UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

CROWDSTRIKE, INC.
Petitioner

V.

TAASERA
Patent Owner

Case No. IPR2024-00027
Patent No. 7,673,137

DECLARATION OF JUNE ANN MUNFORD

IPR2024-00027
CrowdStrike Exhibit 1004 Page 1

1. My name is June Ann Munford. I am over the age of 18, have personal
knowledge of the facts set forth herein, and am competent to testify to the

same.

2. T earned a Master of Library and Information Science (MLIS) from the
University of Wisconsin-Milwaukee in 2009. I have over ten years of
experience in the library/information science field. Beginning in 2004, 1
have served in various positions in the public library sector including
Assistant Librarian, Youth Services Librarian and Library Director. I have

attached my Curriculum Vitae as Appendix CV.

3. During my career in the library profession, I have been responsible for
materials acquisition for multiple libraries. In that position, I have cataloged,
purchased and processed incoming library works. That includes purchasing
materials directly from vendors, recording publishing data from the material
in question, creating detailed material records for library catalogs and
physically preparing that material for circulation. In addition to my
experience in acquisitions, I was also responsible for analyzing large

collections of library materials, tailoring library records for optimal catalog

IPR2024-00027
CrowdStrike Exhibit 1004 Page 2

search performance and creating lending agreements between libraries

during my time as a Library Director.

. I'am fully familiar with the catalog record creation process in the library
sector. In preparing a material for public availability, a library catalog record
describing that material would be created. These records are typically
written in Machine Readable Catalog (herein referred to as “MARC”) code
and contain information such as a physical description of the material,
metadata from the material’s publisher, and date of library acquisition. In
particular, the 008 field of the MARC record is reserved for denoting the
date of creation of the library record itself. As this typically occurs during
the process of preparing materials for public access, it is my experience that

an item’s MARC record indicates the date of an item’s public availability.

. Typically, in creating a MARC record, a librarian would gather various bits
of metadata such as book title, publisher and subject headings among others
and assign each value to a relevant numerical field. For example, a book’s
physical description is tracked in field 300 while title/attribution is tracked in
field 245. The 008 field of the MARC record is reserved for denoting the
creation of the library record itself. As this is the only date reflecting the

inclusion of said materials within the library’s collection, it is my experience

IPR2024-00027
CrowdStrike Exhibit 1004 Page 3

that an item’s 008 field accurately indicates the date of an item’s public

availability.

. I have reviewed Exhibit 1005, an IBM Research Report entitled
ChakraVyuha (CV): A Sandbox Operating System Environment for
Controlled Execution of Alien Code by Asit Dan, Ajay Mohindra, Rajiv

Ramaswami and Dinkar Sitaram.

. Attached hereto as Appendix DANOI is a true and correct copy of the
MARC record for ChakraVyuha (CV): A Sandbox Operating System
Environment for Controlled Execution of Alien Code as held by the Carnegie
Mellon University Library. I secured this record myself from the library’s
public catalog. The MARC record contained within Appendix DANO1
accurately describes ChakraVyuha (CV): A Sandbox Operating System

Environment for Controlled Execution of Alien Code.

. My determination that the MARC record contained within Appendix
DANOI accurately describes ChakraVyuha (CV): A Sandbox Operating
System Environment for Controlled Execution of Alien Code is based upon
the accuracy of several fields within this MARC record. The 088 field,

describing the work’s report number, matches the report number of

IPR2024-00027
CrowdStrike Exhibit 1004 Page 4

ChakraVyuha (CV): A Sandbox Operating System Environment for
Controlled Execution of Alien Code as represented in Exhibit 1005. The 245
field, describing the title and authorship of the work, matches the title and
authors as represented in Exhibit 1005. The 260 field describing the
publisher of the work is properly attributed to the IBM Corporation, as found
in Exhibit 1005. The 300 field, describing the physical attributes of the

work, matches the page number as represented in Exhibit 1005.

9. Attached hereto as Appendix DANO2 is a true and correct copy of
ChakraVyuha (CV): A Sandbox Operating System Environment for
Controlled Execution of Alien Code as held by the Carnegie Mellon
University Library. I secured these scans myself from the library’s
collection. In comparing Exhibit 1005 to Appendix DANO2, it is my
determination that Exhibit 1005 is a true and correct copy of ChakraVyuha
(CV): A Sandbox Operating System Environment for Controlled Execution
of Alien Code by Asit Dan, Ajay Mohindra, Rajiv Ramaswami and Dinkar

Sitaram.

10.While Appendix DANO1 does accurately describe the report number, title,
author, publisher and page number of ChakraVyuha (CV): A Sandbox

Operating System Environment for Controlled Execution of Alien Code

IPR2024-00027
CrowdStrike Exhibit 1004 Page 5

found within Exhibit 1005, this record also accurately describes the report
number, title, author, publisher and page number of ChakraVyuha (CV): A
Sandbox Operating System Environment for Controlled Execution of Alien
Code as presented in Appendix DANO02. The MARC record presented in
Appendix DANO1 also describes several proprietary elements exclusive to
the Carnegie Mellon University copy of this report presented in Appendix
DANQO2. For instance, this paper is organized on Carnegie Mellon’s shelves
by call number — a combination of letters and numbers that ensure library
materials are shelved near other materials with similar topics. This call
number — IBMC 20742 — can be found on page 1 of the MARC record in
field 099, page 2 of the MARC record in the ‘location items’ field, and in
two places on page 1 of Appendix DANO2 — the top left of the page and a
shelving sticker in the bottom left of the page. On page 2 of Appendix
DANO2, a post-it note can be found reading as follows: ‘1. client/server
computer, 2. computer security, 3. coding theory’. These phrases are subject
headings, typically used to describe the topic of a work when creating a
MARC record. These subject headings identically correspond to the subject

heading fields found in field 650 of Appendix DANOI.

IPR2024-00027
CrowdStrike Exhibit 1004 Page 6

11.The 008 field of the MARC record in Appendix DANOI indicates the date of
record creation. The 008 field of Appendix DANOI indicates Carnegie
Mellon University library first acquired this book on July 3, 1997.
Considering this information, it is my determination that ChakraVyuha
(CV): A Sandbox Operating System Environment for Controlled Execution
of Alien Code was made available to the public shortly after its initial

acquisition as of July 3, 1997.

12.In addition to the 008 field of Appendix DANO1 indicating the first date of
library acquisition, there is additional information regarding availability to
be found within Carnegie Mellon’s copy of ChakraVyuha (CV): A Sandbox
Operating System Environment for Controlled Execution of Alien Code as
presented in Appendix DANO2. On page 25 of Appendix DANO2, there is a
date stamped reading ‘JUL 22 1997°. In my experience preparing library
material for public accessibility, this marking is known as a date stamp and
is added by library staff after the material has been cataloged. In my
experience cataloging and preparing materials for the shelf, this 19-day gap

between the two dates is typical of the cataloging process.
13.0n page 1 of Appendix DANO2, there is a stamp on the bottom of the page

reading ‘Room Use Only Until AUG 15 1997°. In my experience preparing

IPR2024-00027
CrowdStrike Exhibit 1004 Page 7

library materials for public accessibility, this stamp represents a usage
restriction typical of some library materials - the need for the library user to
interact with the material on-site at the library in some type of private
reading room. The date visible on this stamp has been struck, implying that
the usage restriction has expired. I note that this usage restriction would have

no impact on the public accessibility of the material.

14. The MARC record for ChakraVyuha (CV): A Sandbox Operating System
Environment for Controlled Execution of Alien Code found within Appendix
DANOI in combination with features present in the Appendix DANO02
provide a clear timeline of this material’s accessibility via the Carnegie
Library University library. The 008 field of ChakraVyuha (CV): A Sandbox
Operating System Environment for Controlled Execution of Alien Code’s
MARC record indicates this paper was first cataloged by Carnegie Mellon
Librarians as of July 3, 1997. The date stamp on page 25 of Appendix
DANO2 indicates this book was prepared for public accessibility as of July
22, 1997. The usage restriction stamp on page 1 of Appendix DANOI
indicates this material was made available to the public at first with some

usage restrictions, which expired as of August 15, 1997.

IPR2024-00027
CrowdStrike Exhibit 1004 Page 8

15.1 am familiar with the Internet Archive, a digital library formally certified by
the State of California as a public library. Among other services that the
Internet Archive makes available to the general public is the Wayback
Machine, an online archive. The Internet Archive’s Wayback Machine
service archives webpages as of a certain capture date to track changes in the
web over time. The Internet Archive has been in operation as a nonprofit
library since 1996 and has hosted the Wayback Machine service since its
inception in 2001. During my time as a librarian, I frequently used the
Internet Archive’s Wayback Machine for research and instruction purposes.
This includes teaching instructional classes on using the Wayback Machine
to library patrons and using the Wayback Machine to research reference
inquiries that require hard-to-find online resources. I consider the Internet
Archive’s recordskeeping to be as rigorous and detailed as other formal
library recordskeeping practices such as MARC records, OCLC records and

Dublin Core.

16.Attached hereto as Appendix CMUQOI is a screen capture of the Internet
Archive Wayback Machine entry for

http://hathorne.library.cmu.edu/uhtbin/cgisirsi/0/1/0. I secured these screen

captures myself from

IPR2024-00027
CrowdStrike Exhibit 1004 Page 9

http://hathorne.library.cmu.edu/uhtbin/cgisirsi/0/1/0

https://web.archive.org/web/19970301000000%*/http://hathorne.library.cmu.e

du/uhtbin/cgisirsi/0/1/0.

17.Appendix CMUO1 is a webpage entitled Unicorn WebCat — Unicorn Public
Access Choices as published on the Carnegie Mellon University library
website, captured by the Internet Archive on April 24, 1997. This page
describes user options when interacting with the Carnegie Mellon University
library catalog as such: ‘Library materials are described in indexed records
in the online catalog. Under the library catalog you can lookup library
materials using a particular word or phrase, or review lists of the library’s

authors, titles, subjects, series, keywords, or call numbers.’

18. Attached hereto as Appendix CMUO2 is a screen capture of the Internet
Archive Wayback Machine entry for

http://www.library.cmu.edu/Research/Online/index.html. I secured these

screen captures myself from

https://web.archive.org/web/19971009135520/http://www.library.cmu.edu/R

esearch/Online/index.html.

19.Appendix CMUO2 is a webpage entitled Catalogs and Databases as

published on the Carnegie Mellon University library website, captured by

IPR2024-00027
CrowdStrike Exhibit 1004 Page 10

https://web.archive.org/web/19970301000000*/http:/hathorne.library.cmu.edu/uhtbin/cgisirsi/0/1/0
https://web.archive.org/web/19970301000000*/http:/hathorne.library.cmu.edu/uhtbin/cgisirsi/0/1/0
http://www.library.cmu.edu/Research/Online/index.html
https://web.archive.org/web/19971009135520/http:/www.library.cmu.edu/Research/Online/index.html
https://web.archive.org/web/19971009135520/http:/www.library.cmu.edu/Research/Online/index.html

the Internet Archive on October 9, 1997. This page describes the software
used to manage the library’s online public-facing catalog, a commonly used
software program by the Sirsi Corporation known as WebCat. Carnegie
Mellon’s use of this software indicates that the catalog includes shelving
locations for library materials held at different library facilities. This page
also confirms that the catalog is updated daily, that users can interface with
this catalog via a web browser and that access is unrestricted aside from a

few exceptions detailed within.

20.To summarize, Appendix CMUOI indicates that Carnegie Mellon library
materials are described in indexed library catalog records and presented as
an online catalog that allows users to search by words/phrases and review
lists of the library’s authors, titles, subjects, series, keywords, or call
numbers. Appendix CMUO2 indicates that Carnegie Mellon University’s
library records are designed to correspond with the library’s holdings in
individual libraries, such as the Hunt Library where ChakraVyuha (CV): A
Sandbox Operating System Environment for Controlled Execution of Alien
Code can be found. Appendix CMUO?2 also indicates that Carnegie Mellon
University are using Sirsi’s Unicorn and WebCat software to present their

online catalog.

10
IPR2024-00027

CrowdStrike Exhibit 1004 Page 11

21.Attached hereto as Appendix SIRSIOI is a screen capture of the Internet
Archive Wayback Machine entry for

http://www.sirsi.com/Products/ulms.html. I secured these screen captures

myself from

https://web.archive.org/web/19970627002415/http://www.sirsi.com/Product

s/ulms.html.

22.Appendix SIRSIO1 is a webpage entitled Unicorn Library Management
System as published on the Sirsi Corporation website, captured by the
Internet Archive on June 27, 1997. This page describes the Unicorn Library
Management software used by Carnegie Mellon University as of 1997,
visible in Appendix CMUO1. The page describes the public accessibility
features of the Unicorn software as follows: ‘UNICORN’s highly evolved
public access catalog is designed to address the needs of the beginning
searcher, as well as the researcher. Separate choices are available for
browsing and keyword searching. A full-text index is available as a standard
feature of UNICORN, providing the best possible approach for accessing all
library material. Precise search results are easily retrieved using
UNICORN's sophisticated truncation, boolean, relational, adjacency, and

proximity operators.’

11
IPR2024-00027

CrowdStrike Exhibit 1004 Page 12

http://www.sirsi.com/Products/ulms.html
https://web.archive.org/web/19970627002415/http:/www.sirsi.com/Products/ulms.html
https://web.archive.org/web/19970627002415/http:/www.sirsi.com/Products/ulms.html

23.Attached hereto as Appendix SIRSIO2 is a screen capture of the Internet
Archive Wayback Machine entry for

http://www.sirsi.com/Products/webcat.html. I secured these screen captures

myself from

https://web.archive.org/web/19970627002554/http://www.sirsi.com/Product

s/webcat.html.

24.Appendix SIRSIO2 is a webpage entitled WebCat with Z39.50 as published
on the Sirsi Corporation website, captured by the Internet Archive on June
27, 1997. This page describes the WebCat Library Catalog software used by
Carnegie Mellon University as of 1997, visible in Appendices CMUO1 and
CMUO02. Some of the WebCat features are detailed as follows: ‘The easy-to-
use, familiar look and feel of today’s web browsers host WebCat’s powerful
features: quickly create and execute simple or complex search statements,
browse and select terms from heading lists, search related information by
clicking on hypertext terms, view cross-reference information, sort search
results, export selected records to networked printers, files or email, link to
library holdings information on one or more servers [and] execute previous

searches from search history.’

12
IPR2024-00027

CrowdStrike Exhibit 1004 Page 13

http://www.sirsi.com/Products/webcat.html
https://web.archive.org/web/19970627002554/http:/www.sirsi.com/Products/webcat.html
https://web.archive.org/web/19970627002554/http:/www.sirsi.com/Products/webcat.html

25.To further summarize, Appendix SIRSIO1 describes the Unicorn software
implemented by Carnegie Mellon University libraries as of 1997. Based on
Sirsi’s descriptions of the Unicorn software, library catalog users are
presented a full-text index of the library’s holdings and can review those
holdings via browsing or search features. Specifically, the Unicorn program
includes advanced search features such as keyword searching, boolean
operators and proximity operators. Appendix SIRSI02 describes the WebCat
software implemented by Carnegie Mellon University libraries as of 1997.
Based on Sirsi’s descriptions of WebCat, users are presented with an
interactive library catalog when interacting with a WebCat page.
Specifically, the WebCat online catalog supports simple and complex search
statements, cross-references between similar materials, the ability to sort
search results based on user preferences and the ability to browse one’s

search history.

26.Appendices CMUOI and CMUDO2 indicate the Carnegie Mellon University
Library implemented Sirsi’s Unicorn and WebCat software to create a
detailed inventory of the library’s holdings and present users with an
interactive library catalog to search this inventory. Appendices SIRSIO1 and
SIRSI02 indicate that Sirsi’s library software enables users to search through

library catalog records using various complex search strategies. As such, it is

13
IPR2024-00027

CrowdStrike Exhibit 1004 Page 14

my determination that ChakraVyuha (CV): A Sandbox Operating System
Environment for Controlled Execution of Alien Code was sufficiently
indexed at the time of its acquisition by the Carnegie Mellon University
Library in July 1997. This indexing via Carnegie Mellon University’s
Library catalog records allows any library catalog user to locate
ChakraVyuha (CV): A Sandbox Operating System Environment for
Controlled Execution of Alien Code via common search engines practices
and access this paper within the Carnegie Mellon University Library’s
collection. Thus, any members of the interested public exercising reasonable
diligence would have been able to locate ChakraVyuha (CV): A Sandbox
Operating System Environment for Controlled Execution of Alien Code in

the Carnegie Mellon University Library as of July 22, 1997.

27.1 have been retained on behalf of the Petitioner to provide assistance in the
above-illustrated matter in establishing the authenticity and public
availability of the documents discussed in this declaration. I am being
compensated for my services in this matter at the rate of $200.00 per hour
plus reasonable expenses. My statements are objective, and my

compensation does not depend on the outcome of this matter.

14
IPR2024-00027

CrowdStrike Exhibit 1004 Page 15

28.1 declare under penalty of perjury that the foregoing is true and correct. |
hereby declare that all statements made herein of my own knowledge are
true and that all statements made on information and belief are believed to
be true; and further that these statements were made the knowledge that
willful false statements and the like so made are punishable by fine or
imprisonment, or both, under Section 1001 of Title 18 of the United States

Code.

Dated: 10/20/2023

FAL

June Ann Munford

15
IPR2024-00027

CrowdStrike Exhibit 1004 Page 16

Appendix CV

IPR2024-00027
CrowdStrike Exhibit 1004 Page 17

June A. Munford
Curriculum Vitae

Education

University of Wisconsin-Milwaukee - MS, Library & Information Science, 2009
Milwaukee, WI

e Coursework included cataloging, metadata, data analysis, library systems,
management strategies and collection development.
e Specialized in library advocacy, cataloging and public administration.

Grand Valley State University - BA, English Language & Literature, 2008
Allendale, MI

e Coursework included linguistics, documentation and literary analysis.
e Minor in political science with a focus in local-level economics and
government.

Professional Experience

Researcher / Expert Witness, October 2017 — present
Freelance e Pittsburgh, Pennsylvania & Grand Rapids, Michigan

e Material authentication and public accessibility determination.
Declarations of authenticity and/or public accessibility provided upon
research completion. Experienced with appeals and deposition process.

e Research provided on topics of public library operations, material
publication history, digital database services and legacy web resources.

e Past clients include Alston & Bird, Arnold & Porter, Baker Botts, Fish &
Richardson, Erise IP, Irell & Manella, O'Melveny & Myers, Perkins-Coie,
Pillsbury Winthrop Shaw Pittman and Slayden Grubert Beard.

Library Director, February 2013 - March 2015
Dowagiac District Library @ Dowagiac, Michigan

e Executive administrator of the Dowagiac District Library. Located in

IPR2024-00027
CrowdStrike Exhibit 1004 Page 18

Southwest Michigan, this library has a service area of 13,000, an annual
operating budget of over $400,000 and total assets of approximately
$1,300,000.

e Developed careful budgeting guidelines to produce a 15% surplus during
the 2013-2014 & 2014-2015 fiscal years while being audited.

e Using this budget surplus, oversaw significant library investments
including the purchase of property for a future building site, demolition of
existing buildings and building renovation projects on the current facility.

e [ed the organization and digitization of the library's archival records.

e Served as the public representative for the library, developing business
relationships with local school, museum and tribal government entities.

e Developed an objective-based analysis system for measuring library
services - including a full collection analysis of the library's 50,000+
circulating items and their records.

November 2010 - January 2013
Librarian & Branch Manager, Anchorage Public Library ® Anchorage, Alaska

e Headed the 2013 Anchorage Reads community reading campaign
including event planning, staging public performances and creating
marketing materials for mass distribution.

® Co-led the social media department of the library's marketing team,
drafting social media guidelines, creating original content and instituting
long-term planning via content calendars.

e Developed business relationships with The Boys & Girls Club, Anchorage
School District and the US Army to establish summer reading programs for
children.

June 2004 - September 2005, September 2006 - October 2013
Library Assistant, Hart Area Public Library
Hart, MI

e Responsible for verifying imported MARC records and original MARC

IPR2024-00027
CrowdStrike Exhibit 1004 Page 19

cataloging for the local-level collection as well as the Michigan Electronic
Library.

e Handled OCLC Worldcat interlibrary loan requests & fulfillment via
ongoing communication with lending libraries.

Professional Involvement

Alaska Library Association - Anchorage Chapter
e Treasurer, 2012

Library Of Michigan
e [evel VII Certification, 2008
e Lecvel II Certification, 2013

Michigan Library Association Annual Conference 2014
e New Directors Conference Panel Member

Southwest Michigan Library Cooperative
e Represented the Dowagiac District Library, 2013-2015

Professional Development

Library Of Michigan Beginning Workshop, May 2008

Petoskey, M1
e Received training in cataloging, local history, collection management,
children’s literacy and reference service.

Public Library Association Intensive Library Management Training, October 2011
Nashville, TN
e Attended a five-day workshop focused on strategic planning, staff
management, statistical analysis, collections and cataloging theory.

Alaska Library Association Annual Conference 2012 - Fairbanks, February 2012
Fairbanks, AK
e Attended seminars on EBSCO advanced search methods, budgeting,
cataloging, database usage and marketing.

IPR2024-00027
CrowdStrike Exhibit 1004 Page 20

Depositions

2019 e Fish & Richardson

Apple v. Qualcomm (IPR2018-001281, 39521-004211P, [PR2018-01282
and 39521-004211P2)

2019 e Erise IP
Implicit, LLC v. Netscout Systems, Inc (Civil Action No. 2:18-cv-53-JRG)

2019 e Perkins-Coie
Adobe Inc. v. RAH Color Technologies LLC (Cases IPR2019-00627,
[PR2019-00628, IPR2019-00629 and IPR2019-00646)

2020 e O’Melveny & Myers
Maxell, Ltd. v. Apple Inc. (Case No. 5:19-cv-00036-RWS)

2021 e Pillsbury Winthrop Shaw Pittman LLP
Intel v. SRC (IPR2020-1449)

2022 e Perkins-Coie
Realtek v. Future Link (IPR2021-01182)

2023 e Fish & Richardson
Neuroderm Ltd. v. Abbvie, Inc (Case No. PGR2022-00040)

2023 e Fish & Richardson
Nearmap US Inc. v. Pictometry International Corp. (IPR2022-00735)

2023 e Fish & Richardson
Samsung Electronics v. MemoryWeb LLC (Case No. 39843-0136PS1)

IPR2024-00027
CrowdStrike Exhibit 1004 Page 21

Limited Case History & Potential Conflicts

Alston & Bird
e Ericsson

v. Collision Communications (IPR2022-01233)

e Nokia
v. Neptune Subsea, Xtera (Case No. 1:17-cv-01876)

e Universal Electronics Inc

v. Roku Inc (IPR2022-00818)

Arnold & Porter
e [vantis

v. Glaukos (Case No. 8:18-cv-00620)

e Samsung

v. Jawbone (Case No. 2:21-cv-00186)

Benesch Friedlander Coplan & Aronoff
® Voyis
v. Cathx (Case No. 5:21-cv-00077-RWS)

Erise I.P.
e Apple

v. Ericsson Inc. (IPR2022-00715)

IPR2024-00027

CrowdStrike Exhibit 1004 Page 22

v. Future Link Systems (IPRs 6317804, 6622108, 6807505, and
7917680)

v. INVT (Case No. 20-1881)
v. Navblazer LLC (IPR2020-01253)

v. Qualcomm (IPR2018-001281, 39521-004211P, IPR2018-01282,
39521-004211P2)

v. Quest Nettech Corp (Case No. 2:19-cv-00118-JRG)
v. Telefonaktiebolaget LM Ericsson (IPR2022-00275)

e Fanduel

v. CGT (Case No. 19-1393)

e Garmin

v. Phillips North America LLC (Case No. 2:19-cv-6301-AB-KS)

e Netscout
v. Longhorn HD LLC (Case No. 2:20-cv-00349)
v. Implicit, LLC (Civil Action No. 2:18-cv-53-JRG)

e Sony Interactive Entertainment LLC
v. Bot M8 LLC (IPR2020-01288)
v. Infernal Technology LLC (Case No. 2:19-CV-00248-JRG)

e Unified Patents
v. GE Video Compression (Civil Action No. 2:19-cv-248)

Fish & Richardson
e Apple

IPR2024-00027
CrowdStrike Exhibit 1004 Page 23

v. AliveCor (3:21-cv-03958)
v. LBS Innovations (Case No. 2:19-cv-00119-JRG-RSP)
v. Koss Corporation (IPR2021-00305)

v. Masimo (IPR 50095-0012IP1, 50095-00121P2, 50095-00131P1,
50095-00131P2, 50095-0006IP1, 50095-01351P1)

v. Neonode (Case No. 21-cv-08872-EMC)

v. Qualcomm (IPR2018-001281, 39521-004211P, IPR2018-01282,
39521-004211P2)

e Dell
v. Neo Wireless (IPR2022-00616)

e Dish Network
v. Realtime Adaptive Streaming (Case No. 1:17-CV-02097-RB)J)
v. TQ Delta LLC (Case No. 18-1798)

e Evapco Dry Cooling
v. SPG Dry Cooling (IPR2021-00688)

e (Genetec

v. Sensormatic Electronics (Case No. 1:20-CV-00760)

e Huawei

v. Bell Northern Research LLC (IPR2019-01174)

e Kianxis

v. Blue Yonder (Case No. 3:20-cv-03636)

IPR2024-00027
CrowdStrike Exhibit 1004 Page 24

e .G Electronics

v. Bell Northern Research LLC (Case No. 3:18-cv-2864-CAB-BLM)

e Metaswitch

v. Sonus Networks (IPR2018-01719)

e Microsoft

v. Throughputer Inc (IPR2022-00757)

e MLC Intellectual Property
v. MicronTech (Case No. 3:14-cv-03657-SI)

e Nearmap Inc

v. EagleView Technologies (IPR2022-01009)

e Neuroderm Ltd.
v. Abbvie, Inc (Case No. PGR2022-00040)

e Realtek Semiconductor

v. Future Link (IPR2021-01182)

® Quectel

v. Koninklijke Philips (Case No. 1:20-cv-01710)

e Samsung
v. Aire Technology (IPR2022-00877)
v. Bell Northern Research (Case No. 2:19-cv-00286-JRQG)
v. Communication Technologies Inc (IPR2022-01221)

IPR2024-00027
CrowdStrike Exhibit 1004 Page 25

v. Jawbone Innovations (IPR2022-00865)
v. MemoryWeb LLC (IPR2022-00885)
v. Telefonaktiebolaget LM Ericsson (IPR2021-00615)

e Texas Instruments

v. Vantage Micro LLC (IPR2020-01261)

e Xilinx

v. Sentient Sensors LCC (Case No. 1:22-cv-00173)

Irell & Manella

e Curium

O’Melveny & Myers
e Apple
v. Maxell (Case No. 5:19-cv-00036-RWS)

e Samsung

v. Daedalus Prime LLC (1335 Investigation)

Perkins-Coie
e Heru Industries

v. The UAB Research Foundation (IPR2022-01148)

e Intel Corporation

v. BitMICRO (Case No. 5:23-cv-00625)

IPR2024-00027
CrowdStrike Exhibit 1004 Page 26

e Realtek Semiconductor
v. Future Link (IPR2021-01182)
e Twitter Inc

v. VOIP-Pal.com (Case No. 3:20-cv-02397-JD)

® TCL Industries

v. Koninklijke Philips NV (IPR2021-00495, IPR2021-00496
and IPR2021-00497)

Pillsbury Winthrop Shaw Pittman

e Intel

v. FG SRC LLC (Case No. 6:20-cv-00315)

e (Gravel Rating Systems

v. Costco (Case No. 4:21-cv-149)

v. Lowe’s Home Centers (Case No. 4:21-cv-150)
v. T-Mobile USA (Case No. 4:21-cv-152)

v. Kohl’s Inc. (Case No. 4:21-cv-258)

v. Under Armor (Case No. 4:21-cv-356)

IPR2024-00027
CrowdStrike Exhibit 1004 Page 27

Appendix DANOI1

IPR2024-00027
CrowdStrike Exhibit 1004 Page 28

10/17/23, 9:38 AM nimbus screenshot app print

leader ©2477nam a2200409Ia 4500

001 991003215149704436

005 20231005194100.0

008 97070351997 nyua tb 000 0 eng d

035 ##$2490706-01lcmu_inst

035 ##$a(0CoLC)37237058

040 ##$aPMC $cPMC

049 ##$aPMCC

088 ##$aRC 20742 (91875)

099 ##$aIBMC 20742

245 @0$aChakra Vyuha (CV) : $ba sandbox operating system environment for controlled execution of alien code / $cAsit Dan ... [et al.].
246 13$aChakraVyuha (CV) : $ba sandbox operating system environment for controlled execution of alien code
260 ##$aYorktown Heights, N.Y. : $bIBM T.J. Watson Research Center, $c[1997].

300 ##$a22 p. : $bill. ; $c28 cm.

490 1#$aResearch report RC. International Business Machines Corporation. Research Division ; $v20742

500 ##$a"2/20/97."

500 ##$aCover title.

504 ##$aIncludes bibliographical references.

520 ##$aAbstract: "Sharing of unknown programs creates an atmosphere of untrust and hence exacerbates the need to secure information and physical
596 ##$a9

650 #0%$aClient/server computing.

650 #0$aCoding theory.

650 #0%$aComputer security.

700 1#$aDan, Asit.

810 2#$alnternational Business Machines Corporation. $bResearch Division. $tResearch report ; $vRC 20742.
901 ##$aocm37237058

910 ##$ajh/zt 6/27/97

916 ##$219970703

917 ##$219970703

918 ##$aCATALOGER

919 ##$a0

945 ##$he&s-tech rept $i38482009794286

999 ##$aIBMC 20742 $wWALPHANUM $cl $i38482009794286 $d7/3/1997 $1BY-REQUEST $mOFFSITE $rY $sY $tTECH-RPT $u7/3/1997 FORM=MARC

IPR2024-00027

chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html 171

CrowdStrike Exhibit 1004 Page 29

10/17/23, 9:39 AM

Carnegie Mellon University

Search anything

SEARCH

TIPS

nimbus screenshot app print

BROWSE DATABASES
SEARCH A-Z

JOURNAL
SEARCH

COLLECTION INTERLIBRARY
DISCOVERY LOAN

Everything ¥ \!}

— BOOK
Chakra Vyuha (CV) : a sandbox operating system environment for controlled execution of alien code 1
Dan, Asit.
1997
Not Available »
TOP
Find in Librar
FIND IN LIBRAR
LINKS Please sign in to check if there are any request options. 'EI Signin
UCTRICS

<_BACK TO LOCATIONS
SEND TO

LOCATION ITEMS
VIRTUAL BROWSE

Offsite Repository

Out of library , BY-REQUEST ; IBMC 20742 -
(1 copy, 0 available, 1 request) -V
On hold shelf until 10/23/2023 v

Sign in for loan information

TOP
FIND IN LIBRARY

Likikgs

ReppradProblem [>
Signed in and still can't find what you're looking for? Let us know

SEND TO

Display source record[»

VIRTUAL BROWSE

Details

Title
Creator
Subject

Description

Other title
Series

PuTtﬁlf;her

CreatiomRatRARY
Format

BiblMEraphy Note
General Note
DETAILS

Source

Seoel to

FIND&LIBRARY

EXPORT TO
IN CEL

DET/-\ﬁ

PRINT

Chakra Vyuha (CV) : a sandbox operating system environment for controlled execution of alien code

Dan, Asit. >

Client/server computing >

Coding theory »

Computer security >

Abstract: "Sharing of unknown programs creates an atmosphere of untrust and hence exacerbates the need to
secure information and physical resources from any alien code. A sandbox approach to execution of such foreign
code is proposed in this paper. An alien code is trusted with a set of privileges for accessing logical (e.g., callable
functions and services) and physical (e.g., rate and maximum consumption amount of CPU, memory, disk space,
etc.) resources via a third party authentication. During installation of any code in the sandbox environment, the
associated privileges (per user basis) are stored in a secure area and enforced by the Operating System during
execution. The alien code may also access resources defined by other subsystems (e.g., database), and hence, in
an integrated environment the subsystem specific privileges are transferred securely to the subsystem for
monitoring. A prototype version based on Linux OS code has been developed."

ChakraVyuha (CV) : a sandbox operating system environment for controlled execution of alien code
International Business Machines Corporation. Research Division. Research report ; RC 20742. >

Research report RC. International Business Machines Corporation. Research Division ; 20742 >

Yorktown Heights, N.Y. : IBM T.J. Watson Research Center

1997

22 p.:ill.;28cm.

Includes bibliographical references.

"2/20/97."

Cover title.

Library Catalog

Taua’
= & 2 ” B B
EMAIL PERMALINK QR CITATION EXPORT RIS EXPORT BIBTEX

SIGN IN Menu v

,O ADVANCED SEARCH

IPR2024-00027
CrowdStrike Exhibit 1004 Page 30

chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html

10/17/23, 9:39 AM nimbus screenshot app print

SEND TO

VIRTUAL BROWSE
Virtual Browse

< Deriving ForestaPC Efficient Dynamic load Chakra Vyuha Hybrid Acomr >
texture feature (Scalable- retrieval of balancing in (cv):a pyramidal/vec classi
set for VLIW) user composite geographically sandbox tor-quantized of the
content-based instruction set multimedia distributed operating volume apprc
retrieval of architecture ... objectsinthe ... heterogeneou ... system compression ... y of
1997 1997 1997 1997 1997 1997 1997

IPR2024-00027
CrowdStrike Exhibit 1004 Page 31

chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html

Appendix DANO2

IPR2024-00027
CrowdStrike Exhibit 1004 Page 32

I BmC

20742 .
WBCHNICAL epgu DEPT.

RC 20742 (91875) 2/20/97
I Flg

Computer Science/Mathematics 22 pages

, Research Report

Chakra Vyuha' (CV): A Sandbox Operating System Environment for
Controlled Execution of Alien Code

Asit Dan, Ajay Mohindra, Rajiv Ramaswami, Dinkar Sitaram
IBM Research Division

T.J. Watson Research Center

P.O. Box 218

Yorktown Heights, NY 10598

< —.;naubﬂgkbldlulhdf\l\-l Sl i

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a
Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher. its distribution outside of IBM
prior to publication should be limited to peer communications and specific requests. After outside publication. requests should be filled only by
reprints or legally obtained copies of the article (e.g.. payment of royalties).

& Research Division
"= Almaden - T.J. Watson - Tokyo + Zurich * Austin

||
(el
il

I BMC
20742 mgg‘s’i USHE Om? | "'*w.,,\
| m;;TIL it 5 B AR

IPR2024-00027
CrowdStrike Exhibit 1004 Page 33

IPR2024-00027
CrowdStrike Exhibit 1004 Page 34

ChakraVyuha' (CV): A Sandbox Operating System
Environment for Controlled Execution of Alien Code

Asit Dan, Ajay Mohindra, Rajiv Ramaswami and Dinkar Sitaram
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

{asit, ajay, rajiv, sitaram }@watson.ibm.com

Abstract

Sharing of unknown programs creates an atmosphere of untrust and hence exacerbates the need to secure
information and physical resources from any alien code. A sandbox approach to execution of such foreign
code is proposed in this paper. An alien code is trusted with a set of privileges for accessing logical
(e.g., callable functions and services) and physical (e.g., rate and maximum consumption amount of CPU,
memory, disk space, etc.) resources via a third party authentication. During installation of any code in the
sandbox environment, the associated privileges (per user basis) are stored in a secure area and enforced by the
Operating System during execution. The alien code may also access resources defined by other subsystems
(e.g., database), and hence, in an integrated environment the subsystem specific privileges are transferred
securely to the subsystem for monitoring. A prototype version based on Linux OS code has been developed.

1 Introduction

The rapid growth in connectivity and sharing of information via the World-Wide Web has
dramatically increased the vulnerability of client machines to alien codes. Once the alien
code is installed on the client machine, it can run with all the privileges of the invoking
user. The invoking user may not be aware of the privileges being used. The alien code can
silently obtain unauthorized access to all the system resources (i.e., logical resources such
as files, network ports) that can be accessed by the invoking user. It may also propagate
itself, attempt illegal break-ins or maliciously alter files in the client system [10]. Even if
the executing alien code is restricted to accessing authorized logical resources only, it may
still engage in a denial of service attack by monopolizing physical resources such as disk,
physical memory, CPU, network bandwidth. For example, the alien code may execute a
wasteful tight loop which results in preventing any other program from obtaining fair access
to the CPU. It may also create many junk files to fill up the available disk space. If this
attack is carried out with sophistication (e.g., the tight loop is executed at times when the
alien code is supposed to be inactive) the user may be unable to determine the source of
the attack. This problem is critical in multimedia systems, where the system attempts to
guarantee Quality of Service (QoS) for all streams by reservation of shared resources. QoS
guarantee can be provided to all streams only if all streams adhere to their allocated quota.
Deliberate or accidental overuse of a shared resource by a stream can result in a failure
to meet QoS guarantees for other streams and hence, interrupted stream delivery. The
development and popularity of the Java programming language [5] has made it relatively

%In Hindu mythology, Mahabharata, ChakraVyuha (pronounced as chakra-view-ah) refers to the dynamic
formation of multi layer wheel made of shields that is very difficult to penetrate in a battlefield.

IPR2024-00027
CrowdStrike Exhibit 1004 Page 35

easy to transport alien code over the World-Wide Web. However, even in computer systems
not connected to the Web, programs can be downloaded from remote sites or installed from
diskettes or CDROMs. Hence, the problem of providing a secure environment for the
execution of programs exists even in traditional environments.

One solution to the above problem is to restrict via a reference monitor [8] the privileges
that can be acquired by any alien code and to ensure that it cannot compromise the security
of the system during execution. Java applets, for example, cannot write files on the host
machine, or send messages to nodes other than the machine they were downloaded from [5].
This approach cannot be used in general, since it is difficult to devise a set of restrictions
without limiting the usefulness of an alien code. Removing the restrictions (as is done, for
example with Java programs) re-instates the security problem. A similar security problem
exists with importing data for word processors and spreadsheets, where the imported data
could be infected with active content macro viruses, and these viruses in turn, could try
to access system resources without the knowledge of the user. To alleviate the problem,
the macros associated with the data need to be monitored. Operating system support is
also required to associate varying privileges with different programs of a user, rather than
simply with individual users. For example, a multimedia application may require access to
video files, and hence, guaranteed access to disks at a specified rate, while a non-multimedia
application may only require access to non-video files. Therefore, an important requirement
for any solution is that an alien code be granted the privileges necessary for its execution,
but not be allowed any unrestricted access to the system. :

In this paper, we propose a solution to the above security problem. The solution com-
bines certification of alien code together with explicit granting of privileges for execution.
In Section 2, we provide an overview of our approach embodied in the ChakraVyuha en-
vironment. A detailed discussion of the approach is provided in Section 3. Section 4
describes prototype user environments that can be built on top of ChakraVyuha. Section 5
contains our concluding remarks.

1.1 Motivating Examples

We now describe three example application environment scenarios that rely on varying
degrees of trusts or use different enforcement processes for verification. These are the
special cases of the general approach described in this paper. All three examples are viable
applications in the near future.

Intranet environments: A simple security model that relies primarily on trust rather
than complex runtime enforcement mechanism [10] may be employed in an intranet envi-
ronment with inexpensive Network Computers. The network computer environment could
be customized for a specific organization allowing execution of only the trusted applications
(authorized code with proper certificates) without further monitoring of their execution.

Multimedia support: This requires runtime monitoring of execution for the purpose
of controlling resource consumption by any code (alien or local). Typically, the code

2

IPR2024-00027
CrowdStrike Exhibit 1004 Page 36

would be required to declare its resource needs, and the runtime environment would en-
force resource usage accordingly. For example, video conferencing applications require
multimedia support and access to physical resources such as the network.

Sandboxed browser environment: A more general environment than the simple trust
model is required for the execution of alien code. Different helper applications and/or
downloaded components may require different access capabilities to logical and physical
resources, and a runtime environment would enable execution of the code in a controlled
environment. Untrusted code would be run with limited access privileges. A Java or
ActiveX enabled browser is an example of this environment.

1.2 Related Work

Enforcing security for networked computers has been an area of active research for quite
some time. Most of the work, however, has focussed on preventing unauthorized accesses
to the computer systems from the network using challenge/response passwords and authen-
ticated token schemes such as Kerberos [11]. Other work has focussed on addressing trust
issues for applications that can be downloaded from the network. Based on the level of trust
placed by the runtime system, the work can be classified into three categories. Systems in
the first category do not trust any program, i.e., the runtime system views all programs to
be potentially malicious, and takes adequate measures to ensure that the programs do not
cause any damage. The KeyKOS [7] system and the Domain and Type Enforcement (DTE)
system [12] fall under this category. These systems are pure capability based systems
unlike most commercial operating systems (e.g., Unix, Windows NT, etc.). In KeyKOS
system, all applications are executed in protected domains that preserve system integrity.
Similarly, the DTE system uses a runtime database incorporated into the operating system
structure to control access of processes to system objects. These systems use statically
defined capabilities for enforcing strict security, and thereby making them inflexible in their
usage. For example, in DTE any change in application capabilities to be effective requires
a complete reboot of the system.

Systems in the second category trust certified authors to write programs that do not exhibit
malicious intent. Issues such as trust-worthiness of applications have become important
due to the growing popularity of the World-Wide Web and widespread availability of
downloadable freeware such as ghostview and mpeg player. The Betsi [10] system and
the work on application specific-interpreters [6] fall under this category. The Betsi system
provides an infrastructure wherein the software developer can attach a digital certificate to
the application code, which the user can then use to verify the authenticity and integrity
of the software. The system thus provides a mechanism for users to verify whether any
unauthorized modifications have been made to the software by hackers. In the work
on application-specific interpreters [6] the authors describe an architecture that allows the
software developers to specify the resource and access control requirements of the software.
This information is then used to generate an application-specific interpreter which monitors

IPR2024-00027
CrowdStrike Exhibit 1004 Page 37

the accesses of the downloaded applications. Their system architecture also defines system
services for access control of the downloaded application.

In general, a higher level interpreter cannot monitor/control fine granularity accesses
to various system resources as well as logical and physical resources owned by another
subsystem (e.g., database, physical resources of the server node). Without a detailed
execution plan corresponding to a subsystem access that enumerates the usage of various
sub-system resources (e.g., mapping of an SQL query execution to database records and
fields), it is impossible to monitor all accesses. Hence, sub-systems are the best place to

monitor/control accesses to resources owned or defined by them.

In the absence of mechanisms for resource access control per application per user, the
systems in the third category trust the operating system to provide adequate mechanisms
and policies (via a higher level reference monitor) to protect users from suspect programs.
The Janus system [4] falls under this category. Janus is a user-level implementation of a
“sandbox”’ architecture that enables a user to restrict an application’s access to the operating
system resources, and thereby, reducing the security exposure to a malicious application.
In a configuration file, the user specifies the access control list for all untrusted applications.
Such untrusted applications are then executed in the sandboxed environment that restricts
the application’s access to operating system resources based on the access control lists
specified in the configuration file. The sandbox environment acts as a reference monitor
for controlling accesses to system calls. The difference between their scheme and our
work lies in the overall design and the scope of resources that are protected. The Janus
system is primarily concerned with protecting application’s access to the file system, and
communication resources. The system does not handle denial of service attacks by untrusted
applications. Our work provides a generic framework that allows the operating system to
authenticate and verify installed applications, dynamically control access to both logical
and physical resources, and allow privileges associated with an application to be transferred
to any other application and/or subsystem.

2 Overview of the Approach

Our approach incorporates three major items:

specifying in a flexible manner in a resource capability list (RCL) the set of permissions
and resource access privileges required by the code,

having the code and its RCL authenticated by a trusted third party, before a client receives
them, and finally,

enabling the client system to agree and allocate all or a subset of the permissions and
resources specified in the RCL and enforcing these capabilities, i.e., ensuring that the
permissions are not violated or resource consumptions have not exceeded specified
limits.

IPR2024-00027
CrowdStrike Exhibit 1004 Page 38

The overall system that implements this approach is shown in Fig. 1. The system consists
of one or more code production systems, certification agencies, servers and clients. A
code production system communicates with a certification agency, which is a trusted third
party. The certification agency issues a certificate for the code identifying its source and
a certificate for the RCL of that code. The separate certificates for the code and the RCL
allows the two entities to be dealt separately, i.e., they could be downloaded separately.
Once the certificate is issued, it is not possible for any party to modify the code or RCL
without invalidating the certificate. The code and its RCL are stored on a server along with
their certificates. Note that while the above figure describes the most general framework,
all of the components need not be present in all implementations. For example, the RCL
may not be defined in advance for all alien codes. In this case, the RCL may be the default
RCL associated with the sandbox environment in the client system, or it may be defined
on-the-fly during installation at the client system. Further details on RCL definition are
provided in Section 4.

Code Production
(=)

System P
eio
e
Code| |RCL i,
o%f T
Q
'PQ %
Certification
gy Server
N
W
NP
o
- $8
Rreyr| FPermission § &
RCL Fods Flags . d}\\§
.)
RCL Enforcer s qu‘ \\)9
RCL Enforcer| |RCL Manager QQS)
Subsystem
(e.g., Database) Client System

Figure 1: A. Block diagram of the proposed system.

The main focus of this paper is on the client system. Within the client system, the
functions described below can be implemented either within the operating system kernel or
as another layer on top of the operating system (see, Figure 1). The shaded areas represent
entities such as code, RCL or environment specific permission flags. The system monitor
layer (i.e., the CV layer) consists of a verifier of code certification, RCL manager that
maintains RCLs and a RCL enforcer that performs a “gatekeeping” function, i.e., controls
and monitors access to system resources. When a client receives the code and its RCL, it
invokes the verifier to verify that the code and RCL are valid (not tampered with). Once the
code is verified, the RCL manager is responsible for determining which subset of parameters

5

IPR2024-00027
CrowdStrike Exhibit 1004 Page 39

within the RCL are to be allowed. It then stores the code and its modified RCL in a secure
location. The RCL manager can also be invoked subsequently by a privileged user to alter
these capabilities. The RCL enforcer is invoked when the code is executed. It continues
to monitor accesses by the code to ensure that the permissions and resource consumption
limits are not violated. The subsystems may have their own set of resources to protect.
Hence, the RCL manager is also responsible for transferring securely to other subsystems
relevant capabilities (e.g., data access capabilities relevant to the database subsystem).

It is possible for different users to be allocated different types and/or amounts of resources
and permissions in the recipient system for the same code. This can be done at the time
the code is installed by the RCL manager. (The issues on ease-of-use are addressed in
Section 4.) The RCL manager looks at the privileges given to different users and combines
(i.e., intersects) those capabilities with the resource access privileges and permissions
allowed to the code. In this case the set of resource access privileges and permissions for
each user would have to be stored separately. Additional enhancements or reductions of
capabilities on a per-user basis for a system wide installed code are also possible. During
code execution the resource consumption limits and permissions would be enforced on
a per-user basis. Alternatively the resource consumption limits and permissions can be
determined during execution of the code, where the RCL enforcer determines dynamically
the permissions and limits, by looking at the privileges given to the invoking user and
combining those allowed to the code. The details of the implementation are described in
Section 4.

3 Detailed Design

3.1 Trust and Authentication

Since the code to be executed could come from a variety of unknown, and possibly, untrusted
sources, we need to find a way to guarantee the identity of its author and secure its integrity.
The same applies for the RCL! that comes with the code as well. Our approach here
is similar to the one proposed in [10]. A code production system communicates with a
Certification Agency (CA), which is a trusted third party. The CA issues a certificate for the
code and a certificate for the resource list of that code. Once the certificate has been issued,
it is not possible for any party to modify the code or resource list without invalidating the
certificate. The code and its RCL, along with their certificates are stored on a server. A
client downloading the code or access list can verify the integrity of the code/resource list.

The CA provides a public key K thatis widely available and known to the client system.
In addition, the CA has a private key P. To providea certificate for the code, the CA creates

1Here, the RCL is the declaration of permissions and physical resources requested by this code for its
execution. Alternative interpretations are possible for a RCL associated with a downloaded code, where it

may represent already granted capabilities.

IPR2024-00027
CrowdStrike Exhibit 1004 Page 40

a certificate containing the code name and the cryptographic hash of the code and signs it
using its private key. The certificate cannot now be changed without invalidating the CA’s
signature. Similarly the CA creates and signs another certificate for the RCL associated
with that code (if desired there could be a single certificate for both the code and its RCL).

Upon obtaining the code/RCL and its certificate, the verifier in the client system first
checks to see if the CA’s signature on the certificate is valid (using CA’s known public key).
It then computes the cryptographic hash of the code/RCL and verifies that it matches that
in the certificate. If the signature is not valid, (i.e., the hash does not match,) the code and
RCL are rejected.

Once the code and its RCL have been verified, the client system may elect to allow certain
privileged users to modify the code or the RCL (See, Section 4 for further details). However
other users should not be allowed to modify them. Thus the RCL and permission flags
must be stored in a secure area; reading or updating this area is itself a privilege enforced
by the RCL enforcer. Finally, CV allows downloading (or installing from CDROM) of any
code without any certificate as in the conventional systems. Such untrusted codes when
executed via sandbox environment will be given minimum default resource capabilities.

3.2 RCL Management and Enforcement

RCL management and enforcement is a function that must be performed by the operating
system. This function will require a gatekeeper/monitor layer within the operating sys-
tem that is capable of allocating, keeping track, and enforcing resources and permissions
dynamically. A separate reference monitor associated with each subsystem will enforce
privileges specific to that subsystem. During execution, the RCL manager transfers se-
curely the privileges associated with each subsystem to its associated reference monitor.
In the following, we describe the format of the RCL together with the details of the other
components.

3.2.1 RCL format

The RCL is divided into several categories. Apart from the capabilities related to the system
resources, there may be various other subsystem related capabilities. The capabilities for
the system resources can be divided into two parts: (a) the capabilities for the physical
resources specifying the required physical resources and (b) those for the logical resources
(e.g., files, network ports) that need to be accessed. Each item in the physical resource
list contains four fields. The first field is the name of the physical component (e.g. disk,
physical memory, CPU). The attribute field specifies the actual resource in the case that there
is more than one resource associated with a physical component (e.g. space or bandwidth
in the case of disk). The other two fields specify the maximum allowable consumption
and consumption rate of the resource, respectively. Note that while some resources refer
to the same amount in all machines (e.g., disk space), specification of other resources (e.g.,

7

IPR2024-00027
CrowdStrike Exhibit 1004 Page 41

required CPU MIPS) may be machine dependent. Either the amount needs to be expressed
for a reference machine, and translated for the client machine during code installation, or
the amount should be expressed in a machine independent manner (e.g., Bandwidth or data
movement per unit time).

Logical Resources

Syntax:

<Statement> ::= <Logical resource name> <Parameter Definition> <Range List>
<Logical resource name> ::= <Package name> < Function name>

<Parameter definition> ::= <Parameter type>....

<Parameter type> ::= INT | STR

<Range list> ::= | <ParmSet range>, ... |

<ParmSet range> ::= {<Parm range>, e}

<Parm range> ::= <Integer range> | <String range> |

<Integer range> ::= <Integer> | <Integer> — <Integer> |

<Integer>, <Integer range> |

<Integer>—<Integer>,<Integer range>
<Integer> ::= <Simple integer> | <Environment variable>

<String range> ::= <Environment variable>, <String range> |
<String>, <String range>
<epsilon>

Figure 2: BNF for the language used to specify the logical resource list.

Access to logical resources, or client system facilities, is controlled by specifying the
list of functions external to the program that may be invoked, together with restrictions on
the allowable parameter combinations. For example, restrictions on the files that can be
accessed in read-write mode can be enforced by specifying the allowable values for the
filename parameter in the open call when the open mode is read-write. In many situations,
it may be necessary to allow access to resources whose name is client-system dependent.
For example, a database query program may need access to a database, whose name may
vary in different client systems or between different users on the same system. This is
handled by allowing the use of environment variables whose values can be determined
during execution. Changing of such environment variables is itself a privileged operation.

Figure 2 shows, in BNF, the syntax of the language used to specify the logical resource
list. Informally, each statement in the language specifies a valid combination of parameters
for a particular function. The statement consists of the function name, followed by the types
of the parameters and the range of allowable values for each parameter. The function name
is a combination of package name and the actual function name to handle the case where
the same actual function name (e.g. open) is used by multiple subsystems. The parameter
types may be integer or string, denoted by INT or STR, respectively. For integer parameters,
the allowable values are specified as a range of integers. For string parameters, regular
expressions (in the Unix sense) are used to specify the allowable values. Environment
variables are specified by prefixing the name of the variable with $; for example $MAXINT

IPR2024-00027
CrowdStrike Exhibit 1004 Page 42

may specify the maximum integer value on the system and $USER_DB may specify the
name of a user-specific database.

Note that the logical resource list should not include specifications of the type “access
all files except <file-list1>". Specifications of this form implicitly assume that the only files
to which access needs to be restricted is <file-list1>. This approach is adequate if the only
files that need to be protected are a well-known set of system files that are the same on
every system. In general, however, the files that need to be protected on client systems may
vary. Hence, it is safer for programs to explicitly specify the resources needed. However,
set difference may provide ease of expression as shown in Section 4 (See, Figure 11).

The representation of subsystem capability will be specific for that subsystem, and is
beyond the scope of the current paper.

3.2.2 RCL Enforcement

The RCL enforcer module at the client ensures that the permissions and resource consump-
tion limits specified in the RCL are not violated. The module for enforcing system resource
capabilities monitors two types of resources: physical and logical. In this section, we
describe the algorithms and data structures used by the RCL enforcer for these two types
of resources.

The RCL enforcer protects physical resources such as memory and CPU usage, disk
storage, and disk bandwidth utilization. Access control information about physical and
logical resources of the process executing an alien application code is maintained in data
structures called the Runtime Physical Resources Table (RPRT) and the Runtime Logical
Resources Table (RLRT). For easy access to this information at runtime, pointers to these
tables exist in the u-area of the process (see Figure 3). When an application is initially loaded
for execution, the RPRT and RLRT data structures are initialized from the information
specified in the RCL configuration file associated with this application. In the next two
subsections, we describe in detail the RPRT and RLRT data structures and their use in

monitoring of resource accesses.

3.3 Physical Resources

The RPRT data structure contains a row for each resource access capability (see Figure 4).
The current consumption rate and current usage fields are used to keep track of the current
consumption rate and the total resource consumption so far, respectively, of the code during
run time. The RCL enforcer also keeps track of the code start time, C'odeStartTime.

During process execution, the RCL enforcer references and updates the information
stored in the RPRT data structure using the algorithm outlined in Figure 5 to allow or deny
the request for accessing physical resources. Two parameters, the amount of requested re-
source, REQAMT, and the estimated time of consumption, COM PT, are passed for each

9

IPR2024-00027
CrowdStrike Exhibit 1004 Page 43

u—area RCLs

Files/directories
Communication ports
Network connections

logical resources
physical resources

resource max | actual

CPU

Memory

Disk bandwidth|
Disk storage

Run—time Physical

Kernel Resource Table

process
table

Figure 3: Data structures used by the RCL enforcer.

Physical Physical Maximum Misstmuss Current Cirpant
Resource Resource consump. fsade consump. uns
name attribute rate & rate ——
Disk Space 100 MB yl
Disk /0 100/s 10 MB x2 y2
Physical
Memory 8MB y3
CPU 50 Sec S0MIPS | 1 sec x4 4

Figure 4: Runtime Physical Resource Table

10

IPR2024-00027
CrowdStrike Exhibit 1004 Page 44

access request for a physical resource. For disk I/O, the REQ AMT is the amount of disk
I/0 and the COM PT is the estimated time for the I/O to complete. The RCL enforcer then
locates the row in the RPRT for this resource and checks whether the maximum consump-
tion amount, MazimumU sage, is specified, and if the (CurrentUsage + REQAMT)
exceeds the MazimumU sage. If so, it returns a failure indicating that the consumption is
not allowed. Alternatively, if it does not exceed the MazimumU sage, the RCL enforcer
computes the projected consumption rate, NewConsumptionRate, of this resource as
(CurrentUsage + REQAMT)/(CurrentTime + COMPT — CodeStartTime). The
RCL enforcer then checks to see if the MazimumConsumptionRate is specified and if
the NewC onsumption Rate exceeds MazimumC onsumptionRate. If the

M azimumConsumption Rate is not specified or the projected consumption rate is not
greater, the RCL enforcer returns with an indication that the consumption is allowed. If the
projected consumption rate exceeds its limit, the RCL enforcer computes the required delay
before this operationis allowed as (CurrentUsage+ REQAMT)/ M azvmumC onsumption Rate—
(CurrentTime + COMPT — CodeStartTime) and returns the required delay with an
indication that the consumption has to be delayed for the computed delay.

CheckConsumptionRequest(){

If ((REQAMT + CurrentUsage) > MaximumUsage))
return(FAILURE),

Compute NewConsumptionRate for this request;

If (NewConsumptionRate > MaximumConsumptionRate){

Compute MinimumDelay before consumption;
return(MinimumDelay);

!
f

return(SUCCESS),

/

UpdateCurrentUsage(){
CurrentUsage = CurrentUsage + REQAMT

/

Figure 5: Algorithm used by the RCL enforcer to manage physical resources.

Once the consumption request is allowed, it is put on the queue for that resource. If the
resource is currently available, the request is serviced. Otherwise, the resource scheduling
policy (as in traditional systems) prioritizes these allowable requests. For example, the
multimedia requests may be given a higher priority to guarantee QoS [9].

After the consumption of the resource, the RCL enforcer is invoked again with a para-
meter specifying the amount of resource consumed, CON SAMT. The RCL enforcer then
updates the actual resource consumption, CurrentUsage.

11

IPR2024-00027
CrowdStrike Exhibit 1004 Page 45

3.3.1 Enforcement of Limits for Child Processes

[t is critical that any secure system enforces fairly the limits for all processes including child
processes. There are various alternatives that can be used. First, each child process may
be assigned the RCLs and resource consumption limits of the parent process. While the
policy is simple to implement, and enforces logical accesses correctly, it creates a caveat
for bypassing resource limits. A process can fork many child processes for circumventing
these resource limits. The second alternative is to use the limits of the parent process as the
maximum capability of the process and all its children, i.e., the sum total of capabilities of
the parent process and all its children cannot exceed the original limit of the parent process.
For ease of tracking, and for efficiency, each child process may be assigned a fraction of
the resources available to the parent process. The allocation policy decides how to divide
the available resources amongst the forked processes. In our implementation, we chose
the second alternative. The RCL enforcer equally divides the limits of the parent process
among all its children, and checks against this limit at runtime.

3.4 Logical Resources

Similar to the RPRT, access control information for the logical resources is maintained in a
data structure called the Runtime Logical Resources Table (RLRT). The logical resources
constitute file, directories, communication ports and various other system service calls. The
RLRT data structure is also initialized when an application is loaded into memory. The
RLRT contains a row for each system service access capabilities. Each row has a flag
that indicates whether this service call is allowed always, never or needs to be verified
(ALWAY S, NEVER and VERIFY, respectively). If the system call needs to be
verified, then a list is provided that contains both the allowable and non-allowable ranges
of parameter combinations (See Figure 6).

3.4.1 Enforcement of Access Control to Logical Resources

The RCL enforcer monitors all systems calls, i.e., access requests to logical resources in
the system. This monitoring requires that the RCL enforcer be invoked for each system
call made by an application. The RCL enforcer then validates the parameters of the system
call against those specified in the RLRT data structures and either allows or disallows the
call from continuing.

The RCL enforcer references the information stored in the RLRT data structure using the
algorithm outlined in Figure 7 to allow or deny the request for accessing logical resources.
During each system call made by the application code, the RCL enforcer locates the
number of parameters, their values, and the name of the system call being invoked. The
exact method for doing this is implementation dependent (discussed later); for example, in
Java, these are located on the operand stack. The RCL enforcer then locates the row for

12

IPR2024-00027
CrowdStrike Exhibit 1004 Page 46

Runtime Parameter entry

* *
Logical | Verify Paral_neter STR | /tmp/*,SAPPLET_DIR/
Resource | Flag List STR | rw
Name : l YES
open verify Y
) g STR | /tmp/$SDB/*
verify
bind ify g
delete never null] NO
read always null
'
:’vanrem- Parm. values
INT\ 1024-SMAXINT
VES nextPE | allow
I LI S

l

Figure 6: Runtime Logical Resource Table

this function in the RLRT and executes the algorithm in Figure 7. If the given parameter
combination for this call does not lie in any of the allowable ranges then the call is not
allowed. Otherwise, the AllowFlag is first set to Y ES and subsequently, further checked
to see if the parameter combination lies in a non-allowable subrange (within the allowable
range). The call is allowed only if no such subrange is found.

CheckAccessRequest(){

if (VerifyFlag == ALWAYS) return (YES).
if (VerifyFlag == NEVER) return (NO);

Set AllowFlao to NO
et Allowliag 1o INU |

If found(allowable parameter range entry that includes
the current parameter combination) then

Set AllowFlag to YES

If found(non—allowable parameter range entry that includes
the current parameter combination) then
Set AllowFlag to NO

Return(AllowFlag);

Figure 7: Algorithm used by the RCL enforcer to manage logical resources.

3.4.2 Implementation Choices for Monitoring Accesses to System Resources

We now describe three different approaches to monitor systems calls:

13

IPR2024-00027
CrowdStrike Exhibit 1004 Page 47

Application binary

(push arguments to stack)
Branch to check access code

open()

(push arguments to stack)
close() Branch to check access code

%ﬁmmimsﬁg
1t allowed, make system call
{branch back to returm —
address)
else return :

Figure 8: Preprocessor for modifying an application’s binary code.

e Binary code modification: —In this approach, the downloaded application code is
preprocessed and modified to insert hooks in the binary code for calling RCL enforcer
(i.e., CheckAccessRequest () function. See, Figure 7 and 8). Note that all the
required parameters for system calls as well as the return address are already placed
on the stack. The CheckAccessRequest () code verifies these parameters and
then branches to the system call routine. At the end of the system call it returns to the
original location in the main code. This approach does not require any modifications
to the operating system in order to implement any security checks. On the downside,
the user has to preprocess all untrusted applications. This may incura lot of overhead.
Also, this is not a full proof solution, since a program may use encryption to hide
system calls in its code.

Modification of service libraries: — The idea here is to provide on each machine
a duplicate set of libraries for various services that may make system calls (e.g.,
file system, language support, etc.). The new set of libraries calls the CheckAc-
cessRequest () routine to verify the parameters before making any system call.
Figure 9 shows the structure of the modified system call library approach. The ad-
vantage of such a scheme is that no changes to the operating system are required. On
the downside, the system cannot enforce security for applications that have system
call libraries statically linked into the application.

System call modification: — In this approach, the operating system’s call interface is
modified to call the CheckAccessRequest () upon entry to verify the parameters
of the system call. Thus, regardless of how the applications are structured, the system
call entry point in the operating systems will ensure consistent security checks for
all applications that are executed on the machine. The disadvantage of this scheme

14

IPR2024-00027
CrowdStrike Exhibit 1004 Page 48

Application

Dynamically linked library

open() —|

open() {
Call CheckAccessRequest();
If allowed, call the open system call;
return;

}

Figure 9: The modified system call library approach.

is that the operating system needs to be modified. We selected this approach to
manage logical resources in the system primarily because of the consistency it offers
for enforcing security. Figure 10 shows the structure of this approach.

Traditional Approach Modified Approach
open() system call open() system call
kernel kernel
system call entry point() { system call entry point() {
Lookup the system call number in the Lookup the system call number in the
system call table; system call table;
Call the routine listed in the table; Call CheckAccessRequest() with the passed parameters;
Return; gallowed, call the routine listed in the table;
} eturn;

Figure 10: The modified operating system call interface approach.

3.4.3 RCL Enforcement by Subsystems

The common entry point to the Kernel for all system calls provides an effective mechanism
for enforcing access control for logical resources. However, enough information may
not be available to adequately enforce security at the time a system call is being made.
For example, in case of filesystems, it is very difficult to resolve at the system call layer
whether a request for a file specified using relative paths (e.g., ../../foo) translates to an

15

IPR2024-00027
CrowdStrike Exhibit 1004 Page 49

access that should be allowed or not. This can only be determined in the file system module
after the relative path has been translated into an inode for the file. Hence, in order to
be effective, the RCL enforcer has to maintain a partial copy of the state maintained by
various subsystems. This however, couid add to the overhead and space requirements
for RCL enforcer. Therefore, to simplify the design and minimize overhead, the RCL
enforcer could be configured to hand off enforcement for a subset of system calls to the
appropriate subsystems (e.g., File system). During process initialization, the RLRT entries
for the system calls which are handed off to sub systems are set in ALWAYS mode. Finally,
for non-system calls, i.e., accesses to the resources defined and managed by subsystems
independent of the OS (e.g., database relations), the enforcement is naturally carried out by

those subsystems.

4 Installation and Use of Applications under ChakraVyuha

We first describe the structure of a configuration file, and various types of default (e.g.,
system wide, per user) and application specific configuration files used by the CV. We will
then detail the installation process of untrusted applications.

4.1 Structure of a configuration file

Each configuration file specifies the RCL for an application (or user). Figure 11 shows
the structure of a typical configuration file. The configuration file begins with a series of
import declarations that include privileges defined in other configuration files. The import
declaration also allows importing of fine granularity privileges from another configuration
file, i.e., privileges for a specific module. A sequence of MODULE declarations, which
define privileges for various modules, follows the import declarations. For example, as
shown in 11, the first block defines the module SYS PHYSICAL and the physical resource
requirements for the application. This includes CPU , physical memory, I/O bandwidth and
network requirements. The next block, called the MODULE SYS_LOGICAL, specifies
the logical resource requirements for the application. The list includes access controls for
various system calls allowed to this application. The keywords reserved for defining this
module are as follows:

e ALWAYS — Always allow the application to make the specific system call without
any need for verification.

e NEVER — Never allow the application to make the specific system call.

e VERIFY — Verify the arguments before making the specific system call. The key-
words following the verify reserved word describes how the privileges for the system
call are specified. For example, the figure shows that arguments for the open system

16

IPR2024-00027
CrowdStrike Exhibit 1004 Page 50

IMPORT <cfg_file_name>; /* import one or more cfg files */
IMPORT <cfg_file name>::MODULE <module_ name>;
/* import only the privileges of
a particular module */

MODULE SYS_PHYSICAL /* Physical resource privileges */
CPU <max_amount> <max_rate>;
IO <max_amount> <max_rate> ;
MEMORY <max_amount>;

MODULE SYS_LOGICAL /* Logical resource privileges */
exit ALWAYS; /* Always allowed */
setuid NEVER; /* Never allowed */
open VERIFY STR, INT, INT /* verify calls */
(e /emp /an, - e la¥eng 2 {n fombf a@mia/ 29 &5 %},
(e Eonk e, ngdluls 2R AR o
iv/taohlitz 2 4N 2y 24{L3} -
{"/fookazam", *, *}];
unlink NEVER;

MODULE <subsys_name> /* Sybsystem privi-
leges (e.g., DB2) */
< subsystem related privilege description>
MODULE <subsys_name>
< subsystem related privilege description>

Figure 11: A sample configuration file.

call need to be verified before allowing the system call to complete. The privileges
associated with the open system call are described in the form of a <string, int,
int> corresponding to the types of the parameters that the open system call takes,
L.e., pathname, flags, mode. Following this syntax specification, a list of comma-
separated entries are described which specify the application privileges for an open
call to files in various directories. The example shows that the open call should be
allowed in any mode for all files in the /tmp directory and not be allowed for any
files in the / tmp/admin subdirectory. The privileges associated with a system call
is a union of all the privileges in the comma-separated list.

The application writer can also specify privileges for various subsystems that the appli-
cation would use. For example, if an application communicates with a database subsystem

17

IPR2024-00027
CrowdStrike Exhibit 1004 Page 51

such as DB2 then the application writer can specify the requirements for that subsystem
using the MODULE DB2 declaration.

4.2 Types of configuration files

The different types of configuration files used in ChakraVyuha are described below. The
first two configuration files (cvmin.cfg and cvmax.cfg) relate to a specific user environment,
and describe the bounds on access privileges allowed to any code execution instantiated
by this user. The configuration files (sysdefault.cfg and userapp.cfg) refer to the specific
privileges granted to a specific application. Finally, the user cvrc file allows an user to
specify to the CV use of a different configuration file for that instantiation.

e User Min Configuration File: The User Min Configuration File (hereafter abbreviated
as cvmin.cfg) specifies the maximum resource consumption of a process running in
a ChakraVyuha sandbox for which a configuration file could not be located. Ideally,
this file will never be used since proper configuration files would always be in place.
The user may customize this file. The location of cvmin.cfg file is illustrated in
Figure 12 (see, for instance, /cv/conf ig/u/susan/cvmin.cfg).

/

P

cv

/\

config ‘/app\\

u sys susan jack
netscape.cfg mpeg_play l doom
ghostview.cfg emacsi9

susan jack
cvmax.cfg cvmax.cfg
cvmin.cfg cvmin.cfg
cvre cvre
ghostview.cfg netscape.cfg
mpeg_play.cfg doom.cfg
emacs19.cfg

Figure 12: Configuration file hierarchy.

18

IPR2024-00027
CrowdStrike Exhibit 1004 Page 52

e User Max Configuration File: The User Max Configuration File (hereafter ab-
breviated as cvmax.cfg) specifies the maximum resource consumption (e.g., CPU
rate) of any process instantiated by the user. The parameters in cvmax.cfg are set
by the system administrator and cannot be modified by the user. In Figure 12,

/cv/config/u/susan/cvmax.cfqg isacvmax.cfg file.

System Default Application Configuration File: The system default application con-
figuration file (hereafter, abbreviated as sysdefault.cfg) specifies system defaults for
an application. It is generated during installation from the application RCL. The sys-
default.cfg file is optional and is provided to facilitate the use of the CV. For example,
in Figure 12, /cv/config/sys/netscape.cfqis a sysdefault.cfg file for the
Netscape browser.

User Application Configuration File: The user application configuration file (hereafter
abbreviated as userapp.cfg) allows the user to customize the sandbox. A userapp.cfg
will replace a sysdefault.cfg. That is, if a userapp.cfg is specified when the sandbox
is invoked, the sysdefault.cfg will be disregarded. However, if the user wishes to
build upon the restrictions specified in the sysdefault.cfg, the user can import the
sysdefault.cfg and specify enhancements to and overrides of its specifications on the
granularity of each resource.

An example snippet of a userapp.cfg file follows. In the directory structure illustrated
in Figure 12, this file would be /cv/config/u/susan/ghostview.cfg.

Snippets of Susan’s ghostview.cfg file
The following line imports the system default

ghostview.cfg file.
import /cv/config/sys/ghostview.cfg

H H H H#

MODULE SYS_LOGICAL
The following line enhances the restrictions on
#the open system call.
open ENHANCE VERIFY STR, INT, INT
L gabb i /Privata/xr? # ¥}]

The following line overrides the restrictions on
the unlink system call.
unlink OVERRIDE VERIFY STR [{’‘/tmp/*’'’'}]

User cvrc File: The User cvre File allows an user to specify CV parameters without
retyping them at every CV invocation. It is similar in nature to a . cshrc file or a
.Xdefaults file. Anexample snippet of a cvrc file follows. In the directory struc-
ture illustrated in Figure 12, this file would be /cv/config/u/susan/cvrec.

19

IPR2024-00027
CrowdStrike Exhibit 1004 Page 53

Snippets of Susan’s cvrc file

The following option requires that a user app
config file be processed before the CV sandbox
may be constructed.

H H#H H H =

+H+

The following line specifies the pathname for the

++

user app config file to be used for emacsl?9.
emacsv19*UserAppCfg: /cv/config/u/susan/emacsl9.cfg

The following line specifies that Susan wants to use
Jack’s config file whenever she plays Doom.
doom*UserAppCfg: /cv/config/u/jack/doom.cfg

4.3 Installation of Untrusted Applications

For effective enforcement of security, all untrusted applications are installed in the system
via an uniform installation process. An utility called the InstallCop is used for this
purpose. The steps involved in the installation process are as follows:
1. The application and RCL are downloaded to the host (via network, diskette, C'D-
ROM, satellite, etc.).

2. The InstallCop is invoked upon receiving the application and RCL.

3. The InstallCop authenticates the executable and RCL.

o~

The InstallCop then generates a system default configuration file from the au-
thenticated RCL? if the installation is made system wide. Otherwise, a configuration
file specific to the installing user will be generated for this application.

:hx

5. The InstallCop names the configuration file <application name>.cfg.

6. In case of system wide installation (by the superuser), the InstallCop places
the configuration file in the /cv/config/sys directory. Otherwise the file is
placed in the /cv/config/sys/<username> directory. If there is a name
conflict, the installer is prompted by InstallCop for a new application name.
For instance, if a new version of emacs is installed, it can be called emacsv2 or
emacsnew. Alternatively, the obsolete version of emacs can be reinstalled as, for
example, emacs.old. Note that we do not use the complete path name for identifying
an application. By taking this approach, we allow the flexibility for an application

2Optionally, the Instal1Cop can allow the system administrator to edit the system default configuration
file before the application is made available to users.

20

IPR2024-00027
CrowdStrike Exhibit 1004 Page 54

to move from one directory to another without having to completely reinstall the
application.

7. For system wide installation, the InstallCop prompts the installer for an instal-
lation directory. The installation directory must be writable only by the superuser
(e.g. /usr/binor /usr/local/bin,etc). Forinstallation by an user, either the
file may already exist in the user specified directory, or it may be copied to the user
specified directory at this time.

8. The application is placed in the installation directory. If there is a name conflict, the
installer is prompted by the InstallCop for a new application name. The config
file just created must also be renamed. The configuration file specifies the physical
and logical resource requirements as well as the RCLs related to other subsystems.
The configuration file is stored in a hidden directory on the system, whose location
is known only to the InstallCop and the “sandbox” program. As described earlier,
this file is used by the sandbox program to read in the physical and logical resource

requirements and limits for this application.

S Summary and Conclusion

Sharing of unknown programs creates an atmosphere of untrust and hence, exacerbates the
need to secure information and physical resources from alien codes. Once an alien code is
installed on a client machine, it can run with all the privileges of the invoking user, without
any notification to the user of the privileges being used. Hence, the alien code can silently
obtain unauthorized accesses to all the system resources (e.g. files, network ports) that
can be accessed by the invoking user. The alien code may propagate itself, attempt illegal
break-ins or maliciously alter files. It may also engage in a denial of service attack by
monopolizing various physical resources (e.g. disk, physical memory, CPU).

A sandbox approach to execution of such foreign codes is proposed in this paper. Any
alien code is trusted with a set of privileges for accessing various resources via a third party
authentication. The list of resources may include /ogical system resources (e.g., callable
functions and services), physical resources (e.g., rate and maximum consumption amount
of CPU, memory, disk space, etc.) as well as various resources defined or owned by other
subsystems (e.g., database relations). During installation of an alien code in the sandbox
environment, the associated privileges (per user per code basis) are stored in a secure area
and enforced by the OS and various subsystem monitors during execution.

A prototype version based on Linux OS code has been developed.

Acknowledgments: The authors would like to thank David Dion of the University of
Washington, Seattle for participating in the discussion of user environment issues, and in
the development of prototype based on Linux. We would also like to thank David Safford
for his comments on the earlier revisions of the paper.

2l

IPR2024-00027
CrowdStrike Exhibit 1004 Page 55

References

(1]

(2]

(3]

(4]

(5]

(10]

[11]

[12]

Anderson, D. P., “Metascheduling for Continuous Media,” ACM Transactions on Computer
Systems, Vol. 11, No. 3, August 1993, pp. 226-252.

Benantar, M., R. Guski, K. M. Troidle, “Access Control Systems: From Host-centric to
Network-centric Computing”, IBM Systems Journal, Vol. 35, No. 1, 1996, pp. 94—112.

Dion, D., A. Dan, A. Mohindra, D. Sitaram, “ChakraVyuha: Design and Implementation ”,
IBM Research Report, (in preparation).

Goldberg, I., Wagner, D., Thomas, R., and Brewer, A. B., “A Secure Environment for untrusted
helper applications,” To appear in Proceedings of the 6th USENLX UNIX Security Symposium.

van Hoff A., S. Shaio and O. Starbuck (eds),“Hooked on Java”, Addison-Wesley, 1996.

Jaeger, T., Rubin, A. D., and Prakash, A., “Building Systems That Flexibly Control Down-
loadable Executable Content,” To appear in Proceedings of the 6th USENIX UNIX Security
Symposium.

Key Logic., “KeyKOS Architecture,”
http.://'www.agorics.com/agorics/KeyKos/architecture/Welcome.html.

Lampson, B. W., “Protection”, Proc. of the fifth Princeton Symposium on Information Sciences
and Systems, 1971.

Ramakrishnan, K. K., L. Vaitzblit, C. Gray, U. Vahalia, D. Ting, P. Tzelnic, S. Glaser, W. Duso
“Operating System Support for a Video-On-Demand File Service.” Multimedia Systems, Vol.
3 No. 2, May 1995, pp.53-65.

Rubin, Aviel. D., “Trusted Distributed of Software Over the Internet,” Symposium on Network
and Distributed System Security, February 1995, pp. 4 7-53.

Steiner, J. G., Neuman, C., and Schiller, J. 1., “Kerberos: An authentication service for open
network systems,” USENIX Winter Conference Proceedings, February 1988.

Walker, K. M., Sterne, D. F., Badger, M. L., Petkac, M. J., Sherman, D. L., Oostendorp, K. A.,
“Confining Root Programs with Domain and Type Enforcement,” 6th USENIX Security Sym-
posium, July 1996.

22

IPR2024-00027
CrowdStrike Exhibit 1004 Page 56

Copies may be requested from:

IBM Thomas J. Watson Research Center
Publications Office. 16-220

Post Office Box 218

Yorktown Heights, NY 10598

IPR2024-00027
CrowdStrike Exhibit 1004 Page 57

Appendix CMUOI

IPR2024-00027
CrowdStrike Exhibit 1004 Page 58

10/17/23, 3:40 PM nimbus screenshot app print

MAERE = m BB B 3 soviioon F won

ABOUT BLOG PROJECTS HELP DONATE CONTACT JOBS VOLUNTEER PEOPLE

INTERNET ARCHIVE

i Explore more than 849 billion web pages saved over time
DONATE Hu ||.Iﬂ

http://hathorne.library.cmu.edu/uhtbin/cgisirsi/0/1/0

- Collections - Changes - Summary - Site Map - URLs

Saved 5 times between April 14, 1997 and May 6, 1998.

98 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 201 2012 2013 2014

JAN FEB MAR
1 2 3 4 1 1
5 6 7 8 9 10 1" 2 3 4 5 6 7 8 2 3 4 5 6 7 8
12 13 14 15 16 17 18 9 10 " 12 13 14 15 9 10 1" 12 13 14 15
19 20 21 22 23 24 25 16 17 18 19 20 21 22 16 17 18 19 20 21 22
26 27 28 29 30 31 23 24 25 26 27 28 23 24 25 26 27 28 29
30 31
APR MAY JUN
1 2 3 4 5 1 2 3 1 2 3 4 5 6 7
6 7 8 9 10 1" 12 4 5 6 7 8 9 10 8 9 10 " 12 13 14
13 14 15 16 17 18 19 1" 12 13 14 15 16 17 15 16 17 18 19 20 21
20 21 22 23 24 25 26 18 19 20 21 22 23 24 22 23 24 256 26 27 28
27 28 29 30 25 26 27 28 29 30 31 29 30
JUL AUG SEP
1 2 3 4 5 1 2 1 2 3 4 5 6
o ’ <) Y Y Nl 1z 5 4 o o 4 <] E] ’ <] v Y 1 1z 15
13 14 15 16 17 18 19 10 " 12 13 14 15 16 14 15 16 17 18 19 20
20 21 22 23 24 25 26 17 18 19 20 21 22 28 21 22 23 24 25 26 27
27 28 29 30 3 24 25 26 27 28 29 30 28 29 30
31
OoCT Nov DEC
1 2 3 4 1 1 2 3 4 5 6
12 13 14 15 16 17 18 9 10 1" 12 13 14 15 14 15 16 17 18 19 20
19 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27
26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 3

IPR2024-00027

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html 1/2

CrowdStrike Exhibit 1004 Page 59

10/17/23, 3:40 PM nimbus screenshot app print

30

Note

This calendar view maps the number of times
http://hathorne.library.cmu.edu/uhtbin/cgisirsi/0/1/0 was crawled by

the Wayback Machine, not how many times the site was actually updated. More info

in the FAQ.

FAQ | Contact Us | Terms of Service (Dec 31, 2014)

The Wayback Machine is an initiative of the Internet Archive, a 501(c)(3) non-profit,

building a digital library of Internet sites and other cultural artifacts in digital form.

=

Other projects include Open Library & archive-it.org.

Your use of the Wayback Machine is subject to the Internet Archive's Terms of Use.

. . . IPR2024-00027
chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html . o
CrowdStrike Exhibit 1004 Page 60

10/17/23, 3:41 PM

nimbus screenshot app print

http://hathorne.library.cmu.edu/uhtbin/cgisirsi/0/1/0

(o] v B& 0Ec o

5 captures
14 Apr 1997 - 6 May 1998

2115 L [¢}

¥ About this capture

UNICORN PUBLIC ACCESS CHOICES

o A A R

Unicorn WebCat

User
Services

Informstion
Desk

s
l».[COURSE RESERVES]

Choose one of the following:

e LIBRARY CATALOG

e COURSE RESERVES

e HOURS AND WHAT'S NEW

e USER SELF SERVICE INFORMATION

Find library materials using a particular word or phrase through the LIBRARY CATALOG. View the holdings of the COURSE RESERVES to see materials

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html

IPR2024-00027
CrowdStrike Exhibit 1004 Page 61

10/17/23, 3:41 PM nimbus screenshot app print

Unicorn WebCat
UNICORN PUBLIC ACCESS CHOICES

i A S 1 2

<
Request | | Home

Libraries
Cataleg | |, [COURSE RESERVES]

User
Services

Infrme&ion
Desk

Choose one of the following:

e LIBRARY CATALOG

e COURSFE RESERVES

e HOURS AND WHAT'S NEW

e USER SELF SERVICE INFORMATION

Find library materials using a particular word or phrase through the LIBRARY CATALOG. View the holdings of the COURSE RESERVES to see materials
set aside by an instructor for a course. Hours and What's New Use any of the library's interactive patron functions, including checking your circulation status
with USER SELF SERVICE INFORMATION.

raries
Catalog

Library materials are described in indexed records in the online catalog. Under the LIBRARY CATALOG you can lookup library materials using
a particular word or phrase, or review lists of the library's authors, titles, subjects, series, keywords, or call numbers.

Informstion
Desk

Our HOURS AND WHAT'S NEW is like a bulletin board where the library puts information you may find interesting or useful. The Information

Desk has library memos such as Meetings, Library Services, or Community Resources, or lists can be of library material in the catalog, such as New Books,
Great Videos, or Recommended Reading.

User
Services

The library offers a variety of interactive patron functions, including displaying current circulation status and library messages, and letting you
change your PIN code. To use any of the USER SELF SERVICE INFORMATION, you must identify yourself by your library card number and your PIN.

This is the NEWROOT footer

22l elpa

>
ﬁ WebCat(tm) © 1995 - 1997 Sirsi Corporation

IPR2024-00027

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html 171

CrowdStrike Exhibit 1004 Page 62

Appendix CMUOQ2

IPR2024-00027
CrowdStrike Exhibit 1004 Page 63

10/17/23, 3:45 PM

ﬁ INTERNET
ARCHIVE

1996 EELYA 1998

20

27

20

27

1999

20

27

21

28

21

28

21

28

22

29

22

29

14

21

28

BLOG

Ewm g e B

ABOUT

PROJECTS

INTERNET ARCHIVE

Waupackmachina
- Collections

HELP

nimbus screenshot app print

DONATE

CONTACT

VOLUNTEER

SIGNUP|LOGIN 4 UPLOAD

JOBS

PEOPLE

Explore more than 849 billion web pages saved over time

Changes

Summary

Site Map

http://www.library.cmu.edu/Research/Online/index.html

Saved 31 times between October 9, 1997 and August 3, 2007.

2000

22

29

APR

23

30

JUL

23

30

OoCT

15

22

29

2001
2 3
9 10
16 17
23 24
30 31
3 4
10 1M
17 18
24 25
3 4
(LY [N
17 18
24 25
31
2 3
16 17
23 24
30 31

2002

25

2003

23

24

31

23

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html

2004
3 4
10 "
17 18
24 25
5 6
12 13
19 20
26 27
4 o
"oo12
18 19
25 26
10 11
17 18
24 25

2005

FEB

MAY

21

28

AUG

20

27

Nov

20

27

22

29

21

28

20

27

2006

21

28

23

30

22

29

21

28

2007

22

24

31

23

30

22

29

2008

23

30

22

29

21

28

21

28

24

31

23

30

22

29

22

29

2009

23

30

23

30

URLs

2010 2011 2012 2013 2014
4

MAR

26 27 28 29

JUN

18 19 20 21

25 26 27 28
SEP

17 18 19 20

24 25 26 27
DEC

17 18 19 20
24 26 26 27

3

IPR2024-00027

CrowdStrike Exhibit 1004 Page 64

10/17/23, 3:45 PM nimbus screenshot app print

30

Note

This calendar view maps the number of times
http://www.library.cmu.edu/Research/Online/index.html was crawled by
the Wayback Machine, not how many times the site was actually updated. More info

in the FAQ.

FAQ | Contact Us | Terms of Service (Dec 31, 2014)

The Wayback Machine is an initiative of the Internet Archive, a 501(c)(3) non-profit,

building a digital library of Internet sites and other cultural artifacts in digital form.

=

Other projects include Open Library & archive-it.org.

Your use of the Wayback Machine is subject to the Internet Archive's Terms of Use.

. . . IPR2024-00027
chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html . o
CrowdStrike Exhibit 1004 Page 65

10/17/23, 3:45 PM nimbus screenshot app print

|http://www.Iibrary.cmu.edu/Research/OnIine/index.html

31 captures
9 Oct 1997 - 3 Aug 2007 EER 1997 REELT ¥ About this capture

University Libraries: Online Research
Catalogs and Databases
i e G BT T e omment |

Database List WebCat includes bibliographic records for more than 900,000 books, journals, films, sound

recordings, and other items owned by libraries at Carnegie Mellon University.

Library Catalogs Catalog records indicate the library and shelving location for items in:
%g%&;ﬁit}f% e Hunt Library (HUNT)
< a;neme - rallrv % Ilsburgh » Engineering and Science Library (ENGR&SCI;)
W ¢ Mellon Institute Library (MELLON)
Loraly_01 L ONSress » Hunt Institute for Botanical Documentation (HIBD)

University of Pittsburgh Library System Software Engineering Institute Library (SEI)

v

Tntordicoinlinaor

August 1997 -- http://www.library.cmu.edu/Research/Online/
webmaster@www.library.cmu.edu

Carnegie Mellon University Libraries

IPR2024-00027

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html 171

CrowdStrike Exhibit 1004 Page 66

Appendix SIRSIO]

IPR2024-00027
CrowdStrike Exhibit 1004 Page 67

10/17/23, 3:52 PM

ﬁ INTERNET
ARCHIVE

1996 EELYA 1998

20

27

20

27

BLOG

Ewm g e B

ABOUT

PROJECTS

INTERNET ARCHIVE

[SuBaekMac ing

HELP

nimbus screenshot app print

DONATE

CONTACT

JOBS

SIGNUP|LOGIN 4 UPLOAD

VOLUNTEER

PEOPLE

Explore more than 849 billion web pages saved over time

- Collections

Saved 29 times between June 27, 1997 and October 31, 2004.

1999

20

27

21

28

21

28

21

28

22

29

22

29

14

21

28

2000

22

29

APR

23

30

JUL

23

30

OoCT

15

22

29

2001
2 3
9 10
16 17
23 24
30 31
3 4
10 1M
17 18
24 25
3 4
(LY [N
17 18
24 25
31
2 3
16 17
23 24
30 31

2002

25

2003

23

24

31

23

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html

Changes

2004
3 4
10 "
17 18
24 25
5 6
12 13
19 20
26 27
4 o
"oo12
18 19
25 26
10 11
17 18
24 25

2005

FEB

MAY

21

28

AUG

20

27

Nov

20

27

22

29

21

28

Summary

2006

21

28

23

30

22

29

2007

22

24

31

23

30

22

29

http://www.sirsi.com/Products/ulms.html

Site Map

2008

23

30

22

29

21

28

21

28

24

31

23

30

22

29

22

29

2009

23

30

23

30

URLs

2010 2011 2012 2013 2014
4

MAR

26 27 28 29

JUN

18 19 20 21

25 26 2T 28
SEP

17 18 19 20

24 25 26 27
DEC

17 18 19 20
24 26 26 27

3

IPR2024-00027

CrowdStrike Exhibit 1004 Page 68

10/17/23, 3:52 PM nimbus screenshot app print

30

Note

This calendar view maps the number of times
http://www.sirsi.com/Products/ulms.html was crawled by

the Wayback Machine, not how many times the site was actually updated. More info

in the FAQ.

FAQ | Contact Us | Terms of Service (Dec 31, 2014)

The Wayback Machine is an initiative of the Internet Archive, a 501(c)(3) non-profit,

building a digital library of Internet sites and other cultural artifacts in digital form.

=

Other projects include Open Library & archive-it.org.

Your use of the Wayback Machine is subject to the Internet Archive's Terms of Use.

. . . IPR2024-00027
chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html . o
CrowdStrike Exhibit 1004 Page 69

10/17/23, 3:52 PM nimbus screenshot app print

(o] v~ I ocT o

ol 27 g 0o

29 captures
27 Jun 1997 - 31 Oct 2004 LEERN 1997 REELY » Avout this capture

’.’ >
¢ unicorn

<t Library Management System

http://www.sirsi.com/Products/ulms.html

@ Product Overview

@ Modules Available

“@ Product Demonstration

@ Companion Products

@ Clients

@ Let us configure a system for you!

Product Overview

The way the world finds and shares information is changing fast. It is a world without barriers. To provide your clients and patrons with the absolute finest in
lihrarv cervices and eiinnart —- and evtend thace cervicee aranind the warld - von need TINTCORN fram STRST

. . o IPR2024-00027
chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html i o
CrowdStrike Exhibit 1004 Page 70

10/17/23, 3:53 PM nimbus screenshot app print

| I
¢ umcorn

<t Library Management System

@ Product Overview

@Modules Available

@ Product Demonstration

@ Companion Products

@ Clients

@ L et us configure a system for you!

Product Overview

The way the world finds and shares information is changing fast. It is a world without barriers. To provide your clients and patrons with the absolute finest in
library services and support -- and extend those services around the world -- you need UNICORN from SIRSI.

From the beginning, the right decisions have been made to ensure that UNICORN users would always be able to meet change head-on. A perfect blend of
power and versatility, UNICORN is today's continuous source for technological breakthroughs.

» Balanced client/server architecture for growth
» UNIX server for freedom of choice
o Core design that will never become obsolete

Client Software - Something for Everyone

To make the most of your library system investment, you'll need flexible options for speeding resources to your staff and patrons. With UNICORN's many
client options, no one is left out. Whether you are using a terminal, a personal computer with Windows, or a Web browser, the UNICORN family of
InfoVIEW, WebCat, and Z39.50 client software is designed to work for you.

One Look, One Feel

SIRSI understands libraries. We know that productivity demands consistency. That's why we offer consistent interfaces across all UNICORN functions. So
whether you're cataloging new material, or adding a new patron to your circulation files, UNICORN looks and feels the same.

Modules Available

@ Bibliographic and Inventory Control
@ Authority Control

@ SmartPORT

@ Enhanced Public Access

@ Circulation

@ Academic Reserves

¥ Miaterials Booking

@ Acquisitions

@ Serials

@ Information Gateway,

Bibliographic and Inventory Control

The heart of UNICORN is complete bibliographic control. For consistency, all catalog information is created, maintained and stored in one place -- your
catalog. In addition to full MARC import and export capabilities, UNICORN includes sophisticated techniques for addressing special collections,
uncataloged items, and bound-with titles. SIRSI's Z39.50 version 3 server is also included as a standard UNICORN catalog feature.

Authority Control
The UNICORN Authority Control module provides an online, interactive control system to establish a single, authoritative form for headings. Support for
multiple authority files is standard, and any type of bibliographic heading may be controlled, with validation occurring immediately upon entry. To aid in

catalog searching, a full ANSI thesaurus is also generated to provide SEE and SEE-ALSO cross references.
IPR2024-00027

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html 1/3

CrowdStrike Exhibit 1004 Page 71

10/17/23, 3:53 PM nimbus screenshot app print

SmartPORT

Streamlining the process of copy cataloging is what SIRSI's SmartPORT is all about. Fully integrated with the UNICORN bibliographic catalog and
authority file, SmartPORT uses the Z39.50 protocol to revolutionize the capture of MARC records for acquisitions and cataloging. Sources for records can
be any MARC-based Z39.50 server including OCLC, RLIN, ISM and Library of Congress.

Enhanced Public Access

UNICORN's highly evolved public access catalog is designed to address the needs of the beginning searcher, as well as the researcher. Separate choices are
available for browsing and keyword searching. A full-text index is available as a standard feature of UNICORN, providing the best possible approach for
accessing all library material. Precise search results are easily retrieved using UNICORN's sophisticated truncation, boolean, relational, adjacency, and
proximity operators. As an added benefit, the UNICORN Enhanced Public Access module also includes an Information Desk, a Request Desk, and a User
Services Desk.

Circulation

SIRSI's powerful circulation control system is designed to meet the production demands of any circulation department. To speed patrons on their way, every
function -- checkout, checkin, renewals, holds and payments -- is immediately available. Staff never spend time moving through multiple levels of computer
screens. Extensive policy matrices handle single or multi-library requirements, and provide an unlimited number of user profiles, item types, locations, and
loan periods.

Academic Reserves

SIRSI recognizes the importance of managing temporary reserve collections in academic libraries. The UNICORN Academic Reserves module supports
multiple reserve collections across multiple libraries. Items can be placed on reserve for several reservers and courses simultaneously. In addition to catalog
access, patrons can retrieve reserve items by instructor name, course name, and course ID. Hooks to electronic reserves is also included.

Materials Booking
The UNICORN Materials Booking module provides control over the allocation of time-scheduled resources. Separate booking calendars are generated for
each bookable item. Custom cataloging forms are provided for describing equipment inventories and meeting rooms.

Acquisitions

UNICORN acquisitions and fund accounting tracks the purchase of materials through ordering, claiming, receiving, invoicing, and processing. Managing
approval items, gifts, standing orders, and subscriptions, as well as any other library-defined order types is straight-forward and complete. On-order records
may include full MARC or brief catalog descriptions that are fully integrated with the public access catalog. Time-saving order processing features include
automatic vendor discount calculations and currency conversion, unlimited space for staff notes, fund splits by percentage and amount, multi-volume/copy
ordering, and multi-library/location holdings distributions.

Serials

Serials checkin and control manages the prediction, receipt, and routing of all serial subscriptions. Managing orders and renewals is fully integrated with the
UNICORN Acquisitions system. Receiving individual issues automatically increments the prediction calendar, and generates and maintains a separate
MARC holdings record for each subscription. In addition, UNICORN also produces a consolidated holdings display for public access catalog users which
conforms to the Z39.44 standard. Barcode checkin of issues is also supported for those publishers that meet SISAC's guidelines for defining an issue's
chronology in SICI barcode format.

Information Gateway

Organizing and accessing sources of information found beyond the Tibrary's catalog is easy with SIRSI's Information Gateway. Library-controlied Tists of
Internet sites to visit are readily available for patrons at the click of a button. Defining site classification schemes based on subject, geographic, or other
library-defined groupings is also supported. Destinations requiring telnet, World Wide Web, and Z39.50 protocols can be easily added using the SIRSI
Gateway.

Companion Products

@ WebCat

<@ InfoBASE

@ VIZION with 739.50
@ Digital Media Archive

IPR2024-00027

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html 2/3

CrowdStrike Exhibit 1004 Page 72

10/17/23, 3:53 PM nimbus screenshot app print

WebCat

The Internet's World Wide Web has more potential for delivering interactive information than any other software. Available as an add-on for UNICORN, or
any other Z39.50-compatible server, SIRSI's award-winning WebCat turns your library catalog and all public access services into a full-fledged World Wide
Web catalog.

InfoBASE

Today information services often extend well beyond the library catalog. Sources of information consist of on-line services and locally generated material.
InfoBASE is designed to support local data warehousing and provide total control over auxiliary databases. Available as an integrated component of any
UNICORN library management system, or as a standalone server, InfoBASE is your Z39.50 server solution.

VIZION with 7.39.50

SIRSI's VIZION with 739.50 for Windows provides a single user interface to a world of information resources. VIZION provides a sophisticated,
customizable, icon-based site capture and retrieval management system for your favorite Internet resources. VIZION allows searching of research databases,
locally developed databases, library catalogs, and the rapidly growing body of information resouces available through Z39.50 servers.

Digital Media Archive

SIRSI's digital media archive system addresses the media capture, registration, search, retrieval, and administrative requirements of the new virtual library.
Auvailable as a standalone archive, or integrated with any Unicorn library management system, SIRSI's digital media archive is the next logical step in library
services.

‘f&:& Yoty © 1996, Sirsi Corporation, 689 Discovery Drive, Huntsville, AL 35806
H ._ : info@sirsi.com, webmaster(@sirsi.com

IPR2024-00027
CrowdStrike Exhibit 1004 Page 73

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html

Appendix SIRSI02

IPR2024-00027
CrowdStrike Exhibit 1004 Page 74

10/17/23, 3:57 PM

|=" INTERNET
LU ARCHIVE

ABOUT

BLOG

PROJECTS HELP

nimbus screenshot app print

Ewm g e B

DONATE

CONTACT

VOLUNTEER

PEOPLE

SIGNUP|LOGIN 4 UPLOAD

JOBS

INTERNET ARCHIVE

Waupackmachina
- Collections

Saved 50 times between June 27, 1997 and July 10, 2023.

Changes

Summary

http://www.sirsi.com/Products/webcat.html

Site Map

1996 EELYA 1998

20

27

20

27

1999

20

27

21

28

21

28

21

28

22

29

22

29

14

21

28

2000

22

29

APR

23

30

JUL

23

30

OoCT

15

22

29

2001
2 3
9 10
16 17
23 24
30 31
3 4
10 1M
17 18
24 25
3 4
(LY [N
17 18
24 25
31
2 3
16 17
23 24
30 31

2002 2003 2004 2005

FEB
4
1" 2 3 4 5
18 9 10 1" 12
25 16 17 18 19
23 24 25 26
MAY
5
12 4 5 6 7
19 " 12 13 14
26 18 19 20 21
25 26 27 28
AUG
5
1£ S 4 o o
19 10 M1 12 13
26 17 18 19 20
24 25 26 27
31
NOoV
4
18 9 10 1" 12
25 16 17 18 19

238 24 25 26

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html

20

27

22

29

21

28

20

27

2006

21

28

23

30

22

29

21

28

2007

22

24

31

23

30

22

29

2008

23

30

22

29

21

28

21

28

24

31

23

30

22

29

22

29

2009

23

30

23

30

Explore more than 849 billion web pages saved over time

URLs
2010 201
MAR
5 6 7
12 13 14
19 20 21
26 27 28
JUN
4 5 6
" 12 13
18 19 20
25 26 27
SEP
3 4 5
Y 1 1z
17 18 19
24 25 26
DEC
3 4 5
17 18 19
24 256 26
3

IPR2024-00027
CrowdStrike Exhibit 1004 Page 75

2012

22

29

21

28

20

27

20

27

2013

2014

10/17/23, 3:57 PM nimbus screenshot app print

30

Note

This calendar view maps the number of times
http://www.sirsi.com/Products/webcat.html was crawled by

the Wayback Machine, not how many times the site was actually updated. More info

in the FAQ.

FAQ | Contact Us | Terms of Service (Dec 31, 2014)

The Wayback Machine is an initiative of the Internet Archive, a 501(c)(3) non-profit,

building a digital library of Internet sites and other cultural artifacts in digital form.

=

Other projects include Open Library & archive-it.org.

Your use of the Wayback Machine is subject to the Internet Archive's Terms of Use.

. . . IPR2024-00027
chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html . o
CrowdStrike Exhibit 1004 Page 76

10/17/23, 3:57 PM nimbus screenshot app print

http://www.sirsi.com/Products/webcat.html || Go | MAY EELY OCT @ ()

50 captures 27 > ¢l

27 Jun 1997 - 10 Jul 2023 LEERN 1997 REELY » Avout this capture

WebCat with Z.39.50

WebCat Demonstration

SIRSI's award-winning WebCat harnesses the power of the World Wide Web to extend your library’s services to the four corners of the earth. When you see
WebCat, you will see that the library walls are coming down. You’ll see that in their place stand five million users of the World Wide Web. With your Z39.50
server and SIRSI’s WebCat, your library becomes the center of your patrons’ information world.

Instant Availability

All your patrons need is a Web browser such as Mosaic or Netscape. WebCat does the rest, turning your library catalog and all public access services into a
full-fledged Web catalog. There is no proprietary client software to distribute or support, and no training required for patrons to access your library’s
collections through your Web home page.

IPR2024-00027

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html 171

CrowdStrike Exhibit 1004 Page 77

10/17/23, 3:58 PM nimbus screenshot app print

WebCat with Z.39.50

WebCat Demonstration

SIRSI's award-winning WebCat harnesses the power of the World Wide Web to extend your library’s services to the four corners of the earth. When you see
WebCat, you will see that the library walls are coming down. You’ll see that in their place stand five million users of the World Wide Web. With your Z39.50
server and SIRSI’s WebCat, your library becomes the center of your patrons’ information world.

Instant Availability

All your patrons need is a Web browser such as Mosaic or Netscape. WebCat does the rest, turning your library catalog and all public access services into a
full-fledged Web catalog. There is no proprietary client software to distribute or support, and no training required for patrons to access your library’s
collections through your Web home page.

Multi-Media Access

WebCat brings bibliographic citation records to life by providing hyperlinks to multi-media files. SIRSI uses the power of WebCat and the World Wide Web
to display photographs, images, full-text, and sound files. Access to these exciting information resources is just a mouse click away from the electronic
address (URL) you supply in your bibliographic record.

One Look, One Feel

WebCat with Z39.50 gives users a single interface for accessing and organizing information. The easy-to-use, familiar look and feel of today’s Web browsers
host WebCat’s powerful features.

¢ Quickly create and execute simple or complex search statements
* Browse and select terms from heading lists

e Search related information by clicking on hypertext terms

* View cross-reference information

« Sort search results

» Export selected records to networked printers, files or email

e Link to library holdings information on one or more servers
 Execute previous searches from search history

Patron Services

When used with any of SIRSI’s Unicorn library management systems, WebCat provides a straight-forward method to allow your patrons to help themselves.

Checkouts
Users may see a list of all items they currently have checked out. In addition to author, title and call number, WebCat displays date charged, date due,
and any accruing fines.

Holds
WebCat provides information for titles on hold, along with current availability.

Bills
Patrons can review all bills they have received from the library. This includes fees for overdues, as well as for services such as photocopy or fax
charges.

Renewals
WebCat allows patrons to be responsible for their own renewals. Individual items or a batch of items may be renewed, with any conflicts immediately
reported for each item.

Request Desk

Communication between library patrons and library staff is critical. WebCat’s Request Desk helps you keep information flowing by providing custom forms
for electronic communication. Whenever possible, WebCat extracts data from bibliographic records to complete each form automatically. Electronic forms
include, but are not limited to:

¢ Order requests

* Suggestions IPR2024-00027

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html 1/2

CrowdStrike Exhibit 1004 Page 78

10/17/23, 3:58 PM nimbus screenshot app print
. Ch;;lge of address

Information Desk

Libraries often need a way to present structured data to their patrons. The WebCat Information Desk gives you the ability to pre-define search strategies. The
searches may be executed against your local catalog, or against any other Z39.50 server. The Information Desk also allows you to organize searches into

collected bibliographies. For users of SIRSI’s Unicorn library management products, the Information Desk provides an additional feature for broadcasting

ecled b USCers oL o1 y-mana, gement oqucts LICSXK aes-an-acditlo caturc oadceas’

information referral data such as announcements, community information and new book lists.

Reserves Desk

Locating information associated with Academic Reserves collections is easy with WebCat. For users of SIRSI’s Unicorn library management products,
WebCat permits retrieval of reserve items by course name, course number and instructor name. Reserve items may be titles in the Unicorn catalog or

S S DR

material-in-electronicformat:
Gateway Manager

Finding a balanced presentation of functionality that gives new users enough information to make intelligent choices, without getting in the way of
experienced users is a goal SIRSI shares with libraries. Flexibility is the key to WebCat’s success in this effort. The Gateway Manager allows the library to
customize user interfaces. Through a simple question and answer interview session, WebCat’s forms, icons, instructions and functionality can be arranged to
suit local needs.

Access Control

You want to make your bibliographic resources available to users of the World Wide Web, but you need to protect certain files from unauthorized access.
WebCat is the answer with its precise user authentication features. Administrative policies can be established for each class of user. Local patrons may be
given unlimited access privileges, for example, while external library users may be restricted to catalog material only.

Meeting Your Needs

WebCat is available in several configurations. Depending on your local needs, WebCat, along with your Web server software, can be installed on the same
host server as your Unicorn or other Z39.50 server, or on a standalone server with networked access to your local Z39.50 catalogs and services. Access to the
Internet is also required.

é‘& o © 1996, Sirsi Corporation, 689 Discovery Drive, Huntsville, AL 35806
o info@sirsi.com, webmaster@sirsi.com

IPR2024-00027

chrome-extension://bpconcicammlapcogcnnelfmaeghhagj/edit.html 2/2

CrowdStrike Exhibit 1004 Page 79

	Appendix DAN01 - CMU MARC.pdf
	1a
	1b

	Appendix CMU01 - CMU Catalog Page.pdf
	1b
	1c

	Appendix CMU02 - CMU WebCat Page.pdf
	1b

	Appendix SIRSI01 - Unicorn Description.pdf
	1b
	1c

	Appendix SIRSI02 - WebCat Description.pdf
	1b
	1c

