
United States Patent

US007085928B1

(12) (10) Patent No.: US 7,085,928 B1
Schmid et al. (45) Date of Patent: Aug. 1, 2006

(54) SYSTEM AND METHOD FOR DEFENDING 6,219,707 B1 * 4/2001 Gooderum et al. 709,225
AGAINST MALICOUS SOFTWARE 6,298.445 B1 * 10/2001 Shostack et al. 713,201

6,658,571 B1* 12/2003 O'Brien et al. 713,200
(75) Inventors: Matthew N. Schmid, Reston, VA (US); 6,684.329 B1* 1/2004 Epstein et al. T13,150

John Thomas Bloch, Washington, DC OTHER PUBLICATIONS
(US); Frank F. Hill, Falls Church, VA
(US); Anup K. Ghosh, Fairfax, VA Mitchem, T.: Lu, R. O'Brien, R. Using kernel to secure
(US) applications, IEEE Xplore Computer Security Applications

Conference, 1997. Proceedingl, 13" Annual Dec. 8-12, 1997
(73) Assignee: Cigital, Dulles, VA (US) pp. 175-181.*

Mitchem, T., Lu, R.; O'Brien, R.; Larson, R.; Linux kernel
(*) Notice: Subject to any disclaimer, the term of this loadable wrappers, IEEE Xplore DARPA Information Sur

patent is extended or adjusted under 35 vivability Conference and Exposition, 2000, DISCEX ’0
U.S.C. 154(b) by 826 days. vol. 2, Jan. 25-27, 2000 pp. 296-307.*

(21) Appl. No.: 09/821,754 * cited by examiner
Primary Examiner Gilberto Barrón, Jr.

(22) Filed: Mar. 30, 2001 AC, Examiner Ellen C Tran
O O (74) Attorney, Agent, or Firm—Pillsbury Winthrop Shaw

Related U.S. Application Data Pittman LLP
(60) Provisional application No. 60/193,397, filed on Mar.

31, 2000. (57) ABSTRACT

(51) Int. Cl. An execution management utility designed to prevent soft
G06F 9/00 (2006.01) ware from executing without the prior approval of system

(52) U.S. Cl. .. 713/164 administrative or other security staff. For example, the
(58) Field of Classification Search 713/200, present invention can assist corporations by enforcing poli

713/201, 159, 164 cies regarding unauthorized, unlicensed, or pirated Software,
See application file for complete search history. Such as, but not limited to, games; entertainment Software;

and non-standard utilities, such as advertising-enhanced
(56) References Cited browsers. A Windows NT based system is disclosed in

U.S. PATENT DOCUMENTS

5,987,611 A *
6,092,194 A *

11/1999 Freund T13 201
T/2000 Touboul T13/200

System Service
Dispatcher

Receives Interrupt
From User Land Genetic Wrapper

Synchronizes
As A Reader Driver 1 Wrapper

Logs, Perturbs,
Calls Descend

which a kernel module selectively intercepts process cre
ation requests.

16 Claims, 2 Drawing Sheets

Driver 2 Wrapper

Logs, Perturbs,
Calls Descend Real System

Service

Performs Action
Then Returns

IPR2024-00027
CrowdStrike Exhibit 1007 Page 1

U.S. Patent Aug. 1, 2006 Sheet 1 of 2 US 7,085,928 B1

EMU Client Pipe
User-space -1 Communication

Windows NT
Kernel Execution Manager

Device Driver

F.G. 1

-

(Device Driver l; installs wrapperl
did old = services E CREATE PROCESS INDEX ;
services CREATE PROCESS INDEX) = did1 new;

(Device Driver 2: installs wrapper)
dd2 old = services (CREATE PROCESS INDEX ;
services (CREATE PROCESS INDEX) = did2 new;

Device Driver 1: removes wrapper)
services I CREATE PROCESS INDEX) = d.dll old;

Notice that services(CREATE PROCESS INDEX now contains its original value (that of the real System
Service). Device Driver 2 has been unwrapped without its knowledge!

FG. 2

IPR2024-00027
CrowdStrike Exhibit 1007 Page 2

U.S. Patent Aug. 1, 2006 Sheet 2 of 2 US 7,085,928 B1

System Service
Dispatcher

Receives interrupt
From User Land Generic Wrapper

Synchronizes
As A Reader Driver 1 Wrapper

Logs, Perturbs,
Calls Descend

Driver 2 Wrapper

Logs, Perturbs,
Calls Descend Real System

Service

Performs Action
Then Returns

FIG. 3

IPR2024-00027
CrowdStrike Exhibit 1007 Page 3

US 7,085,928 B1
1.

SYSTEMAND METHOD FOR DEFENDING
AGAINST MALICOUS SOFTWARE

This application claims the benefit of U.S. Provisional
Application No. 60/193,397, filed Mar. 31, 2000.

BACKGROUND

1. Field of the Invention
The present invention relates to the field of computer

security, and more specifically relates to controlling the
Software which may be run on a computer.

2. Background of the Invention
The distribution of malicious software has plagued com

puter networks since the days of electronic bulletin board
systems (BBSs). While these publicly accessible sites
allowed users to exchange Software, it was well understood
that untrusted software could be malicious. As a rule of
thumb software downloaded from a BBS was not installed
on essential computer systems unless it was somehow
determined to be safe.

Today the Internet dominates computing, and because
connectivity and interoperability are essential systemic
qualities, malicious Software has become an even more
pernicious problem. Web sites provide mobile code, such as
ActiveX controls and signed Java applets, which can be
seamlessly, and often transparently, installed on a computer
and executed through a common Web browser. While such
Software may enhance the multimedia experience, create a
more interactive environment, or provide other positive
benefits, the same technology allows software to be written
which locates and destroys documents. Documents acces
sible to such software include not only those stored on the
computer on which the software is installed, but also those
available across the network to which the computer belongs.

In addition to Web browser based malicious software,
users also run programs received via E-mail for entertain
ment, without knowing what the program will do, or its
origin in the world. Other executables can masquerade as
data, donning, for example, DOC, GIF, and JPEG file
extensions, and causing their own type of damage.
A study by Computer Economics of Carlsbad, Calif.,

found that in the first two quarters of 1999 alone, businesses
worldwide lost more than S7.6 billion to malicious software.
Additionally, well-publicized events involving the Melissa
virus, the Explorer.zip worm, and BackOrifice clients con
tribute to an atmosphere of crisis. Organizations may
respond to these threats by adopting policies prohibiting
Software download or installation, but, in practice, organi
zations have little control over this activity.
The idea of restricting application execution has been

explored by Some in the prior art, but none adequately
addresses issues of strong security and easy administration.
Some in the prior art allow administrators to set up rules for
local computers, which define times during which programs
can be executed, and by whom Such programs may be
executed. In addition, the prior art has introduced the
concept of rejecting unknown applications.

However, those in the prior art have several weaknesses
which render them inadequate. For example, those rejecting
unknown applications base the determination of which
applications are known solely on the application’s execut
able name. This system allows even a novice user to bypass
the security system by naming a malicious application after
an approved one. In addition, many in the prior art provide
inadequate administrative Support over a user community.

10

15

25

30

35

40

45

50

55

60

65

2
For example, the prior art only allows administration on a
per-machine basis, and policies must be defined explicitly
for each user.

Others in the prior art have taken a different approach to
control of executable Software. In those products, crypto
graphic hashes of critical files are maintained and periodi
cally verified. An application on the computer periodically
checks the critical files, and if changes are detected, an
administrator may be notified. This technology is used
primarily for intrusion detection. However, execution con
trol is not combined with error checking, thus an executable
that has been compromised by a virus (and has therefore had
its signature altered) will be allowed to execute until the
system has detected this change and an administrator has
removed the compromised executable. A significant amount
of damage could be done before the problem is detected.

SUMMARY OF THE INVENTION

The present invention improves upon prior malicious
Software protection applications by not only resolving the
problems discussed above, but also by addressing emerging
dangers and unknown attacks. The present invention
includes an execution management utility designed to pre
vent software from executing without the prior approval of
system administrative staff. In a preferred embodiment, a
kernel module, loaded by Windows NT systems, may be
capable of selectively intercepting process creation requests.

Although the present invention is inspired by malicious
Software, the present invention also addresses other prob
lems. For example, the present invention can assist corpo
rations by enforcing policies regarding unauthorized, unli
censed, or pirated Software. Such as, but not limited to,
games; entertainment software; and non-standard utilities,
Such as advertising-enhanced browsers.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating communication
between an EMU Client, operating in user-space, and an
Execution Manager, functioning as a device driver in kernel
Space.

FIG. 2 is a flow diagram illustrating a method through
which a device driver may be unwrapped without warning.

FIG. 3 is a block diagram illustrating a kernel-level
Wrapping technique.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention improves upon existing executable
control Software, and provides administrators with a valu
able defense against the introduction of hostile or unknown
code. The present invention is comprised of an execution
management utility (EMU), which restricts a user to execut
ing only an approved and known set of applications. Such
applications typically include application-specific operating
system software, operating system services, and a set of
applications necessary for a user to perform his or her duties.
In addition, an EMU provides a client-server architecture
that enables an administrator to restrict applications avail
able to individual users working on a workstation with an
EMU client installed. This allows administrators to address
specific user Software needs.
To properly implement a security system based on an

EMU, an “EMU client” may be required. An EMU client
may comprise a service, or other operating system level

IPR2024-00027
CrowdStrike Exhibit 1007 Page 4

US 7,085,928 B1
3

component, that runs on each protected computer. Some
operating systems provide security necessary to ensure that
the service will run, and that only an administrative user can
shut it down.
At the core of an EMU is an Execution Control List, or

ECL. In a preferred embodiment, each user on the system
has his or her own ECL. Each ECL may contain a table of
applications a user is authorized to run and corresponding
cryptographic codes that uniquely identify each application.
In a preferred embodiment, the present invention utilizes the
MD5 cryptographic algorithm, as defined in Internet RFC
1321, to create the cryptographic identifier, or “hash.”

Identifying a program through its hash reduces the like
lihood that a user can bypass the EMU simply by changing
the name of an unknown executable to the name of an
executable that is already part of an ECL. In addition,
identifying a program through its hash may reduce the
potential impact of viruses; many viruses propagate by
silently attaching themselves to an application and executing
whenever the application is run.

Using hashes for identification has the additional benefit
of preventing modified applications from executing. An
EMU may ensure that modified executables will not run,
effectively protecting a system from any damage these
altered applications could cause.
An EMU client may intercept execution requests and

verify whether a requesting user has permission to run a
requested application. In a preferred embodiment, an EMU
client may verify an execution request by creating an MD5
cryptographic hash of a requested executable, and then
looking for this name?hash combination in a user ECL. In
this embodiment, a name is used in addition to the hash to
ensure that a user is executing the program he or she
intended to execute. For example, the name?hash verification
would prevent an attack in which a program that deletes files
is accidentally renamed to that of one that compresses files
for archival (assuming that both of these are in the user's
ECL). If a name?hash combination were not used, execution
of the aforementioned program would result in the deletion
of files.

In one contemplated embodiment, the present invention
may utilize locally stored and locally maintained ECLs.
However, in this embodiment, each EMU client would be
required to maintain a copy of all ECL’s for every user on
the system. Without such copies, users would not be able to
easily move from computer to computer and have their
ECL’s follow them. In a preferred embodiment, user mobil
ity may be facilitated through an Administrative Server
(“AS”).
An AS may facilitate user mobility by storing master

copies of all ECLs in a common location, from which an
EMU client may download an appropriate ECL when a new
user accesses the computer. In addition to ECL’s for each
user, an AS may contain a default ECL which may be locally
cached by an EMU client. A default ECL may be used when
an EMU client does not have an ECL for a requesting user
and cannot obtain an ECL for a user from an AS. Providing
a default ECL allows a user authorized to log onto an
EMU-protected workstation to be provided with a basic,
pre-approved ECL.

To make itself useful on an enterprise level, an AS may
also provide an interface by which all administrable EMU
clients may be accessed through a centralized location. An
administrator can manage policies and control EMU client
functionality from a single machine running as an EMU
client’s AS. An administrator may also control ECL distri
bution to EMU clients through an AS.

5

10

15

25

30

35

40

45

50

55

60

65

4
For example, an AS may allow an administrator to send

a command to a specific EMU client, or a group of EMU
clients, which forces an ECL update. This might be benefi
cial after an administrator has made changes to an ECL, and
wants a client to implement the new ECL.

In addition to server-required updates, an EMU client may
request an ECL from an AS under several different circum
stances. For example, if an EMU client does not have a local
copy of an ECL for a requesting user, an ECL may be
requested. In addition, an EMU client may store and refer to
a time-stamped local copy of a user's ECL. After an admin
istrator-defined period, an EMU client may request an
updated copy of an ECL.
An AS may process user ECL requests and distribute

appropriate ECLs to EMU clients via the local area net
work. Each ECL maintained by an AS contains a hash of
ECL contents. When an EMU client receives a user ECL
from an AS, ECL signature verification may occur. If a
signature is valid (indicating that an ECL originated from an
AS and has not been modified), an ECL may be accepted for
use by an EMU client. An invalid signature may result in
ECL rejection.

In addition to allowing an administrator to monitor and
modify ECLs, an AS may also handle user requests to add
applications to an ECL. A user can generate Such a request
when an EMU client rejects execution of an application that
is not on a user ECL. When an EMU client prevents an
application from executing, an EMU client may generate a
dialog box indicating that the requested executable is not on
a current ECL, and may ask a user if she would like to
request the addition of the requested executable to her ECL.
If she opts to submit a request, an ECL Add Request is
forwarded to an AS. If an AS is unavailable, an execution
request may be rejected.
An add request may consist of a user name, program

name, program hash, and other Such information. An AS
may maintain a queue of add requests awaiting approval or
rejection by an administrator. To make an administrators
job easier, an AS may maintain a database of known
application hashes. If an add request is received for a known
application, an AS may inform an administrator of this
positive identification. If a programs hash is unknown, an
administrator may investigate the application before allow
ing its addition to a user ECL. If an administrator chooses to
accept an add request, a user ECL is updated and a work
station requesting an ECL change may be signaled to update
its ECL.

In addition to user- and EMU client-generated requests,
an AS may also allow executables to be added to an ECL
through an ECL editor, and through a “learning mode. In a
preferred embodiment, an ECL may be developed using an
ECL editor. An ECL editor allows an administrator to select
executable files to be added to user ECL’s. An administrator
may also use an ECL editor to modify existing policies.
Additionally, an ECL editor may allow an administrator to
make changes to groups of policies all at once. This func
tionality may be useful when, for example, an administrator
decides that all users in a group should be able to execute
certain applications. However, developing an entire policy
using an ECL editor may be time consuming, so an EMU
may provide other methods for policy development.

In a preferred embodiment, an EMU client may include a
learning mode, which may enable an EMU client to develop
an ECL policy customized for individual users. Learning
mode can be enabled on either a per-user or per-machine
basis. An administrator can enter a password into an EMU
client to set a machine in learning mode. A special entry in

IPR2024-00027
CrowdStrike Exhibit 1007 Page 5

US 7,085,928 B1
5

the user's ECL can also be used to signify that a user is in
learning mode. Once in learning mode, an ECL can be
generated by observing user application usage patterns.
During learning mode, an EMU passively observes program
execution and does not attempt to enforce any ECL restric
tions. Each application that a user executes may be added to
his or her current ECL.

Developing custom policies through learning mode
enables an administrator to limit a user to those programs
necessary and sufficient to perform his or her job. These
functions may include operating system utilities and services
that start up on machine boot. After allowing a user to work
under learning mode for a specified period of time, an
administrator may review a generated ECL and make any
desired changes.
A process-based tracing facility may provide all of the

above described features. However, in the presently pre
ferred Windows NT embodiment, there are several locations
where a process-based tracing facility can be implemented.
In the user space, a process tracing facility can be imple
mented between Windows applications and the Win32 sub
system. This is the location where most Windows wrappers
are implemented. The benefit of this approach is that all code
can be written in user mode and the kernel need not be
modified. The drawback of this approach, which renders it
infeasible for protection from malicious software, is that it
is easily bypassed by making direct calls to the operating
system.

While most well-behaved Windows applications make
system calls through the Win32 API, it is also possible to
bypass this interface by making calls directly to kernel
services. Nothing in the Windows NT kernel prevents mak
ing direct calls to executive objects. A malicious program
cognizant of Windows wrapping approaches may attempt to
bypass a wrapper implemented between Windows and the
Win32 Subsystem by making direct calls to operating system
objects, rather than through the Win32 API.
To provide proper integration with an operating system,

the present invention utilizes an kernel-level wrapping
approach to executable control. To implement a non-bypass
able kernel wrapper, implementation should take place
within the kernel. Installing a device driver is a method for
adding user-written kernel-mode code to the operating sys
tem kernel. Writing a device driver provides access to
internal operating system functions and data structures not
accessible from user mode. Device drivers may be installed
in an I/O Subsystem, and may be used to intercept system
service requests.

System services are operations performed by an operating
system kernel on behalf of applications or other kernel
components. These operations are implemented as system
services because they may affect processes other than a
calling process. For instance, manipulating CPU hardware,
starting and stopping processes, and manipulating files are
sensitive operations generally implemented by services at
the kernel level.

In a preferred Windows NT embodiment, user applica
tions invoke system services by executing an interrupt
instruction. Kernel code temporarily takes control of a
computer in response to an interrupt, and often performs
Some useful activity for a calling process before relinquish
ing control. A kernel entity, known as a dispatcher, initially
responds to an interrupt instruction, determines the nature of
an interrupt, and calls a function to handle the request. Two
tables in kernel memory describe locations and parameter
requirements of all functions available to a dispatcher. One
table specifies handlers for user requests; the other specifies
handlers for requests originating within the kernel. The

10

15

25

30

35

40

45

50

55

60

65

6
calling process places information about the requested sys
tem service on the stack along with any parameters required
to complete the operation.
The present invention may control new process creation

by instructing a dispatcher to call a specific function when
a user process invokes certain system services. This
approach requires constructing a device driver that may be
dynamically loaded into a kernel, or may be loaded as part
of a boot sequence. When a device driver loads, it modifies
an entry in a table consulted by a dispatcher to handle an
interrupt instruction. In the preferred Windows NT embodi
ment, the modified entry may cause a dispatcher to call an
inserted function rather than ZwcreateProcess, the NT func
tion responsible for creating new user- and kernel-mode
processes. It is important to note that the driver modifies
only tables relevant to requests from user applications. This
is because we are not interested in controlling the kernels
ability to create processes. In addition, the inserted wrapper
function exposes properties and methods similar to those of
ZwCreateProcess, thereby limiting the impact of the kernel
wrapper.

When a substitute function is called by a dispatcher, the
function determines whether to allow or block process
creation. If the substitute function wishes to allow process
creation, ZwcreateProcess may be invoked with a user's
parameters, and results may be passed to a calling function.
If process creation is not allowed, a failure value may be
returned. There are several possible ways by which a sub
stitute function may evaluate a creation request.

In a preferred embodiment, a wrapping function may
contact a user-mode application to obtain a process creation
request ruling. The wrapping function may provide infor
mation about requesting and requested processes (i.e. the
current process and the process it wishes to create). A
user-mode application may engage its own logic, and inform
the wrapping function of its decision. This logic may include
consulting a list of approved executables, prompting for
permission to proceed, or requiring more Sophisticated
authorization (such as, but not limited to, a password).

Note that once a wrapping function intercepts an execu
tion request, a decision must be made about the fate of the
request. As discussed above, a wrapping function contacts a
user-mode application running as a service (not to be con
fused with a system service), provides information about a
request, and receives instructions to permit or deny creation
of a new process.
A kernel wrapping function may communicate with a

user-mode service. An I/O Subsystem may provide a com
munication mechanism which allows applications to pass
messages and data to device drivers. In a preferred embodi
ment, messages may be represented as control codes, called
IOCTLS, and may be passed to device drivers, with or
without data, via an API function, such as DeviceIoControl.
However, Such an API function may not provide an adequate
communication channel because of its asymmetric nature.
Communication via DeviceIoControl may be initiated by the
application; a device driver merely responds to requests.

In a preferred embodiment, a wrapper may notify a
service when assistance is needed, instead of waiting for an
inquiry from a service. When DeviceIoControl calls or other,
similar calls, are paired with synchronization objects, two
way communication between a service and a kernel may be
established. Using this approach, a device driver may indi
cate an interception by releasing a semaphore. This may
cause a service thread to resume execution and to call
DeviceIoControl, thereby retrieving information about an
execution request from a kernel. After a service considers
input from a kernel, a service may return a verdict via
DeviceIoControl.

IPR2024-00027
CrowdStrike Exhibit 1007 Page 6

US 7,085,928 B1
7

Alternative, polling-based embodiments are also contem
plated. However, polling-based embodiments have proven
less efficient than the embodiment described above. Another
embodiment contemplated employed API-level wrapping,
rather than kernel-level wrapping, in a effort to simplify
communication. However, this API-level wrapping raises a
specter of multithreaded, race condition attacks, where one
thread applies for and receives permission to execute an
innocuous application, such as clock.exe, and another thread
replaces clock.exe with something threatening, such as
napster.exe. In this example, a data Swap may take place
after checks on clock.exe is validated but before a call to
CreateProcess. This is an example of a time of check versus
time of use Vulnerability that permits race condition attacks.

From both a security and a programmability perspective,
bi-directional communication between device drivers and
user-mode applications may be more appealing when details
are hidden by a layer of abstraction. As illustrated in FIG. 1,
a preferred embodiment of the present invention may
employ a general-purpose library which provides commu
nication facilities mimicking pipe or socket communication.
Kernel entities and applications may use “accept and
“close” functions to create and destroy connections; “read”
and “write' calls extract data from or insert data into the
“pipe' abstraction provided by a library. A library may hide
data buffering and synchronization details and facilitate
rapid development and thorough testing.

Pipe- or socket-like communication may be facilitated by
enhancing a kernel-level function by wrapping a more
advanced function around the kernel-level function. A
simple method of wrapping involves making a local copy of
relevant system service entries and placing a wrapper func
tion in place of those service entries. This method also works
well when multiple people install wrappers; in effect, a
function chain is created, in which a function thinks that it
is calling an appropriate System Service. However, as illus
trated by FIG. 2, this chain can easily become disrupted if
device drivers begin unwrapping system services.

In addition to enhancing communications, it is also desir
able for a wrapping function to load and unload dynamically.
To achieve this goal, the present invention addresses the
difficulties presented when unloading a device driver which
has wrapped a system service. Specifically, because a user
mode program may call a system service at any time, it can
be difficult to tell when a wrapper is in use. A driver may not
be unloaded safely until a wrapper is no longer in use.

To perform service wrapping properly, a wrapper should
have at least two important features: the ability to allow
multiple, concurrent wrappers, and a framework under
which drivers can safely wrap and unwrap system services.
Although there are several possible solutions to allowing
multiple concurrent device drivers, a preferred embodiment
exports functionality to the entire kernel. This approach may
allow other device drivers to call exported functions that add
to, remove from, and descend through layers of functions on
top of existing system services. This approach has the added
benefit of hiding implementation details, and allowing a
wrapper to carefully synchronize access to layers Surround
ing a system service table.
The synchronization of system service access functions

allows the present invention to provide safe wrapping and
unwrapping of system services. In a preferred embodiment,
actions that add or remove wrapper layers are considered
“writers,” while actual calls to system services that descend
through the layers are considered “readers.” Consistent with
traditional synchronization problems, multiple readers are
allowed to descend through wrapper layers simultaneously,
but writeractions, which may modify wrapper layers, should
be serialized. As illustrated by FIG. 3, tightly controlling

10

15

25

30

35

40

45

50

55

60

65

8
reader and writer synchronization allows a device driver to
safely unload after removing all of its system service table
layers.
An EMU designed as described above may provide

security-conscious administrators with a valuable defense
against the introduction of new and potentially malicious
code. Such an EMU ensures that only those applications
explicitly approved by an administrator may be executed by
users. This greatly reduces the threat posed by viruses,
Trojan horses, and even malicious insiders. In addition to
security considerations, an EMU also provides control over
illegally-obtained application distribution and entertainment
program use.
As previously described, a preferred EMU embodiment

includes numerous features that make it manageable at the
enterprise level, including centrally-managed execution
control lists and client-server communication. A kernel
based wrapping approach ensures the non-bypassability of
an EMU and may result in negligible performance overhead.
Security features incorporated in an EMU ensure that even
a malicious adversary may not circumvent an ECL.

In today's Internet-enabled work environment, it is essen
tial that security administrators have full control over the
programs that are executed by their user community. The
EMU's ability to control which programs are allowed to
execute is a significant step toward maintaining a secure
networked environment.

While the preferred embodiment and various alternative
embodiments of the invention have been disclosed and
described in detail herein, it may be apparent to those skilled
in the art that various changes in form and detail may be
made therein without departing from the spirit and scope
thereof.

We claim:
1. A method for preventing process creation of an unau

thorized user application executable by an operating system
of a computer, comprising:

creating a first device driver;
loading the first device driver into a kernel of the oper

ating system, wherein the first device driver installs a
first process creation wrapper function;

modifying an operating system table consulted by a
dispatcher using the first device driver, wherein the
modifying an operating system table causes the dis
patcher to call the first process creation wrapper func
tion before a process creation function and wherein the
first process creation wrapper function and one or more
Subsequent process creation wrapper functions
installed by one or more subsequent device drivers are
modifiable so that the one or more Subsequent process
creation wrapper functions are added and removed
serially between the first process creation wrapper
function and the process creation function and the one
or more Subsequent process creation wrapper functions
are called by the dispatcher before the process creation
function;

intercepting a request for execution of an application
executable by a user using the first process creation
wrapper function;

communicating information about the request from the
first process creation wrapper function to a user-mode
application running as a service on the operating sys
tem, wherein the communicating information about the
request from the first process creation wrapper function
to a user-mode application occurs within the operating
system;

comparing the information to a list of authorized
executables for the user using the user-mode applica
tion;

IPR2024-00027
CrowdStrike Exhibit 1007 Page 7

US 7,085,928 B1

if the information does not match an item on the list,
communicating a first message to deny the request from
the user-mode application to the first process creation
wrapper function; and

if the information does match an item on the list, com
municating a second message to permit the request
from the user-mode application to the first process
creation wrapper function.

2. The method of claim 1, wherein the loading the first
device driver comprises one of dynamically loading into the
kernel and loading into the kernel as part of a boot sequence.

3. The method of claim 1, wherein the process creation
function provided by the operating system comprises
Zw CreateProcess.

4. The method of claim 1, wherein the information
comprises one or more of a user name, an application
executable name, and a cryptographic identifier of an appli
cation executable.

5. The method of claim 4, wherein the cryptographic
identifier of an application executable comprises a hash
created using an MD5 cryptographic algorithm.

6. The method of claim 1, wherein the list comprises one
or more of an application executable name and a crypto
graphic identifier of an application executable.

7. The method of claim 1, wherein the comparing the
information to a list comprises comparing an application
executable name of the information with an application
executable name of at least one item from the list.

8. The method of claim 1, wherein the comparing the
information to a list comprises comparing a cryptographic
identifier of the information with a cryptographic identifier
of at least one item from the list.

9. The method of claim 1, wherein the communicating
information about the request comprises one or more of
releasing a semaphore, calling an application program inter
face function, polling, using a Socket, and using a pipe.

10. The method of claim 1, wherein the communicating a
first message to deny the request comprises one or more of
calling an application program interface function, polling,
using a socket, and using a pipe.

11. The method of claim 1, wherein the communicating a
second message to permit the request comprises one or more
of calling an application program interface function, polling,
using a socket, and using a pipe.

12. A method for preventing process creation of an
unauthorized user application executable by an operating
system of a computer, comprising:

creating a first device driver;
loading the first device driver into a kernel of the oper

ating system, wherein the first device driver installs a
first process creation wrapper function;

modifying an operating system table consulted by a
dispatcher using the first device driver, wherein the
modifying an operating system table causes the dis
patcher to call the first process creation wrapper func
tion before a process creation function and wherein the
first process creation wrapper function and one or more
Subsequent process creation wrapper functions
installed by one or more subsequent device drivers are
modifiable so that the one or more Subsequent process
creation wrapper functions are added and removed
serially between the first process creation wrapper
function and the process creation function and the one
or more Subsequent process creation wrapper functions
are called by the dispatcher before the process creation
function;

10

15

25

30

35

40

45

50

55

60

10
intercepting a request for execution of an application

executable by a user using the first process creation
wrapper function;

communicating information about the request from the
first process creation wrapper function to a user-mode
application running as a service on the operating sys
tem, wherein the communicating information about the
request from the first process creation wrapper function
to a user-mode application occurs within the operating
system;

prompting the user for authorization to proceed using the
user-mode application;

if the authorization is not provided, communicating a first
message to deny the request from the user-mode appli
cation to the first process creation wrapper function;
and

if the authorization is provided, communicating a second
message to permit the request from the user-mode
application to the first process creation wrapper func
tion.

13. The method of claim 12, wherein the authorization
comprises a password.

14. The method of claim 13, wherein the loading the first
device driver comprises one of dynamically loading into the
kernel and loading into the kernel as part of a boot sequence.

15. A system for preventing process creation of an unau
thorized user application executable by an operating system
of a computer, comprising:

a first device driver, wherein the first device driver is
loaded into a kernel of the operating system;

a first process creation wrapper function, wherein the first
device driver installs the first process creation wrapper
function in the kernel of the operating system, wherein
the first device driver modifies an operating system
table consulted by a dispatcher causing the dispatcher
to call the first process creation wrapper function before
a process creation function, and wherein the first pro
cess creation wrapper function and one or more Sub
sequent process creation wrapper functions installed by
one or more subsequent device drivers are modifiable
So that the one or more Subsequent process creation
wrapper functions are added and removed serially
between the first process creation wrapper function and
the process creation function and the one or more
Subsequent process creation wrapper functions are
called by the dispatcher before the process creation
function; and

a user-mode application running as a service on the
operating system, wherein the communicating infor
mation about the request from the first process creation
wrapper function to a user-mode application occurs
within the operating system and wherein the a user
mode application receives information about the
request from the first process creation wrapper func
tion, compares the information to a list of authorized
executables for the user, communicates a first message
to deny the request to the first process creation wrapper
function, if the information does not match an item on
the list, and communicates a second message to permit
the request to the first process creation wrapper func
tion, if the information does match an item on the list.

16. The system of claim 15, further comprising an admin
istrative server, wherein the administrative server is in
communication with the user-mode application, and wherein
the user-mode application downloads the list from the
administrative server.

IPR2024-00027
CrowdStrike Exhibit 1007 Page 8

