See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2691356

Vulnerability of "Secure" Web Browsers

Article - June 1997

Source: CiteSeer

CITATIONS
16

3authors, including:

" Flavio De Paoli
'S Universita degli Studi di Milano-Bicocca

142 PUBLICATIONS 1,158 CITATIONS

SEE PROFILE

All content following this page was uploaded by Flavio De Paoli on 10 February 2014.

The user has requested enhancement of the downloaded file.

READS
189

Richard A. Kemmerer
University of California, Santa Barbara

176 PUBLICATIONS 8,676 CITATIONS

SEE PROFILE

ResearchGate

IPR2024-00027

CrowdStrike Exhibit 1024 Page 1


https://www.researchgate.net/publication/2691356_Vulnerability_of_Secure_Web_Browsers?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2691356_Vulnerability_of_Secure_Web_Browsers?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-De-Paoli?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-De-Paoli?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Milano-Bicocca?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-De-Paoli?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Kemmerer?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Kemmerer?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Barbara?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard-Kemmerer?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-De-Paoli?enrichId=rgreq-188feddad25032f6a7ed3191968ba020-XXX&enrichSource=Y292ZXJQYWdlOzI2OTEzNTY7QVM6OTk4NzM1Mzc5MjEwMjdAMTQwMDgyMzExNTEzMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Vulnerability of “Secure” Web Browsers *
F. De Paoli, A. L. Dos Santos, R. A. Kemmerer

Reliable Software Group
Computer Science Department
University of California
Santa Barbara, CA 93106

May 26, 1997

Abstract Today the World Wide Web is considered to be a platform for build-
ing distributed applications. This evolution is made possible by browsers with
processing capabilities and by programming languages that allow web designers
to embed real programs into HTML documents. Downloading and executing
code from anywhere on the Internet brings security problems along with it. A
systematic and thorough analysis of security flaws in the browsers and related
technology is necessary to reach a sufficient level of confidence. This paper
presents some preliminary results of ongoing research that has the final goal
of developing properties for secure browsers and procedures for secure brows-
ing. The research started by investigating features provided by the standard
environment. The paper describes some experimental attacks that have been
carried out by exploiting features of Java and JavaScript executed by Netscape
Navigator and Microsoft Explorer browsers.

1 Introduction

The growth of the Internet and the World Wide Web (WWW) during the past
few years has been phenomenal. The Internet is currently serving tens of millions
of people connected through millions of computers. Most every business and
government institution has a web page, and the web and web browsing are fast
becoming the primary source of information for people of all ages.

Languages like Java and JavaScript have been developed to embed programs
into HyperText Markup Language (HTML) documents (pages). Java applets,
which are designed to be downloaded from the web and run directly by the
Java virtual machine within a browser, are also increasingly being included in

*To be published in the Proceedings of the National Information Systems Security Confer-
ence, October 1997.

IPR2024-00027
CrowdStrike Exhibit 1024 Page 2



web pages to provide more sophisticated animation and other desirable features.
Downloading and executing code from anywhere on the Internet brings security
problems along with it. That is, the host computer is open to a variety of
attacks, ranging from attacks that simply monitor the environment to export
information, to attacks that change the configuration or the behavior of the host
(changing files, consuming resources), and finally to attacks that open a back
door to let intruders get into the host.

Attacks succeed either because the implementation of the browser is weak
(from flaws in the specification and/or from poor implementation) or because
the environment in which the browser is executed has flaws. Weaknesses in the
environment are mainly due to the new open nature of software. Conventional
computing paradigms assume that programs are installed and configured once on
any and every machine and that these programs only exchange data. This means
that a user can make all possible checks over a new program before running it.
This assumption is no longer valid for open and mobile environments, such as
Java and the web.

Many security holes in web browsers have been discovered and brought to
the attention of the public [DFW96]. Although most of these holes have been
patched, a systematic analysis of the features of both the Java and JavaScript
languages and the web environment is needed to identify possible design weak-
nesses in order to avoid similar problems.

Most of the attacks carried out so far require the attacker to have substantial
capabilities, such as taking over a web server or a domain name server or as-
suming that the user will navigate only through hyperlinks. These assumptions,
therefore, often limit the likelihood of the attacks due to the low probability that
the assumptions would be satisfied or because they require so much knowledge
that only highly-skilled programmers could implement the attacks.

The purpose of this paper is to describe some experimental attacks that
have been carried out by exploiting only features provided by the standard
environment. What sets these attacks apart from most of the others is that
the attacks presented in this paper can be realized without assuming that the
attacker has any capabilities beyond those granted to every user on the net
and without assuming that the attackers are highly skilled programmers with
complex programs for carrying out the attacks. That is, the attacks reported in
this paper are straight forward to set up and are of limited complexity.

This paper reports on two attacks. The first one deals with the violation
of privacy, and it requires only that the victim downloads a page that includes
an attacker applet, which collects and sends information back to its server.
The second experiment is as powerful as a “man-in-the-middle” attack, but it
too requires only that the victim downloads a honey-pot page that includes
an applet that can detect when the victim visits a certain site and displays an
imposter page for that site in order to steal sensitive information, such as credit
card numbers or personal identification numbers.

The paper is structured in the following way. Section 2 summarizes the
browser and language features that have been used. Section 3 briefly reviews
some previously known attacks. Section 4 gives more details on applet capabili-

IPR2024-00027
CrowdStrike Exhibit 1024 Page 3



ties and features to establish the background for the attacks. Section 5 describes
the new attacks. Finally, future work and conclusions are presented.

2 Browsers and Languages

The World Wide Web is a hypertext of network-accessible information. It was
designed to support static links to display static multimedia documents. The
quick growth of the web and the related technology has changed this initial
view. Today the web is considered a platform to build distributed applications.
This evolution is made possible by browsers with processing capabilities and by
programming languages that allow web designers to embed real programs into
HTML documents.

This section outlines the characteristics of Java and JavaScript, which are the
most popular languages for programming the web, and of Netscape Navigator
and Microsoft, Explorer, which are the most popular browsers.

2.1 Java

The Java language is a general-purpose object-oriented language that was in-
troduced by Sun Microsystems in 1995 [GJS96a]. One of the major design goals
for Java was portability. The result is that not only the Java source code, but
also the binary code is executable on all processors. This is accomplished by
compiling the source code into platform independent bytecode, which is then
run by the Java virtual machine.

Some of the features of the Java language that make it simpler and sup-
posedly more secure are that it is strongly typed, there are no preprocessor
statements (like C’s #define and #include), there are no pointers, no global
variables, and no global functions. By keeping the language simple and without
many of the error prone features, such as multiple inheritance, it is expected
that Java will be more secure.

A Java program is a collection of classes and instances of classes. Each class is
compiled into an intermediate format, called bytecode, which is then interpreted
to execute the program. A major characteristic of Java is that pointers are
not supported; object references are provided instead. Java supports dynamic
creation of instances and bindings. When a class instance (an object) is needed,
it is created explicitly and a reference to it is returned; when a method is invoked
on an object, the interpreter selects the method to be executed according to the
class hierarchy and method overloading. Object destruction is automatically
handled by a garbage collector, so that memory management is completely in
the control of the interpreter.

Another feature of Java is the support for concurrent programming via
threads. Threads allow programmers to associate an independent execution
flow with each class. A class with a thread can be started, stopped, and sus-
pended independently from the execution of the rest of the system of which it

IPR2024-00027
CrowdStrike Exhibit 1024 Page 4



is part. Synchronization among thread executions can be accomplished by class
monitors.

As mentioned above, Java code was designed to run on any client; therefore,
compiled Java programs are network and platform independent. The absence
of physical pointers and automatic memory management help achieve this in-
dependence. Moreover, the bytecode has been designed to fully support the
typing mechanism of Java so that dynamic code verification can be performed.
This is a safety and a security feature designed to prevent one from executing
corrupted or malicious code.

The Java Virtual Machine is emulated in software and can run on numer-
ous platforms [LY96]. It could also be compiled or implemented directly in mi-
crocode or hardware, but currently it is mostly emulated in software. The virtual
machine deals with class files, which contain Java virtual machine instructions,
a symbol table, and a few other necessary items. Java virtual machine instruc-
tions are all one byte long, and that is why they are called bytecodes. Bytecode
can also be generated from other high level languages, such as Ada or C, or it
could be generated manually.

When Java classes are downloaded from the network it is necessary to use
a class loader. Java supplies an abstract ClassLoader class for this purpose.
Because abstract classes cannot be used directly, each browser needs to declare
a subclass of this class to be used by the browser for downloading classes. Each
subclass must include a customized implementation of the loadClass () method
to retrieve and download a class from the net. A class is downloaded as an array
of bytes that must be converted to an instance of class Class. That is, the
array of bytes must be translated to the structure of a class. The ClassLoader
method that actually does the conversion is defineClass (). Every class object
contains a reference to the class loader that defined it, so related classes can
be downloaded by the same class loader. These features make Java suitable for
writing programs in a distributed, heterogeneous environment such as the web.

Besides supporting the design of complete applications, Java supports the
implementation of small applications, called applets, which can be embedded
into HTML pages. A special tag in a downloaded HTML file tells the web server
to download the bytecode for a Java applet, and the most popular web browsers,
such as Netscape Navigator and Microsoft Explorer, include support for the
execution of applets. Applets can be used for implementing small stand-alone
applications, as well as for implementing clients of client/server applications.

A page may have more than one applet embedded in it. In this case, all of
the applets are downloaded together. Because a thread is associated with each
applet, more than one applet can run concurrently within the same web-page
context. The class Applet defines a set of methods to control applet behavior.
These methods can be overridden by programmers to get the desired behavior
from their applets. The most important methods are init, start and stop.
When an applet is downloaded it is automatically created, initiated and started:
the methods init and start are invoked and the applet is labeled active. When
the page that embeds an applet is not displayed (the browser is iconified or shows
another page), the execution of that applet is suspended (i.e., the method stop

IPR2024-00027
CrowdStrike Exhibit 1024 Page 5



is invoked and the applet is labeled inactive). If the page is shown again, the
applet execution is resumed (i.e., the method start is invoked again and the
applet is labeled active). It is possible to keep an applet running even when it
is inactive, however. This is accomplished by overriding the stop method so
that it never returns. One of the experiments described in this paper exploits
this feature.

2.2 JavaScript

JavaScript is an object-based scripting language that has been specifically de-
signed by Netscape to embed executable statements (scripts) into HTML pages.
JavaScript resembles Java, but without Java’s static typing and strong type
checking. Scripts are embedded directly into an HTML page and interpreted
by the browser. By invoking JavaScript functions, it is possible to perform ac-
tions (such as playing an audio file, executing an applet, or sending an e-mail
message) in response to a user opening or exiting a page.

In the experiments described in this paper, the JavaScript support for forms
has been exploited. The use of forms enables the browser to send information
back to the server. A form is an HTML tag that includes an ACTION field,
which specifies the action to be performed, an INPUT field, which specifies a
simple input element, and other fields, which are not relevant to this discussion.

The ACTION field must be filled out with a URL, which usually refers to
a Common Gateway Interface (CGI) program. CGI technology is a standard
for interfacing external applications with Web servers, and it allows users to
start an application on the server. Another valid URL for the ACTION field is
"mailto:any_e-mail_address", which causes an e-mail message to be sent by
the browser to the specified address.

The INPUT field is composed of a set of fields like NAME, VALUE (to store the
input string) and TYPE. One example of type is "submit", which specifies a
pushbutton that causes the current form to be packaged up into a query URL
and sent to a remote server. JavaScript implements a set of objects to handle
different types of forms. Of particular interest is the submit object, which has
a pre-defined method click() that simulates a click on the submit button.
By writing a JavaScript statement that invokes that method, it is possible to
submit a form automatically, without obtaining the user’s acknowledgment. If
the specified ACTION is "mailto:..." the effect is to send an e-mail message
from the user without the user knowing it.

2.3 Browsers

Both Netscape Navigator 3.01 and Microsoft Explorer 3.02 support the execu-
tion of Java applets and JavaScript. Their implementations of the support of
the Java virtual machine and JavaScript interpreter differ, but they support
the requirements of these languages. Moreover, they both support the “cookie”
technology. Cookie technology was developed by Netscape to make up for the

IPR2024-00027
CrowdStrike Exhibit 1024 Page 6



stateless nature of web communications. A cookie is a small piece of informa-
tion that is stored by the browser on server request and that can be sent to the
server at any time. A browser is sent a request to set a cookie the first time
it asks the server for an HTML page. Cookies are useful to maintain related
information during long browsing sessions, such as maintaining shopping bas-
kets and remembering configuration preferences. Although cookies have been
introduced to improve the quality of the service provided by the web, they can
also be exploited for malicious purposes, as will be described in the next section.

Both browsers also give the user options to increase the security of the
browser. These options are:

1. They support the option to turn the execution of Java and/or JavaScript
on or off. This enables the user to trade the convenience of these languages
for the security of not running any outside program in the user’s machine.

2. They support the option of alerting the user before accepting a cookie
and before sending a form in an insecure environment. This lets the user
choose whether to continue the operation or not.

3. They support certificates that are digital signatures. These currently are
not widely used, but they are likely to be used more in the future.

4. Netscape Navigator has an option to alert the user before sending forms
by e-mail. The attacks reported in this paper were originally exercised
on Netscape Navigator 3.0, and this option did not work properly there.
This feature does work on Netscape Navigator 3.01.

5. Microsoft Explorer allows the user to set three levels of security (high,
medium, low) against active contents (which is Microsoft’s term for Java
and JavaScript). Although this at first seems like a good feature, Mi-
crosoft Explorer fails in not explaining in an understandable way what
the difference among the levels is.

In carrying out these experiments it was necessary to constantly be aware
of the differences between Netscape Navigator and Microsoft Explorer. For
instance, with Netscape Navigator, one instance of the Netscape Navigator pro-
gram can show many windows. Microsoft Explorer, on the other hand, is able
to show only one window for each instance of the program. The importance
of this is that different program instances are isolated from each other by the
features of the operating system that isolate two programs. As a result, these
different instances do not share any environment or context. In the remainder
of this paper the word browser is used to refer to the browser’s windows that
are spawned by the same instance of a browser program.

3 Brief Review of Some Already Known Attacks

There are many known security vulnerabilities in web browsers. The attacks
that exercise these weaknesses vary in sophistication and in the amount of re-

IPR2024-00027
CrowdStrike Exhibit 1024 Page 7



sources that the attacker is required to possess in order to carry out the attack.

In this section a few representative attacks are presented. First two very
simple though effective attack types, which require only a browser and uses
standard language features, are presented. Next, an attack that requires the
attacker to control a Domain Name Server that advertises wrong addresses is
described. This is followed by the discussion of an attack that relies on common
assumptions for firewalls to force a connection to a protected port. Finally, the
attack known as “web spoofing” is presented to show how an attack may require
strong assumptions and a high level of sophistication.

One of the simplest forms of browser attacks and also one of the hardest to
stop is a denial of service attack. The attacks reported here use Java features
to exhaust resources of the host system or prevent the use of some feature. Two
obvious examples of this attack are busy-waiting to consume cpu cycles and
repeatedly allocating memory until all of the available memory is exhausted.
Another attack in this category is locking a class to prevent access to particular
resources (e.g., locking the InetAddress class in Netscape Navigator blocks host
name lookups). The reason that the denial of service attacks are difficult to stop
is that there is no regulation of how much of a resource an applet can consume.
That is, an applet is either given as much as it wants or it is given nothing.
More of the technical details, which help to understand this attack are given in
the next section. Further information on this type of attack can be found in
[DEWO6].

Another simple attack deals with the use of cookies to keep track of a user’s
activities, which turns out to be a privacy violation. This attack is described in
[Ste97] and reports a real situation that has been set up by DoubleClick Cor-
poration. DoubleClick has a network of affiliated sites each of which agrees to
having a space in their HTML pages for advertisements that points to the Dou-
bleClick site instead of showing a local graphic file. The first time DoubleClick
receives a request for an advertisement by a browser, it selects an advertisement
from a list and sends it back along with a request for setting a cookie with
a unique identification number. That number will be sent to DoubleClick at
any further contact to let them build a user profile reporting every DoubleClick
page and site that is visited. Even though the profile does not report any infor-
mation about the user identity (only computer names are recorded), it allows
DoubleClick to understand a user’s tastes and interests. This information can
be exploited for marketing purposes, such as sending each user (or computer)
personalized advertisements and rating the effectiveness of the advertisements.
To prevent this attack, a user should first check the presence of a DoubleClick
cookie in his/her computer (its name is ad.doubleclick.net) and delete it if
necessary. Next, the user should turn on the browser option that alerts the
user whenever a cookie is to be placed, and the user should refuse DoubleClick
cookies.

The Domain Name Server (DNS) attack assumes that the attacker has con-
trol of a DNS, which a trusting host (or even a firewall) uses to validate a server
address. In this attack the applet requests a connection to the server by pro-
viding the name of the server. The malicious domain name server returns the

IPR2024-00027
CrowdStrike Exhibit 1024 Page 8



address of a machine other than the one requested by the applet (e.g., the at-
tacker’s machine). The result is that the applet can then connect to an arbitrary
host. Netscape fixed this problem in Navigator 2.01 and 2.02 by looking up the
IP address for each site they process and refusing to listen to (possibly false)
updates to that address [Ros96].

The next attack relies on the common assumptions that a firewall trusts
all requests originating behind it and that only the first packet of a connec-
tion is checked. To start the attack the applet sends the originating server a
connection request including a protected port number (e.g., the port for telnet
connections). The firewall trusts the request, since it originates behind it. Sub-
sequent messages from the server are also trusted, since they are related to an
already approved connection. The effect is that the attacker can open any con-
nection even though there are firewall controls. This attack highlights security
flaws that derive from assumptions that are no longer valid for web-based com-
putation. A simple though partial solution is to design browsers that prevent
one from issuing requests related to well-known ports (e.g., port numbers below
1024). More sophisticated firewalls already implement more complex filtering
rules to ensure better control. A complete description of the firewall attack can
be found in [MRR97].

Another interesting attack is the net spoofing attack, which assumes that
the attacker has a way to make the user connect to the attacker machine, which
delivers rewritten pages in such a way that each URL refers to the attacker
machine. The attacker machine works as a “man-in-the-middle.” This requires
the attacker to have control of the network such that everything that the browser
thinks it is sending to the web actually goes to the attacker machine. The
attacker may then forward the request to the real machine and relay the results
back to the victim, while making copies of the interesting parts before passing
them on. This attack is fully described in [FBD96].

The second experiment described in this paper was motivated by the descrip-
tion of the man-in-the-middle attack in [FBD96]. Section 5.2 describes the new
attack in detail. The goal for the new attack was to achieve an attack with the
same power as the attack in [FBD96], but without assuming that the user will
follow only hyperlinks and with a much simpler approach, which targets only
particular sites of interest. Although in [FBD96] it is claimed that JavaScript
could be used to fake the location line of Netscape Navigator, efforts to verify
this attack were unsuccessful, other than by opening a new browser as an empty
window, as is described in the Future Work Section of this paper.

4 Applet Security

Java applets are designed to be downloaded from the web and to be run directly
by a Java virtual machine within a browser. Since applets are automatically
run by the browser just by accessing a web page that contains a reference to the
applet, security concerns should be alleviated before users can be expected to
accept the concept of running applets from untrusted sources. That is, special

IPR2024-00027
CrowdStrike Exhibit 1024 Page 9



security measures should be taken to protect against security, privacy, and denial
of service threats. Therefore, it is necessary for the browser that contains the
Java virtual machine to limit the downloaded applet. These limitations are not
normally placed on applets loaded from the local file system, because the local
host is trusted.

This section examines some privacy and security features related to applets.
The goal is to understand what interaction is allowed between an applet and its
environment (i.e., between an applet and the host machine, the host browser, or
other applets running in the same browser). Section 4.1 illustrates what system
properties an applet can access, Section 4.2 describes what the context of an
applet is, and Section 4.3 deals with thread-related features.

4.1 System properties

Since applets are programs to be executed in the host environment, the Java
designers posed some restriction on the interaction between an applet and its
environment. The intent is to prevent safety, security and privacy violations.
The restrictions that apply to applets are:

e An applet is prevented from reading or writing files on the host that is
executing it.

e An applet can make network connections only to the host that it came
from.

e An applet cannot start any program on the host that is executing it.
e An applet is prevented from loading libraries or defining native methods.

e An applet can read only a restricted set of system properties. In particular,
it can read the file separator (e.g., ‘/’), the path separator (e.g., ‘:’), the line
separator, the Java class version number, the Java vendor-specific string
and URL, the Java version number, and finally the operating system name
and architecture.

The idea is that by placing these limitations on downloaded applets the
applets are effectively placed in a “sand-box”. The applet may do whatever it
wants inside the sand-box, but it is limited as to what it can do on the outside.

These restrictions are enforced by the class loader and the security manager.
The class loader implements the downloading rules for classes. Due to the above
restriction, this means that an applet cannot download classes other than from
the host it came from.

The Java virtual machine also limits the name space of downloaded applets.
When a Java virtual machine tries to load a class from a source other than the
local host machine a class loader, which cannot be overridden by the downloaded
applet, is invoked. The class loader sets up a separate naming environment
to accommodate the source. This will assure that name clashes don’t occur
between the names in this source and the names in classes loaded from other

IPR2024-00027
CrowdStrike Exhibit 1024 Page 10



sources. Bytecode loaded from the local file system is set up in the system name
space, which is shared by all other name spaces, and the system name space is
always searched first to prevent system classes from being overridden.

After the name space is set up, the class loader calls a bytecode verifier
to assure that the bytecode has proper structure. This is necessary because
the bytecode could have been generated by an incorrect Java compiler, by a
compiler altered to skip the compile time checks, or by a non-Java compiler.
The bytecode also could have been altered after it was produced. The bytecode
is verified in four passes and is claimed to satisfy the following conditions if it
passes the verification.

e The downloaded bytecode has the proper format for a class file

e All “final” classes are not subclassed, and all “final” methods are not
overridden.

e Every class except Object must have a superclass.

e All variable and method references have legal names and types.
e Methods are called with the appropriate arguments.

e Variables are assigned values of the appropriate type.

e There are no stack overflows or underflows.

e All objects on the stack are of the appropriate type.

Java provides an abstract SecurityManager class to enforce the browsers’
security policy. Because SecurityManager is an abstract class it cannot be
used directly; therefore, each browser must declare a subclass of the class
SecurityManager, which acts as a reference monitor. The security manager
is installed when the Java virtual machine within the browser starts up, and it
cannot be overridden. The security manager is automatically consulted before
any operation related to the environment is performed. In this way it can deny
the authorization for any possibly insecure operation. It is important to note
that the security policy is defined by the web browser and it is implemented
in the browser’s security manager. Therefore, the above restrictions are only
advice and might not be followed by some browsers. In fact, Microsoft Ex-
plorer allows different configuration levels. One of these levels allows applets
to download classes from anywhere. In contrast, Netscape Navigator strictly
implements all of the restrictions.

The restrictions above cover many of the protection concerns, but there are
additional concerns about security. The following subsections will discuss some
of these.

10

IPR2024-00027
CrowdStrike Exhibit 1024 Page 11



4.2 The context of an Applet

A single HTML page may embed more than one applet. In both Netscape Navi-
gator and Microsoft Explorer all applets in the same page define a single context.
An applet can get a reference to its context by the method getAppletContext ()
of the class Applet. The context gives an applet access to a set of methods to
collect references to other applets in the same page and to interact with the
browser. These features could be exploited to make applets collaborate and
communicate; for example, they could synchronize their behavior. Two meth-
ods of interest are getApplets() and getApplet(). GetApplets() returns a
list of all applets in the same context (i.e., in the same page), and getApplet ()
returns a reference to an applet when given the applet’s name. Each applet has
a string name. Once an applet has a reference to another applet, it can invoke
any of the methods available for the class Applet on the referenced applet.

An applet can interact with the browser to show (download) a new document
in a window and to show a message in the status line of the current window. The
methods of interest are showDocument () and showStatus(). ShowDocument ()
shows a new document in a window given its URL, and showStatus () shows a
string in the status line of the browser.

The showDocument method can be asked to open a document in the current
window, in a frame of the current window, or in a new window. Both Netscape
Navigator and Microsoft Explorer define “window” as “browser window”. So
the two methods above refer to the browser itself. When showDocument opens
a new window, it actually opens a new browser and downloads the requested
HTML document in that browser.

In Netscape Navigator the new browser can be identified by a unique name
that must be supplied to showDocument as a parameter. After being created,
that browser can be accessed by name by any active applet, regardless of its con-
text. This means that any applet that knows the name of that browser can make
it download a document even without user acknowledgment and awareness.

In contrast, Microsoft Explorer creates an anonymous browser, even if a
name is supplied when showDocument is invoked. This means that even the
same applet that opened the browser cannot show another document in that
browser.

This is an example of different implementations of the same language feature.
Both implementations can be criticized. Netscape Navigator can be criticized
because a name can be used in a different context as a reference to the same
window. This could be a security (or a safety) flaw, since the behavior of two
applets in two different contexts could interfere with each other (intentionally or
not). Microsoft Explorer can also be criticized because one browser is prevented
from opening another browser and then showing a sequence of documents in it.

The method showStatus() allows an applet to display any message on the
status line of the browser showing the document. This method could be used
to display misleading information to the user.

11

IPR2024-00027
CrowdStrike Exhibit 1024 Page 12



4.3 Playing with Threads

Since every applet is implicitly associated with a thread, an applet can access
another applet by using an instance of the class Thread. The thread class defines
the method getThreadGroup, which returns a ThreadGroup object. Using this
object one can retrieve a list of references to all threads (i.e., applets) that belong
to the same group or subgroup of this thread group. Both Netscape Navigator
and Microsoft Explorer define a single thread group that contains all threads
associated with all active applets in all of the browsers. The getParent method
can be recursively called to get the thread group that is the parent of all thread
groups in the browser. This means that an applet can get a reference to, as well
as access to, any applet that is embedded in any displayed document through
its thread object.

This feature allows the design of applets that continuously monitor the
browser to get access to applets embedded in downloaded pages. Once the
applet has this information, it can interfere with the execution of other applets
in several ways. The denial of service attacks described in Section 3 are based
on this feature. The attacker applet may affect performance by delaying, sus-
pending and resuming threads, or by hanging their priority. It is sometimes
possible to kill a thread (and therefore the associated applet).

Every thread has a name associated with it, which is the name of the class
that defines the applet. Names in combination with thread references can be
exploited to understand what the user is doing. The attacks described in the
next section are based on this feature.

5 The Experiments

In this section some experiments that were carried out by the Reliable Software
group at the UCSB are described. These experiments led to the definition of
two new attacks. One attack deals with privacy violation; its goal is to build
dossiers on Internet users. The second deals with confidentiality; its goal is to
steal access information (e.g., user’s PIN).

What is interesting is that both attacks are based on features of the browser
or of the language exploited. This demonstrates that even a good implementa-
tion can lead to an insecure environment if it is possible to combine “features”
that have been designed independently of each other.

In particular, the JavaScript capability of sending e-mail from within a script,
the Java capability of opening a new window and downloading a new HTML
page in it, and the object-oriented nature of Java that associates every applet
with a thread have been exploited.

5.1 Privacy Violation: Building User Dossiers

The goal of this attack is to collect and send information about the user back
to the server. This is accomplished by JavaScript statements and a spy applet
embedded in a honey-pot page.

12

IPR2024-00027
CrowdStrike Exhibit 1024 Page 13



The attack starts with the victim downloading the honey-pot page. The
attack itself is carried out in two steps. First, when the victim downloads the
honey-pot page from the attacker server, JavaScript silently fills out a form and
sends it from the unsuspecting user back to an address on the server. In this
way the server can uniquely identify the victim by his/her e-mail address. Next,
the spy applet monitors the victim’s activity by collecting information on the
victim’s running threads. When the spy applet detects that a new thread is
running, it retrieves the thread’s name and sends it back to the server using a
UDP/IP message. The stop method has also been redefined to keep the spy
applet alive even when the document that embeds it is not being shown. This
allows the spy applet to monitor all the open browsers at any time.

The blueprint of the attack is:

1. Build a honey-pot HTML document that embeds some JavaScript state-
ments to send the e-mail message and that also contains a spy applet with
the stop method overridden.

2. When the honey-pot page is downloaded from the attacker server, an e-
mail message is sent back to the server to identify the victim, and the spy
applet starts monitoring the victim’s activity.

3. The spy applet sends the attacker server any information about threads
that are embedded in the documents downloaded by the victim. Since the
stop method of the spy applet has been overridden, it continuously runs
even if the victim closes the honey-pot document.

On the server side there is a daemon that receives and collects the informa-
tion and builds up a dossier on the victim. The daemon knows the identity of
the victim and a list of names of threads run by the victim. These thread names
are searchable by any web search engine. The web is searched to get references
to the pages that include the thread executed by the victim browser. The result
of the attack is a user profile with a reasonable degree of accuracy.

There are two technical problems with this attack. The first is that only
pages including threads can be monitored. This is considered to be a minor
problem, since the number of pages that embed applets is increasing every
day. The second problem is that it may happen that the same applet can
be embedded in more than one page. Thus, when searching on a thread name
the thread name query may result in several HTML pages. In this case, more
sophisticated techniques may be required to correlate the collected information.

The attack presented here is likely to succeed since it does not require any
special preparation. To be more affective it could be focused on a specific
target. For example, the honey-pot page could be a collection of links and
information about a particular subject, such as fishing. It is likely that web
surfers who like to fish will go to that page and then follow links to look for
information interesting to them. The user profiles that can be built may be
used for commercial and marketing studies. For example manufacturers might
be interested in deducing what items are more appealing, advertising companies

13

IPR2024-00027
CrowdStrike Exhibit 1024 Page 14



might use this information to better focus their advertisements, or commercial
organizations might better understand the interests of customers from different
geographic areas, allowing them to offer different items in different stores.

5.2 “Man-in-the-middle” Attack: Stealing Account and
Password Information

The goal of this attack is to monitor a victim’s activities to understand when
he/she visits a target site (e.g., a bank site) and then to replace the original
pages with fake pages in order to retrieve sensitive information. The attack
requires that there are two open browsers: one with the attacking applet, and
one to be used by the victim. This is necessary because the attack is based on
the showDocument method and only active applets can execute it.

Like the first attack, this one also starts with the victim downloading a
honey-pot page that includes a spy applet. When the victim asks for the honey-
pot page, he/she gets a first document on the open browser and a second docu-
ment on another, new browser. This second browser is opened by the spy applet
embedded in the first document. The purpose of the second browser is to keep
the first one displaying the document including the spy applet, so that it never
gets suspended. The spy applet can then monitor the activities carried out by
the victim and have access to the second browser through the showDocument
method.

The same technique of monitoring thread names, which directly translate
to applet names, is used to discover when the user is looking at the target
page. For this to be successful, the target page must contain an applet that
does not have a common name. When the victim has downloaded a page from
the target site, the spy applet downloads a fake page from the applet’s server
with the same appearance as the real page. At this point the spy applet is
the man-in-the-middle. Now, the attacker has complete control of the victim’s
interaction with hyperlinks and forms. The fake page has forged links to make
the victim interact with the attacker server instead of with the real server for
the target site. In the experiment, when the victim chooses the log-on page for
the bank he/she actually downloads a pseudo log-on page from the attacking
server. Thus, the filled out form, which contains the victim’s account number
and pin, is sent to the attacker server instead of to the bank. After collecting
the wanted information, a bad connection message is displayed and the real
page is downloaded, so that the victim can continue his/her activity without
understanding what was going on. For the experiment this was accomplished
by first downloading a page with an error message “Connection refused, please
try again” and then downloading the real log-on page for the bank.

The blueprint of the attack is:

1. Build a Honey-Pot page that includes the spy applet.

2. When downloaded, the spy applet spawns a new named browser with the
same or a possibly different page.

14

IPR2024-00027
CrowdStrike Exhibit 1024 Page 15



3. It is assumed that the user uses the new browser so that the spy applet
is never stopped and it can monitor the documents downloaded by the
victim.

4. When the user retrieves a page that embeds an applet that signals that
he/she is looking at the target page that the attacker is interested in (e.g.,
the bank page), the spy applet calls the showDocument method to replace
the real page with a forged page downloaded from the attacker server.

5. The forged page sends information back to the attacker server by means
of JavaScript support for forms. This causes a CGI script to run on the
attacker server.

6. The CGI script stores the information and answers with a page that shows
an error message and embeds an applet that downloads the real page to
conclude the attack.

As mentioned above, this attack uses the showDocument method and requires
that there are two open browsers: one with the attacking applet, and one to
be used by the victim. The question is how can one convince the victim to
keep the first browser open and use the second for further downloading? In one
experiment a honey-pot page that provides up-to-date information with auto
refresh every few minutes was implemented. It is likely that the victim will take
advantage of this feature by keeping that page active (e.g., for updated sports
scores). In another experiment a second browser, which overlaps the first, is
opened. Having the second browser overlap the first is something that most
users are willing to accept, especially when browsing new pages. Furthermore,
for users that use full-screen browsers the new browser completely overlaps the
existing one.

A weakness of this attack is that the victim may notice that something is
wrong by checking out the URL displayed by the status line and the location line.
The former problem was easily overcome by embedding JavaScript statements
to overwrite the status line. When the victim points the mouse to a link with
a forged URL, the status line still shows the original URL. The JavaScript
statement used is onMouseOver="self.status=’faked link’;return true".
This is added to the tag that has the hyperlink for which the status line is to
display the desired link instead of the real link whenever the mouse is over it.
The latter problem is more subtle. If the victim carefully reads the location
address, he/she will surely understand that the contacted server is not the right
one. A partial solution is to build up URLs that are similar to the real ones,
except for a small detail. It is likely that the victim will only look carefully at
the last part of the URL, skipping the first part. One possibility, which was
suggested in [FBDY6], is to register a domain name with the DNS that is close
to the name of the site where the page is to be replaced. For instance, one could
replace the letter ’b’ in bank with the letter ’d’ in the attacker site.

15

IPR2024-00027
CrowdStrike Exhibit 1024 Page 16



6 Conclusions

In this paper two powerful attacks that can be accomplished by the monitoring
of thread names, which translates to applet and page names, have been pre-
sented. In the first attack the use of applets with distinct names in web pages
makes it possible to identify the site the user is browsing. The second attack
assumes that the target page has an applet, which will be identified at the time
the user requests the targeted page. The current trend on the Internet is to-
wards increasing the number of pages with embedded applets and the number
of applets on a page is also increasing. As a result, the set of applets in a page is
more likely to uniquely identify the page. As Java applets become more widely
used the two attacks become even more of a threat.

The two attacks are very easy to implement, and they do not require special
resources. The dossier attack only needs a place that serves the World Wide
Web, and the man-in-the-middle attack needs the same plus it needs to be able
to set a CGI for collecting the form information.

The dossier attack is similar to the DoubleClick cookie scenario. Because
of the limited pages (or sites) being logged, they both can only build partial
dossiers. The dossier attack reported in this paper is able to identify and log
pages only when they have embedded applets with meaningful names. The
cookie attack logs only pages of sites that are affiliated with DoubleClick; that
is, it logs only pre-marked pages. Thus, the cookie attack has a specific target
and each of the target pages need to be marked, which is more difficult to
implement. In contrast, the dossier attack is general purpose and requires no
changes to the pages that our logged. Moreover, the dossier attack is more
personalized, since the user is identified by his/her e-mail address, rather than
by only an identification number.

The man-in-the-middle attack is much easier to implement than the web
spoofing attack [FBD96], since it is not as intrusive as the web spoofing attack.
Also, it does not require a special server to understand and dynamically process
the requested URLs. Network spoofing is a very powerful technique, but one
of the goals for the experiments reported in this paper were that the attacks
would be, although very threatening, very easy to implement so that a program-
mer could implement them without the need for sophisticated tools or special
resources.

The two attacks described in this paper and other experiments that we have
run lead us to conclude that although much continues to be done to improve
the security of browsers, much more has to be done to reach a sufficient level
of confidence. Java is a reasonable starting point, since it has overcome many
of the basic security flaws of other conventional languages. At the same time
the experiments reported in this paper have demonstrated that even a “secure”
language cannot suffice to solve all security problems. Every component of the
environment has to be designed to address security. More importantly, each
component needs to be aware of the features of the other components in the
environment. In this paper it has been shown that the combined use of not-so-
bad features of different tools can support the design of very dangerous attacks.

16

IPR2024-00027
CrowdStrike Exhibit 1024 Page 17



In addition to Java, these experiments have examined JavaScript and cookie
technologies by Netscape. JavaScript was designed to give an easy to program
environment for Internet developers both to the client side embedded in HTML
language and to the server side, where it is called LiveWire, which is used
like a CGI. This requirement of being flexible and easy to program subjects
JavaScript to many security flaws as per [Dig97]. Cookies were introduced to
store and retrieve information on the client side. As discussed in [Ste97] it
is possible to use this information to cross reference HTML pages and build
dossiers that violate user privacy. The lesson learned is that adding even small
features without thorough analysis can open serious security flaws in the whole
environment.

For these experiments the latest versions of the two most popular browsers:
Netscape Navigator 3.01 and Microsoft Explorer 3.02 were used. Both are aware
of the security problems, and both have many optional features that provide
better security. However, because these options result in not enabling Java
and JavaScript at all or in popping up many annoying warning windows, we
believe that most users are likely to disable the security options. This is a
typical example of the trade off between ease of use and security. If the security
features are not user friendly, they will not be used.

7 Future Work

This paper has presented the preliminary results of ongoing research that has
the final goal of developing properties for secure browsers and procedures for
secure browsing.

We are currently designing and running other experiments. Some are ad-
dressing new areas and others are improving on the experiments described in
this paper. The man-in-the-middle attack could be improved by taking over
the browser instead of just monitoring threads in downloaded pages. This im-
proved attack exploits the ability of JavaScript to open a new browser without
any menu, toolbar, status bar, etc. This is accomplished by using the method
window.open() with the option toolbar=no. The blueprint of the attack is
similar to the one described in Section 5.2, except that the second browser is
opened as an empty window that shows a page that includes an applet that
paints the entire browser window to simulate the browser that is being used.
Thus, for Netscape browsers the applet will paint a menu, a location field and
toolbars on the top of the window, a scroll bar if necessary, and status bar and
security key, broken or not, on the bottom of the window. The result is that
the user will see this new window as a new complete browser. From that time
on, any interaction between the user and the faked browser will be processed
locally by the spy applet and any information will be forwarded to the attacker
server through a socket connection. This represents a bigger threat since the
victim is completely in the control of the attacker. The attacker applet can act
on behalf of the user to perform any transaction. Of course this attack requires
much more work on the part of the spy applet to follow the mouse and respond

17

IPR2024-00027
CrowdStrike Exhibit 1024 Page 18



appropriately to slider moves, etc.

Future plans are to continue collecting information on known attacks and
on countermeasures for these attacks and to continue with the preliminary ex-
periments and develop new attacks. The objective is to categorize the browser
attacks to determine information such as what resources are needed to exer-
cise the attack, what browsers it works on and why, and what countermeasures
could detect and possibly thwart the attack. The process of determining what
classification schemes to use when categorizing the attacks is a critical part of
the research, for it is only by working with the actual attack scenarios that the
appropriate classification schemes become evident. In carrying out some of the
preliminary experiments it was discovered that some attacks that were possible
when using the Netscape Navigator browser were not possible when using the
Microsoft Explorer browser. This is not very surprising, but on further exam-
ination it was discovered that the reason that the attack was not successful
was due to an implementation error in the Microsoft Explorer browser. Thus,
sometimes interesting results are revealed when classifying the attacks.

Finally, based on the understanding gained by analyzing and categorizing
the browser attacks and countermeasures, it is expected that properties for
secure browsers and procedures for secure browsing will be developed. These
two work together, for sometimes by following secure procedures one can work
as securely with a less secure browser as with one with a higher level of security
assurance. That is, there may be many tradeoffs between implementing secure
features or enforcing the user to follow secure browsing procedures. The authors
of [FBD96] present a procedural approach that users can use to detect that they
are browsing a pseudo page. They suggest that “when the mouse is held over
a Web link [on the page], the status line displays the URL the link points to.
Thus, the victim might notice that a URL has been rewritten.” However, in that
same paper they also mention that this function can be blocked. In fact, the
second experiment reported in this paper demonstrates this. That is, the spy
applet can display anything in the status line, including the name of the desired
link in place of the false link that actually exists. This example demonstrates a
procedural approach that is not sufficient. In addition, the property that placing
the mouse over an applet always displays the link for that applet, which was
overridden in the experiment, is an example of a property that should always
be preserved in a secure browser.

8 References

DFW96 Drew Dean, Edward W. Felten, and Dan S. Wallach, Java Security:
From HotJava to Netscape and Beyond, Proc. of 1996 IEEE Symposium
on Security and Privacy.

(http://www.cs.princeton.edu/sip/pub/secure96.html)

Dig97 Digicrime, Online Security Experiments, Digicrime, Inc.

(http://www.digicrime.com)

18

IPR2024-00027
CrowdStrike Exhibit 1024 Page 19



FBD96 Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach,
Web Spoofing: An Internet Con Game, Technical Report 540-96, Dept.
of Computer Science, Princeton University, Dec 1996.

(http://www.cs.princeton.edu/sip/pub/spoofing.html)

GJS96 James Gosling, Bill Joy, and Guy Steele, The Java Language Specifi-
cation, ISBN 0-201-63451-1, The Java Series, Addison Wesley, 1996.

(http://www.nge.com/home/java/specl0/index.html)

LY96 Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification,
ISBN 0-201-63452-X, The Java Series, Addison Wesley, 1996.

MRRI97 D. Martin, S. Rajagopalan and A. Rubin, “Blocking Java Applets
at the Firewall”, in Proceedings of the InternetSociety Symposium on
Network and Distributed System Security, February 10-11, 1997.

Ros96 Jim Roskind, Navigator 2.02 Security-Related FAQ, May 1996.
(http://home.netscape.com/newsref/std /java_security _faq.html)

Ste97 Lincoln D. Stein, WWW Security Faq, version 1.3.7, March 30, 1997.
(http://www.genome.wi.mit.edu/WWW /faqs/www-security-faq.html)

19

IPR2024-00027
CrowdStrike Exhibit 1024 Page 20


https://www.researchgate.net/publication/2691356



