TrustedBox: a Kernel-Level Integrity Checker

Pietro Iglio
Fondazione Ugo Bordoni
Rome, Italy
e-mail: iglio@fub.it

Abstract

There is a large number of situations in which
computer security is unpopular. In fact, common users
do not like too much restricted security policies.
Usability is often preferred to security. Many users want
to be free to use their computers to run untrusted
applications. Moreover, it is not possible to require that
every computer user is a Security expert. As a
consequence, it is very easy for hackers to gain access
to a computer system, and to perform a number of
unauthorized operations.

In this paper we focus on the problem of system
integrity. There are some applications in which system
integrity is at least as important as privacy and service
availability. For this purpose, we have designed and
implemented TrustedBox, a kernel-level integrity
checker that can be used to enforce a very restricted
security policy and that allows users to use the same
system to perform untrusted operations.

1 Introduction

Nowadays an increasing amount of critical tasks are
carried out using computer systems. For this reason,
computer security is, and will be, a primary goal in
many modern commercial and governmental
organizations. A lot of work has been done in recent
years to protect systems against different kinds of
attacks.

In spite of the progress in the field of computer
security, there are some real life situations in which
users are not protected enough when they carry out
critical operations.

The main reason is that, in general, common users
are not computer security experts. In most situations,
they are not even computer experts. Such a lack of
expertise is really helpful for hackers, because common
users can hardly realize that the system has been
compromised.

Moreover, a restricted security policy is often
impractical because it would limit too much the usability
of the system. In many organizations there is the need of
using the same personal computer to edit documents, to

surf the Web, to exchange e-mail, to run multimedia
applications, and to perform critical tasks.

For example, it is a common practice to use the same
personal computer to run untrusted applications (such as
applications downloaded from the network) and to buy
products through sites offering e-commerce services.
This common practice can be very dangerous, for
several hacker’s toolkits are widely available through
the Internet. By using these toolkits, hackers could break
into systems and replace critical operating system
components to gain remote control of the system and to
leave hidden backdoors for future access.

NetBus [NTB] and BackOrifice [BKO] are just two
examples of software tools that can be used by hackers
to have the complete control of the victim's personal
computer. Such programs can infect any computer
running Windows™ 95 and Windows™ NT by installing
themselves as hidden system components. On many
hacker Web sites it is explained how to use any
executable program as a ftrojan horse to infect a
Windows system using NetBus or BackOrifice. Some
software tools are even publicly available to simplify
this task. Once the system has been infected, hackers can
remotely read all keystrokes, read and upload files, etc.
on the infected machine.

Similarly, tools such as Rootkit [VEN] can be used
to attack UNIX™ systems and to install modified
versions of critical system components in such a way
that it is very hard to detect their presence.

Companies pushing on e-commerce services
advertise the absolute security of all communications
with their servers because they are using strong
encryption. Nevertheless, they never say that encryption
is useless if the client has been compromised. Therefore,
most users do not even know that their system could be
remotely controlled by a hacker that, bypassing all
cryptographic protections, could read all keystrokes,
including passwords, credit card number, and so on.

In this work we focus on system integrity. There is a
number of situations in which compromising critical
system components, application or data can cause
serious damages. For example, there are some countries
in which the digital signature legislation states that
digital signatures can be used to sign legal statements,
such as contracts or commercial agreements. In these

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 1

countries, a compromised system running a modified
version of the digital signature software run by a
manager could lead to loss of money or other kinds of
troubles. Similarly, a compromised Web server serving
hacked pages could seriously damage the public image
of a company.

In Section 2, we discuss the problem of protecting a
user against a compromised system. First, we go through
some typical approaches to the problem. Then, we
explain why those approaches are still unsatisfactory to
ensure a high-level of protection against experienced
intruders. In Section 3, we present our solution. Details
about the implementation are provided in Section 4. In
Section 5 and Section 6, respectively, we show some
examples of applications and we discuss some
limitations of our solution. In Section 7, we compare our
work with other existing solutions. Finally, we
summerize our future plans and finish with our
conclusions.

2 Is What You See What You Think It Is?

In the past years computer systems have constantly
grown in complexity. About fifteen years ago personal
computers were equipped with a very simple hardware
and a primitive, single-task operating system that could
run in a few kilobytes of memory. The number of users
performing critical tasks by means of such systems was
very low.

A modern personal computer is likely to have tens of
applications installed, several gigabytes of hard disk
storage, and hundreds of system components spread
across the file system. Most operating systems are able
to run more applications at the same time, and are based
on an open architecture to be easily extended. Similarly,
even the simplest application can have a very complex
structure and be made of several components spread out
in the system.

As a consequence, it is very hard to detect what is
really going on when the system is running. From a
user’s point of view, the computing environments look
simpler to use because of the progress of graphical user
interfaces. The drawback is that a modern system is
much more complex than those in use fifteen years ago.
Of course, as complexity increases security is harder to
enforce.

Even if a system is very carefully configured and a
good security policy is somehow enforced, a single
mistake made by an inexperienced user or, worse, by the
system administrator could compromise the security of
the whole system, or some parts of it. A single access to
the system by an untrusted entity is sufficient to hide
fraudulent code in the meanders of the system.

The basic problem is that, while much effort has
been made to protect the system by unauthorized users,
not too much care has been taken for the converse.
Almost all modern operating systems provide
authentication and access control ~mechanisms.
However, to the best of our knowledge, there is no
widely used operating system that provides a built-in
mechanism for the user to authenticate the operating
system itself, its critical components, and all running
applications.

Common users, for example, are wused to
“authenticate” applications through their user interface.
Nobody, of course, looks at the binary code of an
application to check that the application itself is doing
exactly what it has to do. How can users be sure that
they are not performing critical operations on a
compromised system?

Many solutions have been proposed to address this
problem. A number of currently available tools,
generally referred to as audit tools, fall into the
following categories:

e integrity checkers: programs that compute a
cryptographic signature for each critical system
component or application, and compare the
signature against a previously created database.

e anti-virus programs: programs that try to identify
and block infecting programs by inspecting the
content of files coming from an external source
(e.g., a diskette or the network). They try to
match the content of files with strings of bits
from a database of known viruses.

o static audit tools: programs that check for system
misconfiguration.

Note that some tools fall in more than one category.
For example, some anti-virus programs include integrity
checking capabilities.

We claim that none of the above approaches
provides a satisfactory solution to the problem of
protecting systems used to perform highly critical tasks.

A suitable configured integrity checking tool should
always be used in a situation in which we want to be
sure that a system configuration does not change over
the time. Such tools can be used for monitoring the
executable programs of the operating system,
configuration files, and applications. The problem is that
most of them do not perform continuous monitoring, but
they have to be periodically run by the administrator.
They can be useful to discover that a file has been
modified, but they cannot prevent using modified files.

The limit of anti-virus programs is that they can
successfully recognize only known computer viruses, or
some known behavioral patterns (e.g., attempts to

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 2

TB kernel loads and
authenticates /sbin/init;
security admin public key is
passed to /sbin/init;

init authenticates the
system integrity database

boot loader + TB kernel;
and loads it into the kernel

—

system booted using]

boot process completed loading

operating system modules, configuration files, boot - —
executables, etc.; any component can be used only if 4.[boot finished; restriction on root] s

its hash matches the value stored in the executables is enabled
system integrity database

Figure 1: TrustedBox kernel boot process

replace the boot sector). They are not guaranteed to
work against new and still-not-classified viruses. Most
of anti-virus programs, for example, can detect
BackOrifice and NetBus, but they would probably fail to
detect variants of those spy programs.

Similarly, static audit tools provide a valuable help
to discover some known attacks, but they can do nothing
if the attack has not been classified yet. Another
problem is that many of them do not perform continuous
monitoring, but they need to be run by the system
administrator. Finally, we must say that such tools do
not generally check whether an application has been
compromised.

In addition to the above problems, most audit tools
suffer from an inherent limitation: they rely on the
underlying operating system. An experienced hacker
could replace or intercept critical system calls to deceive
an auditing tool. For example, it could be possible to
change the open system call in such a way that when the
auditing tool requests a compromised file, the system
call returns the original version of the file. Even better,
the compromised operating system could intercept all
user requests for the execution of the audit tool and run
a fake version of the audit tool itself.

It is possible to compromise the operating system in
a number of ways. Once an intruder or a trojan horse has
gained superuser privileges, there is nothing to do, even
using active audit tools. Everything that runs before the
audit tool is executed could attack the audit tool itself.
For example, the system administrator has generally
enough power to kill any process, and to replace any
executable program. Thus, if we assume that no
encrypted file system is used on the victim’s computer,
then an intruder that gains physical access to the system
could install the hard drive or another system, and
modify any audit tool by using a raw disk editing tool.

3 The TrustedBox Approach

The solution we describe is suitable for a large
number of situations in which users do not need to
perform unsafe and critical operations at the same time.
Such situations are fairly common: some users use their
personal computer most of the day to write documents
and, occasionally, they have to issue digital signatures; a
company Web server running is performing a critical
task (i.e. serving “official” Web pages approved by the
company itself), and sometimes the Web master has to
update pages and perform administrative tasks.

Under these circumstances, the TrustedBox
approach has the following advantages:

e users can be effectively protected against highly
motivated individuals that could somehow
replace any file in the file system;

o users can use the same system, at different times,
both for unsafe operations and highly critical
tasks;

o the role of the security administrator is separated
from the role of the system administrator; the
system administrator does not even need to be a
trusted entity;

e it is possible to enforce a restricted security policy
for critical tasks;

o there is no need to modify existing applications to
be aware of new security mechanisms;

o there is no need to keep a system used for critical
tasks in a secure location with restricted access;

e it is inexpensive and practical,

We distinguish two security policies, a relaxed
policy and a restricted policy, corresponding to two
system states, the untrusted state and the trusted state.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 3

When in untrusted state, the security policy could be
relaxed in favor of usability. Users could have
permission to download and run unsafe applications
from the network, to enable dangerous network services,
to allow system access to other users, and so on. In real
life, it is very common that users have such requirements
for their activity.

It is obvious, however, that a system running in
untrusted state can be easily compromised. For this
reason, users are required to switch to the trusted state
when they have to perform critical tasks. To enter in
trusted mode the user has to shutdown the system and
boot with a TrustedBox kernel (TB kernel). This is
necessary because any part of the system could have
been modified, including the operating system itself.

A TB kernel is based on a regular kernel that has be
modified to enforce the restricted policy. Our prototype
is based on a UNIX kernel, but most concepts apply to
other operating systems as well.

The TrustedBox kernel has been previously stored
on bootable media (e.g. a diskette) that must be kept
from the user in a safe place. The TB kernel contains a
minimal kernel required to boot the system and access
the file system. Note that the integrity of the whole
system relies on the integrity of the boot media.

Once the kernel has been loaded, it verifies the
integrity of the /sbin/init executable. Under the
UNIX operating system, /sbin/init is the first
program that is run at boot-time by the kernel, and it is
responsible to complete the boot process. The integrity
of /sbin/init is verified comparing its message-
digest with the corresponding message-digest stored on
the boot media.

When /sbin/init is launched, the TB kernel
passes the public key of the security administrator as a
command line option:

/sbin/init -pk public-key

Note that the public key is stored on the boot media,
therefore it comes from a trusted source. The modified
version of init uses the public-key to authenticate the
system integrity database, a database containing the
message-digest of all critical files, including
executables, kernel modules, configuration files, etc.

Next, init loads the system integrity database into
the kernel and continues a normal boot process. Kernel
modules can be loaded, services started, and so on.
However, since we are starting a trusted system that is
stored on an untrusted file system (except the boot
kernel), every single component is authenticated using
the message-digest from the system integrity database. If
the message-digest for a file does not match the value

stored in the system database, the kernel refuses to open
the file.

The diagram in figure 1 summarizes the trusted boot
process. In the rest of this section we describe the
restrict security policy that can be enforced using the TB
kernel, plus some other details.

3.1 Security Policy in Trusted Mode

The TB kernel distinguishes between trusted files
(i.e. files listed in the system integrity database) and
untrusted files (the remaining files). In addition to the
standard security mechanisms of the underlying
operating system, the TB kernel imposes a number of
restrictions concerning program execution and file
system access. In particular, an application can be
executed if and only if:

o the user is authorized to run the application,
according to the standard security mechanisms
of the underlying operating system;

o the application is listed in the system integrity
database;

o the application message-digest matches the
message-digest stored in the system integrity
database;

Furthermore, an application can be executed with
superuser privileges if and only if it meets the above
requirements and is marked with the super option in the
system integrity database. This restriction has been
added because applications running with superuser
privileges are so powerful that can bypass many security
mechanisms, especially on UNIX systems. The security
administrator can limit to the minimum the set of
superuser applications that can be executed in trusted
mode setting the super option only for the applications
required to perform the critical tasks. It is possible, for
example, to not permit the execution of any shell with
root permission. Note that this is a strong restriction to
the common operating system policy, where the
superuser can execute every application.

Since some applications may need to run with root
privileges during the boot process (e.g. /bin/sh can be
needed to start some daemons), the restriction on the
execution of superuser applications must be explicitly
enabled using a new system call, thox set state. Such
system call is used to raise the TB state from booting,
that is the initial state, to rumming, that is the normal
state in which the user works.

A correctly configured system should raise the
execution state to running once the boot process has
been completed to enable the restriction on executables
that run with root permission.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 4

Note that the system call has been implemented in
such a manner that, once the state has been raised to
running, it cannot be changed for the rest of the session.

As far as non-executable files are concerned, the
policy is slightly different. The TB kernel authorizes a
regular process to open a file with read permission if
and only if:

o the file does not appear in the system integrity
database (i.e. it is an untrusted file);
or
o the file appears in the system integrity database
and its message-digest matches the digest in the
configuration file;

Permission to open untrusted files is granted so that
it is possible to run a large number of applications that
work on newly generated files or access to files
modified during the trusted session. For example, a
linker needs to access files created by a compiler. Since
such files have been created during the current trusted
session, they are not stored in the system integrity
database (that must exist at boot time). Note that, unlike
regular files, executable files can be only executed if
they exist at boot time.

The authorization to open untrusted files can lead to
security problems in some circumstances. For example,
if our application needs a per/ interpreter to run, once
we must authorize the execution of the per/ interpreter
in trusted mode. In this way, it would be possible to
execute any perl script, because the execution of a
script, from a kernel point of view, corresponds to an
“open” operation (and not to an “execution” operation).
However, we want to have a strict control on the set of
programs that can be executed (regardless of the fact
that they are binary programs or scripts). To address this
issue, an entry in the system integrity database for an
executable program can be marked with a special flag,
open_only_trusted, and the following rule holds:

o the TB kernel authorizes a process marked with a
open_only_trusted flag to open a file for reading
if and only if the file appears in the system
integrity database and its message-digest matches
the digest in the configuration file;

The last constraint allows the security administrator
to safely authorize the execution of interpreters, because
it enormously reduces the risk that users run trojan
horses hidden inside untrusted scripts.

It is easy to understand that the TB kernel strongly
relies on the integrity of any executable, library,

configuration files etc. that is used when the system is in
trusted state. For this reason, the TB kernel rule imposes
this additional restriction:

e it is not possible to change any file, executable or
not, that appears in the system integrity database;

As far as directories are concerned, it is possible to
sign the content of a directory, i.e. to sign the listing of a
directory at a given time. A directory listed in the system
integrity database is said to be a frusted directory. Here
are the limitations imposed by the TB kernel for trusted
directories:

e it is not possible to change the content of a trusted
directory (e.g. adding or removing files from that
directory);

e it is not possible to open for listing a trusted
directory whose signature does not match the
value stored in the system integrity database;

e a trusted directory can only contain trusted files
and other trusted directories;

The signature of a directory is useful to avoid any
change to the boot process. Under many UNIX systems,
in fact, the boot process is carried out running all
programs belonging to some special directories (e.g.
/etc/rc.d). The security administrator can “sign” a
particular boot process signing these directories and all
contained executables.

Finally, for any operation not mentioned here, the
normal access control policy of the operating system is
applied.

4 Implementation Details

As a proof of concept, we have developed an
experimental prototype of the TB kernel based on a
modified version of the Linux kernel. The prototype is
not meant to be a complete and highly-secure
implementation, but it is useful to evaluate the usability
of a system running in trusted state. At the time of
writing, the prototype does not implement integrity
checking for directories and other minor details.

A substantial work has been done on the Linux
kernel to change the semantics of some system calls
(open and execve) and to add new system calls. The
changes to the Linux kernel can be summarized as
follows:

¢ an implementation of the SHA algorithm has been
added at kernel level,

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 5

fb0347750£82b8bf£5684£f11fc586ebddd919878
blb67ad426bcd08d68chb8l7aece75effdel533b3
3dd6a70d8bec298033808cf9647c664043a7e91e
71c31£f59ae2896a3ff6ca6e7092eece0f2db2bf3
ec636b4c89a82b5c239%e3bcaf8ccce6cddl9e042
a09d4e2eef5p4014d8987£feel696749556e04e8c

/sbin/init
/etc/syslog.conf
/etc/rc.d/

/bin/ping super
/mnt/nfs/data always

/usr/bin/perl super, open_only trusted

Figure 2: Example of system integrity database entries

¢ a new boot-time parameter has been added; the
new parameter is used to pass the message-digest
of the system integrity database to the kernel;

o the open and the execve system calls have been
modified to implement the policy described in
the previous section;

e a system call, add _sid entry, has been added; this
system call is used by the trusted init program to
load the system integrity database into the TB
kernel,

e a new system call, thox set state, has been added
to enable the restriction on root executables;

Furthermore, we have obtained the frusted-init
program modifying the normal init program to accept an
extra parameter (the security administrator public key),
authenticate the system integrity database and to load it
into the kernel. In particular:

o the TB kernel runs trusted-init passing the public

key stored on the trusted boot media;

o trusted-init passes the public key to a
cryptographic module that verifies the signature
of the system integrity database. The
cryptographic module is statically linked, to
avoid trusting external libraries or programs;

o trusted-init repeatedly invokes the add sid entry
system call to pass each entry to the TB kernel;

o after that the last entry has been passed to the TB
kernel, trusted-init calls add sid_entry passing a
special parameter that stops the kernel from
accepting further entries. In this way, it is not
possible for other programs to add new entries
that are not stored in the system integrity
database;

o trusted-init completes the normal boot process;

o after the boot process has been completed, the
following invocation:

tbox set state (TBOX STATE RUNNING) ;

enables the restriction to run as root only
executables that have been marked with the super
flag.

The signature of the system integrity database is
verified using a publicly available implementation of the
RSA algorithm [RSA] using a MD5 hash algorithm. Of
course, any other algorithm can be used with minimal
changes, according to the security requirements of a
particular application.

The boot diskette is prepared copying on it the TB
kernel and the Linux Loader (LILO). Since the security
administrator public key is too long to be passed as a
kernel parameter, it has been hard-coded into the TB
kernel. Currently, this requires that the kernel is partially
re-compiled when the public key is changed. Changing
the public key, however, should not happen frequently.
However, we have planned the development of
maintenance tools to simplify the process of storing the
public key on the boot media.

The system integrity database is stored into a text
file, /etc/sysintdb. A system integrity database entry
has the following format:

hash filepath [super][always][open only trusted]

The nash value is an ASCII representation of the
message-digest for filepath. The optional super
keyword means that the file can be executed with root
privileges. This keyword is meaningless if the file has
no execute permission. The always keyword can be
optionally specified to force integrity verification every
time the file is open. This keyword is related to an
optimization that is explained in the subsection
“Performance Improvements”. Finally, the
open_only trusted keyword is used to specify that the
executable file can access only files listed in the system
integrity database.

Some sample entries are shown in figure 2. The
cryptographic signature of the system integrity database
is stored into the /etc/sysintdb.sig file.

4.1 Performance Improvements

Invoking a message-digest calculation for each open
and execve system call invocation introduces a
performance overhead, since these system calls are used

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 6

very frequently. In order to greatly reduce this overhead,
we have adopted the following optimization: each file to
be authenticated is authenticated only the first time it is
accessed. Then the file is marked, for the rest of the
trusted session, as authenticated. No other checks will
be performed after that the file is marked as
authenticated until the next system shutdown.

Note that, since it is not possible to open for changes
a file listed in the system integrity database, the
authenticated file will not change its contents for the
whole session. However, it is possible to disable this
optimization for some files specifying the always
keyword in the system integrity database. In such case,
the file will be checked at each access.

Further performance improvements could be gained
using a faster implementation of the SHA algorithm, or
a faster message-digest algorithm. Performance,
however, was a secondary issue respect to security for
the kinds of applications we had in mind during the
design of TrustedBox.

5 Examples of Applications

As explained in the previous sections, TrustedBox
provides a valuable help to run applications in a trusted
environment without using dedicated machines with a
very restricted and controlled access. Once the system
has been correctly configured, it can be used even by
inexpert users without too many restrictions. Their only
responsibility is to perform highly critical tasks in
trusted mode and to keep the boot media in a secure
place.

An example of application in which TrustedBox can
be really helpful to solve a lot of security and
administrative issues is the generation of digital
signatures. We can imagine the following scenario: a
number of users in the same organization use digital
signatures to sign critical documents, such as financial
transactions or contracts. The same users, however, use
their personal computers for other tasks, such as word-
processing, e-mail exchange and Internet surfing.

The scenario described is very common, as digital
signature is becoming very popular in many modern
organizations. A security administrator is responsible to
set up, on a isolated machine (disconnected from the
network and running in single-user mode), a safe
environment with the minimum set of applications
required for the trusted mode. The safe environment can
include, for example, a document viewer (such as a
HTML browser), a smart-card driver and a software to
digitally sign documents.

After that all the software has been carefully
verified, the security administrator can use the
appropriate maintenance tools to create the system

integrity database and the boot diskettes that will be
distributed to all employees.

The system administrator can than install the trusted
configuration, along with the system integrity database,
and all network connected machines that need to run the
trusted environment. As previously pointed out, the
security administrator and the system administrator can
be two different entities, and the system administrator
could even be untrusted. Once users have got their boot
media, in fact, the integrity of the subsystem used for
critical operations will be automatically checked.

There is no way the system administrator can install
a modified configuration (assuming that the safe
configuration has been correctly chosen, of course).

Users can now perform their regular tasks booting in
untrusted mode: for example, they can edit documents
and download documents to be signed from the network.
Periodically, e.g. twice a day, they boot in trusted mode,
view the documents with the authenticated viewer, and
sign them using a smart-card.

Note that in a similar scenario the responsibility of
the system administrator is greatly reduced. He must not
keep under constant monitoring a large number of
critical workstations and, on the other hand, users don't
have to trust the system administrator when they sign
critical documents. As far as users preserve the integrity
of the boot media, there is no need to prevent physical
access to their workstations when they are not running in
trusted mode.

Another situation in which TrustedBox can be worth
using is for running specialized servers, i.e. servers
running a restricted number of applications. Examples
are critical Web servers or firewalls. Running a system
like a Web server in trusted mode could greatly limit the
potential damage by an intruder that gains unauthorized
access to the system. In the past months, for example, a
number of Web sites have been hacked. A typical attack
consists of a replacement of some Web pages with a
modified version of the same pages. This kind of attack
can seriously damage the credibility of a large
organization.

If a TB kernel is used to run the Web server and the
Web pages are added to the system integrity database, it
would be virtually impossible to bypass the kernel-level
imposed restrictions to modify trusted files.

Likewise, it would be really hard to modify the
configuration of a firewall that runs on the top of a TB
kernel. A security company could install and configure
firewalls whose configuration cannot be modified even
by the customer. In this way, it should be possible to
avoid a potential dispute about a firewall
misconfiguration, since the firewall could only run with
the provided configuration.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 7

6 Limitations of TrustedBox

Despite the valuable help of TrustedBox in the
protection of system integrity, it has some inherent
limitations.

From a security point of view, one of the most
fundamental limitations is that TrustedBox does not
authenticate the hardware and the firmware. In particular
the software that is executed when the system starts up
and that is responsible for starting the boot process
(called BIOS on Intel-based machines), cannot be
authenticated, as it is loaded before the kernel.

If the hardware or the firmware is compromised, in
fact, the user cannot be sure that the kernel that is loaded
upon start up is the trusted kernel that is stored on the
boot diskette. Latest personal computers have a software
upgradable BIOS, and several computer viruses do
significant damage overwriting the system BIOS. Thus,
a possible attack to the TrustedBox system could be
done replacing the system BIOS with a modified version
that, for example, performs a different bootstrap
process. Since the authentication starts only after that
the kernel has been loaded, there is no authentication of
the underlying layers.

| applications l—

expansion ROMs | AEGIS

_______________ D s A

| system BIOS l—

Figure 3: TrustedBox and the AEGIS architecture

This problem is discussed and addressed in [ARB],
that proposes a secure bootstrap architecture. The secure
bootstrap process, called AEGIS, ensures the integrity
of the bootstrap code computing a cryptographic hash
for the system BIOS, any other firmware (eg. graphic
card and disk controllers) and the boot sector. The hash
values are compared with a signature associated with
each component and stored on a read-only memory.
AEGIS relies on a trusted system ROM, containing the
verification code and the cryptographic certificates. A
basic assumption, of course, is that no unauthorized user
can access the system motherboard and replace the
ROM.

Since AEGIS addresses the problem of validating
any layer that is not checked by TrustedBox, it is
possible to say that using both of them on the same
system would be a great security enhancement. In this
scenario, AEGIS would be responsible for ensuring the
integrity of the firmware bootstrap process, and
TrustedBox would ensure the integrity of the operating
system during the rest of the boot process and when the
system is running, as shown in figure 3.

Another security problem with TrustedBox is that it
can be subject to denial-of-service attacks. If an intruder
changes or removes any signed executable file, for
example, the system will not execute that file in trusted
mode. However, this is a minor problem if compared to
the damage of running a compromised executable
during critical tasks. The system administrator should
keep a backup copy of any signed file to quickly recover
a compromised system. Alternatively, it could be
possible to use same solution discussed for the AEGIS
architecture in [ARB2]. This solution is based on a
trusted repository, that can either be an expansion ROM
board that contains verified copies of the required soft-
ware, or it can be a network host. In the case of
TrustedBox, the network host solution could be used,
using a protocol with strong authentication to ensure the
integrity of transferred data.

Another possible attack to a TrustedBox system
could be performed modifying the warm-reboot
procedure of the operating system in untrusted state. In
fact, a compromised operating system could “pretend”
that is doing a warm-reboot and that it is loading the TB
kernel. As a consequence, the user could erroneously
believe that the system is in trusted state and could
perform critical tasks while the compromised system is
running. For this reason, we strongly recommend that
the trusted mode boot should be only performed after a
complete system power-off. Unfortunately, we do not
know any way to impose that users enter in trusted mode
after a cold-boot.

Finally, there is a potential security problem due to
the need to allow users booting from an external media.
In many situations users are not permitted to boot a
system from a diskette, as they could boot with an
operating system that allows to access the file system
bypassing all security checks. Since we cannot impose
this restriction, one possible solution is to use
TrustedBox in combination with a cryptographic file
system, such as [CFS], or using a special boot device, as
explained in the Section “Future Works”. Another
possible solution is the usage of a modified system
BIOS that authenticates the boot media, so that it is not
possible to bootstrap with a different operating system.

From a practical point of view, a major problem is
the need to reboot the system to enter in trusted mode.

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 8

This could be a serious problem if the activity requires a
frequent switch between critical tasks and non-critical
tasks. This is an inherent limitation of our approach, that
does not fit very well in such situations.

It could be possible to set up a configuration file to
run as many applications as possible in trusted mode,
but there are some tasks that cannot be performed with
such a restricted security policy. One example is
software development: it is not possible to compile and
run applications in trusted mode, because any binary
generated during the trusted session cannot appear in the
configuration file and, thus, cannot be executed. A
trusted session, however, could be used to compile
secure applications or set up safe scripts without running
them.

7 Existing Solutions

Many available security tools try to address the
problem of system integrity. One of the most popular in
the UNIX world is probably Tripwire [KIM]. Tripwire
helps the system administrator to detect file tampering
by comparing the cryptographic signature of each
protected file against a signature stored in a database.
Several signature algorithms can be chosen, including
MD5 [MDS5], MD4 [MD4] and SHA [SHA]. To prevent
the database from being altered, the authors suggest to
store it on some tamper-proof media. Similar tools are
ATP [ATP], that employs a dual signature (32-bit CRC
and MD5) to verify files, and Binaudit [BSP].

COPS is an intrusion detection tool that checks a
UNIX host for well known vulnerabilities in the system
set up. It focuses on things like inappropriate
permissions set on files and directories, missing or
inadequate password security, potentially dangerous
setuid programs and similar problems. After its release,
COPS has been extended to include an integrity checker,
the crc _check program, based on a simple CRC
checksum of the files being monitored.

As previously pointed out, a main disadvantage of
such tools is that they rely on the integrity of the
operating system and other critical programs. Even if
such tools are stored on a read-only media, it is very
simple, for example, to modify the source code of any
public domain shell to trap any invocation of
/usr/bin/cops OF /usr/bin/tripwire and execute a
tampered version of such tools. Another disadvantage is
that traditional tools have to be run periodically and they
cannot guarantee a constant integrity of the system.
Therefore, such tools are a valuable help to detect
tampering after it happens, rather than preventing it. As
explained in the previous sections, the TrustedBox
approach provides a constant monitoring of the system
during the execution in trusted mode.

Domain and Type Enforcement (DTE) [WAL] is an
access control technology that aims to minimize the
damage root programs can cause if subverted. An
operating system providing DTE can be configured to
enforce a restricted security policy to confine root
programs in domains from which they can access only a
subset of system objects (files, devices, etc.). Some
implementations of DTE are available, for example as
extensions of a UNIX kernel. A drawback of the DTE
approach is that, to be effective, some system
applications should be modified to fully take advantage
of DTE mechanisms.

Since DTE does not address the problem of system
integrity, its approach is complementary to the
TrustedBox approach. An implementation of DTE in a
TB kernel could be useful to better define a restricted
security policy required to carry out critical tasks.

An example of security application that is based on
two different kernels is Sidewinder™ [THO].
Sidewinder™ is an Internet firewall based on a modified
version of BDS-OS UNIX that includes DTE. It uses an
operational kernel, with DTE enabled, and an
administrative kernel, in which security policy checks
are bypassed. System maintenance tasks are performed
under the administrative kernel, that can be started by a
user that is “physically” connected to the system and
only after shutting down the operational kernel.

The difference between the Sidewinder and the
TrustedBox approach is that the Sidewinder system
administrator has to be trusted. This because any
software modified or installed by the system
administrator working in administrative mode will be
executed in operational mode. Using TrustedBox,
instead, nobody but the security administrator can alter
the configuration that will be used in trusted mode. Only
the security administrator can authorize changes to the
system issuing a digital signature for the system integrity
database. The Sidewinder approach can be good for a
firewall, that is normally not accessed by untrusted
users, whereas our approach is suitable for systems that
are normally used to run untrusted applications.

8 Future Works

We are actively working on our prototype of the
TrustedBox kernel to fully implement all discussed
issues. Furthermore, we aim to provide administrative
tools to simplify the task of the security administrator, to
update the system integrity database, to create the
trusted boot diskette and to set up an appropriate
security policy.

An interesting future direction would be the
integration of the TrustedBox approach with other
kernel-level solutions to improve UNIX security, such

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 9

as DTE and capabilities [MOR]. Also, we are planning
the integration of TrustedBox with the AEGIS
architecture, discussed in section 6.

Finally, we are investigating the possibility to use
special boot devices, such as PCMCIA cards, to both
authenticate the user that performs the system boot and
to reduce the risk that the boot media is tampered. The
firmware should authenticate the PCMCIA card, load
the TB kernel from the PCMCIA card and start a regular
boot process. The PCMCIA card would also be safer
than a traditional diskette to store the trusted boot
media, but with the drawback of additional hardware
costs.

9 Conclusions

We have designed and implemented a secure
operating environment that can run on the top of an
untrusted file system to perform highly critical tasks in a
safe manner.

Thanks to its mechanisms to define a restricted
security policy, a well configured system running in
trusted mode is much harder to attack compared to a
conventional system, especially for intruders that aim at
modifying the system configuration or replacing system
components. On the other hand, the only user
responsibility is to start the system with a trusted boot
media.

If the security administrator and the system
administrator are distinct entities, furthermore, users do
not have to trust the system administrator, as normally
happens.

The ability to boot in untrusted mode or in trusted
mode, so that the same system can be used both for
unsafe and secure operations, makes TrustedBox a very
interesting and inexpensive solution for a large number
of application fields.

Digital signature systems and secure servers are just
two cases in which TrustedBox could be adopted, but it
would be very easy to think about a number of similar
situations.

References

[WAL] Walker K. M. et al., "Confining Root Programs with
Domain Type Enforcement (DTE)", in Proceedings of Sixth
USENIX Security Symposium, San Jose (California), 1996.

[KIM] Kim G. H., Spafford E. H., "The Design and
Implementation of Tripwire: a File System Integrity Checker",
in Proceedings of 2¥ ACM Conference on Computer and
Communications Security, 1994.

[BDG] Badger L. et al, “A Domain and Type Enforcement
UNIX Prototype”, USENIX Computing Systems, Vol 9, No.
1, 1996.

[THO] Thomsen D. J., “Sidewinter: Combining Type
Enforcement and UNIX”, Proc. 11™ Computer Security
Application Conference, Orlando (FL), 1995.

[VEN] Venema W., “Root Kit”, Presentation at SURFnet
CERT-NL SGC-SEC/SSC Workshop, May 1995.

[FAR] Farmer D., “The COPS Security Checker System”,
Proceedings of the Summer 1990 USENIX Conference,
Anaheim, CA, p. 165.

[ATP] D. Vincenzetti, M. Cotrozzi, “ATP anti tampering
program”, proceedings of the Security IV Conference,
Berkeley, CA, 1993. USENIX Association.

[BSP] M. Bishop, “Auditing files on a network of machines”,
Security Workshop, USENIX, 1988.

[ARB] Arbaugh W. A., Farber D. J., Smith J. M., “A Secure
and Reliable Bootstrap Architecture”, in Proceedings of IEEE
Symphosium on Security and Privacy, Oakland (California),
1997.

[ARB2] Arbaugh W. A., Farber D. J., Smith J. M,
“Automated Recovery in a Secure Bootstrap Process”, Internet
Society Symposium on Network and Distributed System
Security (SNDSS) in San Diego, March 11-13,1998.

[SHA] National Institute for Standards and Technology,
“Secure Hash Standard”, Federal Information Processing
Standards Publication 180, Government Printing Office,
Washington, D.C., 1993.

[MD4] Rivest R. L., “The MD4 message digest algorithm”,
Advances in Cryptology — Crypto 90, 1991.

[MDS] Rivest R. L., “RFC 1321: The MD5 message-digest
algorithm”, technical report, Internet Activities Board, April
1992.

[RSA] R. L. Rivest, A. Shamir and L. Adelman, “A method
for obtaining digital signatures and public-key cryptosystem”,
Commun. Of ACM, Vol. 21, No. 2, pp. 120-126, Feb. 1978.

[CFS] M. Blaze. "A Cryptographic File System for UNIX",
proc. 1" ACM Conference on Computer and Communications
Security, Fairfax, VA, November 1993.

[MOR] A. G. Morgan, “Linux-Privs”,

http://www.kernel.org/pub/linux/libs/security/
linux-privs/doc/linux-privs.html/linux-privs.html

[NTB] NetBus: a remote administration and spy tool,
http://www.netbus.org

[BKO] Back Orifice Windows Remote Administration Tool,
http://www.cultdeadcow.com/tools/bo.html

Authorized licensed use limited to: Callie Pendergrass. Downloaded on October 04,2023 at 20:21:30 UTC from IEEE Xplore. Restrictions apply.

IPR2024-00027
CrowdStrike Exhibit 1023 Page 10

