSes: Miti-
gating social engineering in second factor authentication,” Computers and
Security, 2016

4

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 136

[17] M. Jakobsson, W. Leddy, “Could you fall for a scam? Spam filters are
passe. What we need is software that unmasks fraudsters,” IEEE Spectrum
53 (5), 2016, 40-55

[18] N. Sae-Bae, M. Jakobsson, Hand Authentication on Multi-Touch Tablets,
HotMobile 2014

[19] Y. Park, J. Jones, D. McCoy, E. Shi, M. Jakobsson, Scambaiter: Under-

standing Targeted Nigerian Scams on Craigslist, NDSS 2014

[20] D. Balfanz, R. Chow, O. Eisen, M. Jakobsson, S. Kirsch, S. Matsumoto, J.
Molina, and P. van Oorschot, “The future of authentication,” Security &
Privacy, IEEE, 10(1), 22-27, 2012.

[21] M. Jakobsson, and H. Siadati, Improved Visual Preference Authentication:

Socio-Technical Aspects in Security and Trust, (STAST), 2012 Workshop
on IEEE, 27–34, 2012.

[22] M. Jakobsson, R. I. Chow, and J. Molina, “Authentication-Are We Do-
ing Well Enough?[Guest Editors’ Introduction]” Security & Privacy, IEEE,
10(1), 19-21, 2012.

[23] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit authentication
through learning user behavior,” Information Security, 99-113, Springer
Berlin Heidelberg, 2011.

[24] M. Jakobsson and K. Johansson, “Practical and Secure Software-Based
Attestation,” Lightweight Security & Privacy: Devices, Protocols and Ap-
plications (LightSec), 1–9, 2011.

[25] A. Juels, D. Catalano, and M.Jakobsson, Coercion-resistant electronic elec-

tions: Towards Trustworthy Elections, 37–63, Springer Berlin Heidelberg,
2010.

[26] M. Jakobsson and F. Menczer, “Web Forms and Untraceable DDoS At-
tacks,” in Network Security, Huang, S., MacCallum, D., and Du, D. Z.,
Eds.,77–95, Springer, 2010.

[27] R. Chow, M. Jakobsson, R. Masuoka, J. Molina, Y. Niu, E. Shi, and Z.
Song, “Authentication in the Clouds: A Framework and its Application to
Mobile Users,” 2010.

[28] X. Wang, P. Golle, M. Jakobsson, and A. Tsow, “Deterring voluntary trace
disclosure in re-encryption mix-networks,” ACM Trans. Inf. Syst. Secur.,
13(2), 1-24, 2010.

[29] X. Wang, P. Golle, M. Jakobsson, A.Tsow, “Deterring voluntary trace dis-
closure in re-encryption mix-networks,” ACM Trans. Inf. Syst. Secur. 13(2):
(2010)

5

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 137

[30] M. Jakobsson, and C. Soghoian, “Social Engineering in Phishing,” Infor-
mation Assurance, Security and Privacy Services, 4, 2009.

[31] M. Jakobsson, C. Soghoian and S. Stamm, “Phishing,” Handbook of Fi-
nancial Cryptography (CRC press, 2008)

[32] M. Jakobsson and A. Tsow, “Identity Theft,” In John R. Vacca, Edi-
tor, “Computer And Information Security Handbook” (Morgan Kaufmann,
2008)

[33] S. Srikwan and M. Jakobsson, “Using Cartoons to Teach Internet Security,”
Cryptologia, vol. 32, no. 2, 2008

[34] M. Jakobsson, N. Johnson and P. Finn, “Why and How to Perform Fraud
Experiments,” IEEE Security and Privacy, March/April 2008 (Vol. 6, No.
2) pp. 66-68

[35] M. Jakobsson and S. Myers, “Delayed Password Disclosure,” International
Journal of Applied Cryptography, 2008, pp. 47-59.

[36] M. Jakobsson and S. Stamm, “Web Camouflage: Protecting Your Clients
from Browser Sni�ng Attacks,” IEEE Security & Privacy Magazine.
November/December 2007

[37] P. Finn and M. Jakobsson, “Designing and Conducting Phishing Experi-
ments,” IEEE Technology and Society Magazine, Special Issue on Usability
and Security

[38] T. Jagatic, N. Johnson, M. Jakobsson and F. Menczer. “Social Phishing,”
The Communications of the ACM, October 2007

[39] A. Tsow, M. Jakobsson, L. Yang and S. Wetzel, “Warkitting: the Drive-by
Subversion of Wireless Home Routers,” Anti-Phishing and Online Fraud,
Part II Journal of Digital Forensic Practice, Volume 1, Special Issue 3,
November 2006

[40] M. Gandhi, M. Jakobsson and J. Ratkiewicz, “Badvertisements: Stealthy
Click-Fraud with Unwitting Accessories,” Anti-Phishing and Online Fraud,
Part I Journal of Digital Forensic Practice, Volume 1, Special Issue 2,
November 2006

[41] N. Ben Salem, J.-P. Hubaux and M. Jakobsson. “Reputation-based Wi-Fi
Deployment,” Mobile Computing and Communications Review, Volume 9,
Number 3 (Best papers of WMASH 2004)

[42] N. Ben Salem, J. P. Hubaux, and M. Jakobsson. “Node Cooperation in
Hybrid Ad hoc Networks,” IEEE Transactions on Mobile Computing, Vol.
5, No. 4, April 2006.

[43] P. MacKenzie, T. Shrimpton, and M. Jakobsson. “Threshold Password-
Authenticated Key Exchange,” Journal of Cryptology, 2005

6

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 138

[44] A. Juels, M. Jakobsson, E. Shriver, and B. Hillyer. “How To Turn Loaded
Dice Into Fair Coins.” IEEE Transactions on Information Theory, vol.
46(3). May 2000. pp. 911–921.

[45] M. Jakobsson, P. MacKenzie, and J.P. Stern. “Secure and Lightweight Ad-
vertising on the Web,” Journal of Computer Networks, vol. 31, issue 11–16,
Elsevier North-Holland, Inc., 1999. pp. 1101–1109.

[46] M. Jakobsson, “Cryptographic Protocols,” Chapter from The Handbook
of Information Security. Hossein Bidgoli, Editor-in-Chief. Copyright John
Wiley & Sons, Inc., 2005, Hoboken, N.J.

[47] M. Jakobsson, “Cryptographic Privacy Protection Techniques,” Chapter
from The Handbook of Information Security. Hossein Bidgoli, Editor-in-
Chief. Copyright John Wiley & Sons, Inc., 2005, Hoboken, N.J.

[48] M. Jakobsson, E. Shi, P. Golle, R. Chow, “Implicit authentication for mo-
bile devices,” 4th USENIX Workshop on Hot Topics in Security (HotSec
’09); 2009 August 11; Montreal, Canada.

[49] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, J.
Molina, “Controlling data in the cloud: outsourcing computation without
outsourcing control,” Proceedings of the 2009 ACM Workshop on Cloud
Computing Security (CCSW 2009); 2009 November 13; Chicago, IL. NY:
ACM; 2009; pp. 85–90.

[50] M. Jakobsson, H. Siadati, M. Dhiman, “Liar Buyer Fraud, and How to
Curb It,” NDSS, 2015

[51] M. Jakobsson, T.-F. Yen, “How Vulnerable Are We To Scams?,” BlackHat,
2015

[52] M. Jakobsson, “How to Wear Your Password,” BlackHat, 2014

[53] M. Jakobsson and G. Stewart, “Mobile Malware: Why the Traditional
AV Paradigm is Doomed, and How to Use Physics to Detect Undesirable
Routines,” in BlackHat, 2013.

[54] M. Jakobsson, and H. Siadati,“SpoofKiller: You Can Teach People How to
Pay, but Not How to Pay Attention” in Socio-Technical Aspects in Security
and Trust (STAST), 2012 Workshop on, 3-10, 2012.

[55] M. Jakobsson, and M. Dhiman,“The benefits of understanding passwords,”
in Proceedings of the 7th USENIX conference on Hot Topics in Security,
Berkeley, CA, USA, 2012.

[56] M. Jakobsson, and S. Taveau, “The Case for Replacing Passwords with
Biometrics,” Mobile Security Technologies, 2012.

[57] M. Jakobsson and D. Liu, “Bootstrapping mobile PINs using passwords,”
W2SP, 2011.

7

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 139

[58] M. Jakobsson and R. Akavipat, “Rethinking passwords to adapt to con-
strained keyboards,” 2011.

[59] Y. Niu, E. Shi, R. Chow, P. Golle, and M. Jakobsson, “One Experience
Collecting Sensitive Mobile Data,” In USER Workshop of SOUPS, 2010.

[60] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit Authentication
through Learning User Behavior,” 2010.

[61] M. Jakobsson and K. Johansson, Assured Detection of Malware With Ap-
plications to Mobile Platforms, 2010.

[62] M. Jakobsson and K. Johansson, “Retroactive Detection of Malware With
Applications to Mobile Platforms,” in HotSec 2010, Washington, DC, 2010.

[63] M. Jakobsson, A Central Nervous System for Automatically Detecting Mal-
ware, 2009.

[64] R. Chow, P. Golle, M. Jakobsson, R. Masuoka, J. Molina, E. Shi, and J.
Staddon, “Controlling data in the cloud: outsourcing computation with-
out outsourcing control,” ACM workshop on Cloud computing security
(CCSW), 2009.

[65] M. Jakobsson and A. Juels, “Server-Side Detection of Malware Infection,”
in New Security Paradigms Workshop (NSPW), Oxford, UK, 2009.

[66] M. Jakobsson, “Captcha-free throttling,” Proceedings of the 2nd ACM
workshop on Security and artificial intelligence, 15–22, 2009.

[67] M. Jakobsson, E. Shi, P. Golle, and R. Chow, “Implicit authentication for
mobile devices,” Proceedings of the 4th USENIX conference on Hot topics
in security, 9–9, 2009.

[68] C. Soghoian, O. Friedrichs and M. Jakobsson, “The Threat of Political
Phishing,” International Symposium on Human Aspects of Information
Security & Assurance (HAISA 2008)

[69] R. Chow, P. Golle, M. Jakobsson, L. Wang and X. Wang, “Making
CAPTCHAs Clickable,” In proc. of HotMobile 2008.

[70] M. Jakobsson, A. Juels, and J. Ratkiewicz, “Privacy-Preserving History
Mining for Web Browsers,” Web 2.0 Security and Privacy, 2008.

[71] M. Jakobsson, E. Stolterman, S. Wetzel, L. Yang, “Love and Authenti-
cation,” (Notes) ACM Computer/Human Interaction Conference (CHI),
2008. Also see www.I-forgot-my-password.com

[72] M. Jakobsson and S. Myers, “Delayed Password Disclosure,” Proceedings
of the 2007 ACM workshop on Digital Identity Management

[73] M. Jakobsson, S. Stamm, Z. Ramzan, “JavaScript Breaks Free,” W2SP ’07

8

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 140

[74] A. Juels, S. Stamm, M. Jakobsson, “Combatting Click Fraud via Premium
Clicks,” USENIX Security 2007

[75] R. Chow, P. Golle, M. Jakobsson, X. Wang, “Clickable CAPTCHAs,” Ad-
Fraud ’07 Workshop; 2007 September 14; Stanford, CA, USA

[76] S. Stamm, Z. Ramzan, and M. Jakobsson, “Drive-by Pharming,” In Pro-
ceedings of Information and Communications Security, 9th International
Conference, ICICS 2007

[77] M. Jakobsson, A. Tsow, A. Shah, E. Blevis, Y.-K. Lim, “What Instills
Trust? A Qualitative Study of Phishing,” USEC ’07.

[78] R. Akavipat, V. Anandpara, A. Dingman, C. Liu, D. Liu, K. Pongsanon,
H. Roinestad and M. Jakobsson, “Phishing IQ Tests Measure Fear, not
Ability,” USEC ’07.

[79] M. Jakobsson, “The Human Factor in Phishing,” American Conference
Institute’s Forum on Privacy & Security of Consumer Information, 2007

[80] S. Srikwan, M. Jakobsson, A. Albrecht and M. Dalkilic, “Trust Establish-
ment in Data Sharing: An Incentive Model for Biodiversity Information
Systems,” TrustCol 2006

[81] J.Y. Choi, P. Golle, M. Jakobsson, “Tamper-Evident Digital Signatures:
Protecting Certification Authorities Against Malware,” DACS ’06

[82] L. Yang, M. Jakobsson, S. Wetzel, “Discount Anonymous On Demand
Routing for Mobile Ad hoc Networks,” SECURECOMM ’06

[83] P. Golle, X. Wang, M. Jakobsson, A. Tsow, “Deterring Voluntary Trace
Disclosure in Re-encryption Mix Networks.” IEEE S&P ’06

[84] M. Jakobsson, A. Juels, T. Jagatic, “Cache Cookies for Browser Authenti-
cation (Extended Abstract),” IEEE S&P ’06

[85] M. Jakobsson and J. Ratkiewicz, “Designing Ethical Phishing Experiments:
A study of (ROT13) rOnl auction query features.”, WWW ’06

[86] M. Jakobsson and S. Stamm. “Invasive Browser Sni�ng and Countermea-
sures,” WWW ’06

[87] J.Y. Choi, P. Golle and M. Jakobsson. “Auditable Privacy: On Tamper-
Evident Mix Networks,” Financial Crypto ’06

[88] A. Juels, D. Catalano and M. Jakobsson. “Coercion-Resistant Electronic
Elections,” WPES ’05

[89] V. Gri�th and M. Jakobsson. “Messin’ with Texas, Deriving Mother’s
Maiden Names Using Public Records,” ACNS ’05, 2005.

9

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 141

[90] M. Jakobsson and L. Yang. “Quantifying Security in Hybrid Cellular Net-
works,” ACNS ’05, 2005

[91] Y.-C. Hu, M. Jakobsson, and A. Perrig. “E�cient Constructions for One-
way Hash Chains,” ACNS ’05, 2005

[92] M. Jakobsson. “Modeling and Preventing Phishing Attacks,” Phishing
Panel in Financial Cryptography ’05. 2005, abstract in proceedings.

[93] N. Ben Salem, J.-P. Hubaux, and M. Jakobsson. “Reputation-based Wi-
Fi Deployment Protocols and Security Analysis,” In WMASH ’04. ACM
Press, 2004. pp. 29–40.

[94] M. Jakobsson and S. Wetzel. “E�cient Attribute Authentication with Ap-
plications to Ad Hoc Networks,” In VANET ’04. ACM Press, 2004. pp.
38–46.

[95] M. Jakobsson, X. Wang, and S. Wetzel. “Stealth Attacks in Vehicular Tech-
nologies,” Invited paper. In Proceedings of IEEE Vehicular Technology
Conference 2004 Fall (VTC-Fall 2004). IEEE, 2004.

[96] A. Ambainis, H. Lipmaa, and M. Jakobsson. “Cryptographic Randomized
Response Technique,” In PKC ’04. LNCS 2947. Springer-Verlag, 2004. pp.
425–438.

[97] P. Golle, M. Jakobsson, A. Juels, and P. Syverson. “Universal Re-
encryption for Mixnets,” In CT-RSA ’04. LNCS 2964. Springer-Verlag,
2004. pp. 163–178.

[98] P. Golle and M. Jakobsson. “Reusable Anonymous Return Channels,” In
WPES ’03. ACM Press, 2003. pp. 94–100.

[99] M. Jakobsson, S. Wetzel, B. Yener. “Stealth Attacks on Ad-Hoc Wireless
Networks,” In IEEE VTC ’03, 2003.

[100] N. Ben Salem, L. Buttyan, J.-P. Hubaux, and M. Jakobsson. “A Charg-
ing and Rewarding Scheme for Packet Forwarding in Multi-hop Cellular
Networks,” In ACM MobiHoc ’03. ACM Press, 2003. pp. 13–24.

[101] M. Jakobsson, J.-P.Hubaux and L. Buttyan. “A Micro-Payment Scheme
Encouraging Collaboration in Multi-Hop Cellular Networks,” In FC ’03.
LNCS 2742. Springer-Verlag, 2003. pp. 15–33.

[102] M. Jakobsson, T. Leighton, S. Micali and M. Szydlo. “Fractal Merkle Tree
Representation and Traversal,” In RSA-CT ’03 2003.

[103] A. Boldyreva and M Jakobsson. “Theft protected proprietary certificates,”
In DRM ’02. LNCS 2696, 2002. pp. 208–220.

10

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 142

[104] P. Golle, S. Zhong, M. Jakobsson, A. Juels, and D. Boneh. “Optimistic
Mixing for Exit-Polls,” In Asiacrypt ’02. LNCS 2501. Springer-Verlag, 2002.
pp. 451–465.

[105] P. MacKenzie, T. Shrimpton, and M. Jakobsson. “Threshold Password-
Authenticated Key Exchange,” In CRYPTO ’02. LNCS 2442. Springer-
Verlag, 2002. pp. 385–400.

[106] M. Jakobsson. “Fractal Hash Sequence Representation and Traversal,” In
Proceedings of the 2002 IEEE International Symposium on Information
Theory (ISIT ‘02). 2002. pp. 437–444.

[107] M. Jakobsson, A. Juels, and R. Rivest. “Making Mix Nets Robust For
Electronic Voting By Randomized Partial Checking,” In Proceedings of
the 11th USENIX Security Symposium. USENIX Association, 2002. pp.
339–353.

[108] D. Coppersmith and M. Jakobsson. “Almost Optimal Hash Sequence
Traversal,” In Financial Crypto ’02. 2002.

[109] M. Jakobsson. “Financial Instruments in Recommendation Mechanisms,”
In Financial Crypto ’02. 2002.

[110] J. Garay, and M. Jakobsson. “Timed Release of Standard Digital Signa-
tures,” In Financial Crypto ’02. 2002.

[111] F. Menczer, N. Street, N. Vishwakarma, A. Monge, and M. Jakobsson.
“Intellishopper: A Proactive, Personal, Private Shopping Assistant,” In
AAMAS ’02. ACM Press, 2002. pp. 1001–1008.

[112] M. Jakobsson, A. Juels, and P. Nguyen. “Proprietary Certificates,” In
CT-RSA ’02. LNCS 2271. Springer-Verlag, 2002. pp. 164–181.

[113] M. Jakobsson and A. Juels. “An Optimally Robust Hybrid Mix Network,”
In PODC ’01. ACM Press. 2001. pp. 284–292.

[114] M. Jakobsson and M. Reiter. “Discouraging Software Piracy Using Soft-
ware Aging,” In DRM ’01. LNCS 2320. Springer-Verlag, 2002. pp. 1–12.

[115] M. Jakobsson and S. Wetzel. “Security Weaknesses in Bluetooth,” In CT–
RSA ’01. LNCS 2020. Springer-Verlag, 2001. pp. 176–191.

[116] M. Jakobsson and D. Pointcheval. “Mutual Authentication for Low-Power
Mobile Devices,” In Financial Crypto ’01. LNCS 2339. Springer-Verlag,
2001. pp. 178–195.

[117] M. Jakobsson, D. Pointcheval, and A. Young. “Secure Mobile Gambling,”
In CT–RSA ’01. LNCS 2020. Springer-Verlag, 2001. pp. 110–125.

[118] M. Jakobsson and S.Wetzel. “Secure Server-Aided Signature Generation,”
In PKC ’01. LNCS 1992. Springer-Verlag, 2001. pp. 383–401.

11

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 143

[119] M. Jakobsson and A. Juels. “Addition of ElGamal Plaintexts,” In T.
Okamoto, ed., ASIACRYPT ’00. LNCS 1976. Springer-Verlag, 2000. pp.
346–358.

[120] M. Jakobsson, and A. Juels. “Mix and Match: Secure Function Evaluation
via Ciphertexts,” In ASIACRYPT ’00. LNCS 1976. Springer-Verlag, 2000.
pp. 162–177.

[121] R. Arlein, B. Jai, M. Jakobsson, F. Monrose, and M. Reiter. “Privacy-
Preserving Global Customization,” In ACM E-Commerce ’00. ACM Press,
2000. pp. 176–184.

[122] C.-P. Schnorr and M. Jakobsson. “Security of Signed ElGamal Encryp-
tion,” In ASIACRYPT ’00. LNCS 1976. Springer-Verlag, 2000. pp. 73–89.

[123] P. Bohannon, M. Jakobsson, and S. Srikwan. “Cryptographic Approaches
to Privacy in Forensic DNA Databases,” In Public Key Cryptography ’00.
LNCS 1751. Springer-Verlag, 2000, pp. 373–390.

[124] J. Garay, M. Jakobsson, and P. MacKenzie. “Abuse-free Optimistic Con-
tract Signing,” In CRYPTO ’99. LNCS 1666. Springer-Verlag, 1999. pp.
449–466.

[125] M. Jakobsson. “Flash Mixing,” In PODC ’99. ACM Press, 1999. pp. 83–
89.

[126] G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. “How
To Forget a Secret,” In STACS ’99. LNCS 1563. Springer-Verlag, 1999. pp.
500–509.

[127] M. Jakobsson, D. M’Raihi, Y. Tsiounis, and M. Yung. “Electronic Pay-
ments: Where Do We Go from Here?,” In CQRE (Secure) ’99. LNCS 1740.
Springer-Verlag, 1999. pp. 43–63.

[128] C.P. Schnorr and M. Jakobsson. “Security Of Discrete Log Cryptosystems
in the Random Oracle + Generic Model,” In Conference on The Mathe-
matics of Public-Key Cryptography. 1999.

[129] M. Jakobsson and A. Juels “Proofs of Work and Breadpudding Protocols,”
In CMS ’99. IFIP Conference Proceedings, Vol. 152. Kluwer, B.V., 1999.
pp. 252 – 272.

[130] M. Jakobsson and C-P Schnorr. “E�cient Oblivious Proofs of Correct Ex-
ponentiation,” In CMS ’99. IFIP Conference Proceedings, Vol. 152. Kluwer,
B.V., 1999. pp. 71–86.

[131] M. Jakobsson, P. MacKenzie, and J.P. Stern. “Secure and Lightweight
Advertising on the Web,” In World Wide Web ’99

12

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 144

[132] M. Jakobsson, J.P. Stern, and M. Yung. “Scramble All, Encrypt Small,”
In Fast Software Encryption ’99. LNCS 1636. Springer-Verlag, 1999. pp.
95–111.

[133] M. Jakobsson and J. Mueller. “Improved Magic Ink Signatures Using
Hints,” In Financial Cryptography ’99. LNCS 1648. Springer-Verlag, 1999.
pp. 253–268.

[134] M. Jakobsson. “Mini-Cash: A Minimalistic Approach to E-Commerce,”
In Public Key Cryptography ’99. LNCS 1560. Springer-Verlag, 1999. pp.
122–135.

[135] M. Jakobsson. “On Quorum Controlled Asymmetric Proxy Re-
encryption,” In Public Key Cryptography ’99. LNCS 1560. Springer-Verlag,
1999. pp. 112–121.

[136] M. Jakobsson and A. Juels. “X-Cash: Executable Digital Cash,” In Fi-
nancial Cryptography ’98. LNCS 1465. Springer-Verlag, 1998. pp. 16–27.

[137] M. Jakobsson and D. M’Raihi. “Mix-based Electronic Payments,” In Pro-
ceedings of the Selected Areas in Cryptography. LNCS 1556. Springer-
Verlag, 1998. pp. 157173.

[138] M. Jakobsson, E. Shriver, B. Hillyer, and A. Juels. “A Practical Secure
Physical Random Bit Generator,” In CCS ’98: Proceedings of the 5th ACM
conference on Computer and communications security. ACM Press, 1998.
pp. 103–111.

[139] M. Jakobsson. “A Practical Mix,” In Advances in Cryptology – EuroCrypt
’98. LNCS 1403. Springer-Verlag, 1998. pp. 448–461.

[140] M. Jakobsson and M. Yung. “On Assurance Structures for WWW Com-
merce,” In Financial Cryptography ’98. LNCS 1465. Springer-Verlag, 1998.
pp. 141–157.

[141] E. Gabber, M. Jakobsson, Y. Matias, and A. Mayer. “Curbing Junk E-
Mail via Secure Classification,” In Financial Cryptography ’98. LNCS 1465.
Springer-Verlag, 1998. pp. 198–213.

[142] M. Jakobsson and M. Yung. “Distributed ‘Magic Ink’ Signatures,” In Ad-
vances in Cryptology – EuroCrypt ’97. LNCS 1233. Springer-Verlag, 1997.
pp. 450–464.

[143] M. Jakobsson and M. Yung. “Applying Anti-Trust Policies to Increase
Trust in a Versatile E-Money System,” In Financial Cryptography ’97.
LNCS 1318. Springer-Verlag, 1997. pp. 217–238.

[144] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung.
“Proactive public-key and signature schemes,” In Proceedings of the 4th
Annual Conference on Computer Communications Security. ACM Press,
1997. pp. 100–110.

13

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 145

[145] M. Bellare, M. Jakobsson, and M. Yung. “Round-Optimal Zero-
Knowledge Arguments Based on any One-Way Function,” In Advances
in Cryptology – EuroCrypt ’97. LNCS 1233. Springer-Verlag, 1997. pp.
280–305.

[146] M. Jakobsson and M. Yung. “Proving Without Knowing,” In Crypto ’96.
LNCS 1109. Springer-Verlag, 1996. pp. 186–200.

[147] M. Jakobsson, K. Sako, and R. Impagliazzo. “Designated Verifier Proofs
and Their Applications,” In Advances in Cryptology – EuroCrypt ’96.
LNCS 1070. Springer-Verlag, 1996. pp. 143–154.

[148] M. Jakobsson and M. Yung. “Revokable and Versatile Electronic Money,”
In CCS ’96: Proceedings of the 3rd ACM conference on Computer and
communications security. ACM Press, 1996. pp. 76–87.

[149] M. Jakobsson. “Ripping Coins for a Fair Exchange,” In Advances in Cryp-
tology – EuroCrypt ’95. LNCS 921. Springer-Verlag, 1995. pp. 220–230.

[150] M. Jakobsson. “Blackmailing using Undeniable Signatures,” In Advances
in Cryptology EuroCrypt ’94. LNCS 950. Springer-Verlag, 1994. pp. 425–
427.

[151] M. Jakobsson. “Reducing costs in identification protocols,” Crypto ’92,
1992.

[152] M. Jakobsson. “Machine-Generated Music with Themes,” In International
Conference on Artificial Neural Networks ’92. Vol 2. Amsterdam: Elsevier,
1992. pp. 1645–1646

[153] M. Jakobsson, “Social Engineering 2.0: What’s Next,” McAfee Security
Journal, Fall 2008

[154] M. Jakobsson and S. Myers, “Delayed Password Disclosure,” ACM
SIGACT News archive, Volume 38, Issue 3 (September 2007), pp. 56 -
75

[155] V. Gri�th and M. Jakobsson. “Messin’ with Texas, Deriving Mother’s
Maiden Names Using Public Records,” CryptoBytes, 2007.

[156] M. Jakobsson, A. Juels, J. Ratkiewicz, “Remote-Harm Detection,” Beta-
version available at rhd.ravenwhitedevelopment.com/

[157] S. Stamm, M. Jakobsson, “Social Malware,” Experimental results avail-
able at www.indiana.edu/ phishing/verybigad/

[158] M. Jakobsson. “Privacy vs. Authenticity,” Ph.D. Thesis, University of
California at San Diego, 1997

[159] Markus Jakobsson, Automatic PIN creation using passwords,
US20130125214 A1, 2012.

14

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 146

[160] Markus Jakobsson, Systems and methods for creating a user credential
and authentication using the created user credential, US 20130111571 A1,
2012.

[161] Markus Jakobsson, Password check by decomposing password, US
20120284783 A1, 2012.

[162] Markus Jakobsson, William Leddy, System and methods for protecting
users from malicious content, US 20120192277 A1, 2011.

[163] Markus Jakobsson, Karl-Anders R. Johansson, Auditing a device,
US8370935 B1, 2011.

[164] Markus Jakobsson, Methods and Apparatus for E�cient Computation of
One-Way Chains in Cryptographic Applications, US20120303969 A1, 2011.

[165] Markus Jakobsson, Automatic PIN creation using password, US
20120110634 A1, 2011.

[166] Markus Jakobsson, Jim Roy Palmer, Gustavo Maldonado, Interactive
CAPTCHA, US20130007875 A1, 2011.

[167] Markus Jakobsson, System access determination based on classification of
stimuli, US 20110314559 A1, 2011.

[168] Markus Jakobsson, System access determination based on classification of
stimuli, WO 2011159356 A1, 2011.

[169] Markus Jakobsson, Method, medium, and system for reducing fraud by
increasing guilt during a purchase transaction, US8458041 B1, 2011.

[170] Markus Jakobsson, Visualization of Access Information, US 20120233314
A1, 2011.

[171] Markus Jakobsson, Richard Chow,Runting Shi, Implicit authentication,
US20120137340 A1, 2010.

[172] Markus Jakobsson, Karl-Anders R. Johansson, Auditing a device,
EP2467793 A1, 2010.

[173] Markus Jakobsson, Event log authentication using secure components, US
20110314297 A1, 2010.

[174] Markus Jakobsson, Philippe J.P. Golle, Risk-based alerts, US 20110314426
A1, 2010.

[175] Markus Jakobsson, Karl-Anders R. Johansson, Auditing a device, US
20110041178 A1, 2010.

[176] M. Jakobsson, A. Juels, J. Kaliski Jr, S. Burton and others, Identity
authentication system and method, US Patent 7,502,933, 2009.

15

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 147

[177] Markus Jakobsson, Method and system for facilitating throttling of
interpolation-based authentication, US8219810 B2, 2009.

[178] Markus Jakobsson, Karl-Anders R. Johansson, Auditing a device,
US8375442 B2, 2009.

[179] Markus Jakobsson, Karl-Anders R. Johansson, Auditing a device, US
20110041180 A1, 2009.

[180] Markus Jakobsson, Pattern-based application classification, US
20110055925 A1, 2009.

[181] Markus Jakobsson, Method and apparatus for detecting cyber threats,
US8286225 B2, 2009.

[182] Markus Jakobsson, Method and apparatus for detecting cyber threats,
US20110035784 A1, 2009.

[183] Markus Jakobsson, CAPTCHA-free throttling, US8312073 B2, 2009.

[184] Markus Jakobsson, Captcha-free throttling, US 20110035505 A1, 2009.

[185] Markus Jakobsson, Christopher Soghoian, Method and apparatus for
throttling access using small payments, US 20100153275 A1, 2008.

[186] Markus Jakobsson, Christopher Soghoian, Method and apparatus for mu-
tual authentication using small payments, US 20100153274 A1, 2008.

[187] Philippe J.P. Golle, Markus Jakobsson,Richard Chow, Resetting a forgot-
ten password using the password itself as authentication, US 20100125906
A1, 2008.

[188] Philippe J. P. Golle, Markus Jakobsson,Richard Chow, Authenticating
users with memorable personal questions, US8161534 B2, 2008.

[189] Richard Chow, Philippe J.P. Golle, Markus Jakobsson, Jessica N. Stad-
don, Authentication based on user behavior, US20100122329 A1, 2008.

[190] Richard Chow, Philippe J.P. Golle, Markus Jakobsson, Jessica N. Stad-
don, Enterprise password reset, US 20100122340 A1, 2008.

[191] Markus Jakobsson, Methods and apparatus for e�cient computation of
one-way chains in cryptographic applications, US8086866 B2, 2008.

[192] Richard Chow, Philippe J. P. Golle, Markus Jakobsson, Selectable
captchas, US8307407 B2, 2008.

[193] Markus Jakobsson, Ari Juels, Sidney Louis Stamm, Method and apparatus
for combatting click fraud, US 20080162227 A1, 2007.

[194] Jakobsson, Method and apparatus for evaluating actions performed on a
client device, US 20080037791 A1, 2007.

16

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 148

[195] Jakobsson, Ari Juels, Method and apparatus for storing information in a
browser storage area of a client device, US 20070106748 A1, 2006.

[196] Markus Jakobsson, Steven Andrew Myers, Anti-phising logon authentica-
tion object oriented system and method, WO 2006062838 A1, 2005.

[197] Jakobsson, Jean-Pierre Hubaux,Levente Buttyan, Micro-payment scheme
encouraging collaboration in multi-hop cellular networks, US 20050165696
A1, 2004.

[198] Andrew Nanopoulos, Karl Ackerman, Piers Bowness, William Duane,
Markus Jakobsson, Burt Kaliski, Dmitri Pal, Shane D. Rice,Less , Sys-
tem and method providing disconnected authentication, WO2005029746
A3, 2004.

[199] Andrew Nanopoulos, Karl Ackerman, Piers Bowness, William Duane,
Markus Jakobsson, Burt Kaliski, Dmitri Pal, Shane Rice, Ronald Rivest,
Less , System and method providing disconnected authentication, US
20050166263 A1, 2004.

[200] Andrew Nanopoulos, Karl Ackerman, Piers Bowness, William Duane,
Markus Jakobsson, Burt Kaliski, Dmitri Pal, Shane D. Rice,Less , Sys-
teme et procede d’authentification deconnectee, WO 2005029746 A2, 2004.

[201] Markus Jakobsson, Ari Juels, Burton S. Kaliski Jr., Identity authentica-
tion system and method, WO2004051585 A3, 2003.

[202] Markus Jakobsson, Ari Juels, Burton S. Kaliski, Jr., Identity authentica-
tion system and method, US 7502933 B2, 2003.

[203] Markus Jakobsson, Ari Juels, Burton S. Kaliski Jr., Systeme et procede
de validation d’identite, WO 2004051585 A2, 2003.

[204] Markus Jakobsson, Burton S. Kaliski, Jr., Method and apparatus for
graph-based partition of cryptographic functionality, US7730518 B2, 2003.

[205] Markus Jakobsson, Phong Q. Nguyen, Methods and apparatus for private
certificates in public key cryptography, US7404078 B2, 2002.

[206] Jakobsson, Philip MacKenzie, Thomas Shrimpton, Method and appara-
tus for performing multi-server threshold password-authenticated key ex-
change, US20030221102 A1, 2002.

[207] Markus Jakobsson, Philip D MacKenzie, Method and apparatus for dis-
tributing shares of a password for use in multi-server password authentica-
tion, US 7073068 B2, 2002.

[208] Markus Jakobsson, Methods and apparatus for e�cient computation of
one-way chains in cryptographic applications, EP 1389376 A1 (text from
WO2002084944A1), 2002.

17

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 149

[209] Markus Jakobsson, Adam Lucas Young, Method and apparatus for iden-
tification tagging documents in a computer system, US 7356845 B2, 2002.

[210] Juan A. Garay, Markus Jakobsson, Methods and apparatus for
computationally-e�cient generation of secure digital signatures, US
7366911 B2, 2001.

[211] Markus Jakobsson, Methods and apparatus for e�cient computation of
one-way chains in cryptographic applications, US 7404080 B2, 2001.

[212] Markus Jakobsson, Susanne Gudrun Wetzel, Securing the identity of a
bluetooth master device (bd addr) against eavesdropping by preventing
the association of a detected channel access code (cac) with the identity of
a particular bluetooth device, WO2002019641 A3, 2001.

[213] Markus Jakobsson, Susanne Gudrun Wetzel, Procede et appareil permet-
tant d’assurer la securite d’utilisateurs de dispositifs a capacites bluetooth,
WO 2002019641 A2, 2001.

[214] Robert M. Arlein, Ben Jai, Markus Jakobsson, Fabian Monrose, Michael
Kendrick Reiter, Less , Methods and apparatus for providing privacy-
preserving global customization, US 7107269 B2, 2001.

[215] Markus Jakobsson, Susanne Gudrun Wetzel, Secure distributed computa-
tion in cryptographic applications, US6950937 B2, 2001.

[216] Markus Jakobsson, Susanne Gudrun Wetzel, Method and apparatus for
ensuring security of users of short range wireless enable devices, US6981157
B2, 2001.

[217] Markus Jakobsson, Susanne Gudrun Wetzel, Method and apparatus for
ensuring security of users of bluetooth TM-enabled devices, US 6574455
B2, 2001.

[218] Garay; Juan A. (West New York, NJ), Jakobsson; M. (Hoboken, NJ),
Kristol; David M. (Summit, NJ), Mizikovsky; Semyon B.(Morganville, NJ),
Cryptographic key processing and storage , 7023998, 2001.

[219] Markus Jakobsson, Method, apparatus, and article of manufacture for
generating secure recommendations from market-based financial instru-
ment prices, US 6970839 B2, 2001.

[220] Markus Jakobsson, Encryption method and apparatus with escrow guar-
antees, US7035403 B2, 2001.

[221] Jakobsson, Call originator access control through user-specified pricing
mechanism in a communication network, US20020099670 A1, 2001.

[222] Markus Jakobsson, Claus Peter Schnorr, Tagged private information re-
trieval, US7013295 B2, 2000.

18

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 150

[223] Markus Jakobsson, Secure enclosure for key exchange, US 7065655 B1,
2000.

[224] Markus Jakobsson, Michael Kendrick Reiter, Software aging method and
apparatus for discouraging software piracy, US 7003110 B1, 2000.

[225] Markus Jakobsson, Probabilistic theft deterrence, US6501380 B1, 2000.

[226] Markus Jakobsson, Michael Kendrick Reiter, Abraham Silberschatz,
Anonymous and secure electronic commerce, EP 1150227 A1, 2000.

[227] Markus Jakobsson, Ari Juels, Proofs of work and bread pudding protocols,
US 7356696 B1, 2000.

[228] Markus Jakobsson, Joy Colette Mueller, Methods of protecting against
spam electronic mail, US7644274 B1, 2000.

[229] Philip L. Bohannon, Markus Jakobsson,Fabian Monrose, Michael
Kendrick Reiter,Susanne Gudrun Wetzel, Less , Generation of repeatable
cryptographic key based on varying parameters, EP1043862 B1, 2000.

[230] Markus Jakobsson, Ari Juels, Mix and match: a new approach to secure
multiparty computation, US6772339 B1, 2000.

[231] Markus Jakobsson, Ari Juels, Mixing in small batches, US6813354 B1,
2000.

[232] Philip L. Bohannon, Markus Jakobsson,Fabian Monrose, Michael
Kendrick Reiter,Susanne Gudrun Wetzel, Less , Generation of repeatable
cryptographic key based on varying parameters, US 6901145 B1, 36566

[233] Markus Jakobsson, Claus Peter Schnorr, Non malleable encryption
method and apparatus using key-encryption keys and digital signature,
US6931126 B1, 2000.

[234] Markus Jakobsson, Claus Peter Schnorr, Non malleable encryption
method and apparatus using key-encryption keys and digital signature,
US 6931126 B1, 2000.

[235] Markus Jakobsson, Flash mixing apparatus and method, US 6598163 B1,
1999.

[236] Markus Jakobsson, Minimalistic electronic commerce system, US 6529884
B1, 1999.

[237] Markus Jakobsson, Method and system for providing translation certifi-
cates, US 6687822 B1, 1999.

[238] Markus Jakobsson, Verification of correct exponentiation or other opera-
tions in cryptographic applications, US6978372 B1, 1999.

19

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 151

[239] Markus Jakobsson, Non malleable encryption apparatus and method, US
6507656 B1, 1999.

[240] Markus Jakobsson, Method and system for quorum controlled asymmetric
proxy encryption, US 6587946 B1, 1998.

[241] Markus Jakobsson, Practical mix-based election scheme, US 6317833 B1,
1998.

[242] Markus Jakobsson, Ari Juels, Method and apparatus for extracting un-
biased random bits from a potentially biased source of randomness, US
6393447 B1, 1998.

[243] Markus Jakobsson, Ari Juels, Executable digital cash for electronic com-
merce, US6157920 A, 1998.

[244] Bruce Kenneth Hillyer, Markus Jakobsson, Elizabeth Shriver, Storage de-
vice random bit generator, US 6317499 B1, 1998.

[245] Markus Jakobsson, Method and apparatus for encrypting, decrypting, and
providing privacy for data values, US 6049613 A, 1998.

20

APPENDIX A IPR2024-00027
CrowdStrike Exhibit 1003 Page 152

