
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2691356

Vulnerability of "Secure" Web Browsers

Article · June 1997

Source: CiteSeer

CITATIONS

16
READS

189

3 authors, including:

Flavio De Paoli

Università degli Studi di Milano-Bicocca

142 PUBLICATIONS   1,158 CITATIONS   

SEE PROFILE

Richard A. Kemmerer

University of California, Santa Barbara

176 PUBLICATIONS   8,676 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Flavio De Paoli on 10 February 2014.

The user has requested enhancement of the downloaded file.
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 1

https://www.researchgate.net/publication/2691356_Vulnerability_of_Secure_Web_Browsers?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2691356_Vulnerability_of_Secure_Web_Browsers?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-De-Paoli?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-De-Paoli?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Milano-Bicocca?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-De-Paoli?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Kemmerer?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Kemmerer?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Barbara?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Kemmerer?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-De-Paoli?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Vulnerability of \Secure" Web Browsers �F. De Paoli, A. L. Dos Santos, R. A. KemmererReliable Software GroupComputer Science DepartmentUniversity of CaliforniaSanta Barbara, CA 93106May 26, 1997Abstract Today the World Wide Web is considered to be a platform for build-ing distributed applications. This evolution is made possible by browsers withprocessing capabilities and by programming languages that allow web designersto embed real programs into HTML documents. Downloading and executingcode from anywhere on the Internet brings security problems along with it. Asystematic and thorough analysis of security 
aws in the browsers and relatedtechnology is necessary to reach a su�cient level of con�dence. This paperpresents some preliminary results of ongoing research that has the �nal goalof developing properties for secure browsers and procedures for secure brows-ing. The research started by investigating features provided by the standardenvironment. The paper describes some experimental attacks that have beencarried out by exploiting features of Java and JavaScript executed by NetscapeNavigator and Microsoft Explorer browsers.1 IntroductionThe growth of the Internet and the World Wide Web (WWW) during the pastfew years has been phenomenal. The Internet is currently serving tens of millionsof people connected through millions of computers. Most every business andgovernment institution has a web page, and the web and web browsing are fastbecoming the primary source of information for people of all ages.Languages like Java and JavaScript have been developed to embed programsinto HyperText Markup Language (HTML) documents (pages). Java applets,which are designed to be downloaded from the web and run directly by theJava virtual machine within a browser, are also increasingly being included in�To be published in the Proceedings of the National Information Systems Security Confer-ence, October 1997. 1
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 2



web pages to provide more sophisticated animation and other desirable features.Downloading and executing code from anywhere on the Internet brings securityproblems along with it. That is, the host computer is open to a variety ofattacks, ranging from attacks that simply monitor the environment to exportinformation, to attacks that change the con�guration or the behavior of the host(changing �les, consuming resources), and �nally to attacks that open a backdoor to let intruders get into the host.Attacks succeed either because the implementation of the browser is weak(from 
aws in the speci�cation and/or from poor implementation) or becausethe environment in which the browser is executed has 
aws. Weaknesses in theenvironment are mainly due to the new open nature of software. Conventionalcomputing paradigms assume that programs are installed and con�gured once onany and every machine and that these programs only exchange data. This meansthat a user can make all possible checks over a new program before running it.This assumption is no longer valid for open and mobile environments, such asJava and the web.Many security holes in web browsers have been discovered and brought tothe attention of the public [DFW96]. Although most of these holes have beenpatched, a systematic analysis of the features of both the Java and JavaScriptlanguages and the web environment is needed to identify possible design weak-nesses in order to avoid similar problems.Most of the attacks carried out so far require the attacker to have substantialcapabilities, such as taking over a web server or a domain name server or as-suming that the user will navigate only through hyperlinks. These assumptions,therefore, often limit the likelihood of the attacks due to the low probability thatthe assumptions would be satis�ed or because they require so much knowledgethat only highly-skilled programmers could implement the attacks.The purpose of this paper is to describe some experimental attacks thathave been carried out by exploiting only features provided by the standardenvironment. What sets these attacks apart from most of the others is thatthe attacks presented in this paper can be realized without assuming that theattacker has any capabilities beyond those granted to every user on the netand without assuming that the attackers are highly skilled programmers withcomplex programs for carrying out the attacks. That is, the attacks reported inthis paper are straight forward to set up and are of limited complexity.This paper reports on two attacks. The �rst one deals with the violationof privacy, and it requires only that the victim downloads a page that includesan attacker applet, which collects and sends information back to its server.The second experiment is as powerful as a \man-in-the-middle" attack, but ittoo requires only that the victim downloads a honey-pot page that includesan applet that can detect when the victim visits a certain site and displays animposter page for that site in order to steal sensitive information, such as creditcard numbers or personal identi�cation numbers.The paper is structured in the following way. Section 2 summarizes thebrowser and language features that have been used. Section 3 brie
y reviewssome previously known attacks. Section 4 gives more details on applet capabili-2
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 3



ties and features to establish the background for the attacks. Section 5 describesthe new attacks. Finally, future work and conclusions are presented.2 Browsers and LanguagesThe World Wide Web is a hypertext of network-accessible information. It wasdesigned to support static links to display static multimedia documents. Thequick growth of the web and the related technology has changed this initialview. Today the web is considered a platform to build distributed applications.This evolution is made possible by browsers with processing capabilities and byprogramming languages that allow web designers to embed real programs intoHTML documents.This section outlines the characteristics of Java and JavaScript, which are themost popular languages for programming the web, and of Netscape Navigatorand Microsoft Explorer, which are the most popular browsers.2.1 JavaThe Java language is a general-purpose object-oriented language that was in-troduced by Sun Microsystems in 1995 [GJS96a]. One of the major design goalsfor Java was portability. The result is that not only the Java source code, butalso the binary code is executable on all processors. This is accomplished bycompiling the source code into platform independent bytecode, which is thenrun by the Java virtual machine.Some of the features of the Java language that make it simpler and sup-posedly more secure are that it is strongly typed, there are no preprocessorstatements (like C's #de�ne and #include), there are no pointers, no globalvariables, and no global functions. By keeping the language simple and withoutmany of the error prone features, such as multiple inheritance, it is expectedthat Java will be more secure.A Java program is a collection of classes and instances of classes. Each class iscompiled into an intermediate format, called bytecode, which is then interpretedto execute the program. A major characteristic of Java is that pointers arenot supported; object references are provided instead. Java supports dynamiccreation of instances and bindings. When a class instance (an object) is needed,it is created explicitly and a reference to it is returned; when a method is invokedon an object, the interpreter selects the method to be executed according to theclass hierarchy and method overloading. Object destruction is automaticallyhandled by a garbage collector, so that memory management is completely inthe control of the interpreter.Another feature of Java is the support for concurrent programming viathreads. Threads allow programmers to associate an independent execution
ow with each class. A class with a thread can be started, stopped, and sus-pended independently from the execution of the rest of the system of which it3
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 4



is part. Synchronization among thread executions can be accomplished by classmonitors.As mentioned above, Java code was designed to run on any client; therefore,compiled Java programs are network and platform independent. The absenceof physical pointers and automatic memory management help achieve this in-dependence. Moreover, the bytecode has been designed to fully support thetyping mechanism of Java so that dynamic code veri�cation can be performed.This is a safety and a security feature designed to prevent one from executingcorrupted or malicious code.The Java Virtual Machine is emulated in software and can run on numer-ous platforms [LY96]. It could also be compiled or implemented directly in mi-crocode or hardware, but currently it is mostly emulated in software. The virtualmachine deals with class �les, which contain Java virtual machine instructions,a symbol table, and a few other necessary items. Java virtual machine instruc-tions are all one byte long, and that is why they are called bytecodes. Bytecodecan also be generated from other high level languages, such as Ada or C, or itcould be generated manually.When Java classes are downloaded from the network it is necessary to usea class loader. Java supplies an abstract ClassLoader class for this purpose.Because abstract classes cannot be used directly, each browser needs to declarea subclass of this class to be used by the browser for downloading classes. Eachsubclass must include a customized implementation of the loadClass()methodto retrieve and download a class from the net. A class is downloaded as an arrayof bytes that must be converted to an instance of class Class. That is, thearray of bytes must be translated to the structure of a class. The ClassLoadermethod that actually does the conversion is defineClass(). Every class objectcontains a reference to the class loader that de�ned it, so related classes canbe downloaded by the same class loader. These features make Java suitable forwriting programs in a distributed, heterogeneous environment such as the web.Besides supporting the design of complete applications, Java supports theimplementation of small applications, called applets, which can be embeddedinto HTML pages. A special tag in a downloaded HTML �le tells the web serverto download the bytecode for a Java applet, and the most popular web browsers,such as Netscape Navigator and Microsoft Explorer, include support for theexecution of applets. Applets can be used for implementing small stand-aloneapplications, as well as for implementing clients of client/server applications.A page may have more than one applet embedded in it. In this case, all ofthe applets are downloaded together. Because a thread is associated with eachapplet, more than one applet can run concurrently within the same web-pagecontext. The class Applet de�nes a set of methods to control applet behavior.These methods can be overridden by programmers to get the desired behaviorfrom their applets. The most important methods are init, start and stop.When an applet is downloaded it is automatically created, initiated and started:the methods init and start are invoked and the applet is labeled active. Whenthe page that embeds an applet is not displayed (the browser is iconi�ed or showsanother page), the execution of that applet is suspended (i.e., the method stop4
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 5



is invoked and the applet is labeled inactive). If the page is shown again, theapplet execution is resumed (i.e., the method start is invoked again and theapplet is labeled active). It is possible to keep an applet running even when itis inactive, however. This is accomplished by overriding the stop method sothat it never returns. One of the experiments described in this paper exploitsthis feature.2.2 JavaScriptJavaScript is an object-based scripting language that has been speci�cally de-signed by Netscape to embed executable statements (scripts) into HTML pages.JavaScript resembles Java, but without Java's static typing and strong typechecking. Scripts are embedded directly into an HTML page and interpretedby the browser. By invoking JavaScript functions, it is possible to perform ac-tions (such as playing an audio �le, executing an applet, or sending an e-mailmessage) in response to a user opening or exiting a page.In the experiments described in this paper, the JavaScript support for formshas been exploited. The use of forms enables the browser to send informationback to the server. A form is an HTML tag that includes an ACTION �eld,which speci�es the action to be performed, an INPUT �eld, which speci�es asimple input element, and other �elds, which are not relevant to this discussion.The ACTION �eld must be �lled out with a URL, which usually refers toa Common Gateway Interface (CGI) program. CGI technology is a standardfor interfacing external applications with Web servers, and it allows users tostart an application on the server. Another valid URL for the ACTION �eld is"mailto:any e-mail address", which causes an e-mail message to be sent bythe browser to the speci�ed address.The INPUT �eld is composed of a set of �elds like NAME, VALUE (to store theinput string) and TYPE. One example of type is "submit", which speci�es apushbutton that causes the current form to be packaged up into a query URLand sent to a remote server. JavaScript implements a set of objects to handledi�erent types of forms. Of particular interest is the submit object, which hasa pre-de�ned method click() that simulates a click on the submit button.By writing a JavaScript statement that invokes that method, it is possible tosubmit a form automatically, without obtaining the user's acknowledgment. Ifthe speci�ed ACTION is "mailto:..." the e�ect is to send an e-mail messagefrom the user without the user knowing it.2.3 BrowsersBoth Netscape Navigator 3.01 and Microsoft Explorer 3.02 support the execu-tion of Java applets and JavaScript. Their implementations of the support ofthe Java virtual machine and JavaScript interpreter di�er, but they supportthe requirements of these languages. Moreover, they both support the \cookie"technology. Cookie technology was developed by Netscape to make up for the5
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 6



stateless nature of web communications. A cookie is a small piece of informa-tion that is stored by the browser on server request and that can be sent to theserver at any time. A browser is sent a request to set a cookie the �rst timeit asks the server for an HTML page. Cookies are useful to maintain relatedinformation during long browsing sessions, such as maintaining shopping bas-kets and remembering con�guration preferences. Although cookies have beenintroduced to improve the quality of the service provided by the web, they canalso be exploited for malicious purposes, as will be described in the next section.Both browsers also give the user options to increase the security of thebrowser. These options are:1. They support the option to turn the execution of Java and/or JavaScripton or o�. This enables the user to trade the convenience of these languagesfor the security of not running any outside program in the user's machine.2. They support the option of alerting the user before accepting a cookieand before sending a form in an insecure environment. This lets the userchoose whether to continue the operation or not.3. They support certi�cates that are digital signatures. These currently arenot widely used, but they are likely to be used more in the future.4. Netscape Navigator has an option to alert the user before sending formsby e-mail. The attacks reported in this paper were originally exercisedon Netscape Navigator 3.0, and this option did not work properly there.This feature does work on Netscape Navigator 3.01.5. Microsoft Explorer allows the user to set three levels of security (high,medium, low) against active contents (which is Microsoft's term for Javaand JavaScript). Although this at �rst seems like a good feature, Mi-crosoft Explorer fails in not explaining in an understandable way whatthe di�erence among the levels is.In carrying out these experiments it was necessary to constantly be awareof the di�erences between Netscape Navigator and Microsoft Explorer. Forinstance, with Netscape Navigator, one instance of the Netscape Navigator pro-gram can show many windows. Microsoft Explorer, on the other hand, is ableto show only one window for each instance of the program. The importanceof this is that di�erent program instances are isolated from each other by thefeatures of the operating system that isolate two programs. As a result, thesedi�erent instances do not share any environment or context. In the remainderof this paper the word browser is used to refer to the browser's windows thatare spawned by the same instance of a browser program.3 Brief Review of Some Already Known AttacksThere are many known security vulnerabilities in web browsers. The attacksthat exercise these weaknesses vary in sophistication and in the amount of re-6
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 7



sources that the attacker is required to possess in order to carry out the attack.In this section a few representative attacks are presented. First two verysimple though e�ective attack types, which require only a browser and usesstandard language features, are presented. Next, an attack that requires theattacker to control a Domain Name Server that advertises wrong addresses isdescribed. This is followed by the discussion of an attack that relies on commonassumptions for �rewalls to force a connection to a protected port. Finally, theattack known as \web spoo�ng" is presented to show how an attack may requirestrong assumptions and a high level of sophistication.One of the simplest forms of browser attacks and also one of the hardest tostop is a denial of service attack. The attacks reported here use Java featuresto exhaust resources of the host system or prevent the use of some feature. Twoobvious examples of this attack are busy-waiting to consume cpu cycles andrepeatedly allocating memory until all of the available memory is exhausted.Another attack in this category is locking a class to prevent access to particularresources (e.g., locking the InetAddress class in Netscape Navigator blocks hostname lookups). The reason that the denial of service attacks are di�cult to stopis that there is no regulation of how much of a resource an applet can consume.That is, an applet is either given as much as it wants or it is given nothing.More of the technical details, which help to understand this attack are given inthe next section. Further information on this type of attack can be found in[DFW96].Another simple attack deals with the use of cookies to keep track of a user'sactivities, which turns out to be a privacy violation. This attack is described in[Ste97] and reports a real situation that has been set up by DoubleClick Cor-poration. DoubleClick has a network of a�liated sites each of which agrees tohaving a space in their HTML pages for advertisements that points to the Dou-bleClick site instead of showing a local graphic �le. The �rst time DoubleClickreceives a request for an advertisement by a browser, it selects an advertisementfrom a list and sends it back along with a request for setting a cookie witha unique identi�cation number. That number will be sent to DoubleClick atany further contact to let them build a user pro�le reporting every DoubleClickpage and site that is visited. Even though the pro�le does not report any infor-mation about the user identity (only computer names are recorded), it allowsDoubleClick to understand a user's tastes and interests. This information canbe exploited for marketing purposes, such as sending each user (or computer)personalized advertisements and rating the e�ectiveness of the advertisements.To prevent this attack, a user should �rst check the presence of a DoubleClickcookie in his/her computer (its name is ad.doubleclick.net) and delete it ifnecessary. Next, the user should turn on the browser option that alerts theuser whenever a cookie is to be placed, and the user should refuse DoubleClickcookies.The Domain Name Server (DNS) attack assumes that the attacker has con-trol of a DNS, which a trusting host (or even a �rewall) uses to validate a serveraddress. In this attack the applet requests a connection to the server by pro-viding the name of the server. The malicious domain name server returns the7
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 8



address of a machine other than the one requested by the applet (e.g., the at-tacker's machine). The result is that the applet can then connect to an arbitraryhost. Netscape �xed this problem in Navigator 2.01 and 2.02 by looking up theIP address for each site they process and refusing to listen to (possibly false)updates to that address [Ros96].The next attack relies on the common assumptions that a �rewall trustsall requests originating behind it and that only the �rst packet of a connec-tion is checked. To start the attack the applet sends the originating server aconnection request including a protected port number (e.g., the port for telnetconnections). The �rewall trusts the request, since it originates behind it. Sub-sequent messages from the server are also trusted, since they are related to analready approved connection. The e�ect is that the attacker can open any con-nection even though there are �rewall controls. This attack highlights security
aws that derive from assumptions that are no longer valid for web-based com-putation. A simple though partial solution is to design browsers that preventone from issuing requests related to well-known ports (e.g., port numbers below1024). More sophisticated �rewalls already implement more complex �lteringrules to ensure better control. A complete description of the �rewall attack canbe found in [MRR97].Another interesting attack is the net spoo�ng attack, which assumes thatthe attacker has a way to make the user connect to the attacker machine, whichdelivers rewritten pages in such a way that each URL refers to the attackermachine. The attacker machine works as a \man-in-the-middle." This requiresthe attacker to have control of the network such that everything that the browserthinks it is sending to the web actually goes to the attacker machine. Theattacker may then forward the request to the real machine and relay the resultsback to the victim, while making copies of the interesting parts before passingthem on. This attack is fully described in [FBD96].The second experiment described in this paper was motivated by the descrip-tion of the man-in-the-middle attack in [FBD96]. Section 5.2 describes the newattack in detail. The goal for the new attack was to achieve an attack with thesame power as the attack in [FBD96], but without assuming that the user willfollow only hyperlinks and with a much simpler approach, which targets onlyparticular sites of interest. Although in [FBD96] it is claimed that JavaScriptcould be used to fake the location line of Netscape Navigator, e�orts to verifythis attack were unsuccessful, other than by opening a new browser as an emptywindow, as is described in the Future Work Section of this paper.4 Applet SecurityJava applets are designed to be downloaded from the web and to be run directlyby a Java virtual machine within a browser. Since applets are automaticallyrun by the browser just by accessing a web page that contains a reference to theapplet, security concerns should be alleviated before users can be expected toaccept the concept of running applets from untrusted sources. That is, special8
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 9



security measures should be taken to protect against security, privacy, and denialof service threats. Therefore, it is necessary for the browser that contains theJava virtual machine to limit the downloaded applet. These limitations are notnormally placed on applets loaded from the local �le system, because the localhost is trusted.This section examines some privacy and security features related to applets.The goal is to understand what interaction is allowed between an applet and itsenvironment (i.e., between an applet and the host machine, the host browser, orother applets running in the same browser). Section 4.1 illustrates what systemproperties an applet can access, Section 4.2 describes what the context of anapplet is, and Section 4.3 deals with thread-related features.4.1 System propertiesSince applets are programs to be executed in the host environment, the Javadesigners posed some restriction on the interaction between an applet and itsenvironment. The intent is to prevent safety, security and privacy violations.The restrictions that apply to applets are:� An applet is prevented from reading or writing �les on the host that isexecuting it.� An applet can make network connections only to the host that it camefrom.� An applet cannot start any program on the host that is executing it.� An applet is prevented from loading libraries or de�ning native methods.� An applet can read only a restricted set of system properties. In particular,it can read the �le separator (e.g., `/'), the path separator (e.g., `:'), the lineseparator, the Java class version number, the Java vendor-speci�c stringand URL, the Java version number, and �nally the operating system nameand architecture.The idea is that by placing these limitations on downloaded applets theapplets are e�ectively placed in a \sand-box". The applet may do whatever itwants inside the sand-box, but it is limited as to what it can do on the outside.These restrictions are enforced by the class loader and the security manager.The class loader implements the downloading rules for classes. Due to the aboverestriction, this means that an applet cannot download classes other than fromthe host it came from.The Java virtual machine also limits the name space of downloaded applets.When a Java virtual machine tries to load a class from a source other than thelocal host machine a class loader, which cannot be overridden by the downloadedapplet, is invoked. The class loader sets up a separate naming environmentto accommodate the source. This will assure that name clashes don't occurbetween the names in this source and the names in classes loaded from other9
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 10



sources. Bytecode loaded from the local �le system is set up in the system namespace, which is shared by all other name spaces, and the system name space isalways searched �rst to prevent system classes from being overridden.After the name space is set up, the class loader calls a bytecode veri�erto assure that the bytecode has proper structure. This is necessary becausethe bytecode could have been generated by an incorrect Java compiler, by acompiler altered to skip the compile time checks, or by a non-Java compiler.The bytecode also could have been altered after it was produced. The bytecodeis veri�ed in four passes and is claimed to satisfy the following conditions if itpasses the veri�cation.� The downloaded bytecode has the proper format for a class �le� All \�nal" classes are not subclassed, and all \�nal" methods are notoverridden.� Every class except Object must have a superclass.� All variable and method references have legal names and types.� Methods are called with the appropriate arguments.� Variables are assigned values of the appropriate type.� There are no stack over
ows or under
ows.� All objects on the stack are of the appropriate type.Java provides an abstract SecurityManager class to enforce the browsers'security policy. Because SecurityManager is an abstract class it cannot beused directly; therefore, each browser must declare a subclass of the classSecurityManager, which acts as a reference monitor. The security manageris installed when the Java virtual machine within the browser starts up, and itcannot be overridden. The security manager is automatically consulted beforeany operation related to the environment is performed. In this way it can denythe authorization for any possibly insecure operation. It is important to notethat the security policy is de�ned by the web browser and it is implementedin the browser's security manager. Therefore, the above restrictions are onlyadvice and might not be followed by some browsers. In fact, Microsoft Ex-plorer allows di�erent con�guration levels. One of these levels allows appletsto download classes from anywhere. In contrast, Netscape Navigator strictlyimplements all of the restrictions.The restrictions above cover many of the protection concerns, but there areadditional concerns about security. The following subsections will discuss someof these.
10

IPR2024-00027 
CrowdStrike Exhibit 1024 Page 11



4.2 The context of an AppletA single HTML page may embed more than one applet. In both Netscape Navi-gator and Microsoft Explorer all applets in the same page de�ne a single context.An applet can get a reference to its context by the method getAppletContext()of the class Applet. The context gives an applet access to a set of methods tocollect references to other applets in the same page and to interact with thebrowser. These features could be exploited to make applets collaborate andcommunicate; for example, they could synchronize their behavior. Two meth-ods of interest are getApplets() and getApplet(). GetApplets() returns alist of all applets in the same context (i.e., in the same page), and getApplet()returns a reference to an applet when given the applet's name. Each applet hasa string name. Once an applet has a reference to another applet, it can invokeany of the methods available for the class Applet on the referenced applet.An applet can interact with the browser to show (download) a new documentin a window and to show a message in the status line of the current window. Themethods of interest are showDocument() and showStatus(). ShowDocument()shows a new document in a window given its URL, and showStatus() shows astring in the status line of the browser.The showDocument method can be asked to open a document in the currentwindow, in a frame of the current window, or in a new window. Both NetscapeNavigator and Microsoft Explorer de�ne \window" as \browser window". Sothe two methods above refer to the browser itself. When showDocument opensa new window, it actually opens a new browser and downloads the requestedHTML document in that browser.In Netscape Navigator the new browser can be identi�ed by a unique namethat must be supplied to showDocument as a parameter. After being created,that browser can be accessed by name by any active applet, regardless of its con-text. This means that any applet that knows the name of that browser can makeit download a document even without user acknowledgment and awareness.In contrast, Microsoft Explorer creates an anonymous browser, even if aname is supplied when showDocument is invoked. This means that even thesame applet that opened the browser cannot show another document in thatbrowser.This is an example of di�erent implementations of the same language feature.Both implementations can be criticized. Netscape Navigator can be criticizedbecause a name can be used in a di�erent context as a reference to the samewindow. This could be a security (or a safety) 
aw, since the behavior of twoapplets in two di�erent contexts could interfere with each other (intentionally ornot). Microsoft Explorer can also be criticized because one browser is preventedfrom opening another browser and then showing a sequence of documents in it.The method showStatus() allows an applet to display any message on thestatus line of the browser showing the document. This method could be usedto display misleading information to the user.11
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 12



4.3 Playing with ThreadsSince every applet is implicitly associated with a thread, an applet can accessanother applet by using an instance of the class Thread. The thread class de�nesthe method getThreadGroup, which returns a ThreadGroup object. Using thisobject one can retrieve a list of references to all threads (i.e., applets) that belongto the same group or subgroup of this thread group. Both Netscape Navigatorand Microsoft Explorer de�ne a single thread group that contains all threadsassociated with all active applets in all of the browsers. The getParentmethodcan be recursively called to get the thread group that is the parent of all threadgroups in the browser. This means that an applet can get a reference to, as wellas access to, any applet that is embedded in any displayed document throughits thread object.This feature allows the design of applets that continuously monitor thebrowser to get access to applets embedded in downloaded pages. Once theapplet has this information, it can interfere with the execution of other appletsin several ways. The denial of service attacks described in Section 3 are basedon this feature. The attacker applet may a�ect performance by delaying, sus-pending and resuming threads, or by hanging their priority. It is sometimespossible to kill a thread (and therefore the associated applet).Every thread has a name associated with it, which is the name of the classthat de�nes the applet. Names in combination with thread references can beexploited to understand what the user is doing. The attacks described in thenext section are based on this feature.5 The ExperimentsIn this section some experiments that were carried out by the Reliable Softwaregroup at the UCSB are described. These experiments led to the de�nition oftwo new attacks. One attack deals with privacy violation; its goal is to builddossiers on Internet users. The second deals with con�dentiality; its goal is tosteal access information (e.g., user's PIN).What is interesting is that both attacks are based on features of the browseror of the language exploited. This demonstrates that even a good implementa-tion can lead to an insecure environment if it is possible to combine \features"that have been designed independently of each other.In particular, the JavaScript capability of sending e-mail from within a script,the Java capability of opening a new window and downloading a new HTMLpage in it, and the object-oriented nature of Java that associates every appletwith a thread have been exploited.5.1 Privacy Violation: Building User DossiersThe goal of this attack is to collect and send information about the user backto the server. This is accomplished by JavaScript statements and a spy appletembedded in a honey-pot page. 12
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 13



The attack starts with the victim downloading the honey-pot page. Theattack itself is carried out in two steps. First, when the victim downloads thehoney-pot page from the attacker server, JavaScript silently �lls out a form andsends it from the unsuspecting user back to an address on the server. In thisway the server can uniquely identify the victim by his/her e-mail address. Next,the spy applet monitors the victim's activity by collecting information on thevictim's running threads. When the spy applet detects that a new thread isrunning, it retrieves the thread's name and sends it back to the server using aUDP/IP message. The stop method has also been rede�ned to keep the spyapplet alive even when the document that embeds it is not being shown. Thisallows the spy applet to monitor all the open browsers at any time.The blueprint of the attack is:1. Build a honey-pot HTML document that embeds some JavaScript state-ments to send the e-mail message and that also contains a spy applet withthe stop method overridden.2. When the honey-pot page is downloaded from the attacker server, an e-mail message is sent back to the server to identify the victim, and the spyapplet starts monitoring the victim's activity.3. The spy applet sends the attacker server any information about threadsthat are embedded in the documents downloaded by the victim. Since thestop method of the spy applet has been overridden, it continuously runseven if the victim closes the honey-pot document.On the server side there is a daemon that receives and collects the informa-tion and builds up a dossier on the victim. The daemon knows the identity ofthe victim and a list of names of threads run by the victim. These thread namesare searchable by any web search engine. The web is searched to get referencesto the pages that include the thread executed by the victim browser. The resultof the attack is a user pro�le with a reasonable degree of accuracy.There are two technical problems with this attack. The �rst is that onlypages including threads can be monitored. This is considered to be a minorproblem, since the number of pages that embed applets is increasing everyday. The second problem is that it may happen that the same applet canbe embedded in more than one page. Thus, when searching on a thread namethe thread name query may result in several HTML pages. In this case, moresophisticated techniques may be required to correlate the collected information.The attack presented here is likely to succeed since it does not require anyspecial preparation. To be more a�ective it could be focused on a speci�ctarget. For example, the honey-pot page could be a collection of links andinformation about a particular subject, such as �shing. It is likely that websurfers who like to �sh will go to that page and then follow links to look forinformation interesting to them. The user pro�les that can be built may beused for commercial and marketing studies. For example manufacturers mightbe interested in deducing what items are more appealing, advertising companies13
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 14



might use this information to better focus their advertisements, or commercialorganizations might better understand the interests of customers from di�erentgeographic areas, allowing them to o�er di�erent items in di�erent stores.5.2 \Man-in-the-middle" Attack: Stealing Account andPassword InformationThe goal of this attack is to monitor a victim's activities to understand whenhe/she visits a target site (e.g., a bank site) and then to replace the originalpages with fake pages in order to retrieve sensitive information. The attackrequires that there are two open browsers: one with the attacking applet, andone to be used by the victim. This is necessary because the attack is based onthe showDocument method and only active applets can execute it.Like the �rst attack, this one also starts with the victim downloading ahoney-pot page that includes a spy applet. When the victim asks for the honey-pot page, he/she gets a �rst document on the open browser and a second docu-ment on another, new browser. This second browser is opened by the spy appletembedded in the �rst document. The purpose of the second browser is to keepthe �rst one displaying the document including the spy applet, so that it nevergets suspended. The spy applet can then monitor the activities carried out bythe victim and have access to the second browser through the showDocumentmethod.The same technique of monitoring thread names, which directly translateto applet names, is used to discover when the user is looking at the targetpage. For this to be successful, the target page must contain an applet thatdoes not have a common name. When the victim has downloaded a page fromthe target site, the spy applet downloads a fake page from the applet's serverwith the same appearance as the real page. At this point the spy applet isthe man-in-the-middle. Now, the attacker has complete control of the victim'sinteraction with hyperlinks and forms. The fake page has forged links to makethe victim interact with the attacker server instead of with the real server forthe target site. In the experiment, when the victim chooses the log-on page forthe bank he/she actually downloads a pseudo log-on page from the attackingserver. Thus, the �lled out form, which contains the victim's account numberand pin, is sent to the attacker server instead of to the bank. After collectingthe wanted information, a bad connection message is displayed and the realpage is downloaded, so that the victim can continue his/her activity withoutunderstanding what was going on. For the experiment this was accomplishedby �rst downloading a page with an error message \Connection refused, pleasetry again" and then downloading the real log-on page for the bank.The blueprint of the attack is:1. Build a Honey-Pot page that includes the spy applet.2. When downloaded, the spy applet spawns a new named browser with thesame or a possibly di�erent page.14
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 15



3. It is assumed that the user uses the new browser so that the spy appletis never stopped and it can monitor the documents downloaded by thevictim.4. When the user retrieves a page that embeds an applet that signals thathe/she is looking at the target page that the attacker is interested in (e.g.,the bank page), the spy applet calls the showDocumentmethod to replacethe real page with a forged page downloaded from the attacker server.5. The forged page sends information back to the attacker server by meansof JavaScript support for forms. This causes a CGI script to run on theattacker server.6. The CGI script stores the information and answers with a page that showsan error message and embeds an applet that downloads the real page toconclude the attack.As mentioned above, this attack uses the showDocumentmethod and requiresthat there are two open browsers: one with the attacking applet, and one tobe used by the victim. The question is how can one convince the victim tokeep the �rst browser open and use the second for further downloading? In oneexperiment a honey-pot page that provides up-to-date information with autorefresh every few minutes was implemented. It is likely that the victim will takeadvantage of this feature by keeping that page active (e.g., for updated sportsscores). In another experiment a second browser, which overlaps the �rst, isopened. Having the second browser overlap the �rst is something that mostusers are willing to accept, especially when browsing new pages. Furthermore,for users that use full-screen browsers the new browser completely overlaps theexisting one.A weakness of this attack is that the victim may notice that something iswrong by checking out the URL displayed by the status line and the location line.The former problem was easily overcome by embedding JavaScript statementsto overwrite the status line. When the victim points the mouse to a link witha forged URL, the status line still shows the original URL. The JavaScriptstatement used is onMouseOver="self.status='faked link';return true".This is added to the tag that has the hyperlink for which the status line is todisplay the desired link instead of the real link whenever the mouse is over it.The latter problem is more subtle. If the victim carefully reads the locationaddress, he/she will surely understand that the contacted server is not the rightone. A partial solution is to build up URLs that are similar to the real ones,except for a small detail. It is likely that the victim will only look carefully atthe last part of the URL, skipping the �rst part. One possibility, which wassuggested in [FBD96], is to register a domain name with the DNS that is closeto the name of the site where the page is to be replaced. For instance, one couldreplace the letter 'b' in bank with the letter 'd' in the attacker site.15
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 16



6 ConclusionsIn this paper two powerful attacks that can be accomplished by the monitoringof thread names, which translates to applet and page names, have been pre-sented. In the �rst attack the use of applets with distinct names in web pagesmakes it possible to identify the site the user is browsing. The second attackassumes that the target page has an applet, which will be identi�ed at the timethe user requests the targeted page. The current trend on the Internet is to-wards increasing the number of pages with embedded applets and the numberof applets on a page is also increasing. As a result, the set of applets in a page ismore likely to uniquely identify the page. As Java applets become more widelyused the two attacks become even more of a threat.The two attacks are very easy to implement, and they do not require specialresources. The dossier attack only needs a place that serves the World WideWeb, and the man-in-the-middle attack needs the same plus it needs to be ableto set a CGI for collecting the form information.The dossier attack is similar to the DoubleClick cookie scenario. Becauseof the limited pages (or sites) being logged, they both can only build partialdossiers. The dossier attack reported in this paper is able to identify and logpages only when they have embedded applets with meaningful names. Thecookie attack logs only pages of sites that are a�liated with DoubleClick; thatis, it logs only pre-marked pages. Thus, the cookie attack has a speci�c targetand each of the target pages need to be marked, which is more di�cult toimplement. In contrast, the dossier attack is general purpose and requires nochanges to the pages that our logged. Moreover, the dossier attack is morepersonalized, since the user is identi�ed by his/her e-mail address, rather thanby only an identi�cation number.The man-in-the-middle attack is much easier to implement than the webspoo�ng attack [FBD96], since it is not as intrusive as the web spoo�ng attack.Also, it does not require a special server to understand and dynamically processthe requested URLs. Network spoo�ng is a very powerful technique, but oneof the goals for the experiments reported in this paper were that the attackswould be, although very threatening, very easy to implement so that a program-mer could implement them without the need for sophisticated tools or specialresources.The two attacks described in this paper and other experiments that we haverun lead us to conclude that although much continues to be done to improvethe security of browsers, much more has to be done to reach a su�cient levelof con�dence. Java is a reasonable starting point, since it has overcome manyof the basic security 
aws of other conventional languages. At the same timethe experiments reported in this paper have demonstrated that even a \secure"language cannot su�ce to solve all security problems. Every component of theenvironment has to be designed to address security. More importantly, eachcomponent needs to be aware of the features of the other components in theenvironment. In this paper it has been shown that the combined use of not-so-bad features of di�erent tools can support the design of very dangerous attacks.16
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 17



In addition to Java, these experiments have examined JavaScript and cookietechnologies by Netscape. JavaScript was designed to give an easy to programenvironment for Internet developers both to the client side embedded in HTMLlanguage and to the server side, where it is called LiveWire, which is usedlike a CGI. This requirement of being 
exible and easy to program subjectsJavaScript to many security 
aws as per [Dig97]. Cookies were introduced tostore and retrieve information on the client side. As discussed in [Ste97] itis possible to use this information to cross reference HTML pages and builddossiers that violate user privacy. The lesson learned is that adding even smallfeatures without thorough analysis can open serious security 
aws in the wholeenvironment.For these experiments the latest versions of the two most popular browsers:Netscape Navigator 3.01 and Microsoft Explorer 3.02 were used. Both are awareof the security problems, and both have many optional features that providebetter security. However, because these options result in not enabling Javaand JavaScript at all or in popping up many annoying warning windows, webelieve that most users are likely to disable the security options. This is atypical example of the trade o� between ease of use and security. If the securityfeatures are not user friendly, they will not be used.7 Future WorkThis paper has presented the preliminary results of ongoing research that hasthe �nal goal of developing properties for secure browsers and procedures forsecure browsing.We are currently designing and running other experiments. Some are ad-dressing new areas and others are improving on the experiments described inthis paper. The man-in-the-middle attack could be improved by taking overthe browser instead of just monitoring threads in downloaded pages. This im-proved attack exploits the ability of JavaScript to open a new browser withoutany menu, toolbar, status bar, etc. This is accomplished by using the methodwindow.open() with the option toolbar=no. The blueprint of the attack issimilar to the one described in Section 5.2, except that the second browser isopened as an empty window that shows a page that includes an applet thatpaints the entire browser window to simulate the browser that is being used.Thus, for Netscape browsers the applet will paint a menu, a location �eld andtoolbars on the top of the window, a scroll bar if necessary, and status bar andsecurity key, broken or not, on the bottom of the window. The result is thatthe user will see this new window as a new complete browser. From that timeon, any interaction between the user and the faked browser will be processedlocally by the spy applet and any information will be forwarded to the attackerserver through a socket connection. This represents a bigger threat since thevictim is completely in the control of the attacker. The attacker applet can acton behalf of the user to perform any transaction. Of course this attack requiresmuch more work on the part of the spy applet to follow the mouse and respond17
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 18



appropriately to slider moves, etc.Future plans are to continue collecting information on known attacks andon countermeasures for these attacks and to continue with the preliminary ex-periments and develop new attacks. The objective is to categorize the browserattacks to determine information such as what resources are needed to exer-cise the attack, what browsers it works on and why, and what countermeasurescould detect and possibly thwart the attack. The process of determining whatclassi�cation schemes to use when categorizing the attacks is a critical part ofthe research, for it is only by working with the actual attack scenarios that theappropriate classi�cation schemes become evident. In carrying out some of thepreliminary experiments it was discovered that some attacks that were possiblewhen using the Netscape Navigator browser were not possible when using theMicrosoft Explorer browser. This is not very surprising, but on further exam-ination it was discovered that the reason that the attack was not successfulwas due to an implementation error in the Microsoft Explorer browser. Thus,sometimes interesting results are revealed when classifying the attacks.Finally, based on the understanding gained by analyzing and categorizingthe browser attacks and countermeasures, it is expected that properties forsecure browsers and procedures for secure browsing will be developed. Thesetwo work together, for sometimes by following secure procedures one can workas securely with a less secure browser as with one with a higher level of securityassurance. That is, there may be many tradeo�s between implementing securefeatures or enforcing the user to follow secure browsing procedures. The authorsof [FBD96] present a procedural approach that users can use to detect that theyare browsing a pseudo page. They suggest that \when the mouse is held overa Web link [on the page], the status line displays the URL the link points to.Thus, the victim might notice that a URL has been rewritten." However, in thatsame paper they also mention that this function can be blocked. In fact, thesecond experiment reported in this paper demonstrates this. That is, the spyapplet can display anything in the status line, including the name of the desiredlink in place of the false link that actually exists. This example demonstrates aprocedural approach that is not su�cient. In addition, the property that placingthe mouse over an applet always displays the link for that applet, which wasoverridden in the experiment, is an example of a property that should alwaysbe preserved in a secure browser.8 ReferencesDFW96 Drew Dean, Edward W. Felten, and Dan S. Wallach, Java Security:From HotJava to Netscape and Beyond, Proc. of 1996 IEEE Symposiumon Security and Privacy.(http://www.cs.princeton.edu/sip/pub/secure96.html)Dig97 Digicrime, Online Security Experiments, Digicrime, Inc.(http://www.digicrime.com) 18
IPR2024-00027 

CrowdStrike Exhibit 1024 Page 19



FBD96 Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach,Web Spoo�ng: An Internet Con Game, Technical Report 540-96, Dept.of Computer Science, Princeton University, Dec 1996.(http://www.cs.princeton.edu/sip/pub/spoo�ng.html)GJS96 James Gosling, Bill Joy, and Guy Steele, The Java Language Speci�-cation, ISBN 0-201-63451-1, The Java Series, Addison Wesley, 1996.(http://www.nge.com/home/java/spec10/index.html)LY96 Tim Lindholm and Frank Yellin, The Java Virtual Machine Speci�cation,ISBN 0-201-63452-X, The Java Series, Addison Wesley, 1996.MRR97 D. Martin, S. Rajagopalan and A. Rubin, \Blocking Java Appletsat the Firewall", in Proceedings of the InternetSociety Symposium onNetwork and Distributed System Security, February 10-11, 1997.Ros96 Jim Roskind, Navigator 2.02 Security-Related FAQ, May 1996.(http://home.netscape.com/newsref/std/java security faq.html)Ste97 Lincoln D. Stein, WWW Security Faq, version 1.3.7, March 30, 1997.(http://www.genome.wi.mit.edu/WWW/faqs/www-security-faq.html)

19
View publication stats

IPR2024-00027 
CrowdStrike Exhibit 1024 Page 20

https://www.researchgate.net/publication/2691356



