
0018-9162/98/$10.00 © 1998 IEEE40 Computer

W
hen Microsoft embarked upon
Windows NT in 1989, several key
requirements drove the project. NT was
to be a true 32-bit, preemptive, reen-
trant, virtual memory operating system

capable of running on multiple hardware architec-
tures and platforms. NT was intended as a robust,
distributed, client-server platform that would scale
well on symmetric multiprocessing systems. Finally,
NT was to meet government requirements for Posix
1003.1 compliance and for operating system security,
be easily adaptable to the global market by support-
ing Unicode, and run most existing 16-bit MS-DOS
and Microsoft Windows 3.1 applications.

To build a system to meet these requirements, devel-
opers agreed on the following design goals: portabil-
ity, reliability and robustness, backward compatibility,
performance, and, above all, extensibility. The code
had to be written to grow and change as market
requirements changed.

Now, some eight years later, Microsoft is putting
the finishing touches on Windows NT 5.0, the largest
release to date, with significant new operating system
and network functionality being added to many areas
of the system. It is not, however, a rewrite—many
aspects of the kernel system architecture remain the
same or are being extended. In other words, the fun-
damental operating system architecture is not chang-
ing in Windows NT 5.0.

This article is intended as a brief introduction to the
NT architecture, including those features—notably
plug and play, the job object, and 64-bit large memory
support—that necessitated extensions to the executive
and the kernel. (For further details, see the book Inside
Windows NT, 2nd edition, Microsoft Press.) However,

there are many other significant enhancements in the
system. Two of these, the Active Directory and the dis-
tributed security extensions, are described in a sidebar.
The companion articles describe major new extensions
to the NT File System and the Microsoft Clustering
Service. (Microsoft has posted reams of technical white
papers describing the rest of the new features in
Windows NT 5.0 at http://www.microsoft.com/
windowsnt5.)

SYSTEM ARCHITECTURE
Figure 1 is a diagram of the Windows NT system

architecture and components. The boxes above the
line represent user-mode processes, and the boxes
below the line are kernel-mode OS services. User-mode
threads execute in a protected process address space.
While they are executing in kernel mode, however, they
have access to system space. Thus, system processes,
server processes (services), the environment subsys-
tems, and user applications each have their own pri-
vate process address space.

First we will examine the kernel mode components
and then the user-mode components.

Kernel mode
Performance-sensitive OS components run in ker-

nel mode, where they can interact with the hardware
and with each other without incurring the overhead
of context switches and mode transitions. For exam-
ple, the memory manager, cache manager, object and
security managers, network protocols, file systems
(including network servers and redirectors), and all
thread and process management run in kernel mode.
All of these components are fully protected from errant
applications, because applications don’t have direct
access to the code and data of the privileged part of
the operating system.

The kernel-mode components of Windows NT also
embody basic object-oriented design principles. For

Co
ve

r F
ea

tu
re

Microsoft is putting the finishing touches on Windows NT 5.0, the largest
release to date, with significant new operating system and network
functionality being added to many areas of the system.

The Windows
NT Kernel
Architecture

David A.
Solomon
David Solomon
Expert Seminars

This article is based on the author’s Inside Windows NT, 2nd
edition, Microsoft Press, 1998. Used with permission of
Microsoft Press.

.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 10,2023 at 17:30:56 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1015 Page 1

October 1998 41

example, they don’t reach into one another’s data
structures to access information maintained by indi-
vidual components. Instead, they use formal inter-
faces to pass parameters and access and/or modify
data structures. (Despite its pervasive use of objects to
represent shared system resources, Windows NT is
not an object-oriented system in the strict sense. Most
of the operating system code is written in C for both
speed and portability.)

The OS components that run in kernel mode
include these:

• The Windows NT executive contains the base
OS services, such as memory management,
process and thread management, security, I/O,
and interprocess communication.

• The Windows NT kernel performs low-level OS
functions, such as thread scheduling, interrupt
and exception dispatching, and multiprocessor
synchronization. It also provides a set of routines
and basic objects that the rest of the executive
uses to implement higher-level constructs.

• The hardware abstraction layer (HAL) is a layer

of code that isolates the kernel, device drivers,
and the Windows NT executive from platform-
specific hardware differences.

• Device drivers include both file system and hard-
ware device drivers that translate user I/O func-
tion calls into specific hardware device I/O
requests.

• The windowing and graphics system implements
the graphical user interface (GUI) functions,
which deal with windows, controls, and drawing.

The next two sections expand on the roles of the
executive, kernel, and HAL. The windowing system
is described in the later section on environment sub-
systems.

Executive
The Windows NT executive is the upper layer of

NTOSKRNL.EXE. (The kernel is the lower layer.) It
contains the following major components:

• The process and thread manager creates and ter-
minates processes and threads. The underlying

Figure 1. Windows NT
system architecture
and components. The
boxes above the line
represent user-mode
processes, and the
boxes below the line
are kernel-mode OS
services. User-mode
threads execute in a
protected process
address space. While
they are executing in
kernel mode,
however, they have
access to system
space.

System processes Services
Environment
subsystems

Service
controller

Replicator Posix

OS/2

Applications

Alerter

RPCWinLogon

Session
manager

Win32

User
application

Subsystem DLLs

Event
logger

NTDLL.DLL

Hardware abstraction layer (HAL)

Hardware interfaces (buses, I/O, interrupts, timers,
clocks, DMA, cache control, and so on)

System
thread

I/O manager Cache
manager

Processes
and threads

Virtual
memory

Win32
User, GDISecurity

Device drivers Kernel

Executive API

User
mode

Kernel
mode

Object management/Executive RTL
File

systems

.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 10,2023 at 17:30:56 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1015 Page 2

42 Computer

support for processes and threads is implemented
in the Windows NT kernel; the executive adds
additional semantics and functions to these
lower-level objects.

• The virtual memory manager implements virtual
memory, a memory management scheme that
provides a large, private address space for each
process and protects each process’s address space
from other processes. The memory manager also
provides the underlying support for the cache
manager.

• The security reference monitor enforces security
policies on the local computer. It guards OS
resources, performing runtime object protection
and auditing.

• The I/O system implements device-independent
input/output and is responsible for dispatching
to the appropriate device drivers for further pro-
cessing.

• The cache manager improves the performance of
file-based I/O by causing recently referenced disk
data to reside in main memory for quick access
(and by deferring disk writes by holding the
updates in memory for a short time before send-
ing them to the disk).

In addition, the executive contains four main groups
of support functions that are used by the executive
components just listed:

• The object manager, which creates, manages, and
deletes Windows NT executive objects and
abstract data types that are used to represent OS

resources such as processes, threads, and the var-
ious synchronization objects.

• The LPC facility passes messages between a client
process and a server process on the same com-
puter. LPC is a flexible, optimized version of
remote procedure call (RPC), an industry-stan-
dard communication facility for client-server
processes across a network.

• A broad set of common runtime library func-
tions, such as string processing, arithmetic oper-
ations, data type conversion, and security
structure processing.

• Executive support routines, such as system mem-
ory allocation (paged and nonpaged pool), inter-
locked memory access, as well as two special
types of synchronization objects: resources and
fast mutexes.

Kernel
The kernel performs the most fundamental opera-

tions in Windows NT, determining how the OS uses
the processor or processors and ensuring that they are
used prudently. It is the lowest layer in NTOSKRNL
.EXE. These are the primary functions the kernel pro-
vides

• Thread scheduling and dispatching.
• Trap handling and exception dispatching.
• Interrupt handling and dispatching.
• Multiprocessor synchronization.
• Providing the base kernel objects that are used

(and in some cases exported to user mode) by the
executive.

Active Directory
The Active Directory is one of the most

important new features in Windows NT
5.0. It will greatly simplify the tasks involved
in administering and managing large
Windows NT networks, and it will improve
the user’s interaction with networked
resources. The Active Directory is also the
key underpinning that enables the improve-
ments in distributed system security.

The Active Directory stores information
about all resources on the network and
makes this information easy for develop-
ers, administrators, and users to find and
use. It provides a single, consistent, open
set of interfaces for performing common
administrative tasks, such as adding new
users, managing printers, and locating
resources throughout the distributed com-
puting environment.

The Active Directory data model has
many concepts similar to X.500. The
directory holds objects that represent var-
ious resources, which are described by
attributes. The universe of objects that can
be stored in the directory is defined in the
schema. For each object class, the schema
defines what attributes an instance of the
class must have, what additional attributes
it can have, and what object class can be a
parent of the current object class. This
directory structure has the following key
features:

• Flexible hierarchical structure.
• Efficient multimaster replication.
• Granular security delegation.
• Extensible storage of new classes of

objects and properties.
• Interoperability through Lightweight

Directory Access Protocol (LDAP)
version 3 support.

• Scalability to millions of objects per
store.

• Integrated dynamic Domain Name
System (DNS) server.

• A programmable class store.

Programmability and extensibility are
significant capabilities of the Active
Directory. Developers and administrators
deal with a single set of directory service
interfaces, regardless of the installed direc-
tory service(s). The programming inter-
face, called the Active Directory Service
Interfaces (ADSI), is accessible by any lan-
guage. You can also access the directory
using the LDAP API. The LDAP C API,
defined in RFC 1823, is a lower-level inter-
face available to C programmers.

.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 10,2023 at 17:30:56 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1015 Page 3

The kernel is different from the rest of the executive
in several ways. Unlike other parts of the executive,
the bulk of the kernel is never paged out of memory.
Similarly, although the kernel can be interrupted to
execute an interrupt service routine, its execution is
never preempted by another running thread. The ker-
nel always runs in kernel mode and does not probe
accessibility of parameters, since it assumes that its
callers know what they are doing. The kernel code is
written primarily in C, with assembly code reserved
for those tasks that require the fastest possible code or
that rely heavily on the capabilities of the processor.

Kernel objects. One goal for the kernel was to pro-
vide a low-level base of well-defined, predictable OS
primitives and mechanisms that would allow higher-
level components of the executive to do what they
need to do. The kernel separates itself from the rest
of the executive by implementing operating system
mechanisms and avoiding policy making. It leaves
nearly all policy decisions to the executive, with the
exception of thread scheduling and dispatching,
which the kernel implements.

The kernel implements a set of simpler objects,
called kernel objects, that help the kernel control cen-
tral processing and support the creation of executive
objects. Most executive-level objects encapsulate one
or more kernel objects, incorporating their kernel-
defined attributes. One set of kernel objects, called
control objects, includes the kernel process object, the
APC object, the deferred procedure call (DPC) object,
and several objects used by the I/O system, such as the
interrupt object. Another set of kernel objects, known
as dispatcher objects, incorporates synchronization
capabilities that alter or affect thread scheduling. The
dispatcher objects include the kernel thread, mutex

(called mutant internally), event, kernel event pair,
semaphore, timer, and waitable timer.

Hardware support. The other major job of the ker-
nel is to abstract or isolate the executive and device
drivers from variations between the hardware archi-
tectures supported by Windows NT: the x86 and
Alpha AXP. The two key components that provide
operating system portability are the kernel and the
HAL (described in the next section). Functions that
are architecture-specific (such as thread context
switching) are implemented in the kernel. Functions
that can differ from machine to machine within the
same architecture are implemented in the HAL.

The kernel supports a set of interfaces that are both
portable and semantically identical across architectures.
Some of these interfaces are implemented differently
on different architectures, however, and others are par-
tially implemented with architecture-specific code.

These architecturally independent interfaces can be
called on any machine, and the semantics of the inter-
face will be the same whether or not the code varies by
architecture. Some kernel interfaces, such as the SMP
spinlock synchronization routines, are actually imple-
mented in the HAL because their implementation can
vary for systems within the same architecture family.
Other examples of architecture-specific code in the ker-
nel include the interface to provide translation buffer
and CPU cache support. This support requires differ-
ent code for the different architectures because of the
way caches are implemented.

Hardware abstraction layer (HAL)
The HAL is a loadable kernel-mode module that

provides the low-level interface to the hardware plat-
form on which Windows NT is running. It hides hard-

October 1998 43

Distributed Security Extensions
Windows NT 5.0 Distributed Security

Services has many new features to simplify
domain administration, improve perfor-
mance, and integrate Internet security tech-
nology based on public-key cryptography.

The Active Directory provides the store
for all domain security policy and account
information and is available for remote
administration. It supports a multilevel
hierarchical tree namespace for user,
group, and machine account information.
Accounts can be grouped by organiza-
tional units rather than with the flat-
domain account namespace provided by
earlier versions of Windows NT. Manage-
ment of trust relationships among domains
is simplified through treewide transitive

trust throughout the domain tree. Finally,
administrator rights to create and manage
user or group accounts can be delegated to
the level of organizational units. Access
rights can be granted to individual prop-
erties on user objects to allow, for exam-
ple, a specific individual or group to have
the right to reset passwords but not to
modify other account information.

Windows NT security includes new
authentication based on Internet standard
security protocols, including Kerberos ver-
sion 5 and transport layer security (TLS)
for distributed security protocols, in addi-
tion to supporting Windows NT LAN
Manager authentication protocols for com-
patibility. The implementation of secure
channel security protocols supports strong

client authentication by mapping user cre-
dentials in the form of public-key certifi-
cates to existing Windows NT accounts.
Common administration tools are used to
manage account information and access
control, whether you are using shared
secret authentication or public-key security.

Windows NT provides the Microsoft
Certificate Server for organizations to issue
X.509 version 3 certificates to their employ-
ees or business partners. Windows NT 5.0
introduces CryptoAPI certificate manage-
ment APIs and modules to handle public-
key certificates, including standard format
certificates issued by either a commercial
certificate authority, third-party certificate
authority, or the Microsoft Certificate
Server included in Windows NT.

.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 10,2023 at 17:30:56 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1015 Page 4

44 Computer

ware-dependent details such as I/O interfaces,
interrupt controllers, and multiprocessor com-
munication mechanisms—any functions that are
architecture-specific and machine-dependent.

Rather than access hardware directly,
Windows NT internal components as well as
user-written device drivers maintain portability
by calling the HAL routines when they need
platform-dependent information.

Device drivers. Device drivers are loadable
kernel-mode modules (typically ending in .SYS)
that interface between the I/O system and the
relevant hardware. Drivers are typically written
in C (sometimes C++) and therefore, with

proper use of HAL routines, can be source-code
portable across the CPU architectures supported by
Windows NT and binary portable within an archi-
tecture family.

There are several types of device drivers:

• Hardware device drivers manipulate hardware
(using the HAL) to write output to or retrieve
input from a physical device or network.

• File system drivers are Windows NT drivers that
accept file-oriented I/O requests and translate them
into I/O requests bound for a particular device.

• Filter drivers, such as those that perform disk mir-
roring and encryption, intercept I/Os and per-
form some added-value processing before passing
the I/O to the next layer.

• Network redirectors and servers are file system
drivers that transmit remote I/O requests to a
machine on the network and receive such
requests, respectively.

Because installing a device driver is the only way to
add user-written kernel-mode code to the system,
some programmers have written device drivers sim-
ply as a way to access internal operating system func-
tions or data structures that are not accessible from
user mode.

User processes
The four basic types of user processes are described

in the following list:

• Special system support processes, such as the
logon process and the session manager, which are
not Windows NT services.

• Server processes that are Windows NT services
(the equivalent of Unix daemon processes), such
as the Event Logger. Many add-on server appli-
cations, such as Microsoft SQL Server and
Microsoft Exchange Server, also include compo-
nents that run as Windows NT services.

• Environment subsystems, which expose the native

OS services to user applications and thus provide
an OS environment, or personality. Windows NT
ships with three environment subsystems: Win32,
Posix, and OS/2 1.2.

• User applications, which can be one of five types:
Win32, Windows 3.1, MS-DOS, Posix, or OS/2
1.2.

Environment subsystems and subsystem DLLs
As Figure 1 shows, Windows NT has three environ-

ment subsystems: Posix, OS/2, and Win32. OS/2 is avail-
able only for x86 systems. The Win32 subsystem is
special in that Windows NT can’t run without it.

Environment subsystems expose some subset of the
base Windows NT executive system services to appli-
cation programs. Each subsystem can provide access to
different subsets of the native services in Windows NT.
That means that some things can be done from an appli-
cation built on one subsystem that can’t be done by an
application built on another subsystem. For example, a
Win32 application can’t use the Posix fork function.

Each executable image (.EXE) is bound to one and
only one subsystem. When an image is run, the process
creation code examines the subsystem type code in the
image header so that it can notify the proper subsys-
tem of the new process.

Under Windows NT, user applications do not call
the native Windows NT OS services directly; rather,
they go through one or more environment subsystem
dynamic-link libraries (DLLs). The role of the envi-
ronment subsystem DLLs is to translate a documented
function into the appropriate undocumented
Windows NT system service calls. These DLL libraries
export the documented interface that the programs
linked to that subsystem can call. For example, the
Win32 subsystem DLLs implement the Win32 API
functions. The Posix subsystem DLL implements the
Posix 1003.1 API.

Win32 subsystem. The major components of the
Win32 subsystem are the environment subsystem
process and kernel-mode device driver. The environ-
ment subsystem process supports

• console (text) windows,
• the creation and deletion of processes and

threads,
• portions of the support for 16-bit virtual DOS

machine (VDM) processes, and
• other miscellaneous functions, such as Get-

TempFile, DefineDosDevice, ExitWindowsEx,
and several natural-language support functions.

The kernel-mode device driver supports

• The window manager, which controls window
displays, manages screen output, collects input

Rather than access
hardware directly,

Windows NT internal
components as well

as user-written
device drivers

maintain portability
by calling the
HAL routines.

.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 10,2023 at 17:30:56 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1015 Page 5

from keyboard, mouse, and other devices, and
passes user messages to applications.

• The Graphical Device Interface (GDI), a library
of functions for graphics output devices, with
functions for line, text, and figure drawing and
for graphics manipulation.

• Graphics device drivers, which are hardware-
dependent graphics display drivers, printer dri-
vers, and video miniport drivers.

• Several subsystem DLLs, which translate docu-
mented Win32 API functions into the appropri-
ate undocumented kernel-mode system service
calls to NTOSKRNL.EXE and WIN32K.SYS.

Applications call the standard user functions to cre-
ate windows and buttons on the display. The window
manager communicates these requests to the GDI,
which passes them to the graphics device drivers,
where they are formatted for the display device.

GDI provides a set of standard functions that let
applications communicate with graphics devices,
including displays and printers, without knowing any-
thing about the devices. GDI interprets application
requests for graphic output and sends them to graph-
ics display drivers. It also provides a standard interface
for applications to use varying graphics output
devices. This interface enables application code to be
independent of the hardware devices and their drivers.

NTDLL.DLL. NTDLL.DLL is a special system sup-
port library primarily for the use of subsystem DLLs.
It contains two types of functions:

• System service dispatch stubs to Windows NT
executive system services.

• Internal support functions used by subsystems,
subsystem DLLs, and other native images.

The first group of functions provides the interface
to the Windows NT executive system services that can
be called from user mode. There are more than 200
such functions, such as NtCreateFile, NtSetEvent, and
so on. For each of these functions, NTDLL contains
an entry point with the same name. The code inside
the function contains the architecture-specific instruc-
tion that causes a transition into kernel mode to
invoke the actual kernel-mode system service that con-
tains the real code inside NTOSKRNL.EXE.

NTDLL also contains many support functions, such
as the image loader, the heap manager, and Win32
subsystem process communication functions, as well
as general runtime library routines. It also contains
the user-mode asynchronous procedure call (APC) dis-
patcher and exception dispatcher.

NEW FEATURES IN THE NT 5.0 KERNEL
Despite NT 5.0’s extensible architecture, several of

the new features in NT 5.0 entailed some impor-
tant changes in the kernel architecture—namely,
plug-and-play, power management, the job
object, and very large memory extensions for
Alpha.

Plug-and-play
Plug-and-play (PnP) is a combination of

hardware and software support that enables a
computer system to recognize and adapt to
hardware configuration changes with little or
no user intervention. With PnP, a user can add
or remove devices dynamically, without man-
ual configuration and without any intricate knowl-
edge of computer hardware. For example, a user can
dock a portable computer and use the docking sta-
tion’s Ethernet card to connect to the network with-
out changing the configuration. Later, the user can
undock that same computer and use a modem to con-
nect to the network—again without making any man-
ual configuration changes.

The evolution of PnP. Support for PnP was first pro-
vided in Windows 95; since that time, however, PnP
has evolved dramatically. This evolution is largely a
result of the OnNow design initiative, which defines
a comprehensive, systemwide approach to controlling
system and device configuration and power manage-
ment. One product of the OnNow initiative is the
Advanced Configuration and Power Interface (ACPI)
version 1.0 specification, which defines a new system
board and BIOS interface that extends PnP data to
include power management and other new configu-
ration capabilities, all under complete control of the
operating system.

The ACPI methods defined are independent of the
operating system or the CPU. ACPI specifies a regis-
ter-level interface to core PnP and power manage-
ment functions and defines a descriptive interface for
additional hardware features. This arrangement
gives system designers the ability to implement a
range of PnP and power management features with
different hardware designs while using the same
operating system driver. ACPI also provides a generic
system-event mechanism for PnP and power man-
agement.

Windows NT 5.0 implementation. The Windows NT
5.0 PnP architecture is designed to meet the follow-
ing two goals:

• Extend the existing Windows NT input/output
infrastructure to support PnP and power man-
agement while also supporting industry hard-
ware standards for PnP.

• Achieve common device driver interfaces that sup-
port PnP and power management for many device
classes under Windows NT 5.0 and Windows 98.

October 1998 45

Despite NT
5.0’s extensible

architecture, several
of the new features
in NT 5.0 entailed
some important
changes in the

kernel architecture.

.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 10,2023 at 17:30:56 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1015 Page 6

46 Computer

Windows NT 5.0 support for PnP includes initial
system installation, recognition of PnP hardware
changes that occur between system boots, and
response to runtime hardware events such as
dock/undock and device insertion/removal.

Drivers for PnP devices do not assign their own
resources. Instead, the required resources for a device
are identified when the operating system enumerates
the device. The PnP Manager retrieves the require-
ments for each device during resource allocation.
Based on the resource requests each device makes, the
PnP Manager assigns the appropriate hardware
resources such as I/O ports, IRQs, DMA channels,
and memory locations. The PnP Manager reconfig-
ures resource assignments when needed, such as when
a device is added to the system and requests resources
that are already in use. The PnP Manager determines
which drivers are required to support a particular
device and loads those drivers.

One of the key features of both PnP and power
management is dynamic handling of events. The addi-
tion or removal of a device is an example of such a
dynamic event, as is the ability to awaken a device or
put it to sleep. PnP and power management both use
WDM-based functions and have similar methods for
responding to dynamic events.

Driver changes. The native Windows NT 5.0 PnP
support results in the following changes for develop-
ers who previously created drivers under the
Windows NT 4.0 device driver model:

• Bus drivers separate from the HAL. Bus drivers
control an I/O bus, including per-slot function-
ality that is device-independent. In the new archi-
tecture, bus drivers have moved out of the
hardware abstraction layer (HAL) to coordinate
with changes and extensions made to existing
kernel-mode components, such as the executive,
device drivers, and the HAL. (Microsoft gener-
ally provides bus drivers.)

• New methods and capabilities to support device
installation and configuration. The new design
includes changes and extensions to existing user-
mode components, such as the Spooler, class
installers, Control Panel applications, and Setup.
In addition, new kernel-mode and user-mode
PnP-enabled components have been added.

• New PnP APIs to read and write information from
the registry. For the new design, changes and exten-
sions were made to the registry structure. This
structure supports PnP and allows the registry to
be enhanced in future versions of Windows NT,
while also providing backward compatibility.

Windows NT 5.0 will support legacy Windows NT
drivers, but since these don’t support PnP and power

management, systems running these drivers will have
reduced capabilities in these two areas. Manufacturers
who want to support complete PnP capabilities for
their devices and who want the same drivers to func-
tion on both Windows NT and Windows 98 will need
to develop new drivers that integrate the latest PnP
and power management functionality.

Job object
Windows NT 5.0 contains an extension to the

process model called a job. A job object is a name-
able, securable, sharable object that controls certain
attributes of processes associated with the job. A job
object’s basic function is to allow groups of processes
to be managed and manipulated as a unit. In some
ways, the job object compensates for the lack of a
structured process tree on Windows NT (yet in many
ways is more powerful than a Unix-style process
tree). The job object also records basic accounting
information for all processes associated with the job
and for all processes that were associated with the
job but have since terminated.

A job object can contain limits that are forced on
each process associated with the job, limits such as
these:

• Jobwide user-mode CPU time limit.
• Per-process user-mode CPU time limit.
• Maximum number of active processes.
• Job process priority class.

Jobs can be set to queue an entry to an I/O com-
pletion port object, which other threads might be
waiting on with the Win32 GetQueuedCompletion
Status function. You can also place security limits on
processes in a job. Finally, you can also place user
interface limits on processes in a job. Such limits
include being able to restrict processes from opening
handles to windows owned by threads outside the job,
reading and/or writing to the clipboard, and changing
the many user interface system parameters via the
Win32 SystemParametersInfo function.

Very large memory on Alpha
Windows NT 5.0 adds support for accessing up to

28 Gbytes of memory on Digital Alpha AXP systems.
This extension is called VLM, for Very Large
Memory. VLM won’t be supported on the x86 fam-
ily of processors. However, Microsoft is building a
true 64-bit version of Windows NT that will run on
the Alpha AXP and the upcoming Intel IA64 archi-
tecture. (See the “64-bit Windows NT” sidebar.)

Windows NT 4.0 has always supported 64-bit off-
sets for file I/O operations but has limited each process
to a private 2-Gbyte (or on Windows NT Server,
Enterprise Edition, a 3-Gbyte) address space. VLM

.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 10,2023 at 17:30:56 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1015 Page 7

allows an application to use 64-bit pointers and there-
fore directly access an address space that is much
larger than 2 Gbytes. This extension is being imple-
mented to meet the needs of data-intensive applica-
tions, such as database management systems, in which
the application needs to keep a large amount of infor-
mation in physical memory. Restricting that informa-
tion to fit within the 2-Gbyte (or even the 3-Gbyte)
address space isn’t acceptable for such applications.

With VLM, applications on Alpha systems can
address up to 28 Gbytes of memory beyond their 2-
Gbyte private address space. To provide access to the
large memory area, a 64-bit pointer data type is
required. (See __ptr64 added in Visual C++ 5.0 for
Alpha.) A small set of new Win32 APIs is being added
to operate on memory using 64-bit pointers.

VLM has an important restriction on the virtual
addresses that can be addressed by 64-bit pointers,
namely that such addresses must be backed by locked-
down physical memory. In other words, all commit-
ted VLM memory must be backed by physical
memory that must be available at the time the address
space is committed. The virtual address space used to
map this memory can be reserved, but the actual mem-
ory committed must be backed by physical memory.
Page faults are never taken on VLM addresses unless
these addresses are being used to map an actual data
file; hence, paging files are never used for any of this
memory. Page faults are taken only on mapped data
files, and each page will be faulted only once (when
first accessed) and then effectively locked into memory,
never to be removed.

Despite these restrictions, VLM does meet the need
for the class of applications described above that
demand high-speed access to large portions of memory.

The architecture of Windows NT reflects a
modern, 32-bit operating system design. With
Windows NT 5.0, it continues to evolve to

meet everchanging requirements of being both a desk-
top/workstation operating system as well as one for
running high-end server applications. ❖

David A. Solomon, president of David Solomon
Expert Seminars, teaches seminars on Windows NT
internals and systems programming. He is the author
of Inside Windows NT (Microsoft Press) and Win-
dows NT for OpenVMS Professionals (Digital
Press/Butterworth Heinemann). Formerly a consult-
ing software engineer at Digital Equipment Corpo-
ration, he worked for more than nine years as a
project leader and developer in the VMS operating
system development group. Solomon has served as
technical chair for several Windows NT conferences.

Contact Solomon at David Solomon Expert Seminars,
5 Partridge Trail, Sherman, CT 06784; e-mail daves@
solsem.com.

64-bit Windows NT
In 1997, Microsoft announced plans to

implement a full 64-bit version of
Windows NT. The target processor archi-
tectures are the existing 64-bit Alpha AXP
platform and the upcoming Intel 64-bit
(IA64) processors (the first implementa-
tion code-named Merced). A full 64-bit
Windows NT means that each 64-bit
process will have a large, flat address
space (initially at least 512 Gbytes in size).
The reason for supporting this platform is
the same reason Microsoft moved from a
16-bit to a 32-bit address space—ever
increasing requirements for storing and

processing huge amounts of data in
memory.

Although the VLM extensions in
Windows NT 5.0 alleviate to some degree
the address space limitations in 32-bit
Windows NT, they present a variation of
the process address space that requires spe-
cial application support. Also, processes
are limited to the storing of data in the
large memory area. Finally, only the VLM-
enabled Win32 API functions support 64-
bit pointers—many other system functions
don’t. In 64-bit Windows NT, all APIs that
accept pointers will accept 64-bit pointers.

In 64-bit Windows NT, the Win32 API

will be extended to a true 64-bit program-
ming interface called Win64. Various para-
meters that currently reference 32-bit
memory addresses will be widened to 64-
bit pointers. This new API will be designed
to make porting from Win32 as straight-
forward as possible and will allow a ven-
dor to maintain a single source that can be
compiled to produce both a Win32 and
Win64 binary. The 64-bit Windows NT
will run existing 32-bit applications on
both Alpha and Merced and new 64-bit
applications in native 64-bit mode.
However, mixing of the two within the
same process won’t be permitted.

CUTTING-EDGE
TECHNOLOGIES
• NEXT-GENERATION

INTERNETS
• NEXT-GENERATION

SOFTWARE SYSTEMS
• 3D GRAPHICS AND

ANIMATION

Direct inquiries and requests for guidelines to
computer@computer.org.

C A L L F O R
S P E C I A L I S S U E S O N

.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 10,2023 at 17:30:56 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1015 Page 8

