US009298474B2

a2 United States Patent 10) Patent No.: US 9,298,474 B2
Bauchot et al. 45) Date of Patent: Mar. 29, 2016
(54) SYSTEM AND METHOD FOR MANAGING A (56) References Cited

FLOATING WINDOW

(75) Inventors: Frederic Bauchot, Saint-Jeannet (FR);
Jean-Luc Collet, La Gaude (FR); Marc
Charles Fiammante, Sr Laurent du Var
(FR); Gerard Marmigere, Drap (FR);
Joaquin Picon, Paul Cezanne (FR)

International Business Machines
Corporation, Armonk, NY (US)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 2676 days.

(21) Appl. No.: 11/245,230

(22) Filed: Oct. 5, 2005
(65) Prior Publication Data

US 2006/0075359 Al Apr. 6, 2006
(30) Foreign Application Priority Data

Oct. 6,2004 (EP) oo 04300660

(51) Imt.ClL

GO6F 9/44 (2006.01)
(52) US.CL

CPC .. GOG6F 9/4443 (2013.01)
(58) Field of Classification Search

USPC 715/794, 790, 788, 784, 781, 766, 764

See application file for complete search history.

U.S. PATENT DOCUMENTS

5,619,639 A * 4/1997 Mast ..cooorvriviiviiein 715/798
5,812,132 A 9/1998 Goldstein

6,025,841 A 2/2000 Finkelstein et al.

6,721,950 Bl 4/2004 Lupu

6,981,223 B2* 12/2005 Beckeretal. 715/753

7,036,089 B2*
2003/0088413 Al

4/2006 Bauercoooen. 715/827
5/2003 Gomez

FOREIGN PATENT DOCUMENTS

JP 2001-325054
WO 0073920

11/2001
7/2000

* cited by examiner

Primary Examiner — Jeftrey A Gaffin

Assistant Examiner — Sabrina Greene

(74) Attorney, Agent, or Firm — Schmeiser, Olsen & Watts,
LLP; John Pivnichny

(57) ABSTRACT

A method and system for managing overlapping windows on
a computer screen of a computer system. A hook filter inter-
cepts an event that has occurred. An association of the hook
filter with the event was established prior to the occurrence of
the event. The event is characterized by an overlapping con-
dition in which a floating window partially or totally overlaps
an active window on the computer screen. A software appli-
cation is associated with the active window. Response to
intercepting the event, the hook filter detects the overlapping
condition. Response to detecting the overlapping condition,
the hook filter eliminates the overlapping condition to make
the active window totally visible.

30 Claims, 5 Drawing Sheets

RS L ASS

260~ o

INACTIVE WINDOW THIS IS A SAMPLE

270~ L)
DEMONSTRATE

—280
"ALWAYS ON TOP" WINDOW

omewmow (L X N %250

AN

FILTERED WINDOWS MESSAGES

HOOK FILTER 4240

§ WINDOWS MESSAGES

OPERATING SYSTEM -

|—230

KEYBOARD

220~
£
INPUT DEVICES oS

\’USER INP

|

—

[—200

CROWDSTRIKE 1008

US 9,298,474 B2

Sheet 1 of 5

Mar. 29, 2016

U.S. Patent

i

o :." =

LK

= ,mmmmmmmmmmmmmmmmmmmmmmmm“
(}1bbBbEBHEHHEEHEHEEHEEHBHE]

mmmmmmmmmmmmmmmmmmmmmmw
[s)s]slefa)s]a]a]atalal:

US 9,298,474 B2

Sheet 2 of 5

Mar. 29, 2016

U.S. Patent

g BId o0z~ o
10dN1 ¥38N
0Ic
ISNON @_MMM‘WF 0¥Y08AIN
0ez—"1 WLSAS BNILY¥3d0
SI9YSSIN SMOTNIM
o0rg—T 431714 YOOH
$39¥SSIW SMOONIM TI43TH 7
053 r__ N | MOTNIM IALOY
1 T i
H H 31vaIsnow3a H
oLpar |
TIdWYS Y SI SIHL ——0L¢%

MOGNIM ,dOL NO SAYMTY.

08—

MOGNIM JALLIVNI

™—09¢

US 9,298,474 B2

Sheet 3 of 5

Mar. 29, 2016

U.S. Patent

& Ol
AT
3T 3T LATXLALX RTCINIX 1001
(MH) () (d3) (dN)
MOaNIM MOGNIM NOILISOd NOILISOd T1ONYH MOONIM
N3aaIH a3A0NW 147353 MOANIM TYWYON MOQNIM
]]]]]
[/ [[[
03¢ 0%€ 0ge 08¢ o1 008
3181 MOONIM L1SONd0L

U.S. Patent Sheet 4 of 5

Mar. 29, 2016 US 9,298,474 B2

(Floating Window)
Manager 400

reatetopmost window table
Sethouk e et 4—<4 10

FIG. 4

and Window evants

| Wait event 420
/Ml Hiod 0 265
aTopMost Window 7
YES Dpen/Close Move/resize Get first entry of
Minimize/restore Topmost Window tatle
Event
!
1-435 taet > 440 - 470
update TopMast Mgg;;:sfhe YES of Toprest
Vindow table e
- win;iow Wlndo;nah!e
YES
working 475
Child Window? area overlap topmast
’ Window normal pos
YES
/455 /450 480
wurkinghrea’ '

. . Get caret pos NO
Coordinate=Child ! : i
\’ﬁndowCEerinate talcuate workinghrea novedMa“mmwued.

_~490 Y485
Hove/minimize to pmost Restore topmost window
window at normal pos
MW or He =False MW or K =False
L

get next topmost
Forf;::rthE::;ttn window table

) ety

460" 495~

US 9,298,474 B2

Sheet 5 of 5

Mar. 29, 2016

U.S. Patent

G OIAd

MOONIA TS
34 Y310
1341 040 LIOSOXOIM
A0 NOLLYOdd

]]

/ / /
03¢ 0IS 005

A2170d NOILYIINddY

US 9,298,474 B2

1
SYSTEM AND METHOD FOR MANAGING A
FLOATING WINDOW

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to the display of
information on computer screens and more particularly to a
method and system for managing a floating window on a
computer screen.

2. Related Art

An application sets attributes to keep the windows in the
foreground even when the windows are not active. For
example, a user may need to monitor an activity on a particu-
lar application (such as the connection to a network) while
working on another application. However, the fact that a
given window stays in the foreground (this kind of window
will be called “Floating window” in the present description)
even when this window in the foreground is not active, has
some drawbacks. A floating window may partially or totally
hide the active window and mask therefore interesting parts of
the active window. In this case, the user has some solutions
such as moving the floating window in an area which does not
overlap the active window. The user has also the possibility to
resize the floating window to see the interesting parts of the
active window. However these actions are not always conve-
nient if, for instance, the user is entering text while the active
window is in full screen mode and one or more floating
windows are opened. In this case, the typed text or cursor may
be hidden by the floating window. Some solutions exist but
need to be implemented in the application which manages the
active window. One of solutions proposed by the company
APPLE is use of a procedure which sets the cursor appropri-
ately, depending on whether a document window or modeless
dialogue box is active or not. This solution has a drawback as
all applications have to implement and call this procedure.

For some applications, it is interesting to keep the window
associated with the application visible even when the focus is
on a different application window. In the example illustrated
in FIG. 1, the window corresponding to the dictionary appli-
cation remains visible even when the user enters data on a
different application.

The problem is that the cursor and the text that is being
entered on the screen disappear behind the window of the
front end application. This situation remains until the cursor
leaves the front end application area. In such a situation, the
user needs to close or move the front end window to see the
cursor and text that is being entered.

SUMMARY OF THE INVENTION

The present invention provides a computer implemented
method for managing overlapping windows on a computer
screen of a computer system, said method comprising:

intercepting by a hook filter an event that has occurred, an
association of the hook filter with the event having been
established prior to the occurrence of the event, the event
being characterized by an overlapping condition in which a
floating window partially or totally overlaps an active win-
dow on the computer screen, a software application being
associated with the active window;

response to said intercepting, detecting by the hook filter
the overlapping condition; and

responsive to said detecting, eliminating the overlapping
condition to make the active window totally visible.

The present invention provides a computer system com-
prising a computer program, said computer program com-

20

25

30

35

40

45

50

55

60

65

2

prising instructions, said computer program adapted to be
executed on the computer system such that the instructions
implement a method for managing overlapping windows on a
computer screen of the computer system, said method com-
prising:

intercepting by a hook filter an event that has occurred, an
association of the hook filter with the event having been
established prior to the occurrence of the event, the event
being characterized by an overlapping condition in which a
floating window partially or totally overlaps an active win-
dow on the computer screen, a software application being
associated with the active window;

response to said intercepting, detecting by the hook filter
the overlapping condition; and

responsive to said detecting, eliminating the overlapping
condition to make the active window totally visible.
The present invention provides a computer program compris-
ing instructions, said computer program adapted to be
executed on a computer system such that the instructions
implement a method for managing overlapping windows on a
computer screen of the computer system, said method com-
prising:

intercepting by a hook filter an event that has occurred, an
association of the hook filter with the event having been
established prior to the occurrence of the event, the event
being characterized by an overlapping condition in which a
floating window partially or totally overlaps an active win-
dow on the computer screen, a software application being
associated with the active window;

response to said intercepting, detecting by the hook filter
the overlapping condition; and

responsive to said detecting, eliminating the overlapping
condition to make the active window totally visible.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will best be understood by reference
to the detailed description of illustrative embodiments when
read in conjunction with the accompanying drawings.

FIG. 1 illustrates an example where the window corre-
sponding to a dictionary application remains visible even
when the user enters data on a different application (e.g Note-
pad application).

FIG. 2 shows the basic principles of the invention.

FIG. 3 describes the Topmost Window Table according to
the present invention.

FIG.4 is a flow chart showing the different steps of the
method according to the present invention.

FIG. 5 shows the configuration file used to define for each
application a topmost window management policy according
to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to a system, method and
computer program or managing a floating window on a com-
puter screen of a computer system according to its relative
position with an active window associated with a software
application, so that the active window remains totally or par-
tially visible on the computer screen. The computer program
comprises instructions stored on a computer readable storage
medium of the computer system, wherein the instructions are
configured to implement the methods of the present invention
by being executed by the computer system. A processor of the
computer system executes the instructions. The computer
readable storage medium with the instructions stored thereon
is denoted as a computer program product.

US 9,298,474 B2

3

When the floating window partially or totally hides the
active window, the floating window is either moved, or
resized or removed. The floating window is restored to its
initial size and position on the computer screen as soon as the
initial floating window does not partially or totally hide the
active window any more.

When the cursor hits the front end window, this front end
window is automatically moved to keep the text that is being
entered visible. To do this, a daemon spies and tracks all the
user input activities such as the mouse and the keyboard
inputs. Thus, a floating window is moved or minimized when
the cursor belonging to the window of an active application
(i.e., an application being executed) is going to be masked or
is masked by a floating window and/or when the window
partially or totally hides an active window.

The present invention advantageously avoids any modifi-
cation to applications running in the system.

An embodiment of the present invention relies on all the
Microsoft Windows (“Windows” is a trademark of Microsoft
Corporation) operating system family. In a graphical
Microsoft Windows-based application, a window is a rectan-
gular area of the screen where an application displays output
and receives input from the user. A window shares the screen
with other windows, including windows from other applica-
tions. Only one window at a time, can receive input from the
user. The user can use the mouse, the keyboard, or any other
input device to interact with this window and the application
that owns it. Microsoft’s windows can be of different types
(Overlapped, Pop-up, Child, Layered, Message Only). The
various window types will not be described in detail in the
present description. The present invention utilizes z-order
windowing and a hook mechanism

The z-order of a window indicates the position of the
window in a stack of overlapping windows. This window
stack is oriented along an imaginary axis, the z-axis, extend-
ing outward from the screen. The window at the top of the
z-order overlaps all other windows. The window at the bottom
of the z-order is overlapped by all other windows.

The system maintains the z-order in a single list. The sys-
tem adds windows to the z-order based on whether they are
topmost windows, top-level windows, or child windows.

A topmost window overlaps all other non-topmost win-
dows, regardless of whether it is the active or foreground
window. A topmost window has the WS EX TOPMOST style.
All topmost windows appear in the z-order before any non-
topmost window.

A top-level window is a window with no parents except the
main desktop window versus child windows belonging to a
top level window.

A child window is grouped with its parent in z-order.

In the Microsoft Windows operating system, a hook is a
mechanism by which a function can intercept events (mes-
sages, mouse actions, keystrokes) before they reach an appli-
cation. The function can act on events and can, in some cases,
modify or discard these events. Functions that receive events
are called filter functions and are classified according to the
type of event they intercept. For example, a filter function
may want to receive all keyboard or mouse events. For Win-
dows, the filter function must be installed—that is, attached—
to a Windows hook (for example, to a keyboard hook) to be
called. Attaching one or more filter functions to a hook is
known as setting a hook. If a hook has more than one filter
function attached, Windows maintains a chain of filter func-
tions. The most recently installed function is at the beginning
of'the chain, and the least recently installed function is at the
end of the chain.

20

25

30

35

40

45

50

55

60

65

4

The Win32® (a trademark of Microsoft Corporation)
Application Programming Interface (API) provides a set of
functions to access and modify: the z-order list; the windows
position and styles; and the hook operating system mecha-
nism.

With the Microsoft Windows Operating system, all the
graphical windows are message driven. All the windows have
at least one thread responsible to process messages received
from the system (e.g., user mouse events). This thread is
called the WindowProc and it can send messages to any other
windows/applications.

As illustrated in FIG. 2, an active window 270 is defined as
being the top-level window of the application with which the
user is currently working. To easily identify the active win-
dow, the system places this window at the top of the z-order in
the z-order list and may change the color of its title bar and
border (blue window 270). Only a top-level window canbe an
active window. The others windows are inactive (e.g., black
window 260). Only windows at the top z-order list having the
attribute topmost (e.g., red window 280) can overlap an active
window.

A user 200 interacts with the active window (e.g., active
window 270) using an input device (220) (the keyboard for
example) for entering an input 210. By typing onto the key-
board, the user sends inputs 250 to the active window through
the Operating system 230.

A filter daemon (Hook Filter 240) intercepts all the mes-
sages coming from the keyboard and the mouse. For each
message filtered, when the active window is partially over-
lapped by a topmost window (e.g., hiding the cursor position
of'an edit text area), the filter daemon automatically moves all
the topmost windows (hiding a part of the client area of the
current active window 270) to the nearest position to maintain
the active window totally visible (See FIG. 2)

If such action is not possible due to the screen and windows
size, then the filter minimizes all topmost windows during the
time the user interacts with the active window. When the
active window becomes inactive, then the filter restores the
topmost windows to its memorised initial position.

Interm of implementation on the Windows Operation Sys-
tem, a daemon filter is a dynamic library registered as a hook
filter at the system level using the Win32® API. Each time an
event occurs (ex: mouse click), the system calls the filter
functions registered for this event family and sends to said
filter functions the message.

Hooks mechanisms provide powerful capabilities for Win-
dows-based applications. These applications can set a hook
using several options.

These applications may process or modify all messages
meant for all the dialogue boxes, message boxes, scroll bars,
or menus for an application (WH_MSGFILTER).

These applications may process or modify all messages
meant for all the dialogue boxes, message boxes, scroll bars,
or menus for the system (WH_SYSMSGFILTER).

These applications may process or modify all messages for
the system whenever a GetMessage or a PeekMessage func-
tion is called (WH_GETMESSAGE).

These applications may process or modify all messages
whenever a SendMessage function is called (WH_CALL-
WNDPROC).

These applications may record or play back keyboard and
mouse events (WH_JOURNALRECORD, WH_JOURNAL-
PLAYBACK).

These applications may process, modify, or remove key-
board events (WH_KEYBOARD).

These applications may process, modify, or discard mouse
events (WH_MOUSE). These applications may respond to

US 9,298,474 B2

5
certain system actions, making it possible to develop com-
puter-based training (CBT) for applications (WH_CBT).

These applications may prevent another filter from being
called (WH_DEBUG).

Applications use hooks to provide F1 help key support to
menus, dialogue boxes, and message boxes (WH_MSGFIL-
TER).

Applications use hooks to provide mouse and keystroke
record and playback features, often referred to as macros. For
example, the Windows Recorder accessory program uses
hooks to supply record and playback functionality (WH_
JOURNALRECORD, WH_JOURNALPLAYBACK).

Applications use hooks to monitor messages to determine
which messages are being sent to a particular window or
which actions a message generates (WH_GETMESSAGE,
WH_CALLWNDPROC). The Spy utility program in the
Platform SDK uses hooks to perform these tasks. The source
for Spy is available in the SDK.

Applications use hooks to simulate mouse and keyboard
input (WH_JOURNALPLAYBACK). Hooks provide a reli-
able way to simulate these activities. If you try to simulate
these events by sending or posting messages, Windows inter-
nals do not update the keyboard or mouse state, which can
lead to unexpected behaviour. If hooks are used to play back
keyboard or mouse events, these events are processed exactly
like real keyboard or mouse events. Microsoft Excel uses
hooks to implement its SEND.KEYS macro function.

Applications use hooks to provide CBT for applications
that run in the Windows environment (WH_CBT). The
WH_CBT hook makes developing CBT applications much
easier.

Working Area (WA) is defined as screen areca where the
user is currently working. The working area is part of the
active window. It can be an area centred around the current
cursor, with an offset in each direction, or it can be a child
window of the active window, such as for instance a confir-
mation pop-up window. Anyway, a working area is delimited
by its top left and bottom right corners, with respective coor-
dinates (WAX1, WAY1) and (WAX2, WAY?2).

A Floating Window (FW) is a window in the foreground,
possibly hiding part of the active window, such as the working
area. This kind of window is also called Topmost window

A Screen Event (SE) is an event resulting from the detec-
tion of a modification of the video buffer, resulting in some
embodiments from a displacement of the cursor on the FW.

An Overlap Condition (OC) is a Boolean variable equal to
False if and only if the WA and the Topmost window NP are
disjoint.

A Slip Direction (SD is a variable specifying the direction
offset along which a floating window FW is moved.

A Normal Position (NP) is defined a variable specifying the
regular position taken by a floating window FW on the screen

An Escape Position (EP): variable specifying the position
taken by a floating window FW if the overlap condition OC is
true and if the floating window FW is not slipping.

A Moved Window (MW) is a Boolean variable specifying,
if equal to True, that the floating window FW does not stand
in its normal position

A Hidden Window (HW): Boolean variable specifying, if
equal to True, that the floating window FW is hidden

Moveable (true/false) specifies if the working area WA can
be moved

Slip (true/false), when Moveable is equal to True and if the
overlap condition OC is equal to True, specifies if the floating
window FW moves to a fixed position, or slips to a neighbour
position along the direction slip direction SD

20

25

30

35

40

45

50

55

60

65

6

FIG. 4 is a flow chart of the method according to the
preferred embodiment of the invention. The floating window
manager 400 is the application in charge to install and remove
the proposed implementation.

Inthe Microsoft Windows Operating System environment,
a Hook Filter is a dynamic library registered at the system
level. To set such filter, it is necessary to initialise and con-
figure the Hook mechanism using the SetWindowsHook
Win32® API (Application Programming Interface). The
same kind of action is needed to remove such filter from the
system using the UnhookWindowsHook Win32® API. Dur-
ing initialization, a Topmost Window Table 300 is created.
Said table is described in FIG. 3. If multiple Topmost win-
dows exist, then multiple entries are created in said Topmost
Window Table 300, one entry for each existing Topmost
window. For each record in the table, the following fields are
initialized: (1) “Window handle” 310 (unique identifier for a
window in the Win32® OS, used to communicate with said
window); and (2) initial window coordinate “Window Nor-
mal Position (NP)” 320. Each record comprises the following
additional fields: “Window Escape Position (EP)” 330; “Win-
dow Moved Position (MW)” 340; and “Hidden Window
(HW)” 350.

The method illustrated in FIG. 4 for managing a floating
window on a computer screen, comprises the following steps.

At step 410, setting the hook filter comprises registering a
dynamic library exporting a callback function executed each
time an event occurs. As previously described, a hook can be
set up with different kinds of events (WH_KEYBOARD,
WH_MOUSE, .. .)

In this example, the hook filter is set both on the windows
events and on the keyboard events (WH_KEYBOARD &
WH_GETMESSAGE & WH_CALLWNDPROC). The hook
filter is notified whenever a window is activated and/or a key
is pressed on the keyboard.

At step 420, the Win32® operating system maintains a list
of all the active hooks set up by applications. Each time an
event occurs, the Win32® operating system lookups in this
list to send the event message to all the callback functions
registered for such type of event.

The callback function is called with the event message as
parameter, followed by execution of the application code.

In the present invention, the code executed comprises
tracking all topmost windows on top of the active window
hiding either a part of the text edit zone or a child window of
the active window (e.g., Save document dialogue box).

At step 430, when an event is received, an initial checking
is done to identify if this event is either an initialization, or a
close, or a minimize, or a maximize, or a resize or a move of
a Topmost window. If the received event is one of these
events, then control is given to step 435; otherwise control is
given to step 440.

At step 435, the Topmost Window Table 300 is updated.

Ifthe event is an initialization of a Topmost window, a new
entry is created in the Topmost Window Table 300 and the
fields “Window Handle” 310 and “Window Normal Position
(NP)” 320 are initialized.

Ifthe event is a close of a topmost window or if the event is
a minimize not requested by a process (e.g., when “Hidden
Window (HW)” field 350 is set to False), the corresponding
entry in the Topmost Window Table 300 is removed.

Finally ifthe event is a move or resize of a topmost window,
the field “Window Normal Position (NP)” 320 of the entry

US 9,298,474 B2

7

corresponding to this topmost window is updated to reflect
the new position of said topmost window.

Then control is given to step 460.

At step 440, if the event received during the previous step
420 is not for a topmost window, a checking is performed to
identify if the event is a caret move. If the event is a caret
move, then control is given to step 450; otherwise control is
given to step 445.

At step 445, a test is performed to check if the event
corresponds to the opening of a child window. If the event
corresponds to the opening of a child window, then control is
given to step 455; otherwise control is given to step 460.

At step 450, using the caret coordinates carried by the
event, a Working Area (WA in short) coordinate is calculated.
The working area WA is a rectangular area which is centered
on the caret position. Said working area WA is represented by
coordinates WAX1,WAY1,WAX2 WAY?2 like any window,
where WAX1, WAY1 are the coordinates of the up/left comer
and where WAX2, WAY?2 are the coordinates of the down/
right comer. The values of WAX1, WAY 1, WAX2, WAY?2 are
calculated by adding or subtracting an offset DX or DY to the
caret coordinates CX, CY. So WAX1=CX-DX, WAY1=CY-
DY, WAX2=CX+DX, WAY2=CY +DY. Then control is given
to step 465.

At step 455, the working area coordinates are set equal to
the coordinates of the child window, and then control is given
to step 465.

Atstep 460, the event is forwarded to the next hook or to the
target application, and control is given back to step 420 in
order to wait for the next-to-come event.

At step 465, the Topmost Window Table 500 is scanned to
verify if the normal position (NP) of a topmost window which
has been moved or minimized does not overlap the working
area. The process of verification is initialized by getting the
first entry of the Topmost Window Table 500.

At step 470, a test if performed to check if the end of the
Topmost Window Table 300 has been reached. If the end of
the Topmost Window Table 300 has been reached, then con-
trol is given to step 460, otherwise control is given to step 475.

Atstep 475, atest is performed to check if the working area
overlaps the topmost area identified by the “Window Normal
Position (NP)” field 320. If it is the case, then control is given
to step 490; otherwise control is given to step 480.

At step 480, a test is performed to check if the topmost
window has been previously moved. If the topmost window
has been previously moved, then control is given to step 485;
otherwise control is given to step 495.

At step 485, the topmost window is moved back to its
normal position, as specified by the “Window Normal Posi-
tion (NP)” field 320. The “Moved Window (MW)” field 340
is set to False. In an alternate embodiment, when the topmost
window has been minimized, the move to the initial position
is replaced by a restore window and the “Hidden Window
(HW)” field 350 is set to False. Then control is given to step
495.

At step 490, the Topmost window is moved to a new posi-
tion with no overlapping with the working area WA. The
“Moved Window (MW)” field 340 is set equal to the value
True. In an alternate embodiment, the topmost window is
minimized instead of being moved if the “Hidden Window
(HW)” field 350 is set to true. Then control is given to step
495.

At step 495, the next Topmost Window Table 300 entry is
pointed and the control is given back to step 470.

The present embodiment also offers the possibility of
applying different topmost window management policy to an

20

25

30

35

40

45

50

55

60

65

10

8

application which launches the active window. There are at
least two policies: (1) a CARET policy; and (2) a Window
policy.

With the CARET policy, the topmost window is moved to
a new position relative to the cursor position (caret). This
policy is very useful for text editors such as Microsoft Word,
Lotus Wordpro, Notepad or any other text editor.

With the Window policy, the topmost window is moved out
of the active window if there is enough space to keep the
topmost window entirely visible. If there is not enough space
to keep said topmost window entirely visible, then the top-
most window is minimized until space is cleared to allow the
display of the topmost window. This policy is used by appli-
cations with a complex user interface comprising many input
fields (e.g., a CRM product like SIEBEL® or a development
platform such Eclipse packaged in WSAD by IBM).

As shown in FIG. 5, this capability is based on a user’s
defined list of applications 500 provided to the floating win-
dow manager in a configuration file. When a new window is
created, the corresponding event is intercepted by the floating
window manager. From the window, the floating window
manager identifies the associated application 510 and applies
the rule defined in the Policy field 520.

While running this application, the user may launch
another application using a floating window. The window
associated to the new application is then handled by the
floating window manager as described in the preferred
embodiment of the invention which may apply appropriate
policy to manage topmost window.

What has been described is merely illustrative of the appli-
cation of the principles of the present invention. Other
arrangements and methods can be implemented by those
skilled in the art without departing from the spirit and scope of
the present invention.

What is claimed is:

1. A computer implemented method for managing overlap-
ping windows on a computer screen of a computer system,
said method comprising:

intercepting by a hook filter an event directed to a target

application, said hook filter intercepting the event before
the event reaches the target application, an association of
the hook filter with the event having been established
prior to the occurrence of the event, the event being
characterized by an overlapping condition in which a
floating window partially or totally overlaps an active
window on the computer screen, a software application
being executed in the active window;

responsive to said intercepting, detecting by the hook filter

the overlapping condition; and

responsive to said detecting, eliminating the overlapping

condition to make the active window totally visible.

2. The method of claim 1, said method comprising:

recording parameters of the floating window in a table, said

parameters prevailing upon said intercepting;

after said eliminating and responsive to the active window

becoming inactive, restoring the floating window on the
computer screen in accordance with the recorded param-
eters;
wherein the parameters comprise an overlap condition
parameter, a hidden window parameter, window normal
position parameters, and window escape parameters;

wherein the overlap condition parameter is a Boolean vari-
able equal to False if a working area and the floating
window are disjoint and otherwise equal to True, subject
to the working area being an area of the computer screen
in which a user of the computer system is currently
working;

US 9,298,474 B2

9

wherein the hidden window parameter is a Boolean vari-
able equal to True if the floating window does not stand
in its normal location and otherwise equal to or False;

wherein the window normal position parameters specify
the normal location of the floating window on the com-
puter screen prevailing upon said intercepting;

wherein the window escape position parameters specify an
escape location on the computer screen to be subse-

5

quently occupied by the floating window if the overlap 0

condition is True and if the floating window is not con-
figured to slip to a neighboring location along a specified
slip direction.

3. The method of claim 1, said method comprising:

detecting the event by an operating system that is executing

on the computer system; and

invoking the hook filter to execute said intercepting, said

invoking being performed by the operating system by
utilizing the association of the hook filter with the event.

4. The method of claim 1, wherein an operating system
executing on the computer system maintains a single list that
describes a window stack of windows on the computer screen,
wherein the window stack is described in the list in accor-
dance with a z-order of the windows on the computer screen
such that the windows in the z-order are ordered along a z-axis
that extends outward from the computer screen, wherein a
topmost window at the top of the z-order overlaps all other
windows in the z-order, wherein a window at the bottom of
the z-order is overlapped by all other windows in the z-order,
and wherein the z-order comprises the floating window and
the active window.

5. The method of claim 1, wherein the overlapping condi-
tion comprises the floating window overlapping a cursor on
the active window.

6. The method of claim 1, wherein said eliminating consists
of moving the floating window.

7. The method of claim 6, wherein the action is dependent
upon an executing application being executed within the
active window, and wherein the executing application con-
sists of the software application.

8. The method of claim 6, wherein the action is dependent
upon an executing application being executed within the
floating window.

9. The method of claim 1, wherein the event is a window
event selected from the group consisting of an initialization of
the floating window, a close of the floating window, a mini-
mize of the floating window, a maximize of the floating win-
dow, a resize of the floating window, and a move of the
floating window.

10. The method of claim 1, wherein the event is selected
from the group consisting of a key event triggered by pressing
a key on a keyboard that is coupled to the computer system
and a mouse event triggered by moving a mouse that is
coupled to the computer system.

11. A computer system comprising a processor and a com-
puter readable storage medium, said storage medium contain-
ing instructions configured to be executed by the processor
implement a method for managing overlapping windows on a
computer screen of the computer system, said method com-
prising:

intercepting by a hook filter an event directed to a target

application, said hook filter intercepting the event before
the event reaches the target application, an association of
the hook filter with the event having been established
prior to the occurrence of the event, the event being
characterized by an overlapping condition in which a
floating window partially or totally overlaps an active

20

25

30

35

40

45

50

55

60

65

11

10

window on the computer screen, a software application
being executed in the active window;

responsive to said intercepting, detecting by the hook filter

the overlapping condition; and

responsive to said detecting, eliminating the overlapping

condition to make the active window totally visible.

12. The computer system of claim 11, said method com-
prising:

recording parameters of the floating window, said param-

eters prevailing upon said intercepting;

after said eliminating and responsive to the active window

becoming inactive, restoring the floating window on the
computer screen in accordance with the recorded param-
eters;
wherein the parameters comprise an overlap condition
parameter, a hidden window parameter, window normal
position parameters, and window escape parameters;

wherein the overlap condition parameter is a Boolean vari-
able equal to False if a working area and the floating
window are disjoint and otherwise equal to True, subject
to the working area being an area of the computer screen
in which a user of the computer system is currently
working;
wherein the hidden window parameter is a Boolean vari-
able equal to True if the floating window does not stand
in its normal location and otherwise equal to False;

wherein the window normal position parameters specify
the normal location of the floating window on the com-
puter screen prevailing upon said intercepting;

wherein the window escape position parameters specify an
escape location on the computer screen to be subse-
quently occupied by the floating window if the overlap
condition is True and if the floating window is not con-
figured to slip to a neighboring location along a specified
slip direction.

13. The computer system of claim 11, said method com-
prising:

detecting the event by an operating system that is executing

on the computer system; and

invoking the hook filter to execute said intercepting, said

invoking being performed by the operating system by
utilizing the association of the hook filter with the event.

14. The computer system of claim 11, wherein an operating
system executing on the computer system maintains a single
list that describes a window stack of windows on the com-
puter screen, wherein the window stack is described in the list
in accordance with a z-order of the windows on the computer
screen such that the windows in the z-order are ordered along
a z-axis that extends outward from the computer screen,
wherein a topmost window at the top of the z-order overlaps
all other windows in the z-order, wherein a window at the
bottom of the z-order is overlapped by all other windows in
the z-order, and wherein the z-order comprises the floating
window and the active window.

15. The computer system of claim 11, wherein the over-
lapping condition comprises the floating window overlapping
a cursor on the active window.

16. The computer system of claim 11, wherein said elimi-
nating consists of moving the floating window.

17. The computer system of claim 16, wherein the action is
dependent upon an executing application being executed
within the active window, and wherein the executing appli-
cation consists of the software application.

18. The computer system of claim 16, wherein the action is
dependent upon an executing application being executed
within the floating window.

US 9,298,474 B2

11

19. The computer system of claim 11, wherein the event is
a window event selected from the group consisting of an
initialization of the floating window, a close of the floating
window, a minimize of the floating window, a maximize of
the floating window, a resize of the floating window, and a
move of the floating window.

20. The computer system of claim 11, wherein the event is
selected from the group consisting of a key event triggered by
pressing a key on a keyboard that is coupled to the computer
system and a mouse event triggered by moving a mouse that
is coupled to the computer system.

21. A computer program product, comprising a computer
readable non-transitory storage medium having instructions
stored therein, said instructions configured to implement a
method for managing overlapping windows on a computer
screen of a computer system, said method comprising:

intercepting by a hook filter an event directed to a target

application, said hook filter intercepting the event before
the event reaches the target application, an association of
the hook filter with the event having been established
prior to the occurrence of the event, the event being
characterized by an overlapping condition in which a
floating window partially or totally overlaps an active
window on the computer screen, a software application
being executed in the active window;

responsive to said intercepting, detecting by the hook filter

the overlapping condition; and

responsive to said detecting, eliminating the overlapping

condition to make the active window totally visible.

22. The computer program product of claim 21, said
method comprising:

recording parameters of the floating window in a table, said

parameters prevailing upon said intercepting;

after said eliminating and responsive to the active window

becoming inactive, restoring the floating window on the
computer screen in accordance with the recorded param-
eters;
wherein the parameters comprise an overlap condition
parameter, a hidden window parameter, window normal
position parameters, and window escape parameters;

wherein the overlap condition parameter is a Boolean vari-
able equal to False if a working area and the floating
window are disjoint and otherwise equal to True, subject
to the working area being an area of the computer screen
in which a user of the computer system is currently
working;
wherein the hidden window parameter is a Boolean vari-
able equal to True if the floating window does not stand
in its normal location and otherwise equal to False;

wherein the window normal position parameters specify
the normal location of the floating window on the com-
puter screen prevailing upon said intercepting;

5

20

25

30

35

40

45

50

12

12

wherein the window escape position parameters specify an
escape location on the computer screen to be subse-
quently occupied by the floating window if the overlap
condition is True and if the floating window is not con-
figured to slip to a neighboring location along a specified
slip direction.

23. The computer program product of claim 21, said
method comprising:

detecting the event by an operating system that is executing
on the computer system; and

invoking the hook filter to execute said intercepting, said
invoking being performed by the operating system by
utilizing the association of the hook filter with the event.

24. The computer program product of claim 21, wherein an
operating system executing on the computer system main-
tains a single list that describes a window stack of windows on
the computer screen, wherein the window stack is described
in the list in accordance with a z-order of the windows on the
computer screen such that the windows in the z-order are
ordered along a z-axis that extends outward from the com-
puter screen, wherein a topmost window at the top of the
z-order overlaps all other windows in the z-order, wherein a
window at the bottom of the z-order is overlapped by all other
windows in the z-order, and wherein the z-order comprises
the floating window and the active window.

25. The computer program product of claim 21, wherein
the overlapping condition comprises the floating window
overlapping a cursor on the active window.

26. The computer program product of claim 21, wherein
said eliminating consists of moving the floating window.

27. The computer program product of claim 26, wherein
the action is dependent upon an executing application being
executed within the active window, and wherein the executing
application consists of the software application.

28. The computer program of product claim 26, wherein
the action is dependent upon an executing application being
executed within the floating window.

29. The computer program product of claim 21, wherein
the event is a window event selected from the group consist-
ing of an initialization of the floating window, a close of the
floating window, a minimize of the floating window, a maxi-
mize of the floating window, a resize of the floating window,
and a move of the floating window.

30. The computer program product of claim 21, wherein
the event is selected from the group consisting of a key event
triggered by pressing a key on a keyboard that is coupled to
the computer system and a mouse event triggered by moving
a mouse that is coupled to the computer system.

#* #* #* #* #*

