
US 200200999.52A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2002/0099952 A1

Lambert et al. (43) Pub. Date: Jul. 25, 2002

(54) POLICIES FOR SECURE SOFTWARE Publication Classification
EXECUTION

1) Int. Cl. ; G06F 12/14 51) Int. C.7 H04L 9/00
(52) U.S. Cl. .. 713/200

(76) Inventors: John J. Lambert, Kirkland, WA (US);
Praerit Garg, Kirkland, WA (US); (57) ABSTRACT
Jeffrey A. Lawson, Austin, TX (US) A System and method that automatically, transparently and

Securely controls Software execution by identifying and
Correspondence Address: classifying Software, and locating a rule and associated
Albert S. Michalik Security level for executing executable Software. The Secu
MICHALIK & WYLIE, PLLC rity level may disallow the software's execution, restrict the
Suite 103 execution to Some extent, or allow unrestricted execution. To
14645 Bel-Red Road restrict Software, a restricted access token may be computed
Bellevue, WA 98.007 (US) that reduces Software's access to resources, and/or removes

privileges, relative to a user's normal access token. The rules
(21) Appl. No.: 09/877,710 that control execution for a given machine or user may be

maintained in a restriction policy, e.g., locally maintained
(22) Filed: Jun. 8, 2001 and/or in a group policy object distributable over a network.

Software may be identified/classified by a hash of its con
Related U.S. Application Data tent, by a digital Signature, by its file System or network path,

and/or by its URL Zone. For software having multiple
(60) Provisional application No. 60/220.269, filed on Jul. classifications, a precedence mechanism is provided to

24, 2000. establish the applicable rule/Security level.

RESTRICTED TOKEN
SECURITY

DESCRIPTOR User SD
Group SID
Group SID (DENY)

Group SID
Privilege

Restricted SID-1
Restricted Sld2
Restricted SD3

Restricted SDr

SECURITY
MECHANISM

304

IPR2024-00027
CrowdStrike Exhibit 1006 Page 1

IPR2024-00027
CrowdStrike Exhibit 1006 Page 2

Patent Application Publication Jul. 25, 2002 Sheet 2 of 10 US 2002/0099952A1

RESTRICTED TOKEN

Group2 SID
DENYONLY

Group SID

Restricted SID

Restricted SID2

Restricted
Token
AP

Privilege

Privilege2

Token D
Restricted SID3

Restricted SID

Token D

Parent Token D
FIG. 2

IPR2024-00027
CrowdStrike Exhibit 1006 Page 3

Patent Application Publication

RESTRICTED TOKEN

User SID
Group SID
Group2 SID (DENY)

Group SID

Privilege

Restricted SID
Restricted SID2
Restricted SID3

Restricted SID

PROCESS

OBJECT
MANAGER

304

FIG. 3

Jul. 25, 2002 Sheet 3 of 10

210
302 OBJECT

SECURITY 306
DESCRIPTOR

12

216

312

218

SECURITY
MECHANISM

US 2002/0099952A1

IPR2024-00027
CrowdStrike Exhibit 1006 Page 4

Patent Application Publication Jul. 25, 2002 Sheet 4 of 10 US 2002/0099952A1

FIG. 4
400

Receive Type of
ACCeSS Desired

402
Perform UserAndGroup

Access Check
Against ACL

404

ls
Access
Allowable

2
406

Any
Restricted

SIDS

Perform Restricted SIDS
Access Check
Against ACL

ls
ACCeSS

Allowable
2

414

412

Grant Access
(Return Handle to

Object)

Deny Access

IPR2024-00027
CrowdStrike Exhibit 1006 Page 5

Jul. 25, 2002. Sheet 5 of 10 US 2002/0099952 A1 Patent Application Publication

uusque?.00W ?uðueologu.F.

IPR2024-00027
CrowdStrike Exhibit 1006 Page 6

Patent Application Publication Jul. 25, 2002 Sheet 6 of 10

Requesting 508b Software 510
ProceSS File

534b

502b

Software
- - - - Loading?

Software Executing
File & Functions

Informatio

516b U
514b.

Job Object 532b

FIG. 5B

536 Requesting 508C 510
Process File 502

M

/
Software
Loading 1
Executing
Functions

Software
File

informatio

QoS
Restrictions 538c

FIG. 5C

Job Object
Policy

Effective Policy

Enforcement
Mechanism

NW Access
Policy

Effective Policy

Enforcement
Mechanism

US 2002/0099952 A1

IPR2024-00027
CrowdStrike Exhibit 1006 Page 7

US 2002/0099952 A1

(EN):ww twoOTABYTH) Kollod au??oeW 180OT

Jul. 25, 2002. Sheet 7 of 10 Patent Application Publication

IPR2024-00027
CrowdStrike Exhibit 1006 Page 8

Patent Application Publication Jul. 25, 2002 Sheet 8 of 10 US 2002/0099952A1

700

Name
Description

Authorized Groups

SDS to Disable

Privileges to Remove

Code Identities O
Code Authorization Level

Code Authorization Policies

Policy Container

FIG. 7

IPR2024-00027
CrowdStrike Exhibit 1006 Page 9

Patent Application Publication Jul. 25, 2002 Sheet 9 of 10 US 2002/0099952 A1

FIG. 8

Set Current Path E. Exact
including Filename

Get Security
Level from

Rule

Current
Path Yes
p Get Security Level

from Rule for
General 8 Current Path

822

ASSOC.
File Zone

p

24

Rule for
Zone

P
Current Path
to F Parent

Folder

Get Security
Level from
Rule for

ASSOCiated
Zone

IPR2024-00027
CrowdStrike Exhibit 1006 Page 10

Patent Application Publication Jul. 25, 2002 Sheet 10 of 10 US 2002/0099952A1

FIG. 9
900

Security
Level F

Disallowed

904

Security
Level F
Normal 906

Return Parent
ACCeSS Token

Return
Error

Analyze Parent Token
Versus Token

Computation Data to
Determine Privileges to
Remove I Security IDS to

Modify I Restricted
Security IDS to Add

Based on Security Level

Create Restricted
Token from
Parent Token

Return Restricted
ACCeSS Token

IPR2024-00027
CrowdStrike Exhibit 1006 Page 11

US 2002/0099952 A1

POLICES FOR SECURE SOFTWARE EXECUTION

CROSS-REFERENCE TO RELATED
APPLICATION

0001. The present invention claims priority to U.S. Pro
visional Patent Application Serial No. 60/220,269.

FIELD OF THE INVENTION

0002 The present invention is generally directed to com
puter Systems, and more particularly to an improved Security
framework for computer Systems.

BACKGROUND OF THE INVENTION

0.003 Computer users, and particularly business users,
typically rely on a Set of programs that are known and
trusted. For example, in enterprise computing environments,
System administrators and helpdesk perSonnel are trained in
Supporting a core set of programs used in operating the
business. However, in most enterprise environments, par
ticularly in larger environments in which Some flexibility is
important with respect to what various employees need to do
with computers to perform their jobs, users are able to run
unknown and/or untrusted code, that is, programs outside of
the Supported Set. As a result, administrators begin to lose
control over what Software code the enterprise's machines
are executing. For example, Some of these programs may
conflict with other installed programs, change crucial con
figuration data, and So on.
0004 Worse, some of the untrusted code may be mali
cious code (e.g., a computer virus possibly in the form of a
Trojan horse) that intentionally misrepresents itself to trick
users into running it, typically inflicting damage, corrupting
data or otherwise causing mischief to the computers on
which the malicious code runs. To prevent this, Virus pro
tection Software is provided. Contemporary virus protection
Software typically comprises virus Scanning engines that
operate based on Signature-based pattern matching, in which
files are Scanned for known viruses and design pattern
matching Strings to characteristically identify instances of
that identical virus. One problem with this approach is that
it is reactive rather than proactive, in that a virus first needs
to be individually identified and characterized by virus
detection experts, after which it can have its appropriate
Signature information distributed to various computers to
allow the automated detection thereof. However, in addition
to requiring skilled perSonnel to detect the virus, the virus
typically keeps spreading during the time the experts need to
perform the analysis, and also prior to the time that the
information needed for detection can be distributed to pro
tect uninfected computers.
0005 The problem or running unknown code is com
pounded by recent developments in computing, wherein
many types of content that formerly consisted of only
passive data (e.g., documents and web pages) have poten
tially become executable code, due to the Scripts and/or
macroS they may contain. As a result, the above problems
and the like can also occur with content that does not
intuitively lend itself to being thought of as executable,
whereby even relatively Sophisticated users may be leSS
Vigilant than would be the case when consciously running
code that is unmistakably executable (Such as an "...exe' file).

Jul. 25, 2002

0006. One method to reduce the possible damage that can
be done when running unknown applications is for a user to
log onto a computer with a user account that has less access
rights and/or less privileges than the user would have to
System or network resources if logged on with a different
user account. This takes advantage of existing computer
Security System models that determine each user's access to
network resources based on permissions granted according
to that user's credentials, whereby any potential damage
done by unknown executable code is limited or contained by
the reduced access rights and/or privileges. However, this
requires the user be diligent in logging on as appropriate for
a given task, or otherwise have the foresight of knowing that
a potentially unknown application is about to be executed,
which is not always possible. Additionally, the effort
required to log-on at various times with different credentials
and to otherwise take advantage of this technique is tedious.
For example, the extra effort needed to copy or re-install an
application So that it can be Suitably run by a user having a
different user account is Sufficiently laborious to discourage
Such actions from being common practice. Furthermore, this
technique is ineffective if the application is a familiar
application (considered trusted) and has been unknowingly
infected or altered by a virus or a malicious program or user.
For example, even a highly Safety-conscious user may
assume (incorrectly) that an application previously known to
be trusted is still Safe to run, when that may not be the case.
In any event, even a user logged on with less than the user's
maximum access rights may still do a lot of damage to
resources that the less-privileged user can access.
0007. In sum, in contemporary computer systems, run
ning unknown code cannot be prevented, and indeed is
necessary to an extent in many enterprises, yet doing So
leads to increased Support costs in System maintenance and
helpdesk time, and decreased user productivity. At the same
time, with the rise in the usage of networks, email and the
Internet for busineSS computing, users find themselves
exposed to a wide variety of executable programs including
content that is not identifiable as being executable in
advance. As a result, users are frequently confronted with
making decisions about running unknown code, and, given
the sheer number and variety of programs, it is very difficult
for individual users to consistently make effective choices
about what software they should run.

SUMMARY OF THE INVENTION

0008 Briefly, the present invention provides an improved
computer Security System and method wherein Software that
possibly includes executable code is identified and classi
fied, and then a rule corresponding to the classification (or
if none correspond, a default rule) automatically and trans
parently determines the Software's ability to execute. A Set
of rules for a machine or user may be maintained in a
restriction policy, e.g., in a group policy object distributable
over a network, and a restriction policy can be applied per
machine and/or per user of a machine. Depending on what
the rule Specifies for the classification that is determined for
any given Software module (e.g., Software file), the Software
may execute in a normal (unrestricted) execution environ
ment (context), in a restricted execution environment, or the
Software may be prevented from running at all. For example,
the execution environment may correspond to running Soft

IPR2024-00027
CrowdStrike Exhibit 1006 Page 12

US 2002/0099952 A1

ware with a user's normal Security privileges and acceSS
rights, or Some restricted Subset of the user's normal privi
leges and access rights.

0009. The present invention provides various ways to
identify/classify software, along with a highly flexible
policy-based infrastructure to enforce decisions about
whether Software can run, and if So, how much the Software
will be restricted when it runs. For example, the present
invention provides a transparent way to run untrusted (and
hence potentially harmful) code in a constrained environ
ment in which Such code is not allowed to perform certain
operations, Such as operations that deal with System data or
user data.

0.010 Software can be identified and classified in one or
more ways, including by a unique hash value of its content,
whether it is digitally signed, and if So, by who, by its file
System or network path, and/or by its origin or Source, e.g.,
its URL (Uniform Resource Locator) zone. In this manner,
an administrator or the like (hereinafter generally adminis
trator, regardless of whether one or more administrators are
present or whether a machine is a Standalone machine
having a single user) can group general types of content
together by criteria chosen by the administrator for purposes
of running it in a controlled Security environment, yet further
differentiate certain content, Such as Selected content known
to be trusted or as having come from a trusted Source, or
Selected content known to be dangerous. For example,
Software downloaded from an Internet Zone may be gener
ally treated as untrusted, but certain Internet content treated
as normal (unrestricted) if it is digitally signed by a trusted
entity. The present invention can also be extended to identify
Software for restricted execution in other ways, Such as to
allow a program associated with attachments (e.g., an e-mail
program) to operate normally when accessing its own code,
but to identify external files such that they will operate in a
restricted environment, e.g., when requesting that an attach
ment be opened.

0.011) A software restriction policy comprising a set of
rules is provided to correlate the classification information
for any Software to a Security level that may restrict or
prevent the Software from running. A policy can be per
machine and per user, and can be automatically applied to
network users via group policy technology. A policy gener
ally comprises a general (default) rule and exceptions to the
default rule Set by an administrator. In this manner, for
example, an administrator can efficiently constrain (or pre
vent from running) everything on a machine, except for
certain identified Software files or Software classifications
that are allowed to run at Some other Security level, also Set
by the administrator. Alternatively, via the default rule an
administrator can allow everything to run at one Security
level, Such as with the user's normal rights, except for
certain Specified Software or Software classifications. For
Software that has multiple classifications, (e.g., it fits a
Specified pathname and also has an associated hash), and
thus may have multiple, possibly conflicting rules, a prece
dence mechanism is described that establishes which rule,
and thus which Security level, applies. In general, the
precedence mechanism favors more-Specific content identi
fication information over leSS-Specific information.
0012. In an enterprise environment, the policy may be set
for Sites, domains, organizational units, groupS and/or users

Jul. 25, 2002

via group policy technology. Further, the invention may be
extended to do things Such as automatically generate and
propagate rules, for example, by dynamically accessing a
database to find new software that has been identified as
having a virus, and dynamically generating and distributing
new policy including a rule that prevents that Software from
running.
0013 Typical security levels for execution (arbitrarily
named herein) may include normal (unrestricted), con
Strained (restricted) or disallowed (revoked), although other
levels Such as end-user and untrusted are possible, and
customized levels can be defined. The security level deter
mines whether the Software can run, and if So, the execution
environment in which it will run. For example, in a restricted
token Security model, each level below normal (i.e., corre
sponding to running with the user's normal access token)
corresponds to how restrictive a restricted access token is
computed to be. In this implementation, the Security level
can be used to determine which privileges are removed from
the restricted token relative to its parent token, which
Security identifiers are changed, as well as how their rights
are changed, (e.g., to deny only, or read only), and/or which
restricted Security identifiers are added (to further restrict
access). In this manner, certain Software can operate without
restriction, (other than with the user's normal access token),
other code can only operate in a constrained environment,
e.g., prevented from accessing data other than its own, and
other code can be entirely prevented from running, Some
times referred to herein as a “disallowed' or “revoked”
Security level, (useful for Software files known to cause
problems).
0014. In one implementation, prior to loading a file, the
various functions (Such as of an operating System) that
enable Software to be loaded or otherwise executed are
arranged to automatically and transparently communicate
with an enforcement mechanism that determines the rule to
apply for each file, based on the identification/classification
information of the file. To this end, the enforcement mecha
nism consults the policy to locate a rule corresponding to the
file. Based on located rule, the enforcement mechanism
either returns the normal access token, a "disallowed' error
that fails the request, (e.g., the function does not load the
Software), or computes and returns a restricted access token
that restricts the Software to an extent that corresponds to the
security level determined by the rule. If allowed but
restricted, the returned restricted token is associated with the
code's processes, constraining the code accordingly. The
computation of the token or failing of the open may be
automatic and transparent to the user, whereby Security is
implemented without requiring user forethought or action.
0015. Other objects and advantages will become apparent
from the following detailed description when taken in con
junction with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

0016 FIG. 1 is a block diagram representing a computer
System into which the present invention may be incorpo
rated;
0017 FIG. 2 is a block diagram generally representing
the creation of a restricted token from an existing token;
0018 FIG. 3 is a block diagram generally representing
various components for determining whether a process may
access a resource based on associated Security information;

IPR2024-00027
CrowdStrike Exhibit 1006 Page 13

US 2002/0099952 A1

0.019 FIG. 4 is a flow diagram representing general steps
taken when determining whether to grant a process access to
a reSOurce,

0020 FIGS. 5A-5C are block diagrams generally repre
Senting various components for restricting Software based on
a rule for that Software, in accordance with one aspect of the
present invention;
0021 FIG. 6 is a block diagram representing a general
architecture for constructing an effective policy for use in
restricting Software in accordance with one aspect of the
present invention;
0022 FIG. 7 is a block diagram representing various data
Structures for maintaining code authorization policies used
in controlling Software execution in accordance with one
aspect of the present invention;
0023 FIG. 8 is a flow diagram representing general steps
that may be taken to determine whether and how software is
to be restricted in accordance with one aspect of the present
invention; and
0024 FIG. 9 is a flow diagram representing the general
Steps taken to restrict a process via a restricted token in
accordance with one aspect of the present invention.

DETAILED DESCRIPTION

0.025 Exemplary Operating Environment
0.026 FIG. 1 illustrates an example of a suitable com
puting system environment 100 on which the invention may
be implemented. The computing system environment 100 is
only one example of a Suitable computing environment and
is not intended to Suggest any limitation as to the Scope of
use or functionality of the invention. Neither should the
computing environment 100 be interpreted as having any
dependency or requirement relating to any one or combina
tion of components illustrated in the exemplary operating
environment 100.

0027. The invention is operational with numerous other
general purpose or Special purpose computing System envi
ronments or configurations. Examples of well known com
puting Systems, environments, and/or configurations that
may be suitable for use with the invention include, but are
not limited to, personal computers, Server computers, hand
held or laptop devices, multiprocessor Systems, micropro
ceSSor-based Systems, Set top boxes, programmable con
Sumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include
any of the above Systems or devices, and the like.
0028. The invention may be described in the general
context of computer-executable instructions, Such as pro
gram modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com
ponents, data Structures, and So forth, that perform particular
tasks or implement particular abstract data types. The inven
tion may also be practiced in distributed computing envi
ronments where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed computing environment, program modules
may be located in both local and remote computer Storage
media including memory Storage devices.
0029. With reference to FIG. 1, an exemplary system for
implementing the invention includes a general purpose

Jul. 25, 2002

computing device in the form of a computer 110. Compo
nents of the computer 110 may include, but are not limited
to, a processing unit 120, a System memory 130, and a
System buS 121 that couples various System components
including the System memory to the processing unit 120.
The system bus 121 may be any of several types of bus
Structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, Such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus also known as Mezzanine bus.
0030 The computer 110 typically includes a variety of
computer-readable media. Computer-readable media can be
any available media that can be accessed by the computer
110 and includes both volatile and nonvolatile media, and
removable and non-removable media. By way of example,
and not limitation, computer-readable media may comprise
computer Storage media and communication media. Com
puter Storage media includes both volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for Storage of information Such as
computer-readable instructions, data structures, program
modules or other data. Computer Storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk Storage or other magnetic
Storage devices, or any other medium which can be used to
Store the desired information and which can accessed by the
computer 110. Communication media typically embodies
computer-readable instructions, data structures, program
modules or other data in a modulated data Signal Such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term "modulated data Sig
nal” means a Signal that has one or more of its characteristics
Set or changed in Such a manner as to encode information in
the Signal. By way of example, and not limitation, commu
nication media includes wired media Such as a wired net
work or direct-wired connection, and wireleSS media Such as
acoustic, RF, infrared and other wireleSS media. Combina
tions of the any of the above should also be included within
the Scope of computer-readable media.
0031. The system memory 130 includes computer stor
age media in the form of Volatile and/or nonvolatile memory
such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133
(BIOS), containing the basic routines that help to transfer
information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
on by processing unit 120. By way of example, and not
limitation, FIG. 1 illustrates operating System 134, applica
tion programs 135, other program modules 136 and program
data 137.

0032. The computer 110 may also include other remov
able/non-removable, Volatile/nonvolatile computer Storage
media. By way of example only, FIG. 1 illustrates a hard
disk drive 140 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 151 that

IPR2024-00027
CrowdStrike Exhibit 1006 Page 14

US 2002/0099952 A1

reads from or writes to a removable, nonvolatile magnetic
disk 152, and an optical disk drive 155 that reads from or
writes to a removable, nonvolatile optical disk 156 Such as
a CD ROM or other optical media. Other removable/non
removable, Volatile/nonvolatile computer Storage media that
can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital Video tape,
Solid state RAM, Solid state ROM, and the like. The hard
disk drive 141 is typically connected to the system bus 121
through a non-removable memory interface Such as interface
140, and magnetic disk drive 151 and optical disk drive 155
are typically connected to the System buS 121 by a remov
able memory interface, such as interface 150.
0033. The drives and their associated computer storage
media, discussed above and illustrated in FIG. 1, provide
Storage of computer-readable instructions, data Structures,
program modules and other data for the computer 110. In
FIG. 1, for example, hard disk drive 141 is illustrated as
Storing operating System 144, application programs 145,
other program modules 146 and program data 147. Note that
these components can either be the same as or different from
operating System 134, application programs 135, other pro
gram modules 136, and program data 137. Operating System
144, application programs 145, other program modules 146,
and program data 147 are given different numbers herein to
illustrate that, at a minimum, they are different copies. A user
may enter commands and information into the computer 20
through input devices Such as a keyboard 162 and pointing
device 161, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a
microphone, joystick, game pad, Satellite dish, Scanner, or
the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160
that is coupled to the System bus, but may be connected by
other interface and bus Structures, Such as a parallel port,
game port or a universal serial bus (USB). A monitor 191 or
other type of display device is also connected to the System
bus 121 via an interface, Such as a video interface 190. In
addition to the monitor, computers may also include other
peripheral output devices Such as Speakers 197 and printer
196, which may be connected through a output peripheral
interface 190.

0034. The computer 110 may operate in a networked
environment using logical connections to one or more
remote computers, Such as a remote computer 180. The
remote computer 180 may be a personal computer, a Server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer 110,
although only a memory Storage device 181 has been
illustrated in FIG. 1. The logical connections depicted in
FIG. 1 include a local area network (LAN) 171 and a wide
area network (WAN) 173, but may also include other
networkS. Such networking environments are commonplace
in offices, enterprise-wide computer networks, intranets and
the Internet.

0035. When used in a LAN networking environment, the
computer 110 is connected to the LAN 171 through a
network interface or adapter 170. When used in a WAN
networking environment, the computer 110 typically
includes a modem 172 or other means for establishing
communications over the WAN 173, Such as the Internet.

Jul. 25, 2002

The modem 172, which may be internal or external, may be
connected to the System buS 121 via the user input interface
160 or other appropriate mechanism. In a networked envi
ronment, program modules depicted relative to the computer
110, or portions thereof, may be stored in the remote
memory Storage device. By way of example, and not limi
tation, FIG. 1 illustrates remote application programs 185 as
residing on memory device 181. It will be appreciated that
the network connections shown are exemplary and other
means of establishing a communications link between the
computerS may be used.

0036) Restricted Tokens
0037. The present invention is generally directed to
restricting what executable code can do, including limiting
its access to resources. One way that this can be accom
plished with an operating System (e.g., MicroSoft Corpora
tion's Windows(R 2000) security model is to derive a
restricted token from the user's normal access token,
wherein the restricted token has less access and/or privileges
relative to the normal access token. In addition, the present
invention may also be used with Software-fault isolation on
a per-thread basis, or with a virtual machine where restric
tions are determined from the Stack of classes currently
executing. Moreover, the present invention does not neces
Sarily depend on kernel-mode operation, as with Software
fault isolation or a virtual machine it may be implemented in
user-mode. Thus, although restricted tokens are generally
described herein, as will be understood, the present inven
tion is not limited to restricted tokens, but can be imple
mented in virtually any security model in which it is feasible
to modify executable code's ability to operate based on
information known about the executable code, e.g., its
Source, path information or hash. Lastly, although the Vari
ous components are shown and described herein as Separate
components because of certain benefits resulting from Sepa
rated functionality, it can be readily appreciated that Some or
all of the components may be combined into more complex
components, and/or separated even further into additional
components.

0038. By way of general background, computing tasks
are performed by accessing the System or network's
resources via processes, (actually their threads in multi
threaded computing environments, however for purposes of
Simplicity herein, the entity attempting a task will be
referred to a process). Also, the System's resources, includ
ing files, shared memory and physical devices, which may
be represented by objects, will be ordinarily referred to
herein as either resources or objects. When a user logs on to
a secure machine or network (Such as one running the
Windows(R 2000 operating system) and is authenticated, an
execution environment (context) is set up for that user,
which includes building an access token. An access token is
asSociated with each process of the user, whereby anytime a
process requests to do work on behalf of the user, the acceSS
token can be first checked to see if the proceSS has the
appropriate rights and/or privileges to do what is being
requested, Such as access a resource.

0039. As shown in the left portion of FIG. 2, a conven
tional user-based access token 200 includes a UserAnd
Groups field 202 including a security identifier (Security ID,
or SID) 204 based on the user's credentials and one or more
group IDS 206 identifying groups (e.g., within an organiza

IPR2024-00027
CrowdStrike Exhibit 1006 Page 15

US 2002/0099952 A1

tion) to which that user belongs. The token 200 also includes
a privileges field 208 listing any privileges assigned to the
user. For example, one Such privilege may give an admin
istrative-level user the ability to Set the System clock through
a particular application programming interface (API). Note
that privileges override access control checks that are oth
erwise performed before granting access to an object.

0040 AS also represented in FIG. 2, a restricted token is
derived from a parent token, and comprises a reduced Subset
of access rights and/or privileges relative to the parent token.
(e.g., the user's normal access token 200). Note that the
parent token may be the user's normal token, but can also be
a restricted token derived from a higher parent token, and So
on in a hierarchical fashion up to the normal token.
0041. In general, as represented in FIG. 2, a restricted
token is derived from a parent token by removing at least
one privilege therefrom relative to its parent token, altering
(lessening) the access rights of at least one security identifier
relative to the parent token, and/or by adding a restricted
Security identifier relative to the parent token. This is gen
erally shown in the right portion of FIG. 2, wherein via a
function call to an API (application programming interface)
212 or the like, a restricted token 210 is derived from the
parent (normal user) token 200. In the example of FIG. 2,
this is accomplished by changing a group Security identifier
to “DENY ONLY,” in group SID field 214, removing
privileges, as shown in privileges field 216 of the restricted
token 210 relative to the parent token's privilege field 208,
and by adding restricted Security identifiers to a restricted
security identifiers field 218. Note that adding a restricted
Security identifier actually reduces access, because the pres
ence of any restricted Security identifier causes a Secondary
access check, i.e., the restricted SID field data also needs to
pass acceSS control checks before acceSS is allowed, as
described below with respect to FIG. 4.
0.042 AS generally represented in FIG. 3, a process 300
may be associated with the restricted token 210 rather than
the user's normal token 200, as determined by the operating
System, Such as when the proceSS is untrusted, as described
below. When the process 300 desires access to an object 302,
the process 300 specifies the type of access it desires (e.g.,
obtain read/write access to a file object), and the operating
System (e.g., kernel) level provides its associated token to an
object manager 304. In the example of FIG. 3, the token
provided is the restricted token 210. AS is understood, this
restricts what the process 300 can do relative to what the
proceSS could accomplish with the parent token. Note that
the restricted token may be associated with a job object that
effectively contains the process, to prevent the untrusted
proceSS from requesting trusted processes to do Something
on its behalf.

0043. The object 302 has a security descriptor 310 asso
ciated therewith, and the object manager 304 provides the
security descriptor 306 and the restricted token 210 to a
security mechanism 308. The contents of the security
descriptor 306 are typically determined by the owner (e.g.,
creator) of the object, and generally comprise a discretionary
access control list (DACL) 312 of access control entries, and
for each entry, one or more access rights (allowed or denied
actions) corresponding to that entry. Each entry comprises a
type (deny or allow) indicator, flags, a Security identifier
(SID) and access rights in the form of a bitmask wherein

Jul. 25, 2002

each bit corresponds to a permission (e.g., one bit for write
access, and So on). The Security mechanism 308 compares
the security IDs in the restricted token 210 along with the
type of action or actions requested by the process 300
against the entries in the DACL312. If a match is found with
an allowed user or group, and the type of access desired is
allowable for the user or group, a handle to the object 302
is returned to the process 300, otherwise access is denied.
0044 AS also shown in FIG. 3 for completeness, the
security descriptor 306 also includes a system ACL, or
SACL 314, which comprises entries of type audit corre
sponding to client actions that are to be audited. Flags in
each entry indicate whether the audit is monitoring Success
ful or failed operations, and a bitmask in the entry indicates
the type of operations that are to be audited. A Security ID
in the entry indicates the user or group being audited.
Whenever a client belonging to a group being audited
attempts improper access, the operation is logged.

0045. The DACL312 may contain one or more identifiers
that are marked for denying access to users or groups access
(as to all rights or Selected rights) rather than granting access
thereto. For example, one entry listed in the DACL 312 may
otherwise allow members of “Group” access to the object
302, but another entry in the DACL 312 may specifically
deny “Group” all access. If the token 210 includes the
“Group” security ID, access will be denied regardless of the
presence of the “Group” security ID. Of course to function
properly, the Security check is arranged So as to not allow
access via the “Group” entry before checking the “DENY
ALL status of the Group entry, Such as by placing all
DENY entries at the front of the DACL 312. As can be
appreciated, this arrangement provides for improved effi
ciency, as one or more isolated members of a group may be
separately excluded in the DACL 312 rather than having to
individually list each of the remaining members of a group
to allow their access. Also, note that access to objects cannot
be safely reduced by Simply removing a Security ID from a
users token, Since that Security ID may be marked as
“DENY” in the DACL of some objects, whereby removing
that identifier would grant rather than deny access to those
objects. Thus, a SID's attributes may be modified to USE
FOR DENY ONLY in a restricted token.
0046) Note that instead of specifying a type of access, a
caller may request a MAXIMUM ALLOWED access,
whereby an algorithm determines the maximum type of
acceSS allowed, based on the normal UserAndGroups list
versus each of the entries in the DACL 312. More particu
larly, the algorithm walks down the list of identifiers accu
mulating the rights for a given user (i.e., OR-ing the various
bitmasks). Once the rights are accumulated, the user is given
the accumulated rights. However, if during the walkthrough
a deny entry is found that matches a user or group identifier
and the requested rights, access is denied.

0047 Restricted security identifiers (e.g., in field 218) are
numbers representing processes, resource operations and the
like, made unique Such as by adding a prefix to GUIDS or
numbers generated via a cryptographic hash or the like, and
may include information to distinguish these restricted Secu
rity identifiers from other security identifiers. If any
restricted Security identifiers are present in a restricted token,
that token is Subject to an additional access check wherein
the restricted Security IDS are compared against the entries

IPR2024-00027
CrowdStrike Exhibit 1006 Page 16

US 2002/0099952 A1

in the object's ACL. For example, a file object resource may
have in its ACL a single Security identifier identifying a
particular application program with acceSS Settings Such that
only restricted processes that have the same applicantion
program's restricted SID in its associated restricted token
may access the file object. Note that the original user Still
needs to have access to the object, So to access it, the ACL
also needs to contain an access control entry granting the
user access, as well as the restricted SID for that particular
application program. Then, for example, untrusted code
Such as downloaded from the Internet could be run in a
restricted process that did not have the applicantion pro
gram's restricted Security identifier in its restricted token,
whereby that code could not access that particular file object,
even though the user would otherwise have rights to acceSS
it.

0.048. In general, both the normal user-credential based
access check and any restricted Security identifier acceSS
check need to be passed before a process is granted a desired
type of access to a resource. FIG. 4 generally ShowS Such
logic, beginning at Step 400 wherein when requesting acceSS
to the object 302, the process 300 provides the object
manager 304 with information identifying the object to
which acceSS is desired along with the type of acceSS
desired, as described above. In response, as represented at
step 402, the object manager 304 works in conjunction with
the Security mechanism 308 to compare the user and group
security IDs listed in the restricted token 210 (associated
with the process 300) against the entries in the DACL 312,
to determine if the desired access should be granted or
denied.

0049 AS generally represented at step 404, if access is
not allowed for the listed user or groups, the Security check
denies access at step 414. However, if the result of the user
and group portion of the access check indicates allowable
access at step 404, the security process branches to step 406
to determine if the restricted token 210 has any restricted
Security identifiers. If not, there are no additional restric
tions, whereby the access check is complete and access is
granted at Step 412 (a handle to the object is returned) based
Solely on user and group access. In this manner, a normal
token is essentially checked as before. However, if the token
includes one or more restricted Security identifiers (such as
the restricted token 210 in the above examples) as deter
mined by Step 406, then a Secondary acceSS check is
performed at step 408 by comparing the restricted security
identifiers against the entries in the DACL 312. If this
Secondary acceSS test allows access at Step 410, access to the
object is granted at Step 412. If not, access is denied at Step
414.

0050. The design of restricted tokens provides for sig
nificant flexibility and granularity within the context of a
user to control what different processes are allowed to do.
One way in that restricted tokens may be used, described in
detail below, enables restricting actions by possibly execut
able Software content, based on a Security (trust) level
determined for that content. It also should be noted that the
restricted token Security model may be used in conjunction
with other Security models. For example, capability-based
Security models residing on top of an operating System may
be used above the operating System-level Security model.

Jul. 25, 2002

0051) Secure Software Execution
0052. In accordance with one aspect of the present inven
tion, there is provided a method and System that determines
access to resources based on an identification (classification)
of Software that may contain executable content. To this end,
various types of Software and specific Software files (or other
Suitable data structures) may be identified and classified,
with rules Set and maintained for the Software classifications
that automatically and transparently determine the ability of
Software to execute. An administrator identifies/classifies the
Software and Sets the rules, including a default rule that
applies to any Software file not classified under a specific
rule. Once the rules are set, when Software is to be loaded
(e.g., its file opened and Some or all thereof read into
memory), one or more rules are located that correspond to
the classification for that Software, (or if none corresponds,
the default rule), and a selected rules is used to determine
whether the Software can be loaded, and if so, to what extent
any processes of the Software will be restricted. Note that by
allowing the administrator to Set a default rule, an admin
istrator can efficiently control Software in any environment
with only a Single rule, and thereafter only deal with any
exceptions to that rule.

0053) To identify and classify software, (e.g., maintained
in a file), various selectable classification criteria are made
available to an administrator, including a unique hash value
of the file's content (e.g., via an MD5 image hash), and
whether the file is digitally signed, and if So, by what entity.
Other criteria for classifying software includes the soft
ware's file System or network path, and/or its origin or
Source, e.g., its URL (Uniform Resource Locator) Zone.
Other criteria (e.g., identifying the Sender of an attachment,
or identification information provided by a trusted applica
tion) are feasible. For example, an e-mail program can be set
to operate normally when accessing its own code, but
provide identification information by which attachments are
operate in a restricted environment.

0054 By the various criteria, an administrator can effi
ciently identify and classify similar groupings of Software
content, yet single out certain Software from among the more
general groups. For example, Software content known to be
trusted or as having come from a trusted Source can be
differentiated from other Software Sharing the same general
path, whereby in keeping with the present invention Such
trusted content can be run in a different execution environ
ment/context from the other Software. Software content
known to cause problems can be similarly differentiated
from other content. By enabling the identification of soft
ware via these or other classification criteria, and then
locating and enforcing an appropriate Security rule estab
lished for the Software based on its classification, the present
invention automatically controls whether content is execut
able, and if So, the extent (if any) to which it is restricted.
0055 As mentioned above, one way that a software file
can be identified (and thus matched to a corresponding rule)
is by a hash of its contents, which is essentially a fingerprint
that uniquely identifies a file regardless of whether the file is
moved or renamed. Via a user interface or the like operably
connected to a Suitable hash mechanism, an administrator
can Select any Software file, obtain a hash value from its
contents, and enter and associate a rule (that specifies a
security level) with that hash value. Multiple files can have

IPR2024-00027
CrowdStrike Exhibit 1006 Page 17

US 2002/0099952 A1

their corresponding hash values and rules maintained in a
policy object, or otherwise made available to the System,
whereby for any given instance of any file, the Set of
maintained hash values can be queried to determine whether
a rule exists for it. In other words, before opening a file for
execution, a hash value is determined from that file's con
tents, and the set of hash value information (e.g., in the
policy object) Searched to determine if a rule exists for that
hash value. If so, that rule provides the security level for the
Software.

0056. In this manner, an administrator can set a rule for
any file based on its unique hash value, with the rule
Specifying whether (and if so, how) a Software file having
that hash value will execute. For example, an administrator
may not want users to run a particular version of a program,
Such as if that version is known to have Security or privacy
bugs, or compromises System Stability. Via a user interface,
the administrator Selects that application version, obtains its
hash value, Sets up a hash rule for it that Specifies a Security
level, and then records the hash value in conjunction with its
rule as described above. In the case of known bad code, the
administrator may set the rule to specify that any file with
that hash will not be allowed to execute at all (i.e., "disal
lowed” or “revoked” status). Since the rule along with the
hash value is maintained or distributed to the machine, (e.g.,
via a policy object), whenever a request to open that file is
received, a hash of the file matches the Saved hash and rule,
and that file will not be run. Alternatively, in the case of
known good code that is allowed to execute, a hash rule can
specify how it will be executed, e.g., unrestricted (normal)
or restricted (and to what extent). Note that any change to the
content of the file, even a Small patch or version upgrade,
changes its hash, whereby the hash rule for a certain file may
need to be frequently updated, and thus the hash rule is likely
to be used for only a limited number of select files.
0057 Another type of rule allows a software publisher
digital signature (e.g., certificate) to be specified and main
tained, along with a Security level for files having that
certificate. For example, if an enterprise digitally signs its
internally developed controls, it can Specify that Software
signed by its own publisher certificate runs normally, and
also without unnecessarily prompting its users with a dialog
or the like before allowing the open. Note that policy can
override expiration and other external certificate-related
checks. Further, note that it is Straightforward to have
additional information be maintained in a rule and evaluated
along with the Signature, for example, to allow certain
controls to run normally, but not others. For example, this
can be accomplished by having a multi-part rule that checks
for allowed/restricted/disallowed signatures and allowed/
restricted/disallowed control identifiers, and taking the most
restrictive result from the evaluated parts of the rule. More
over, the user interface provides an option that determines
exactly who can Specify which publishers are trusted, e.g., a
domain administrator, any administrator, and/or an end user,
with any higher-level administrator able to block those
below from changed the Setting.

0.058 Another rule that can be applied to software is
based on identifying and classifying a file by the Specific
folder it is in, or based on its fully qualified path. When a
path rule specifies a folder, the rule may be applied to any
Software files contained in that folder and any software files
contained in Sub-folders, to determine how the files therein

Jul. 25, 2002

can be executed. For example, an administrator may set up
a default rule that generally restricts files, (those that do not
have another rule associated therewith), and also specify a
path rule that allows files in the system folder to run with
normal user access, So that the computer will work normally.
At the Same time, the administrator may complement the
path (and other) rules using conventional access control
technology, Such as Via discretionary access control lists, to
prevent the user from writing to the System directory. In this
manner, the administrator can generally restrict user files,
yet Set the System files to run normally, while being assured
that the user or another program cannot simply defeat this
Setup by placing unknown files in the System directory.

0059 A path rule can be applied to all the files in a folder,
or only those that have certain file extensions Specified for
the folder. For example, rather than restrict all files in a given
folder or path, an administrator can elect to restrict only
certain types Such as .exe, .com, bat, Vbs and So on. It is
also feasible for an administrator to set different restrictions
or revoke certain files based on their extension. Also, it is
feasible to have the extension information be selectively
inheritable by Sub-folders. An extension list may be main
tained per folder, or alternatively, each rule may have its own
asSociated list. The list may be edited, e.g., to add new
extensions as new executable file types become available, or
to remove others if desired.

0060 A path rule can use environment variables, which
generally identify folders having names that may vary from
one environment to another, e.g., per user or machine. For
example, Some useful environment variables include
%HOMEDRIVE%, %HOMEPATH%, %USERPRO
FILE%, %WINDIR%, %APPDATA%, %PROGRAM
FILES%, and %TEMP%, wherein each environment vari
able may represent a path to a folder that Serves a similar or
identical role on many machines but with a name that may
vary from machine to machine. Since path rules are evalu
ated in the client environment, the ability to use environment
variables allows one rule to be adapted to multiple users
environments without having to specifically know the exact
path and folder name for each user. The System registry may
contain path information in various keys, and the registry
may be queried to find a path, e.g., that varies based on the
Current uSer.

0061. By way of an example similar to that above, in
Some environments, users will not have write access to the
System directory, and an administrator may want to allow
anything in the System directory to run, Since these programs
are needed for normal System operation. However, rather
than having to specify the exact path for each machine,
which can vary from user to user, the administrator can
create a path rule using an environment variable to that
specifies that anything in the “%WINDIR% directory or
below runs normally, i.e., unrestricted.

0062 Moreover, because as described below more spe
cific path information takes precedence over less Specific
path information, the administrator can further make rules to
prevent specific programs in this directory from running. For
example, the administrator can Set the System folder to run
normally, but more particularly identify a file under that
folder and Set a rule for it, Such as to disallow the registry
editor from running at all. AS described above, this can be
done either by the precise path and filename (e.g.,

IPR2024-00027
CrowdStrike Exhibit 1006 Page 18

US 2002/0099952 A1

WINNT\System32\regedit.exe or by an environment vari
able and the filename (e.g.,
%WINDIR%\system32\regedit.exe). Note that as also
described above, this can also be accomplished via a hash
rule for this file.

0.063 A Zone rule may also be specified, wherein the Zone
identifies Software according to the Source (e.g., the URL
Zone or the like) from which it is downloaded or otherwise
installed. Typical Such Zones presently include Internet,
Intranet, Trusted Sites, Restricted Sites and also local
machine (e.g., My Computer) Zones. In this manner, an
administrator can Set different rules for Software files clas
sified according to their Source.

0064. The set of rules for a machine or user may be
maintained in a restriction policy for that user and machine,
e.g., within one or more group policy objects distributable
over a network, to correlate the classification information for
any Software file to a Security level that may restrict or
prevent the Software from running. Rules can also be set for
a user or machine locally and maintained in the local System
registry, e.g., under HKEY_LOCAL_MACHINE and
HKEY_CURRENT_USER. As described below with
respect to FIGS. 5A and 6, the various policies for a given
machine and its current user are combined into an effective
policy 502, from which the rules may be made available to
a mechanism that enforces them.

0065. As generally represented in FIG. 5A, the effective
policy 502 generally comprises the general (default) rule
504 and a set of specific rules 506 which set forth the
exceptions to the default rule 502. In this manner, for
example, an administrator can efficiently restrict or prevent
from running everything on a machine, except for certain
identified code. Alternatively, an administrator can allow
everything to run at one Security level, Such as with the
user's normal rights, except for certain identified/classified
Software files. For content that has multiple classifications,
(e.g., it fits a specified pathname and also has an associated
hash), and thus may have multiple, possibly conflicting
rules, a precedence mechanism is described that establishes
which rule, and thus which Security level, applies. In gen
eral, the precedence mechanism favors more-Specific con
tent identification information over leSS-Specific informa
tion.

0066. As further shown in FIG. 5A, a process 508 such
as a process of a user or application requesting to open a
Software file 510 has an access token 512 associated with it,
(actually maintained by the operating System in protected
kernel mode memory when the process is created). When the
process 508 wants to load and possibly execute the software
file 510, it identifies itself and provides information 514
identifying the software file to an appropriate function 516
(of a set) that can open, load and/or execute the file 510. For
example, this can be accomplished by placing an application
programming interface (API) call to the operating System,
wherein the file information 514, typically in the form a path
and filename is passed, as a parameter. In FIG. 5A, the
arrow labeled with the circled numeral one (1) generally
represents Such a call from the requesting proceSS 508 to the
one of the functions of the set 516. Along with the path and
filename, the Software information 514 can also include a
digital signature and/or data about the Source of the file, e.g.,
its originating Source in the form of an Internet Zone

Jul. 25, 2002

category, for example, (or alternatively this additional infor
mation can be determined via the path and filename). Note
that in a typical implementation, the Software opening
function 516 comprises an operating System component, and
thus has access to a copy 512 of the parent access token.
Further note that Such function calls are already the typical
way in which files are loaded, and thus the process 508
(which may be of an existing application program or other
type of component) need not be modified in any way.
0067. In accordance with one aspect of the present inven
tion, Security is provided based on the classification of the
file, which is determined from the Software file information
and/or the content of the Software file 510. To this end,
instead of Simply loading the file and executing any execut
able code therein with the parent token's rights and privi
leges, each of the functions 516 is arranged to first provide
the Software file information 514 to an enforcement mecha
nism (circled numeral two (2) in FIG. 5A). As described
below, based on this information the enforcement mecha
nism consults the effective policy 502 to determine which
rule applies for the file 510, and from the rule determines
whether to open/execute the file, and if So, the extent of any
restricted execution context for the file 510.

0068 More particularly, the enforcement mechanism 518
may call (or include in its own code) a hash function 520 or
the like to obtain a hash value from the contents of the
Software file 510, as generally represented in FIG. 5A by the
arrows labeled with circled numerals three (3) to six (6). As
described above, a suitable hash function 520 provides a
unique fingerprint of the Software file 510, while the effec
tive policy 502 may have a specific rule for that hash. Also,
the enforcement mechanism 518 can locate a rule from the
Signature, path information, or Zone information associated
with the file 510. Note that while FIG. 5A essentially
represents accessing the policy to get the rule or rules via
arrows labeled Seven (7) and eight (8), the policy may be
consulted more than once, e.g., to look first for a rule for the
hash value, and if not found, for a rule for a signature (if
any), and So on. Note that as described below with respect
to FIG. 7, the order of Seeking a corresponding rule can thus
determine the precedence order, in other words, by looking
for a rule in the order of precedence and applying the first
one that the file matches, or if none match, applying the
default rule.

0069. In this manner, the enforcement mechanism 518
obtains a Security level from the appropriate rule based on a
precedence order that determines which rule applies when a
file fits multiple classifications. The precedence mechanism
522 can be included (e.g., hard-coded) into the enforcement
mechanism 518, or alternatively can be accessed from an
external Source, Such as the effective policy, to facilitate the
adding of new classifications. In any event, only one rule has
precedence, and based on the rule that applies, the enforce
ment mechanism 518 obtains a security level indicative of
whether the file 510 can be executed, and if so, the extent of
any restricted execution context for any processes of the file
510. Note that rather than have a precedence mechanism that
determines only one possible execution context, it is feasible
when multiple conflicting rules apply to have a user Select
from a set or Subset of conflicting Security levels, however
for purposes of Simplicity, the precedence mechanism
described herein provides only one resulting rule/Security
level.

IPR2024-00027
CrowdStrike Exhibit 1006 Page 19

US 2002/0099952 A1

0070. In the restricted token security model, the enforce
ment mechanism 518 can compute and associate a restricted
token with the Software file 510, whereby if creation of a
process is requested for the Software file, (it includes execut
able content), any process of the Software file is restricted in
its access rights and privileges according to the restricted
token. To this end, the enforcement mechanism may include
or otherwise consult (e.g., in the effective policy 502) token
computation data 524 to determine which privileges to
remove, which security identifiers to modify and/or which
restricted Security identifiers to add when deriving a
restricted token from the parent token.

0071 AS represented by the arrow labeled nine (9) in
FIG. 5A, the enforcement mechanism 518 completes the
call and returns information back to the Software function
516 that called it, the returned information essentially
including an instruction on whether to open the file, and if
So, the token to associate with the file. If a token is returned,
it may be the parent token (unchanged) if no restricted
execution environment is required by the rule, or a restricted
token that establishes a restricted execution environment/
context for the processes of the software file 510. The
returned token, (alternatively referred to herein as a com
puted token 526 even if it is unchanged) is maintained in a
Set of process information 528 (e.g., in a protected location)
associated with that file, as generally represented in FIG. 5A
by the arrow labeled ten (10). If the computed token 526 is
a restricted token, the process of the Software file can now
execute, but only in association with the restricted token,
thus providing the rule-determined Secure execution envi
rOnment.

0.072 The various functions 516 that can be arranged to
consult the enforcement mechanism 518 include a create
process function, a load library (e.g., a dynamic link library)
function, a shell execute function, an object creation func
tion (e.g., CoCreateInstance), Script running functions and
Software installer functions. Because Some of these func
tions call each other, (e.g., the shell execute function calls
the create proceSS function, the object creation function calls
the load library function), a flag is set once the enforcement
mechanism 518 has been called by any function, whereby
other function know of the call and the enforcement mecha
nism 518 is only consulted once per call. Also, note that the
Software installer function may call the enforcement mecha
nism 518 only once for an entire installation rather than
Separately throughout the installation process.

0073. In general, code execution is initiated in two forms,
external to the executing host and internal to the executing
host. An example of external includes native code Such as an
"...exe' file that starts at CreateProcess, which is outside of
the code that needs to be restricted. Another, more complex
example includes launching a "vbs' file, where the execu
tion is figured out in a ShellExecute function, which deter
mines the host application (wScript.exe) and then launches it
with the VBS file as parameter. Such external situations can
be protected by making the invoking code (CreateProcess,
LoadLibrary, ShellExecute, COM out-of-process activation)
honor the Software restriction policies, and, for example,
modifying programs that deal with attachments to use a
special folder by default when double clicked, (although
optionally allowing a user to consciously choose to Save it
elsewhere).

Jul. 25, 2002

0074 An example of internal code initiation includes
typing a URL reference to an HTML file within an HTML
interpreter's text box, wherein the HTML file is executable
and the HTML interpreter is the hosting application. In this
case, the hosting application needs to be conscious that it
may execute code, and needs to honor the Software restric
tion policies. One model for this comprises a Separate
process model, wherein the host starts another, restricted
instance of itself to execute the code. Another model is an in
process model, wherein the host imperSonates the restricted
token and executes the code within the process, e.g., an
HTML mail message is opened by an e-mail program, with
only the script portions of it restricted. Note that this is
relatively leSS Safe, given that the boundary between native
and non-native code may be difficult to distinguish. Various
scripting engines (e.g., VBSCRIPT, JSCRIPT, VBA) may be
modified to honor the Software restriction policies at the
thread level. To this end, anything providing an in process
execution environment (e.g., command/batch processors,
Scripting engines and So on) may call APIs or the like to
honor the Software restriction policies. Note that a program
cannot gain greater access rights and/or privileges than what
runs it, e.g., if the process providing a command prompt is
constrained, So is any program that runs via that command
prompt, regardless of whether the program can run without
constraints otherwise.

0075 FIGS. 5B and 5C represent other ways in which a
Software program's execution can be constrained in accor
dance with the present invention. In FIG. 5B, a software
program (e.g., its processes) can be run in a job object. AS
is known, a job object can have certain limitations associated
there with, Such as not consuming more than Some limited
amount of memory, processor time or total time, and So
forth. Job objects can have more specific limitations, Such as
not having access to a top-level window, not being able to
read off of the System clipboard, only running at a certain
time of day, and So on. Ajob object can also have a restricted
token associated there with.

0076 AS represented in FIG. 5B, in a manner similar to
that described above with respect to FIG. 5A, the present
invention can generate a Suitable job object 532, for a
Software file 510 based on that file’s software information
514, and a job object policy 534. The job object policy 534,
Specifies, for example, the limitations for each job object
generated based on the rules for the Software file's classi
fication, e.g., a file digitally signed with one certificate can
correspond to one type of job object. Thus, when a process
508, requests that the file 510, be run, the software loading/
executing functions 516, call the enforcement mechanism
518, which in turn consults the policy 502, and thereby
receives a Security level or the like corresponding to a job
object having appropriate limitations for that file.

0077. In another alternative, as represented in FIG. 5C,
network access policy data 536 may be used to generate
network quality of service (QoS) restrictions 538, in a
Similar manner. In this way, a particular program or class
thereof can be prevented from obtaining network acceSS or
otherwise restricted to Some reduced level of network
access. AS can be readily appreciated, the present invention
can combine these and other ways (e.g., restricted token, job
object and/or QoS restrictions) of restricting the execution
environment of Software programs.

IPR2024-00027
CrowdStrike Exhibit 1006 Page 20

US 2002/0099952 A1

0078 Turning to an explanation of a suitable policy
framework, as generally represented in FIG. 6, via a user
interface program 600, e.g., a management console Snap-in,
an administrator (possibly multiple administrators) con
Structs the various polices that make up the effective policy
502. To this end, the administrator may provide a set 602 of
one or more machine group policy objects 604-604, which
may determine the policy for the machine, a set 606 of one
or more machine group policy objects 608-608, which
may determine the policy for the user and groups. Also, the
administrator (or the user) may construct and locally main
tain local machine policy 610 and local user policy 612, such
as in the System registry. These various policies may be
combined into an effective machine policy 614 and an
effective user policy 616, and those may be combined into
the effective policy 502.

0079 AS generally represented in FIG. 7, each policy
container 700 (e.g., user or machine group policy objects, or
local user or machine policies) may include a code autho
rization policy 702. The code authorization policy 702
typically contains multiple code authorization levels 704
704, that each specify what restrictions will be enforced and
what Software images will be authenticated at that level and
enforced with those restrictions. For example, there may be
one authorization level for unrestricted operation, one for
end-user, one for constrained, one for untrusted and one for
revoked, although more or less than these can be present. AS
described below, these levels provide the information that
the enforcement mechanism 518 uses to determine whether
and how (restricted) Software is to be executed. In general,
each code authorization level corresponds to a Security level
and includes a Name field, a DeScription field, an Authorized
Groups field, a SIDs to Disable field, a Restricted SIDS field,
a Privileges to Remove field, and a Code Identities field (that
maintains default data if not at any other level). Note that
these fields may include lists of relevant information, and
that Some of these fields may be empty.

0080. The group policy objects 604-604, and 608-608,
may be provided by administrators per Site, domain, orga
nizational unit, group and user. Among other things, group
policy technology also provides a flexible and hierarchical
way in which each administrator can establish which poli
cies will win out over others if multiple policies conflict. For
example, Site policies can be set up to prevail over domain
policies, which in turn can be set up to prevail over orga
nizational unit policies, which can prevail over group and
user policies, which can prevail over local policies. How
ever, policies Set at each of these Sources may be configured
so as to be capable of being overridden by lower level
policies, whereby Such policies are essentially only Sug
gested policies.

0.081 For example, one policy that may be desirable for
all users and machines and should not be overridden is one
that allows the user interface program 600 to be run (at least
by an administrator) regardless of the default rule. For
example, this can be accomplished by creating a hash rule
for the user interface program 600, and then placing the hash
rule in a high level (and also local) policy that cannot be
overridden. AS can be appreciated, this guards against an
error wherein the default rule is set to prevent (revoke) all
Software from running, which could then otherwise prevent
the user interface program 600 from Subsequently running to

Jul. 25, 2002

except itself from the default rule. Note that other such
Standard rules can be provided.

0082 The following table provides some policy/rules
examples:

OnlySigned LockDown HKCU Disallowed CP only
Path %windir% Unrestricted All file

types
Certificate <publisher certs Unrestricted
IexploreCon- HKCU Disallowed CP only
lyLockDown
Path %windir% Unrestricted All file

ypes
Path %programfiles%\Internet Unrestricted All file

Explorer\ ypes
WMPOnlyLockDown HKCU Disallowed CP

Only
Path %windir% Unrestricted All file

ypes
Path %programfiles%\ Unrestricted All file

Windows Media Player ypes
PFNoMediaLockDown HKCU Disallowed CP

Only
Path %windir% Unrestricted All file

ypes
Path %programfiles%\ Unrestricted All file

ypes
Path %programfiles%\ Disallowed All file

Windows Media Player ypes
Hash wmplayer.exe Disallowed N/A
OfficeAllowLock- HKCU Disallowed CPILL
AIDown
Path %windir% Unrestricted All file

types
Path %programfiles%\micro- Unrestricted All file

soft office types
OfficeWordOnly- HKCU Disallowed CPILL
LockAIDown
Path %programfiles%\micro- Disallowed <exact

soft officeWofficevex- match->
cell.exe

Path %programfiles%\micro- Disallowed <exact
soft officevoffice.pow- match->
erpoint.exe

Path %programfiles%\micro- Disallowed <exact
soft officeWofficewfront- match->
pg.eXe

Path %programfiles%\micro- Disallowed <exact
soft officeWofficevout- match->
look.exe

NoAttachments- HKCU Unrestricted CPILL
LockAll
Path %USERPRO- Disallowed All file

FILE%\local types
settings\temporary
internet files\OLK*

DangerousAppsLock HKCU Unrestricted CP
Hash Regedit.exe Disallowed N/A
Hash Regedt32.exe Disallowed N/A
Hash cmd.exe Disallowed N/A
Path %WINDIR%\sys- Disallowed <exact

em32\cmd.exe match->
Path %WINDIR%\sys- Disallowed <exact

em32\regedit.exe match->
Path %WINDIR%\sys- Disallowed <exact

em32\regedt32.exe match->
InnocuousLockAll- HKLM Unrestricted CPILL
Machine
Path %windir%\sys- Unrestricted <exact

em32\GDI32.DLL match->
Path %windir%\sys- Unrestricted <exact

em32\ntdII.dll match->
Hash %windir%\sys- Unrestricted <exact

em32\shell32.dll match->

IPR2024-00027
CrowdStrike Exhibit 1006 Page 21

US 2002/0099952 A1

-continued

Hash %windir%\sys- Unrestricted <exact
tem32\kernel32.dll match->

NOVBS HKCU Unrestricted CPILL
Path %WINDIR%\sys- Disallowed <exact

tem32\scrrun.dll match->
Path %WINDIR%\sys- Disallowed <exact

tem32\cscript.exe match->
Trusted Publishers.Lock HKCU, only admins Unrestricted CP

can add publishers
Certificate Stock ticker publisher Unrestricted
Certificate xenroll publisher Unrestricted
Certificate MSNBC news publisher Unrestricted

0.083 Turning to an explanation of the operation of the
enforcement mechanism, one way in which the enforcement
mechanism can locate the correct rule and its corresponding
security level data is generally represented in FIG. 8. Note
that FIG. 8 is only one possible example of a way to locate
the applicable rule according to a precedence order, (first
hash, then signature, then path and then Zone, before default)
and that many others are feasible. In any event, beginning at
step 800, when the enforcement mechanism 518 is called
with file information, e.g., the file information 514 for the
Software file 510 of FIG. 5A, the enforcement mechanism
518 gets a hash value for this software file 510. Step 802
represents the searching of the effective policy 502 for this
hash Value. If the corresponding hash value exists in the
effective policy, i.e., there is a hash rule for this file, step 802
branches to step 804 wherein the security level (e.g., normal,
disallowed or constrained, which may be represented
numerically) is obtained from the rule data. At this time, the
enforcement mechanism then can use the Security informa
tion in Some way, Such as described below with respect to
FIG. 8 wherein the security information may be used to
compute a restricted token.
0084. If at step 802 no hash rule existed for this file's
hash, the enforcement mechanism instead branches to Step
806 to determine whether the file is signed. If so, step 806
branches to step 808 to determine whether a digital signature
(e.g., certificate) rule exists for this signature. If a rule does
exist, step 808 branches to step 810 wherein the security
level is obtained from the rule's data, and can thus be used
to determine whether the file can run, and if so, with what
execution context as determined from the Security level.
0085. If the file was not signed, or was signed but no rule
existed for that signature, steps 812 and 814 are executed to
look for whether there is a rule corresponding to the exact
path and filename. AS mentioned above, a rule for a more
Specific path wins out over a more general path, e.g., a rule
for c\folder1\folder2\filename.ext wins out over a rule for
c:\folder1\folder2\, which in turn wins out over c:\folder1\.
If there is a rule for the exact filename, step 814 branches to
step 816 wherein the security level for determining the file's
execution ability is obtained from that rule. Note that
although not shown in FIG. 8, it is possible for two rules to
exist for a given folder, e.g., one specified via an environ
ment variable and one specified by a Specific path. In Such
an instance, (and any time more than one rule may apply at
the same precedence level), the most restrictive Security
level from among the applicable rules is used.
0.086 If there is no exact match at step 814, step 814
branches to step 818 to determine if there is no more general

Jul. 25, 2002

path that can be tested, e.g., based on whether the tested path
was already at the root directory (or other Suitable stopping
point). If So, there is no applicable path rule for this file, and
the enforcement mechanism branches ahead (to step 822) to
evaluate whether a Zone rule can be applied.
0087. If there is a more general path that can be tested at
step 818, step 818 branches to step 820 wherein the path to
be tested for a corresponding rule moves up to the parent
folder. Step 820 then loops back to step 814 to search for a
corresponding rule, and So on. In other words, if the effective
policy was unsuccessfully Searched for a rule corresponding
to the exact pathVfilename provided, the policy is Searched
for a rule that corresponds to the filename's parent folder in
the path, and So on up the path hierarchy until a match is
found at step 814, or there is no parent at step 818.
0088. If no path rule exists, the enforcement mechanism
looks for whether a Zone rule can apply, beginning at Step
822 wherein the file information is evaluated to see whether
there is an associated file Zone. Note that step 822 may be
unnecessary if every file has a Zone or a default Zone is
assumed for files. In any event, if there is a Zone, a rule is
looked for that corresponds to the Zone at step 824. If one
exists, the Security level is obtained from that rule at Step
826.

0089. If no rule exists for the Zone, (or there was no Zone
data and a default Zone is not assumed), Step 828 is executed
to apply the general default rule (default Security level) to
the file. In this manner, each program has a Security level
according to a rule that identifies or matches a program with
a certain level quality of match. The highest quality match
is the most specific match and takes precedence over the
other rules. In the case where there are two or more matches
of the same quality, the more restrictive rule takes prece
dence. Thus, in the exemplary implementation described
herein, a hash rule is the highest quality match Since there is
no ambiguity when it matches a program, regardless of
whether the path or filename changes. Matches based on
Software publisher are next, followed by a path rule that
Specifies the fully qualified path. Then, other matching path
rules are considered Such that c:\dir1 and c:\dir1\dir2 both
match the program c:\dir1\dir2\calc.exe, but c\dir1\dir2
provides a higher quality match. The Source of the file, e.g.,
defined via URL Zones is considered after these other, since
Zones are a very broad way of identifying Software.
0090. Note that while FIG.8 provided for the precedence
by Searching for applicable rules in order, it may be more
efficient to Search the policy less often (or once) with
multiple applicable rules returned, and then evaluate those
various rules to determine which one best matches. In any
event, consider the following Set of rules that may apply to
the same file:

0.091 A. 9%WINDIR%\System32\calc.exe: Disal
lowed

0092 B. Hash of calc.exe
(29BAC78BB5F8AA8C5C815F992928CFC6):
Allowed

0093) C. 7%WINDIR%: Unrestricted
0094) D. c:\winnt: Disallowed

0095 AS described above, when a user tries to run
c:\Winnt\System32\calc.exe, rules A and B are exact matches

IPR2024-00027
CrowdStrike Exhibit 1006 Page 22

US 2002/0099952 A1

and are considered higher quality matches than the two path
rules, C and D. AS also described above, the hash rule takes
precedence, and thus program is allowed to run. However, if
the hash rule did not exist, the program would not be allowed
to run, because there is a rule for the fully qualified path
name, and its Security level disallows execution. Thus, from
more Specific to leSS Specific of a match, the precedence
order for the rules is the hash rule B, the fully qualified path
rule A, then rule D and lastly rule C, noting that while rule
C and Dare equivalent in terms of quality, rule D has a more
restrictive Security level than does rule C thereby giving it
precedence over rule C.
0096. By way of a practical example of precedence, an
entity may sign its own-developed controls and use a
certificate rule to allow those controls to run but not others.
If a problem is later found with a particular control, a hash
rule can be used to Specify that the particular control cannot
run, even though it is properly signed, since the hash rule
takes precedence. By way of another practical example of
precedence, at present, many viruses have been appearing
with the “..vbs' extension, most probably because such
programs are relatively easy to write. An entity can Set a path
rule that disallows “..vbs' files from running by default.
However, since that entity may want to allow some vbs files
to execute, a certificate or hash rule may be provided to
allow certain (e.g., digitally signed) specific vbs files to run.
Since hash and certificate rules are evaluated before path
rules, the path rule will prevent only untrusted vbs files from
executing.

0097 FIG. 9 provides an illustration on one way in
which the enforcement mechanism 518 (FIG. 5A) enforces
Security, including restricting Software via restricted tokens.
In FIG. 9, step 900 tests whether the security level is
disallowed (revoked) status. Note that the order of testing
the security level is not important. If the security level is
disallowed, step 900 branches to step 902 wherein a suitable
return (error) code or the like is returned to the calling
function, whereby that function denies execution, and also
preferably causes the user to be prompted to inform the user
of the denial. Note that a preferred system preferably returns
information about what transpired, e.g., the rule that was
invoked, Such as for administrative troubleshooting pur
pOSes.

0098. If not disallowed, step 904 tests whether the secu
rity level is unrestricted. If So, the enforcement mechanism
effectively returns the parent access token (e.g., the token
itself, a pointer to it, or permission to use the parent acceSS
token), possibly along with a return code having a value
indicative of Success.

0099] If neither allowed or disallowed, the security level
indicates Some level of restriction. One or more restriction
levels can exist. For example, an "end-user” (arbitrarily
named herein) Security level may indicate that the admin
istrator security identifier is to be changed to USE
FOR DENY ONLY status, certain privileges need to be

removed, but the rest of the token left intact. A "constrained'
Security level can correspond to a need to change the
security identifiers to USE FOR DENY ONLY for any
known powerful groups, Such as Administrators group, the
Power Users group, and also to a need to remove most if not
all privileges. An "untrusted Security level can correspond
to removing all privileges, changing the Security identifiers

Jul. 25, 2002

of known powerful groups to USE FOR DENY ONLY,
and also changing the Security identifiers of any unknown
groups to USE FOR DENY ONLY, because those might
be powerful. These and other Security levels, including ones
customized for a given enterprise, may have their token
modification instructions maintained in the token computa
tion data 524 (FIG. 5A) or the like.
0100 Depending on the security level, step 908 of FIG.
9 uses the appropriate token computation data 524 of FIG.
5A, (e.g., a corresponding one of the code authorization
levels of FIG. 7 that is in the constructed effective policy
502), along with the parent token's data, to determine which
(if any) privileges to remove, which Security identifiers (if
any) to modify and how to modify them, and which
restricted Security identifiers to add, if any, along with the
type of access for those restricted Security identifiers. Step
910 then creates the restricted token, (such as via an API call
to the create restricted token API 212 of FIG.2 made by the
enforcement mechanism, with the changes passed as param
eters), based on the data in the parent token versus the token
computation data for that security level. Step 912 effectively
returns the restricted access token to the function that called
the enforcement mechanism to complete the call, possibly
along with a return code indicating Success and/or to use the
restricted token. The function may do other things Such as
create a job object for the process. The restricted token can
be used transparently from the user's perspective, however
it may be desirable (possibly depending on certain circum
stances) to notify the user of what has happened. Note that
instead of restricting (or completely denying) access, a
dialog box or the like may be provided to allow a user to
override the decision, possibly requiring more powerful
(e.g., administrator-level) credentials. For example, this
would enable skilled personnel to run code that is disallowed
without having to contact the administrator that disallowed
it. Policy may be used determine whether to enable such a
manual override feature for a given machine or user.
0101 AS can be seen from the foregoing detailed descrip
tion, there is provided a framework that controls the execu
tion of Software in accordance with a restriction policy,
thereby providing Security for executable code that Substan
tially reduces or even eliminates many of the problems that
result from the execution of unknown code. By automati
cally and transparently identifying Software that possibly
includes executable code, and locating a rule corresponding
to the identification information, Security can be accom
plished by controlling the Software's ability to execute based
on the rule. The present invention provides a flexible,
efficient and extensible way to control Software execution.
0102) While the invention is susceptible to various modi
fications and alternative constructions, certain illustrated
embodiments thereof are shown in the drawings and have
been described above in detail. It should be understood,
however, that there is no intention to limit the invention to
the Specific form or forms disclosed, but on the contrary, the
intention is to cover all modifications, alternative construc
tions, and equivalents falling within the Spirit and Scope of
the invention.

What is claimed is:
1. A computer-implemented method, comprising:
receiving information corresponding to Software that may

be executable;

IPR2024-00027
CrowdStrike Exhibit 1006 Page 23

US 2002/0099952 A1

locating a rule that corresponds to the information, the
rule having a Security level associated there with;

asSociating the Security level with the Software, and
controlling execution of any executable content of the

Software based on the security level associated with the
Software.

2. The method of claim 1 wherein the information corre
sponding to the Software includes a hash Value representa
tive of the Software's contents.

3. The method of claim 1 wherein the information corre
sponding to the Software includes a digital Signature .

4. The method of claim 3 wherein the rule that corre
sponds to the information applies to any file associated with
the digital Signature.

5. The method of claim 3 wherein the rule that corre
sponds to the information only applies to a Set of at least one
Selected file associated with the digital Signature.

6. The method of claim 3 wherein the rule that corre
sponds to the information applies only to files associated
with the digital signature that have Selected file extensions.

7. The method of claim 1 wherein the Software is con
tained in a file, wherein the information corresponding to the
Software includes path information, and wherein the rule
comprises a path rule for the path information.

8. The method of claim 7 wherein the path rule applies
only to files having Selected file extensions.

9. The method of claim 7 wherein the path is a fully
qualified path including a filename.

10. The method of claim 7 wherein the path is a general
path that identifies at least one folder.

11. The method of claim 10 wherein at least one folder has
a list of Selected file extensions associated there with.

12. The method of claim 7 wherein at least part of the path
information corresponds to an environment variable.

13. The method of claim 1 wherein the information
corresponding to the Software includes data representative of
a Source of the Software.

14. The method of claim 13 wherein the data represen
tative of the source of the software comprises a URL Zone.

15. The method of claim 1 wherein the information
corresponding to the Software includes data provided by
executable code hosting the Software.

16. The method of claim 1 wherein locating a rule
comprises, locating a plurality of applicable rules, and
Selecting one of the rules of the plurality as the rule that
corresponds to the information based on Selection criteria.

17. The method of claim 16 wherein the selection criteria
comprises a precedence ordering.

18. The method of claim 17 wherein the rules that may
correspond to the information include at least two rules of a
Set comprising a hash rule, a digital Signature rule, an exact
path rule, a general path rule and a Zone rule, and wherein
the precedence ordering comprises any hash rule, then any
digital Signature rule, then any exact path rule, then any
general path rule and then any Zone rule.

19. The method of claim 1 further comprising executing
the Software in an execution environment that corresponds
to the security level.

20. The method of claim 1 wherein controlling execution
comprises providing a restricted execution environment for
the Software.

13
Jul. 25, 2002

21. The method of claim 20 wherein providing a restricted
execution environment comprises providing a restricted
token, and associating the restricted token with a process of
the Software.

22. The method of claim 21 wherein providing the
restricted token includes having at least one privilege therein
removed relative to a parent token.

23. The method of claim 21 wherein providing the
restricted token includes modifying at least one Security
identifier relative to a parent token Such that the restricted
token has leSS access to at least one resource relative to
access via a parent token.

24. The method of claim 21 wherein providing the
restricted token includes adding at least one restricted Secu
rity identifier to the restricted token relative to a parent
token.

25. The method of claim 20 wherein providing a restricted
execution environment comprises providing a job object
having limitations associated there with for executing the
Software.

26. The method of claim 20 wherein providing a restricted
execution environment comprises restricting network access
for the Software.

27. The method of claim 1 wherein controlling execution
comprises disallowing the execution.

28. The method of claim 1 further comprising, providing
a Set of rules including the rule that corresponds to the
information.

29. The method of claim 28 wherein at least part of the set
of rules are provided via a user interface.

30. The method of claim 1, wherein controlling execution
includes locating data corresponding to the Security level,
the data including information on whether to allow execu
tion, and if So, the data further including information on
providing an execution environment for executing the Soft
WC.

31. The method of claim 30, wherein the data corresponds
to Settings for untrusted content, and wherein the data
Specifies that a restricted token is to be derived from a parent
token by removing any privileges relative to the parent token
and by removing any unknown Security identifiers relative to
the parent token.

32. The method of claim 1, wherein controlling execution
of executable content of the software based on the security
level includes providing a restricted token for association
with at least one process of the Software, the restricted token
derived from a parent token and having reduced access
rights or at least one privilege removed relative to the parent
token.

33. The method of claim 1 wherein the information
corresponding to the Software that may be executed is
received at a function, and further comprising, placing a call
from the function to an enforcement mechanism, the
enforcement mechanism locating the rule.

34. The method of claim 1 wherein locating a rule
comprises accessing policy information.

35. The method of claim 34 wherein the policy informa
tion may be updated dynamically.

36. The method of claim 34 wherein the policy informa
tion is maintained in a group policy object.

37. The method of claim 34 wherein the policy informa
tion is maintained in a local registry.

38. The method of claim 34 wherein the policy informa
tion is maintained in an effective policy constructed from a

IPR2024-00027
CrowdStrike Exhibit 1006 Page 24

US 2002/0099952 A1

group policy object for a machine, a group policy object for
a user, local machine data and a local user data.

39. The method of claim 1 wherein the Software is
maintained as a file within a folder, wherein the rule applies
to the folder and further indicates that each file therein runs
unrestricted, and wherein the folder is protected from write
access with respect to a user executing the Software.

40. A computer-readable medium having computer-ex
ecutable instructions for performing the method of claim 1.

41. A computer-implemented method, comprising:

providing a plurality of rules for executable Software,
each rule having a Security level associated therewith;

determining which rule applies to a given Software mod
ule based on a classification of that Software module;
and

asSociating the given Software module with execution
information corresponding to the Security level to con
trol the Software modules runtime capabilities.

42. The method of claim 41 wherein providing a plurality
of rules for executable Software includes providing a policy
object.

43. The method of claim 41 wherein determining which
rule applies to a given Software module includes, determin
ing whether a hash rule is maintained for the Software
module.

44. The method of claim 41 wherein determining which
rule applies to a given Software module includes, determin
ing whether the Software module has a digital signature
asSociated therewith, and if So, determining whether a digital
Signature rule exists for that digital Signature.

45. The method of claim 41 wherein determining which
rule applies to a given Software module includes, determin
ing whether a path rule is maintained for the Software
module.

46. The method of claim 41 wherein determining which
rule applies to a given Software module includes, determin
ing whether a Zone rule applies to the Software module.

47. The method of claim 41 wherein determining which
rule applies to a given Software module includes Selecting
one of a plurality of applicable rules based on a precedence
order.

48. The method of claim 41 wherein determining which
rule applies to a given Software module includes Selecting
one of a plurality of applicable rules based on a precedence
order.

49. The method of claim 41 wherein associating the given
Software module with the execution information corre
sponding to the Security level comprises computing a
restricted token based on the Security level.

50. The method of claim 41 wherein associating the given
Software module with the execution information corre
sponding to the Security level comprises determining net
work restrictions based on the Security level.

51. The method of claim 41 wherein associating the given
Software module with the execution information corre
sponding to the Security level comprises determining job
object limitations based on the Security level.

52. The method of claim 41 further comprising, executing
the given Software module in an execution environment that
is based on the Security level.

Jul. 25, 2002

53. A computer-readable medium having computer-ex
ecutable instructions for performing the method of claim 41.

54. In a computer System, a Security mechanism, com
prising:

a set of at least one function, each function of the Set
configured to receive a request related to executing a
Software module, the Software module being associated
with Software identification information;

a policy container having a plurality of rules therein, each
rule being associated with a Security level; and

an enforcement mechanism configured for communica
tion with each function of the set of functions, the
enforcement mechanism being further configured to:
obtain Software identification information associated

with the Software module from a function of the set,

consult the policy container to locate a rule based on the
Software identification, and

asSociate Security information with the Software mod
ule, the Security information based on the Security
level associated with the rule.

55. The system of claim 54 wherein the security infor
mation associated with the Software module comprises a
normal access token of a user.

56. The system of claim 54 wherein the security infor
mation associated with the Software module comprises
return data indicative of disallowing execution.

57. The system of claim 54 wherein the security infor
mation associated with the Software module comprises a
restricted token.

58. The system of claim 57 wherein the enforcement
mechanism computes the restricted token from a parent
token.

59. The system of claim 58 wherein the restricted token
has leSS access to at least one resource relative to the parent
token.

60. The system of claim 58 wherein the restricted token
has at least one leSS privilege relative to the parent token.

61. The system of claim 58 wherein the restricted token
includes at least one restricted Security identifier that is not
present in the parent token.

62. The system of claim 54 wherein the security infor
mation associated with the Software module comprises a job
object.

63. The system of claim 54 wherein the security infor
mation associated with the Software module comprises net
work access restrictions.

64. The system of claim 54 wherein one of the functions
of the Set is configured to load the Software module into
memory.

65. The system of claim 54 wherein one of the functions
of the Set is configured to create a process.

66. The system of claim 54 wherein one of the functions
of the Set is configured to execute the Software module.

67. The system of claim 54 wherein one of the functions
of the Set is configured to create an object.

68. The system of claim 54 wherein one of the functions
of the Set is configured to run a Script.

69. The system of claim 54 wherein one of the functions
of the Set is configured to install Software onto the System.

IPR2024-00027
CrowdStrike Exhibit 1006 Page 25

US 2002/0099952 A1 Jul. 25, 2002
15

70. The system of claim 54 wherein one of the rules 74. The system of claim 54 wherein the policy container
comprises a hash rule. includes information from at least one group policy object.

71. The system of claim 54 wherein one of the rules 75. A computer-readable medium having computer-ex
comprises a digital Signature rule. ecutable components for implementing the System of claim

72. The system of claim 54 wherein one of the rules 54.
comprises a path rule.

73. The system of claim 54 wherein one of the rules
comprises a Zone rule. k

IPR2024-00027
CrowdStrike Exhibit 1006 Page 26

