
Linux Kernel Loadable Wrappers2

Terrance Mitchem, Raymond Lu, Richard O’Brien, Kent Larson
Secure Computing Corporation

2675 Long Lake Rd
Roseville, MN 55113

mitchem@securecomputing.com, lu@securecomputing.com, obrien@securecomputing.com

2 This work was supported by DARPA on contract number: F30602-96-C-0388.

Abstract
This paper describes the results of the

Hypervisors for Security and Robustness (Kernel
Hypervisors) program. Using the concept of a
loadable module, kernel loadable wrappers
(KLWs) were implemented in a Linux kernel.
These kernel loadable wrappers provide
unbypassable security wrappers for application
specific security requirements and can also be
used to provide replication services. KLWs have
a number of potential applications, including
protecting user systems from malicious active
content downloaded via a Web browser and
wrapping servers and firewall services for
limiting possible compromises. This paper also
includes a summary of the composability analysis
that was done on the program.

Keywords: wrappers, security wrappers,
kernel loadable modules, computer security,
application security, browser security, Linux
security

1. Overview

This paper describes the results of the
Hypervisors for Security and Robustness program
sponsored by DARPA’s Information Technology
Office. It describes the approach, called kernel
hypervisors, developed on the program for
selectively wrapping COTS components to
provide robustness and security, and summarizes
the major achievements of the program. Results
of the program, including all documents produced
and downloadable source code, is available at:
http://www.securecomputing.com/khyper/ .

1.1 Introduction

A hypervisor is a layer of software, normally
operating directly on a hardware platform, that
implements the same instruction set as that
hardware. They have traditionally been used to
implement virtual machines[1]. Kernel
hypervisors (hereafter called kernel loadable
wrappers or KLWs) are a similar concept, but are
implemented on top of an operating system kernel
rather than on top of the hardware. These KLWs
provide a set of “virtual” system calls for selected
system components.

KLWs are loadable kernel modules that
intercept system calls to perform pre-call and
post-call processing. They can be used to provide
an additional layer of fine-grained security
control or to provide replication support. Their
key features are that they can be set up to be
unbypassable, since they are in the kernel, and
they are easy to install, requiring no modification
to the kernel or to the COTS applications that
they are monitoring.

KLWs have a number of potential
applications, including protecting user systems
from malicious active content downloaded via a
Web browser and wrapping servers and firewall
services for limiting possible compromises.

1.2 Accomplishments

On this program, the following specific
accomplishments were achieved.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 1

• A framework was developed based on a
master KLW, whose job is to coordinate
installation and removal of individual client
KLWs and to provide a means for
management of these clients. The framework
allows client KLWs to be stacked so that a
variety of application specific policies can be
implemented, each by means of its own
KLW.

• A variety of specific client KLWs were
developed to test and demonstrate the
feasibility of the KLW concept Specific
wrappers developed were:

1. Netscape browser wrapper: to limit the
damage that could be done when a user,
browsing on the Internet, downloaded
and executed malicious active content.

2. Apache web server wrapper: to protect
the server’s data files from unauthorized
modification and to limit the damage that
could be done if the server was taken
over by a malicious user.

3. Replication wrapper: to automatically
replicate files as they are being modified
in a manner transparent to the
applications performing the
modifications.

The Netscape browser and Apache web
server client KLWs are actually generic
wrappers that can be used to isolate an
application and its data files in a separate
domain so that the application is protected
from other components of the system and
vice versa.

• A management component was developed
that provides the ability to dynamically
reconfigure the policies that the various client
KLWs enforce.

• Performance testing was done to measure the
impact of the various client KLWs on the
performance of their associated
applications.[7]

• A composability analysis was performed to
analyze the security implications of stacking
client KLWs.

• The source code for the KLW components
developed on this program has been made

available on the web for other researchers.
All code was developed for the Linux
operating system.

1.3 Document Organization

The remainder of this document is organized
as follows. Section 2 describes the KLW
architecture, presents a high level view of the
system components that were developed and
discusses some of the possible uses of KLWs.
Section 3 describes the composition analysis that
was performed on the system. Section 4
documents some of the lessons learned on the
project and open issues. The References section
includes a list of cited and related documentation.

2. Approach

Section 2.1 presents an overview of the Linux
KLW architecture that was developed on the
program and includes a brief discussion of the
benefits of the approach and how it relates to
other research work. Section 2.2 then provides
more details of the specific system components
that were developed. More details of the
implemented system can be found in the Design
Report [3]. Section 2.3 documents some of the
possible applications of the KLW technology.

2.1 Architecture

The KLW architecture is illustrated in Figure
1. There are three main components:

• The master KLW manages the individual client
KLWs that are currently loaded and provides a
control facility allowing users to monitor and
configure these client KLWs.

• Specific client KLWs provide application
specific policy decision making and
enforcement. Each client KLW can wrap one or
many applications. User daemons that run in
user space can also be developed to allow the
client KLWs to initiate actions in user space.

• The client KLW management module provides
an interface for communicating with and
configuring the client KLWs from user space.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 2

KLWs are distinguished by the fact that they
consist of loadable kernel code that is used to
wrap specific applications. Other approaches have
been used to provide wrappers for additional
security or robustness including:

• Traditional hypervisors that replace the standard
hardware interface with an interface that
provides additional capabilities. This approach
was used by Bressoud and Schneider[1] for
building a replication KLW that intercepts,
buffers, and distributes signals from outside the
system.

• Special libraries that include security
functionality and that are linked with an
application before it is run. This is the approach
taken by SOCKS[4] where the client links in the
SOCKS client library. SOCKS is intended for
use with client/server TCP/IP applications, but
the concept of linking in special libraries can be
used for any type of application.

• Wrappers that make use of an operating
system’s debug functionality. This is the
approach taken by the Berkeley group[5].

Our approach is most like the last, but it differs
in that we place our code directly in the kernel and
do not use the system debug functionality. Loadable
KLWs have a number of benefits.

• They are unbypassable. Since the wrapper is
implemented within the operating system kernel,
malicious code cannot avoid the wrapper by
making direct calls to the operating system as
could be done with code library wrappers. Any
such calls will be intercepted and monitored.

• They do not require kernel modifications. All
KLW code is implemented as modules that are
loadable within the kernel while the system is
running. There are no changes to kernel source
code as is necessary with specialized secure
operating systems.

Kernel

User Space

Client KLW Master KLW

Client KLW
Management

User
Daemon

Monitored
Programs

User

• Master KLW provides communications and control
• Client KLWs provide application specific monitoring
• Client KLW Management provides the user interface for configuration of client KLWs

Figure 1. KLW architecture

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 3

• They are flexible. KLWs can be used both to
implement a variety of different types of
security policies and to provide replication
functionality. Some of the possible applications
are discussed below. A key feature is that KLWs
can be “stacked”, so that modular security
policies can be developed and implemented as
needed.

• They are not platform specific. KLWs can be
used on any operating system that supports
kernel loadable modules that have access to the
system call data structure. This includes Linux,
Solaris, and other modern Unix systems, as well
as Windows NT.

• They can be used to wrap COTS software
without any modification to the software
(including, e.g., relinking). KLWs can monitor
the actions of the COTS software and react in a
manner that is transparent to the COTS
application, other than it may be denied access
to certain system resources according to the
policy being enforced by the KLW.

The goal of KLWs is
to protect against
malicious code or to
provide some type of
additional functionality.
Hence, the operating
assumption is that the user
can be trusted. This
assumption implies that
KLWs are similar to virus
protection programs in
that a user must not
specifically disable them.
In fact, KLWs can be set
up so that they cannot be
disabled, but they do rely
on proper user
administration and use.

2.2 Components of the
System

Using the concept of a
kernel loadable module,
we implemented KLWs on
a Linux kernel. Linux was
chosen as the initial
platform because it
supports loadable
modules, the source code

is free and easily available so the results of our
work are accessible to other researchers and
developers, and it is widely used as a Web server
platform and hence provides a good target for our
approach.

Linux provides full support for kernel
loadable modules[6]. Three system calls are
supported that allow a privileged user to install
and remove loadable modules and to list which
modules are currently loaded. Once loaded, the
KLWs in Linux run within kernel space and have
full access to kernel data structures.

The remainder of this section discusses the
three major components of our implemented
KLW system in more detail.

• The Master KLW Framework

• The Client KLWs

• The KLW Management.

/dev/hyper

User Commands

Master
KLW

Client KLW #1 Client KLW #2• Register Self

• Register Stolen
System Calls

• User
Configuration
Commands

• Unregister Self

KLW Device

KLW
System Call Table

KLW List

• Maintains client KLW list

• Maintains KLW system call table

• Device driver for /dev/hyper

Figure 2. Master KLW functionality

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 4

2.2.1 The Master KLW Framework

A framework has been developed based on a
master KLW, whose job is to coordinate
installation and removal of individual client
KLWs and to provide a means for management of
these clients. The framework allows client KLWs
to be stacked so that a variety of application
specific policies can be implemented, each by
means of its own KLW. The KLWs run in the
kernel, but since they are loadable modules, they
do not require that the kernel be modified.

Figure 2 illustrates the framework. The master
KLW is loaded before any other client KLWs. A
special application programming interface (API)
has been defined that allows client KLWs to
register and unregister themselves with the master
KLW and to identify which system calls they
need to monitor. The master KLW keeps track of
all currently registered client KLWs and of the
particular system calls that each client KLW is
monitoring. When a client KLW module is
removed via the rmmod call, it is the
responsibility of the client KLW to de-register

itself with the master KLW.

A special device, /dev/hyper, has been defined
for communication between user space and
KLWs. The master KLW acts as the device driver
for this device. The device allows a privileged
user to dynamically update the configuration
information for a KLW, including updating the
security policy that the KLW enforces. It also
provides a mechanism that KLWs can use to
communicate with user space daemons. Such
daemons, for example, could be used to provide
additional audit capabilities or replication
services.

The master KLW provides special wrapper
code for use with any system call that is being
monitored. The actual monitoring of system calls
is performed by redirecting the links in the kernel
system call table to point to system call wrappers
that the master KLW provides. This redirection of
links is the only modification to the kernel that is
performed and is done by the master KLW only
on system calls being monitored. The wrapper
code is invoked when the system call is made and
performs the processing illustrated in Figure 3.

Figure 3. System call processing

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 5

Each system call has its own wrapper that follows
the algorithm:

• For each client KLW monitoring this call,
initiate that client’s pre-call processing.

• If the call passes the pre-call processing, call the
standard system call processing.

• For each client KLW monitoring this call,
initiate that client’s post-call processing.

Pre-call and post-call processing is used to
enforce the client KLW’s particular security
policy or to initiate other actions by the client
KLW. This processing could include additional
auditing of system calls, including call parameters
and results; performing access checks and making
access decisions for controlled resources that the
KLW is protecting; modifying system call
parameters; and passing information to user
daemons.

2.2.2 Client KLWs

Client KLWs are developed and loaded
separately as needed. A single client KLW can be
designed to monitor just one specific application
or a number of different applications. Client
KLWs could also be used to enforce other types
of policies independent of any application.

To illustrate the practicality of the KLW
concept, we prototyped three client KLWs: one
for wrapping the Netscape browser, one for
replicating files, and one for wrapping the Apache
Web Server.

Netscape KLW

The goal of the Netscape KLW is to protect a
user, browsing on the Internet, from downloading
and executing malicious active content that might
damage the user’s system. The Netscape KLW
accomplishes this by monitoring system calls
made by the browser and enforcing a policy that

only allows certain resources to be accessed. In
particular, the set of files that the browser can
open for read, and read/write access is controlled
so that the browser effectively operates within its
own limited execution context. While this does
not prevent malicious code from accessing, and
possibly damaging, resources within this context,
it does limit the damage that could be done to
only these resources.

In the case of the Netscape browser, the
context includes the user’s .netscape directory as
well as limited access to other libraries needed by
the browser to execute. Most files on the system,
however, are not accessible to the browser and so
cannot be damaged. To ensure that applications
started from the browser as the result of a
download, e.g. a postscript viewer, are also
controlled, the KLW keeps track of all
descendants of the browser and enforces the same
policy on them as on the browser.

The security policy that the Netscape KLW
enforces is stated as a set of rules identifying
which resources the browser is allowed to access
and what permissions the browser has to the
resource. If there is no rule that allows access to a
resource, then the KLW refuses any requests for
access to that resource. The format of the rules is:

<type> <identifier> <permissions>

where <type> is either a file, socket, or
process

 <identifier> is either a file/dir pathname, an
IP address, or a process ID

 and <permissions> depends on the type.

For our Netscape prototype, only rules for the
<file> type are used. For these rules permissions
are:

read, write, read/write, and none.

Certain conventions are used to simplify the
statement of the rules. If an <identifier> is a file
directory, then access to all files in that directory
and all subdirectories is governed by the rule for
the <identifier>, unless this rule is specifically
overridden. Rules can be overridden by stating
another, more specific, rule. For example, if a
rule allows read access to all files and
subdirectories of the directory /etc, then you can
prevent users from accessing the file /etc/passwd

Downloaded
Active

Content

Web Browser

Kernel Netscape KLW

Other Files
Browser
Accessible
Files

Open File

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 6

by including a rule for this file with a permission
of none.

Replication KLW

The replication KLW is used to transparently
replicate a file or set of files. The objective is to
provide a replication facility that allows
immediate backup of changes to a file without
having to modify any applications that are making
the actual changes.

The replication KLW monitors all system calls
that modify files. It looks for calls that access a
file that is being replicated. When such a call is
identified, the KLW caches the input parameters
and allows the call to continue execution. If
execution of the call completes successfully, then
the KLW sends the cached input parameters to a
replication daemon, operating in user space, that
replays the call with the cached parameters on the
copy of the file that it is maintaining.

Files can be replicated locally or across the
network (using NFS) via this method. Results of
the performance testing done are documented in
the Test Report available on our website.

Apache Server KLW

Based on our experience with the Netscape
KLW, a generic security KLW was developed
that can be used to isolate any application in a
compartment from which its access to files can be
completely controlled. This generic security
KLW, plus additional restrictions using
techniques developed for the replication KLW,
were used to develop a security KLW for the
Apache Web Server.

The web server requires two types of
protection. First, the server must be restricted to
a subset of the file system so that any attack
coming through the server will be contained.

This was accomplished by creating a new KLW,
hyper_apache, which is essentially the Netscape
KLW with a different policy.

The server's temporary scratch directory and
logging directories are configured as read/write
while the html files presented by the server are
configured as read only by hyper_apache.

The second piece of server protection is to
isolate the configuration and html files used by
the server from modification by unauthorized
individuals. This is accomplished by a new
KLW, hyper_cop (for Circle of Protection). Once
installed and configured, hyper_cop restricts
access to the files within its circle from all but
certain privileged users. This will prevent a
rogue user from overriding the system and
changing the content of the web site even if they
get access to root. The attacker will be required
to know who the privileged user is before changes
are allowed.

This implementation of hyper_cop is sufficient
to show proof of concept but some open issues
remain. Hyper_cop is configured by reading in
and storing a list of filenames to protect, which it
checks each time an open() call is encountered.
The filename being opened is checked against the
list and an access decision is made.
Unfortunately, relying on filename string
comparisons is a very inaccurate way to identify
files. To circumvent the protection, a user simply
needs to access the file by a different name than
the name being protected by hyper_cop. This can
be accomplished by many methods including
accessing the file through a symbolic link,
through the /proc directory structure or simply by
giving a relative path and name instead of the full
name of the file. How to identify and control all
such indirect accesses to a file is an open issue.
This is not an issue with the Netscape KLW, since
the policy that KLW enforces is that if a given
filename is not recognized as one to which access
is allowed, then the access is denied.

Apache
Web

Server

CGI
Script

Open File

Kernel Apache Server KLW

Other Files
Server
Accessible
Files

Other
Applications

Open File

Kernel

Application

1

Replication KLW
2

System Call

6

4 5

Replication
Daemon

6

3 Stored
Parameters

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 7

Stronger protection could also be achieved by
developing a shell that works with hyper_cop to
provide user authentication. Such a KLW/shell
combination could be used to provide strong
authentication before allowing a user to modify
the protected files.

2.2.3 KLW Management

The KLW management component allows a
user to obtain information on client KLWs that
are currently loaded and to reconfigure them, if
needed. (As noted earlier, KLWs are loaded and
removed through standard Linux system calls.)

All KLW management is done via
communication through the /dev/hyper device.
The master KLW responds to requests for a list of
all currently installed client KLWs and their
current identifiers. These identifiers are used to
direct requests to specific KLWs.

The management functions available for the
Netscape KLW include:

• the ability to list the current rules that are being
enforced

• the ability to clear the current rule set and load a
new one

• the ability to change the log level that the KLW
uses to determine what detail of logging it
should do.

2.3 Possible Applications

KLWs can be used in a variety of ways to
enhance the security and robustness of a system.
This section discusses some of the types of uses
followed by some specific applications.

2.3.1 Types of Uses

Auditing: In their simplest form, KLWs can
provide an audit and monitoring functionality that
merely records additional information about the
system resources that an application is accessing.
Such audit KLWs are also useful for determining
what system resources an application accesses
during its normal processing. For example, an
audit KLW was used to identify what resources
the Netscape browser and the Apache web server
needed to run. Since the level of auditing can be

dynamically adjusted and since KLWs also
provide a control mechanism, they could be
useful as a component of an
intrusion/detection/response system.

Fine-grained access control: The most
compelling use of KLWs is to provide dynamic,
fine-grained access control to various system
resources such as files, network sockets and
processes. The type of control possible is what
differentiates this method of wrapping
applications from standard access control list
methods that perform control based on a user
attribute. KLW security policies can be based on
users, but can also be based directly on the
application. For example, the Netscape KLW that
we implemented only monitored the Netscape
application as well as any other applications
started from within Netscape. Users had
additional privileges to access their own .netscape
directories, but could not override the restrictions
in the Netscape KLW security database. These
restrictions apply even to the root user. (In fact,
an additional restriction imposed by the Netscape
KLW was that the root user could not even run
the Netscape browser.)

Label-based access control: While the rule
sets described in Section 2.2 can be used to
implement most simple policies, it would also be
possible to use KLWs to implement more
sophisticated label-based policies, such as a
multilevel secure (MLS) policy or a type
enforcement policy. To be able to implement
these policies, a KLW would need a way to label
system resources. This might be done by creating
and maintaining its own list of labeled names, or
by piggybacking the labels on system data
structures that have available space. Because of
the flexibility of the KLW, these label-based
policies could be applied to only those portions of
the system that required labels. And policies
could be quickly changed, if needed, to adapt to
the current operating environment.

Replication: KLWs can also be used to
provide replication features by duplicating system
calls that modify system resources, such as files.
We have investigated one approach for doing this
by using a user daemon to replay file access
requests that are intercepted by a KLW. The
replayed requests effectively duplicate that
portion of the file system that is being monitored.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 8

This replication facility could be used to provide
dynamic file redo logs to support recoverability.

2.3.2 Specific Applications

Specific applications that KLWs can be used
for include:

• Wrapping web browsers to protect the user from
downloaded malicious active content.

This is described in more detail in the section on
the Netscape KLW. The most interesting point
is that any applications that are started
automatically from the browser, as well as any
plug-ins, are also subject to the same restrictions
that are on the browser.

• Wrapping web servers to protect against
malicious attacks.

KLWs can be used to ensure that if the web
server is overrun the damage is limited. In
particular, it can ensure that files being served
by the web server are not modified
inappropriately. Also, because they are often
easy to overrun, CGI scripts are sometimes
attacked by malicious users on the web. In
particular, if a CGI script has the ability to
connect to an internal system, then an attacker
might be able to compromise this CGI script to
launch an attack. By limiting which ports on an
internal system a CGI script can connect to, a
KLW can limit the attacker to only services on
those ports.

• Wrapping services and proxies on an
application gateway.

Services, like Sendmail, often have unknown
bugs that are only discovered when someone
uses them to attack the system on which the
service is running. Once again, KLWs provide a
way of limiting the damage that such a
compromise can cause.

• Adding new security features to a system.

KLWs can be used to add security features, such
as security levels, roles, or domains and types,
to a system without requiring any additional
modifications to the system. In fact, a special
kernel security KLW could be implemented that
performs all of the required security checks for
any other KLW.

This is only a partial list of the possible

security uses of KLWs. Any number of
applications could benefit from the additional
security that they can provide.

3. Composition Analysis Summary

This section contains a short summary of the
composition analysis that was done on the
program. The full set of specifications and
documentation of the composition analysis is in
the Formal Specifications report [8].

The application of composition to the analysis
of a system provides similar benefits as the
modular approach to writing code. Even if the
design (and specification) of one component
changes, as long as the properties and interfaces
between that component and the others remain
stable, then only the arguments made about the
properties of that one component need to be re-
verified. In other words, the assurance arguments
for unchanged components become reusable.

3.1 Specified Systems

The composition framework that was used is
the one developed on the Composability for
Secure Systems program which is the successor to
the framework developed under the DTOS
program. This framework is based on the work of
Abadi and Lamport[9] and of Shankar[10]. The
differences between the Composability and DTOS
approaches and that of Abadi and Lamport are
described in more detail in the Composability for
Secure Systems Refined Design Report [11] and
in the DTOS Composability Report[12]
respectively. For both the Composability for
Secure Systems program and the DTOS program,
the framework was specified in the PVS language.

The composability framework is based on a
state transition model. Each transition is a triple
of the form (initial state, final state, transition
agent). Depending on the needs of the analysis,
the state may represent either the component state
or the system state. The transition agent can
represent a variety of concepts, including
particular components, particular operations that
a component supports, or threads that implement
a component. Transition agents also can represent
agents in the component’s environment that are
not part of the component.

Four separate, but related, systems were

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 9

specified. The four specifications are related via
refinement. The second and third specifications
are refinements of the first; the fourth is a
refinement of the second. The systems are:

• no KLW loaded into the kernel; that is, just one
component: the kernel. Since this system has
just a single component, composability has
nothing to add to the analysis of it. However, the
kernel without any KLWs loaded into it forms
the baseline system from which all of the other
systems are built.

• a two component system consisting of the kernel
and a single security KLW that monitors write
requests loaded into the kernel

• an enhanced two component system consisting
of the kernel and a single security KLW that
monitors write requests and return parameters

• a multiple component system consisting of the
kernel, a controller KLW and a set of security
KLWs that monitor write requests. In this
specification, the single KLW has been refined
into a controller KLW and a set of KLWs each
of which have a security policy defined. It is
possible to implement a single KLW that would
behave identically to a system composed of the
components specified in this case, but the added
complexity of specifying the security policy
would make the task very complex.

Each specification describes the individual
components of the system and the common state for
the composite system. A list of properties satisfied
by each component was derived, and composability
theory was used to show that these properties are
satisfied by the composite system.

3.2 Conclusions of the analysis

Since composability theory says that the
properties of a system are just the conjunction of
the component properties, the analysis seems to
be trivial. In fact, the hypotheses placed on a set
of components for composability are so weak,
that the composition theorem seems to say almost
nothing. However, the final results are not as
trivial as they appear at first glance, and this is
often the case with any mathematical construct
which is defined well. The strength of
composition comes not from the composition
theorem per se, but from the way in which
composition of two components is defined.

The interesting features of a specification
come in the decision of what should be specified
in each component’s transitions, and what other
transitions each component can tolerate. In fact,
much of the strength of the properties relies on
what things one can reasonably enforce on the
environment of a component. The more that one
can enforce on the environment of a component,
the more strongly one can state (and perhaps
more easily one can prove) the properties of the
component. However, the counter argument is
that specifying too much in the environments of
the system components can specify away all
functionality of the composite system (since the
composite consists of only those individual
component transactions that satisfy each of the
other component’s environment transaction
specifications). The goal therefore is to specify in
each component’s environment only those things
that are needed to prove the component’s
properties hold.

The first specification represents an operating
system that is not protected by a KLW. The final
three specifications represent refinements of a
sort on that initial specification. They are not true
refinements in the sense that the KLWs are
enforcing a security policy in addition to the one
already enforced by the kernel. However, this
appears to be the most powerful application of
composition. While the code for the kernel itself
may be unavailable to the developers of the
KLWs, the KLWs are kernel-loadable modules,
and thus represent a refinement of the kernel.
Since the code for the kernel may be off limits,
the interfaces and properties of the kernel are
both well-defined and stable.

This is an ideal situation for the re-use of the
specification of the kernel properties. We know
what they are to begin with. After loading the
KLWs into the kernel, the properties of the
composite system are just the conjunction of the
properties of the KLWs and the kernel. That
means that we can layer the desired behavior of
the KLWs over the properties of the kernel with
the assurance that these properties will also hold.

4. Lessons Learned and Open Issues

This section contains some lessons learned
and open issues from the work done on the
program.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 10

4.1 Lessons Learned

An original goal of the program was to
investigate whether kernel loadable modules
could be used to add additional security and
robustness to systems with minimal impact on the
system and system applications. The results of
the program clearly demonstrate that this is not
only possible, but, in fact, has many advantages
over other approaches for wrapping system
components.

One of the more interesting results of our
work is the validation of the concept of a master
KLW to control the specific client KLWs and to
provide communication between user space and
specific KLWs for management. An alternative
approach would be to construct one large
loadable module that contained all of the
functionality of both the master KLW and the
specific client KLWs. This large module
approach would be much less flexible,
manageable and maintainable. Hence, proving
that the more modular approach used on the
program actually worked is a significant
accomplishment.

Another interesting result is the development
of a generic KLW that can be used to provide an
isolated environment within which an application
can execute. As demonstrated with both the
Netscape KLW and the Apache Web server
KLW, the generic KLW is easy to configure for
applications with minimal work. By running the
KLW in audit mode, the files that the application
normally accesses can be identified and the
appropriate configuration file constructed that
allows only the accesses needed by the
application.

The hyper_cop KLW provides the other most
common type of additional access control needed:
controlling the accesses to particular files for all
applications and users on the system. The
combination of the generic KLW with the
hyper_cop KLW provides most of the additional
access control that might be desired. As
discussed earlier, however, there are still some
open issues involving the hyper_cop KLW.

4.2 Open Issues

While the feasibility and usability of KLWs
was shown on the program, there are some areas

that were not fully addressed.

• Network and process control.
The KLW framework is appropriate for
controlling access to files, network resources
and processes, however, only file access
control was investigated on this program.

• Platform independence.
While the KLW approach should work for
any system that supports kernel loadable
modules, it has only been tested on the Linux
operating system. For other Unix systems,
like Solaris, that support kernel loadable
modules, it should be a relatively straight
forward task to port the current framework.
For a system like Windows NT, that is
proprietary with little kernel documentation,
it remains an open issue as to how well the
approach will work. There are unofficial
ways to insert code to intercept system calls
on NT that have been documented [13].
However, whether these methods are
sufficient to support the KLW framework is
unknown. SCC is currently under contract
with AFRL to develop KLWs for NT.

5. Summary

KLWs are an approach to wrapping
applications to provide additional security that
has a number of advantages over other
approaches. Because they reside in the kernel,
they cannot be bypassed. Because they are
implemented as loadable modules, they do not
require any modification to the kernel. Because
they do not require modification to an
application, they can be used to dynamically wrap
processes that are started from other processes
that have already been wrapped. Because they can
be easily configured, the policy that they enforce
can be dynamically modified as needed. By
limiting the amount of damage malicious software
can do, KLWs provide an approach to protecting
one’s system against current and future threats
that may still be unknown.

The Kernel Hypervisors program has
successfully demonstrated the feasibility and
usefulness of using kernel loadable modules to
add additional security and robustness to an
application without needing to modify either the
application or the operating system on which the
application runs. Future research should now

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 11

focus on extending the framework developed on
this program to other platforms and on developing
new and enhanced client KLWs to provide
security, reliability and recovery features not
currently available.

6. References

[1] Thomas Bressoud and Fred Schneider. Hypervisor-
based Fault-Tolerance. Proceedings of the 15th ACM
Symposium on Operating System Principles. December,
1995. ACM Press.

[2] Terrence Mitchem, Raymond Lu, Richard O’Brien.
Using Kernel Hypervisors to Secure Applications.
Proceedings of the 1997 Applied Computer Science
Applications Conference. December 1997.

[3] Secure Computing Corporation. Design Report,
Hypervisors for Security and Robustness Program, CDRL
A005. February 1998.

[4] M. Leech, et al. RFC 1928: SOCKS Protocol Version
5. March 1996.

[5] Ian Goldberg, David Wagner, Randi Thomas and
Eric Brewer. A Secure Environment for Untrusted Helper
Applications. Proceedings of the 6th USENIX Security
Symposium. July, 1996.

[6] Bjorn Ekwall and Jacques Gelinas. Linux Modules
2.1.3 Documentation. June, 1996. Distributed with Linux
source.

[7] Secure Computing Corporation. Test Results,
Hypervisors for Security and Robustness Program, CDRL
A006. February 1998.

[8] Secure Computing Corporation. Formal
Specifications, Hypervisors for Security and Robustness
Program, CDRL A007. February 1998.

[9] Martin Abadi and Leslie Lamport. Conjoining
Specifications. ACM Transactions on Programming
Languages and Systems 17, 3. May 1995.

[10] N Shankar. A Lazy Approach to Compositional
Verification. Technical Report TSL-93-08, SRI
International, December 1993.

[11] Secure Computing Corporation. Composability for
Secure Systems Refined Design Report. February 1998.

[12] Secure Computing Corporation. DTOS
Composability Study. February 1997.

[13] Mark Russinovich and Bryce Cogswell. Windows
NT System-Call Hooking. Dr. Dobb’s Journal, January,
1997.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 16,2023 at 16:01:24 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1018 Page 12

