
(12) United States Patent
Michaelis et al.

USOO7502958B2

US 7,502,958 B2
*Mar. 10, 2009

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)
(58)

(56)

SYSTEMAND METHOD FOR PROVIDING
FIRMWARE RECOVERABLE LOCKSTEP
PROTECTION

Inventors: Scott L. Michaelis, Plano, TX (US);
Anurupa Rajkumari, Round Rock, TX
(US); William B. McHardy, Fort
Collins, CO (US)

Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 626 days.

This patent is Subject to a terminal dis
claimer.

Appl. No.: 10/973,076

Filed: Oct. 25, 2004

Prior Publication Data

US 2006/O1 O7107 A1 May 18, 2006

Int. C.
G06F II/00 (2006.01)
U.S. Cl. ... 714/12: 712/31
Field of Classification Search 714/10-13,

See application file for complete search history.

4,358,823
5,226, 152
5,249,188
5,537,655
5,675,794
5,751,932
5,758,058
5,764,660
5,896.523

A
A
A
A
A
A
A
A
A

References Cited

U.S. PATENT DOCUMENTS

714/712, 31, 34; 712/31

5,915,082 A * 6/1999 Marshall et al. T14? 11
5.991,900 A 11/1999 Garnett
6,065,135 A 5, 2000 Marshall et al.
6,141,770 A 10/2000 Fuchs et al.
6,148,348 A 11/2000 Garnett et al.
6,220,581 B1 4/2001 Mueller
6,263,452 B1 7/2001 Jewett et al.
6,438,687 B2 8, 2002 Klein
6,473,869 B2 10/2002 Bissett et al.
6,560,682 B1 5/2003 Miller et al.
6,604,177 B1 8, 2003 Kondo et al.
6,615,366 B1 9, 2003 Grochowski et al.
6,625,749 B1* 9/2003 Quach T14? 10
6,675,324 B2 1/2004 Marisetty et al.
6,687,851 B1 2/2004 Somers et al.
6,754,787 B2 6/2004 Miller et al.
6,920,581 B2 * 7/2005 Bigbee et al. T14? 10

(Continued)
OTHER PUBLICATIONS

Filed concurrently herewith, entitled "System and Method for Using
Information Relating to a Detected Loss of Lockstep for Determining
a Responsive Action '.

(Continued)
Primary Examiner Dieu-Minh Le

(57) ABSTRACT

According to at least one embodiment, a method comprises
detecting loss of lockstep for a pair of processors. The method
further comprises triggering, by firmware, an operating sys

11, 1982 McDonald et al. tem to idle the processors, and recovering, by the firmware,
7/1993 Kluget al. lockstep between the pair of processors. After lockstep is
9, 1993 McDonald recovered between the pair of processors, the method further
7/1996 Truong comprises triggering, by the firmware, the operating system

10, 1997 Meredith to recognize the processors as being available for receiving
5, 1998 Horst et al.
5, 1998 Milburn 1nStruct1OnS.

6, 1998 Mohat
4, 1999 Bissett et al. T13/400 25 Claims, 5 Drawing Sheets

10

os
<-- He

E. / E -
EACHE 2Aycace

13B 18 13A A
ERROR ERROR
OTECT CETECT

ERRORDETECT

13C

CRASH SYSTEM

02

FIRWARE

LOCKSTEP sys RECOVERABLE? 103 g
TRGEROS actition

10i N0 TODLEMASTER - TO"EJECT"
PROCESSOR PROCESSOR:

05
-

REESTABLISH
LOCKSEP

106 PROCESSORTC OS

Acinition
*TEER" PROCESSOs

REINBRODUCE
MASTER

s

ZF, Ex. 10011

US 7,502,958 B2
Page 2

U.S. PATENT DOCUMENTS

6,948,092 B2 9, 2005 Kondo et al.
7,003,691 B2 2/2006 Safford et al.
7,020,800 B2 * 3/2006 Fu et al. T14? 38
7,085,959 B2 * 8/2006 Safford T14f11
7,134,047 B2 11/2006 Quach
7,155,721 B2 12/2006 Safford et al.
7,191.292 B2 * 3/2007 Chaudhry et al. T11 133
7,225,355 B2 5, 2007 Yamazaki et al.
7,237,144 B2 6, 2007 Safford et al.
7,251,746 B2 7, 2007 Fox et al.

2002fO144177 A1 10, 2002 Kondo et al.
2002/0152420 A1 10/2002 Chaudhry et al.
2003/0051190 A1 3/2003 Marisetty et al.
2003/OO70050 A1 4/2003 Miller et al.
2003/O126498 A1 7/2003 Bigbee et al.
2003/O135711 A1 7/2003 Shoemaker et al.
2003/0140281 A1* 7/2003 Fu et al. T14? 38
2004/OOO6722 A1 1/2004 Safford
2004/OO 19771 A1 1/2004 Quach
2004f0078650 A1 4/2004 Safford et al.
2004f0078651 A1 4/2004 Stafford et al.
2004/O153857 A1 8/2004 Yamazaki et al.
2005/0172164 A1* 8, 2005 Fox et al. T14f13
2005/0240806 A1* 10, 2005 Bruckert et al. T14?6
2005/0240811 A1 10, 2005 Stafford et al.
2005/0240829 A1 * 10, 2005 Safford et al. T14.f43
2006/0O85677 A1 4/2006 Stafford et al.
2006/013.6672 A1* 6/2006 Chaudhry et al. T11 122
2006/0248384 A1 11, 2006 Stafford

2006/0248684 A1 11/2006 Vosbikian et al.

OTHER PUBLICATIONS

Filed concurrently herewith, entitled "System and Method for Estab
lishing a Spare Processor for Recovering From Loss of Lockstep in a
Boot Processor.
Filed concurrently herewith, entitled "System and Method for Con
figuring Lockstep Mode of a Processor Module”.
Filed concurrently herewith, entitled System and Method for Main
taining in a Multi-Processor System a Spare Processor That is in
Lockstep for Use in Recovering From Loss of Lockstep for Another
Processor.
Filed concurrently herewith, entitled "System and Method for
Switching the Role of Boot Processor to a Spare Processor Respon
sive to Detection of Loss of Lockstep in a Boot Processor'.
Filed concurrently herewith, entitled "System and Method for Rees
tablishing Lockstep for a Processor Module for Which Loss of
Lockstep Is Detected”.
Filed concurrently herewith, entitled "System and Method for Sys
tem. Firmware Causing an Operating System to Idle a Processor'.
Filed concurrently herewith, entitled "System and Method for Rein
troducing a Processor Module to an Operating System. After
Lockstep Recovery”.
Filed concurrently herewith, entitled "System and Method For Sys
tem. Firmware Causing an Operating System to Idle a Processor'.
Filed concurrently herewith, entitled "System and Method For Rein
troducing a Processor Module to an Operating System. After
Lockstep Recovery”.

* cited by examiner

2

U.S. Patent Mar. 10, 2009 Sheet 1 of 5 US 7,502,958 B2

10
FIG. I. /

11

BUS
16 OS

SLAVE MASTER 12
PROCESSOR PROCESSOR

13B 14B 13A 14A
ERROR ERROR
DETECT DETECT

ERROR DETECT

FIRMWARE

LOCKSTEP 104
RECOVERABLE 4.

- - -
TRIGGER OS ACPI METHOD

TO DLE MASTER TO "EJECT"

CRASH SYSTEM PROCESSOR L PROCESSOR -

REESTABLISH
LOCKSTEP

REINTRODUCE ACPI METHOD
MASTER TO "CHECK FOR"

PROCESSOR TO OS PROCESSOR
L-------

107

3

U.S. Patent Mar. 10, 2009 Sheet 2 of 5

FIG. 2

11

SLAVE
PROCESSOR

MASTER
PROCESSOR

13B 14B 13A 14A

ERROR
DETECT

ERROR
DETECT

ERROR DETECT

FRMWARE

PROCESSOR ABSTRACTION LAYER
(PAL)

PLATFORM/SYSTEMABSTRACTION LAYER
(SAL)

DEVICE TREE

15A

US 7,502,958 B2

10A
1/

12

4

U.S. Patent Mar. 10, 2009

FIG. 3

Sheet 3 of 5 US 7,502,958 B2

30 BUS 11
16

MASTER
PROCESSOR

SLAVE
PROCESSOR

13B 13A
14B 14A

ERROR ERROR
DETECT DETECT

ERROR
DETECT

FIRMWARE

LOCKSTEP
RECOVERABLE2

SMASTER
PROCESSOR 12A
THE SYSTEM BOOT

PROCESSOR2

SWITCH TO HOT SPARE 31

REESTABLISH LOCKSTEP FOR
MASTER 12A AND SLAVE 12B

HOLD PAIR 12 AS HOT SPARE
FOR NEW BOOT PROCESSOR 31

SLAVE MASTER
PROCESSOR PROCESSOR

3 3A
32A

ERROR
DETECT

33B 32B

ERROR
DETECT

ERROR

I DETECT
I a? 33C

- -

CRASH SYSTEM

35

104
- 4--- -

TRIGGER OS ACPI METHOD
TO DLE MASTER TO "EJECT"
PROCESSOR 12A PROCESSOR -

REESTABLISH
LOCKSTEP

RENTRODUCE ACPI METHOD
MASTER I TO "CHECK FOR

PROCESSOR PROCESSOR
12ATO OS l-------

5

U.S. Patent Mar. 10, 2009 Sheet 4 of 5 US 7,502,958 B2

FIG. 4

40

COHERENCY CR FSFFD H FRMWARE CONTROLLER FIRMWARE

FIG. 6

DETECT LOSS OF LOCKSTEP FOR A PAR OF PROCESSORS

TRIGGER, BY FIRMWARE, AN OPERATING SYSTEM TO DLE THE PROCESSORS

RECOVER, BY THE FIRMWARE, LOCKSTEP BETWEEN THE PAIR OF PROCESSORS

AFTER LOCKSTEP IS RECOVERED BETWEEN THE PAIR OF PROCESSORS, THE
FIRMWARE TRIGGERS THE OPERATING SYSTEM TO RECOGNIZE THE
PROCESSORS AS BEING AVAILABLE FOR RECEIVING INSTRUCTIONS

6

U.S. Patent Mar. 10, 2009 Sheet 5 of 5 US 7,502,958 B2

FIG. 5

501 POWER ON THE SYSTEM

502 ESTABLISHAHOT SPARE I
503 ESTABLISH LOCKSTEP

MODE ON ALL MODULES

504 BOOT THE SYSTEM OS

LOL DETECTED
(E.G., DUE TO COSMIC

EVENT)?
505

FIRMWARE IS NOTIFIED
506 OF LOSS OF LOCKSTEP

BOOT
PROCESSOR2

507

PROCESSOR IS DLED AND
508 LOCKSTEP REESTABLISHED

PROCESSORS
509 REINTRODUCED TO THE OS

510 OPERATION CONTINUES

SWITCH TO HOT SPARE I
REESTABLISH LOCKSTEPON THE
FAILED MODULE AND ESTABLISH

TAS THE HOT SPARE

OPERATION CONTINUES

7

US 7,502,958 B2
1.

SYSTEMAND METHOD FOR PROVIDING
FIRMWARE RECOVERABLE LOCKSTEP

PROTECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to the following concur
rently filed and commonly assigned U.S. patent applications:
Ser. No. 10/973,077 titled “SYSTEMAND METHOD FOR
ESTABLISHING A SPARE PROCESSOR FOR RECOV
ERING FROM LOSS OF LOCKSTEP INA BOOT PRO
CESSOR: Ser. No. 10/973,004 titled “SYSTEM AND
METHOD FOR CONFIGURINGLOCKSTEP MODE OFA
PROCESSORMODULE: Ser. No. 10/972,835 titled “SYS
TEM AND METHOD FOR USING INFORMATION
RELATING TOADETECTED LOSS OF LOCKSTEPFOR
DETERMINING A RESPONSIVE ACTION: Ser. No.
10/972.588 titled “SYSTEM AND METHOD FOR
SWITCHING THE ROLE OF BOOT PROCESSOR TO A
SPARE PROCESSORRESPONSIVE TO DETECTION OF
LOSS OF LOCKSTEP INA BOOTPROCESSOR: Ser. No.
10/973,003 titled “SYSTEM AND METHOD FOR REES
TABLISHING LOCKSTEP FOR A PROCESSOR MOD
ULE FOR WHICH LOSS OF LOCKSTEPISDETECTED:
Ser. No. 10/972,888 titled “SYSTEMAND METHOD FOR
SYSTEM FIRMWARE CAUSING AN OPERATING SYS
TEMTOIDLEA PROCESSOR: Ser. No. 10/973,075 titled
SYSTEM AND METHOD FOR REINTRODUCING A
PROCESSOR MODULE TO AN OPERATING SYSTEM
AFTER LOCKSTEP RECOVERY”; and Ser. No. 10/972,
796 titled “SYSTEMAND METHOD FOR MAINTAINING
IN A MULTI-PROCESSOR SYSTEMA SPARE PROCES
SORTHAT IS IN LOCKSTEPFOR USE IN RECOVERING
FROM LOSS OF LOCKSTEP FOR ANOTHER PROCES
SOR, the disclosures of which are hereby incorporated
herein by reference.

DESCRIPTION OF RELATED ART

Silent Data Corruption (“SDC) is a difficult problem in
the computing industry. In general, SDC refers to data that is
corrupt, but which the system does not detect as being cor
rupt. SDCs primarily occur due to one of two factors: a) a
broken hardware unit or b) a “cosmic' event that causes
values to change somewhere in the system. Broken hardware
means that a “trusted piece of hardware is silently giving
wrong answers. For example, the arithmetic unit in a proces
sor is instructed to add 1+1 and it returns the incorrect answer
3 instead of the correct answer 2. An example of a cosmic
event is when a charged particle (e.g., alpha particle or cosmic
ray) strikes a region of a computing system and causes some
bits to change value (e.g., from a 0 to a 1 or from a 1 to a 0).

Numerous techniques have been developed for detecting
SDC to prevent the SDC from remaining “silent” or “unde
tected within a system, as well as preventing such SDC from
propagating through the system. Examples of these tech
niques include parity-based mechanisms and error correcting
codes (ECCs) on buses and memory locations, as well as
checksums and/or cyclic redundancy checks (CRC) over
regions of memory. Parity-based mechanisms are often
employed in processors, wherein a parity bit is associated
with each block of data when it is stored. The parity bit is set
to one or Zero according to whether there is an odd or even
number of ones in the data block. When the data block is read
out of its storage location, the number of ones in the block is
compared with the parity bit. A discrepancy between the

10

15

25

30

35

40

45

50

55

60

65

2
values indicates that the data block has been corrupted. ECCs
are parity-based mechanisms that track additional informa
tion for each data block. The additional information allows
the corrupted bit(s) to be identified and corrected.

Parity/ECC mechanisms have been employed extensively
for caches, memories, and similar data storage arrays. In the
remaining circuitry on a processor, such as data paths, control
logic, execution logic, and registers (the “execution core'), it
is more difficult to apply parity/ECC mechanisms for SDC
detection. Thus, there is typically some unprotected area on a
processor in which data corruption may occur and the parity/
ECC mechanisms do not prevent the corrupted data from
actually making it out onto the system bus. One approach to
SDC detection in an execution core (or other unprotected area
of the processor chip) is to employ “lockstep processing.”
Generally, in lockstep processing two processors are paired
together, and the two processors perform exactly the same
operations and the results-are compared. (e.g., with an XOR
gate). If there is ever a discrepancy between the results of the
lockStep processors, an error is signaled. The odds of two
processors experiencing the exact same error at the exact
same moment (e.g., due to a cosmic event occurring in both
processors at exactly the same time or due to a mechanical
failure occurring in each processor at exactly the same time)
is nearly Zero.
A pair of lockstep processors may, from time to time, lose

their lockstep. “Loss of lockstep” (or “LOL) is used broadly
herein to refer to any error in the pair of lockstep processors.
One example of LOL is detection of data corruption (e.g., data
cache error) in one of the processors by a parity-based mecha
nism and/or ECC mechanism. Another example of LOL is
detection of the output of the paired processors not matching,
which is referred to hereinas a “lockstep mismatch. It should
be recognized that in some cases the data in the cache of a
processor may become corrupt (e.g., due to a cosmic event),
which once detected (e.g., by a parity-based mechanism or
ECC mechanism of the processor) results in LOL. Of course,
unless such corrupt data is acted upon by the processor, the
output of that processor will not fail to match the output of its
paired processor and thus a "lockstep mismatch” will not
occur. For example, suppose that a value of “1” is stored to
first location of cache in each of a pair of lockstep processors
and a value of “1” is also stored to a second location of cache
in each of the pair of lockstep processors. Further Suppose
that a cosmic event occurs for a first one of the processors,
resulting in the first location of its cache being changed from
“1” to “0”, and thus corrupted. This data corruption in the first
processor is a LOL for the pair. An error detection mechanism
of this first processor may detect the data corruption, thus
detecting the LOL. If the processors are instructed to act on
the data of their first cache locations, then a lockStep mis
match will occur as the output of each of the processors will
not match. For instance, if the processors each add the data
stored to the first location of their respective cache with the
data stored to the second location of their respective cache,
the first processor (having the corrupt data) will output a
result of 1 (0+1=1) while the second processor outputs a
result of '2'(1+1=2), and thus their respective outputs will
not match.
By employing Such techniques as parity-based error detec

tion mechanisms and output comparisons for lockStep paired
processors, SDC detection can be enhanced such that practi
cally no SDC occurring in a processor goes undetected (and
thus such SDC does not remain “silent”) but instead results in
detection of LOL. However, the issue then becomes how best
for the system to respond to detected LOL. The traditional
response to detected LOL has been to crash the system to

8

US 7,502,958 B2
3

ensure that the detected error is not propagated through the
system. That is, LOL in one pair of lockstep processors in a
system halts processing of the system even if other processors
that have not encountered an error are present in the system.
However, with the increased desire for many systems to main
tain high availability, crashing the system each time LOL is
detected is not an attractive proposition. This is particularly
unattractive for large systems having many processors
because cosmic events typically occur more frequently as the
processor count goes up, which would result in much more
frequent system crashes in those large systems. High avail
ability is a major desire for many customers having large,
multi-processor Systems, and thus having their system crash
every few weeks is not an attractive option. Of course, per
mitting corrupt data to propagate through the system is also
not a viable option.

Prior solutions attempting to resolve at least Some detected
SDCs without requiring the system to be crashed have been
Operating System (“OS) centric. That is, in certain solutions
the OS has been implemented in a manner to recover from a
detected LOL without necessarily crashing the system. This
OS-centric type of solution requires a lot of processor and
platform specific knowledge to be embedded in the OS, and
thus requires that the OS provider maintain the OS up-to-date
as changes occur in later versions of the processors and plat
forms in which the OS is to be used. This is such a large
burden that most commonly used OSS do not support lockstep
recovery.

Certain solutions have attempted to recover from a LOL
without involving the OS in such recovery procedure. For
instance, in one technique upon LOL being detected, firm
ware is used to save the state of one of the processors in a
lockstep pair (the processor that is considered "good') to
memory, and then both processors of the pair are reset and
reinitialized. Thereafter, the state is copied from the memory
to each of the processors in the lockStep pair. This technique
makes the processors unavailable for an amount of time with
out the OS having any knowledge regarding this unavailabil
ity, and if the amount of time required for recovery is too long,
the system may crash. That is, typically, if a processor is
unresponsive for X amount of time, the OS will assume that
the processor is hung and will crashdump the system so that
the problem can be diagnosed. Further, in the event that a
processor in the pair cannot be reset and reinitialized (e.g., the
processor has a physical problem and fails to pass its self
test), this technique results in crashing the system.

BRIEF SUMMARY OF THE INVENTION

According to at least one embodiment, a method comprises
detecting loss of lockstep for a pair of processors. The method
further comprises triggering, by firmware, an operating sys
tem to idle the processors, and recovering, by the firmware,
lockstep between the pair of processors. After lockstep is
recovered between the pair of processors, the method further
comprises triggering, by the firmware, the operating system
to recognize the processors as being available for receiving
instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example embodiment of a system that uses
firmware for controlling recovery from detected loss of lock
step (LOL);

FIG. 2 shows a block diagram of one embodiment imple
mented for the IA-64 processor architecture;

10

15

25

30

35

40

45

50

55

60

65

4
FIG.3 shows an example system in which firmware utilizes

a hot spare processor for recovering from LOL for the sys
tem's boot processor,

FIG. 4 shows an example system having multi-processor
cells in which an embodiment for using firmware for recov
ering from LOL may be employed;

FIG. 5 shows a detailed operational flow diagram for one
embodiment; and

FIG. 6 shows a more general operational flow diagram for
certain embodiments.

DETAILED DESCRIPTION

Turning to FIG. 1, an example embodiment of a system 10
that uses firmware for controlling recovery from detected loss
of lockstep (LOL) is shown. System 10 includes OS 11, as
well as master processor 12A and slave processor 12B (col
lectively referred to as a lockstep processor pair 12). In certain
implementations the lockStep processor pair 12 may be
implemented on a single silicon chip, which is referred to as
a “dual core processor in which master processor 12A is a
first core and slave processor 12B is a second core. Master
processor 12A includes cache 14A, and slave processor 12B
includes cache 14B. OS 11 and lockstep processor pair 12 are
communicatively coupled to bus 16. Typically, master pro
cessor 12A and slave processor 12B are coupled to bus 16 via
an interface that allows each of Such processors to receive the
same instructions to process, but such interface only commu
nicates the output of master processor 12A back onto bus 16.
The output of slave processor 12B is used solely for checking
the output of mater processor 12A. While only one lockstep
processor pair 12 is shown for simplicity in the example of
FIG. 1, system 10 may include any number of such lockstep
processor pairs. As one specific example, system 10 may have
64 lockstep processor pairs, wherein the master processors of
the pairs may perform parallel processing for the system.

In this example, master processor 12A includes error detect
logic 13A, and slave processor 12B includes error detect logic
13B. While shown as included in each of the processors 12A
and 12B in this example, in certain embodiments the error
detect logic 13A and 13B may be implemented external to
processors 12A and 12B. Error detect logic 13A and 13B
include logic for detecting errors, such as data cache errors,
present in their respective processors 12A and 12B. Examples
oferror detect logic 13A and 13B include known parity-based
mechanisms and ECC mechanisms. Error detect logic 13C is
also included, which may include an XOR (exclusive OR)
gate, for detecting a lockStep mismatch between master pro
cessor 12A and slave processor 12B. As mentioned above, a
lockStep mismatch refers to the output of master processor
12A and slave processor 12B failing to match. While shown
as external to the lockStep processor pair 12 in this example,
in certain embodiments error detect logic 13C may be imple
mented on a common silicon chip with processors 12A and
12B.

LockStep mismatch is one way of detecting a LOL between
the master processor 12A and slave processor 12B. A detec
tion of an error by either of error detect logic 13A and 13B
also provides detection of LOL in the processors 12A and
12B. Because the detection of LOL by error detect logic 13A
and 13B may occur before an actual lockstep mismatch
occurs, the detection of LOL by error detect logic 13A and
13B may be referred to as a detection of a “precursor to
lockStep mismatch'. In other words, once an error (e.g., cor
rupt data) is detected by error detect logic 13A or 13B, such
error may eventually propagate to a lockStep mismatch error
that is detectable by error detect logic 13C.

9

US 7,502,958 B2
5

Firmware 15 is also included in system 10, which in this
embodiment is invoked upon an error being detected by any
of the error detect logics 13A, 13B, and 13C. In certain
embodiments, processors 12A and 12B are processors from
the Itanium Processor Family (IPF). IPF is a 64-bit processor
architecture co-developed by Hewlett-Packard Company and
Intel Corporation, which is based on Explicitly Parallel
Instruction Computing (EPIC). IPF is a well-known family of
processors. IPF includes processors such as those having the
code names of MERCED, MCKINLEY, and MADISON. In
addition to Supporting a 64-bit processorbus and a set of 128
registers, the 64-bit design of IPF allows access to a very large
memory (VLM) and exploits features in EPIC. While a spe
cific example implementation of one embodiment is
described below for the IPF architecture, embodiments of
firmware for recovering from LOL described herein are not
limited in application to an IPF architecture, but may be
applied as well to other architectures (e.g., 32-bit processor
architectures, etc.).

Processor architecture generally comprises corresponding
supporting firmware, such as firmware 15 of system 10. For
example, as described further below in conjunction with the
specific example of FIG. 2, the IPF processor architecture
comprises such Supporting firmware as Processor Abstraction
Layer (PAL), System Abstraction Layer (SAL), and
Extended Firmware Interface (EFI). Such supporting firm
ware may enable, for example, the OS to access a particular
function implemented for the processor. For instance, the OS
may query the PAL as to the size of the cache implemented for
the processor, etc. Other well-known functions provided by
the supporting firmware (SAL, EFI) include, for example: (a)
performing I/O configuration accesses to discover and pro
gram the I/O Hardware (SAL PCI CONFIG READ and
SAL PCI CONFIG. WRITE); (b) retrieving error log data
from the platform following a Machine Check Abort (MCA)
event (SAL GET STATE INFO); (c) accessing persistent
store configuration data stored in non-volatile memory (EFI
variable services: GetNextVariableName, GetVariable and
SetVariable); and accessing the battery-backed real-time
clock/calendar (EFI GetTime and SetTime). Accordingly, the
Supporting firmware. Such as the PAL, is implemented to
provide an interface to the processor(s) for accessing the
functionality provided by such processor(s). Each of those
interfaces provide standard, published procedure calls that
are supported. While shown as external to the lockstep pro
cessor pair 12 in this example, in certain embodiments all or
a portion offirmware 15 may be implemented on a common
silicon chip with processors 12A and 12B.

In the example embodiment of FIG. 1, upon firmware 15
being invoked responsive to detection of LOL (by any of error
detect logics 13A, 13B, and 13C), firmware 15 determines, in
operational block 101, whether the detected LOL is a recov
erable LOL. That is, firmware 15 determines in block 101
whether the detected LOL is of a type from which the firm
ware can recoverlockStep for the lockstep processor pair 12
without crashing the system. As described further herein,
lockstep is recoverable for certain detected LOLS (which may
be referred to as “recoverable LOLs”), while lockstep is not
recoverable for other detected LOLS (which may be referred
to as “non-recoverable LOLs”). If the lockstep is not recov
erable from the detected LOL, then in the example of FIG. 1
firmware 15 crashes the system in block 102.
As described further herein, firmware 15 is implemented in

a manner that allows for recovery from certain detected errors
without requiring that OS 11 be implemented with specific
knowledge for handling such recovery. However, if the lock
step is determined to be recoverable, firmware 15 cooperates

5

10

15

25

30

35

40

45

50

55

60

65

6
with OS 11 via standard OS methods to recover the lockstep.
For instance, in the example embodiment of FIG. 1,
Advanced Configuration and Power Interface (ACPI) meth
ods are used by firmware 15 to cooperate with OS 11. Accord
ingly, no processor or platform specific knowledge is required
to be embedded in OS 11, but instead any ACPI-compatible
OS may be used, including without limitation HP-UX and
OpenVMS operating systems.

In the example embodiment of FIG. 1, if lockstep is deter
mined to be recoverable in block 101, then firmware 15 trig
gers OS 11 to idle the master processor 12A in block 103. In
this embodiment, firmware 15utilizes an ACPI method 104 to
“eject” master processor 12A, thereby triggering OS 11 to
idle the master processor 12A (i.e., stop scheduling tasks for
the processor). Of course, by idling master processor 12A,
slave processor 12B will in turn be idled. Thus, idling master
processor 12A results in idling the lockStep processor pair 12.
In this example embodiment, OS 11 is not aware of the
presence of slave processor 12B, but is instead aware of
master processor 12A. The interface of lockStep processor
pair 12 to bus 16 manages copying to slave processor 12B the
instructions that are directed by OS 11 to master processor
12A. Thus, firmware 15 need not direct OS 11 to eject slave
processor 12B, as OS 11 is not aware of such slave processor
12B in this example implementation. Again, by idling master
processor 12A, slave processor 12B is also idled as it merely
receives copies of the instructions directed to master proces
sor 12A. Of course, if in a given implementation OS 11 is
aware of slave 12B, firmware 15 may be implemented to also
direct OS 11 to idle such slave processor 12B in a manner
similar to that described for idling master processor 12A. An
example technique that may be utilized by firmware 15 for
triggering OS 11 to idle master processor 12A in accordance
with certain embodiments is described further in concurrently
filed and commonly assigned U.S. patent application Ser. No.
10/972,888 titled “SYSTEM AND METHOD FOR SYS
TEM FIRMWARE CAUSING AN OPERATING SYSTEM
TOIDLEA PROCESSOR, the disclosure of which is hereby
incorporated herein by reference.

Firmware 15 then attempts to recover lockstep for the
lockstep processor pair 12 in block 105. For instance, firm
ware 15 resets the processor pair 12. During such reset of
processor pair 12, System 10 can continue to operate on its
remaining available processors (not shown in FIG. 1). An
example technique that may be utilized by firmware 15 for
recovering lockstep in accordance with certain embodiments
is described further in concurrently filed and commonly
assigned U.S. patent application Ser. No. 10/972,796 titled
SYSTEM AND METHOD FOR MAINTAINING IN A
MULTI-PROCESSOR SYSTEM A SPARE PROCESSOR
THAT IS IN LOCKSTEP FOR USE IN RECOVERING
FROM LOSS OF LOCKSTEP FOR ANOTHER PROCES
SOR, the disclosure of which is hereby incorporated herein
by reference.
Once the processor pair 12 is reset and lockStep is recov

ered, firmware 15 reintroduces master processor 12A to OS
11 in operational block 106. In this embodiment, firmware 15
updates the ACPI device table information for master proces
Sor 12A to indicate that Such master processor 12A is
“present, functioning and enabled.” As discussed in the ACPI
2.0 specification for the STA status method of a device,
the STA (status) object returns the status of a device, which
can be one of the following: enabled, disabled, or removed. In
this respect, in the result code (bitmap) bit 0 is set if the device
is present; bit 1 is set if the device is enabled and decoding its
resources; bit 2 is set if the device should be shown in the UI:
bit 3 is set if the device is functioning properly (cleared if the

10

US 7,502,958 B2
7

device failed its diagnostics); bit 4 is set if the battery is
present; and bits 531 are reserved. A device can only decode
its hardware resources if both bits 0 and 1 are set. If the device
is not present (bit 0 cleared) or not enabled (bit 1 cleared),
then the device must not decode its resources. Bits 0,1 and 3
are the “present, enabled and functioning bits mentioned
above. Firmware 15 utilizes an ACPI method 107 to trigger
OS 11 to “check formaster processor 12A, thereby reintro
ducing the master processor 12A to OS 11. As a result of
checking for master processor 12A, OS 11 will recognize that
Such master processor 12A is again available and will thus
begin scheduling tasks for master processor 12A once again.
An example technique that may be utilized by firmware 15 for
reintroducing a processor to the OS after recovery of lockstep
in accordance with certain embodiments is described further
in concurrently filed and commonly assigned U.S. patent
application Ser. No. 10/973,075 titled “SYSTEM AND
METHOD FOR REINTRODUCING A PROCESSOR
MODULE TO AN OPERATING SYSTEMAFTER LOCK
STEPRECOVERY”, the disclosure of which is hereby incor
porated herein by reference.

FIG. 2 shows a block diagram of one embodiment of the
above system 10, which is implemented for the IPF processor
architecture and is labeled as System 10. The quintessential
model of the traditional IPF architecture is given in the Intel
IA-64 Architecture Software Developer's Manual, Volume 2:
IA-64 System Architecture, in section 11.1 Firmware Model,
the disclosure of which is hereby incorporated herein by
reference. Accordingly, in this example embodiment of sys
tem 10, firmware 15, labeled as firmware 15, includes
processor abstraction layer (PAL) 201 and platform/system
abstraction layer (SAL) 202. In general, PAL 201 is firmware
provided by Intel for its processors, and SAL 202 is devel
oped by an original equipment manufacturer (OEM) for the
specific system/platform in which the processors are to be
employed. PAL 201, SAL 202, as well as an extended firm
ware interface (EFI) layer (not shown), together provide,
among other things, the processor and system initialization
for an OS boot in an IPF system.
The boot-up process of a traditional IPF system, for

example, proceeds as follows: When the system is first pow
ered on, there are some sanity checks (e.g., power on self-test)
that are performed by microprocessors included in the system
platform, which are not the main system processors that run
applications. After those checks have passed, power and
clocks are given to a boot processor (which may, for example,
be master processor 12A). The boot processor begins execut
ing code out of the system's Read-Only Memory (ROM) (not
specifically shown in FIG. 2). The code that executes is the
PAL 201, which gets control of system 10. PAL 201 executes
to acquire all of the processors in System 10 (recall that there
may be many lockstep processor pairs 12) Such that the pro
cessors begin executing concurrently through the same firm
Wa.

After it has performed its duty of initializing the
processor(s), PAL 201 passes control of system 10 to SAL
202. It is the responsibility of SAL 202 to discover what
hardware is present on the system platform, and initialize it to
make it available for the OS 11. When main memory is
initialized and functional, the firmware 15 is copied into the
main memory. Then, control is passed to EFI (not shown),
which is responsible for activating boot devices, which typi
cally includes the disk. The EFI reads the disk to load a
program into memory, typically referred to as an operating
system loader. The EFI loads the OS loader into memory, and
then passes it control of system 10 by branching the boot
processor into the entry point of Such OS loader program.

10

15

25

30

35

40

45

50

55

60

65

8
The OS loader program then uses the standard firmware

interfaces to discover and initialize system 10 further for
control. One of the things that the OS loader typically has to
do in a multi-processor system is to retrieve control of the
other processors (those processors other than the boot pro
cessor). For instance, at this point in a multi-processor sys
tem, the other processors may be executing in do-nothing
loops. In an ACPI-compatible system, OS 11 makes ACPI
calls to parse the ACPI tables to discover the other processors
of a multi-processor system in a manner as is well-known in
the art. Then OS 11 uses the firmware interfaces to cause
those discovered processors to branch into the operating sys
tem code. At that point, OS 11 controls all of the processors
and the firmware 15 is no longer in control of system 10.
As OS 11 is initializing, it has to discover from the firm

ware 15, what hardware is present at boot time. And in the
ACPI standards, it also discovers what hardware is present or
added or removed at run-time. Further, the Supporting firm
ware (PAL, SAL, and EFI) are also used during system runt
ime to Support the processor. For example, OS 11 may access
a particular function of master processor 12A via the Support
ing firmware 15, such as querying PAL 201 for the number,
size, etc., of the processor's cache 14A. Some other well
known firmware functions that OS 11 may employ during
runtime include: (a) PAL 201 may be invoked to configure or
change processor features such as disabling transaction queu
ing (PAL BUS SET FEATURES); (b) PAL 201 may be
invoked to flush processor caches (PAL CACHE FLUSH):
(c) SAL 202 may be invoked to retrieve error logs following
a system eO (SAL GET STATE INFO,
SAL CLEAR STATE INFO); (d) SAL 202 may be invoked
as part of hot-plug sequences in which new I/O cards are
installed into the hardware (SAL PCI CONFIG READ,
SAL PCI CONFIG. WRIT); (e) EFI may be invoked to
change the boot device path for the next time the system
reboots (SetVariable): (f) EFI may be invoked to change the
clock/calendarhardware settings; and (g) EFI may be invoked
to shutdown the system (ResetSystem).
A “device tree' is provided, which is shown as device tree

203 in this example. Device tree 203 is stored in SRAM
(Scratch RAM) on the cell, which is RAM that is reinitialized.
Firmware 15 A builds the device tree 203 as it discovers what
hardware is installed in the system. Firmware then converts
this information to the ACPI tables format and presents it to
OS 11 so that OS 11 can know what is installed in the system.
The ACPI device tables (not shown) are only consumed by
OS 11 at boot time, so they are never updated as things
change. For OS 11 to find the current status, it calls an ACPI
"method’ to discover the “current status”. The STA method
described above is an example of such an ACPI method.
When STA is called, the AML can look for properties on the
device specified in the firmware device tree and convert that
into the Result Code bitmap described above. So, if lockstep
has been lost on a processor, firmware 15A will set the device
tree property that indicates loss of lockstep, then when OS 11
calls STA for that device, the “lockstep lost property directs
the AML code to return to “0” in the “functioning properly
bit so that OS 11 can know there is a problem with that
processor.

If a lost lockstep is recovered in accordance with the recov
ery technique described herein, firmware 15A can indicate
that lockstep has been recovered in the device tree 203. Then
when STA is called on that device responsive to the OS
receiving the “check for device' ACPI method, the present,
enabled and functioning bits will all be set and OS 11 will
know the CPU is safe to use. A simple example of device tree
203 is shown below in Table 1:

11

US 7,502,958 B2

TABLE 1.

LockStep
Device Status Enabled

Processor A Present, Enabled, and Functioning Yes

Example interactions between the PAL 201, SAL 202, and
device tree 203 for responding to a detected LOL (e.g., deter
mining it is recoverable and if so then recovering from Such
LOL) for an IPF system in accordance with certain embodi
ments are described further herein (e.g., in conjunction with
FIG. 5 below), as well as in the co-pending U.S. patent appli
cations incorporated by reference herein.

In certain embodiments, a different recovery technique is
employed when LOL is detected for the system's boot pro
cessor than is employed for other processors of the system.
For various reasons, in certain system architectures problems
arise in attempting to idle (or eject) the boot processor from
the system. Thus, in certain embodiments, a hot spare pro
cessor is used for recovering from LOL for the system's boot
processor. More specifically, upon LOL being detected for a
boot processor, a hot spare processor (i.e., an idling processor
that is available in the system) is transferred the role of boot
processor, and then the old boot processor having LOL is
reset to reestablish its lockstep. Turning to FIG.3, an example
system 30 is shown in which firmware utilizes this hot spare
technique for recovering from LOL for a boot processor. As
with system 10 of FIG. 1, system 30 includes OS 11, bus 16,
and lockStep processor pair 12 with its error detect logic
13A-13C. System 30 further includes a second lockstep pro
cessor pair 31 that is communicatively coupled to bus 16.
LockStep processor pair 31 includes master processor 31A
and slave processor 31B. Master processor 31A includes
cache 32A, and slave processor 31B includes cache 32B. As
with error detect logic 13A-13C implemented for lockstep
processor pair 12, lockstep processor pair 31 has error detect
logic 33A-33 C.

Suppose that during the system boot-up procedure, master
processor 12A assumes the role of boot processor. In this
example embodiment, lockStep processor pair 31 may be held
as a hot spare for recovering from a LOL that may be detected
for the boot processor 12A. Of course, additional lockstep
processor pairs may be included in System30 (not specifically
shown in the example of FIG. 3), and those additional lock
step processor pairs, which are not the system boot processor,
may recover from LOL in the manner described above with
FIG. 1. Thus, hot spare processor pair 31 is not needed for
recovering from LOL detected for any non-boot processor,
but may instead be used only for recovery of LOL for the boot
processor (processor 12A in this example).

Firmware 35 is included in this example, and upon detec
tion of LOL by any of error detect logics 13 A-13C, it deter
mines whether the lockstep is recoverable in block 101 (as
described with FIG. 1 above). If not, firmware 35 crashes the
system in block 102 in this example embodiment. If the
lockstep is recoverable, then operation advances to block 301
whereat the firmware determines whether the processor for
which the LOL was detected is the system's boot processor.
Because the LOL is detected for the lockstep processor pair
12 in this example, firmware 35 determines whether master
processor 12A is the system's boot processor. This can be
determined, for example, by accessing the device tree 203 of
FIG. 2, as such device tree includes a field for each processor
indicating whether Such processor is the system's boot pro
cessor. This field in the device tree may be set by the firmware

10

15

25

30

35

40

45

50

55

60

65

10
during the boot-up process to identify the corresponding pro
cessor that is used as the system's boot processor. If deter
mined in block 301 that the master processor 12A is not the
system's boot processor, then operation advances to block
103, and the lockstep recovery process proceeds in the man
ner described above with FIG. 1.

However, if determined in block 301 that the master pro
cessor 12A is the system's boot processor, operation
advances to block 302 whereat the state of the “good'proces
sor in the lockstep processor pair 12 is copied over to each of
processors 31A and 31B in the spare lockstep processor pair
31. Example techniques that may be utilized by firmware 35
for Switching the State of a 'good processor in the lockstep
processor pair 12 in accordance with certain embodiments is
described further in copending U.S. patent application Ser.
No. 10/187,833 (published as publication No. US 2004/
0006722 A1) filed Jul. 3, 2002 and titled “METHOD AND
APPARATUS FOR RECOVERY FROM LOSS OF LOCK
STEP and in concurrently filed and commonly assigned U.S.
patent application Ser. 10/972.588 titled “SYSTEM AND
METHOD FOR SWITCHING THE ROLE OF BOOT PRO
CESSOR TO A SPARE PROCESSOR RESPONSIVE TO
DETECTION OF LOSS OF LOCKSTEP INA BOOT PRO
CESSOR, the disclosures of which are each hereby incor
porated herein by reference.

Thus, operational block 302 essentially makes the spare
processor pair 31 the system's boot processor, and then in
block 303 firmware 35 resets the lockstep processor pair 12
and reestablishes its lockstep. Once lockstep is reestablished
for lockStep processor pair 12, that pair is held in operational
block 304 as a hot spare for the new boot processor pair 31.
That is, firmware 35 updates the device tree 203 of FIG. 2 to
reflect that lockstep processor pair 12 is a hot spare for the
boot processor pair 31. Thus, should a recoverable LOL be
detected for the new boot processor 31, the above process
may be used by firmware 35 to make the spare lockstep
processor pair 12 the boot processor and then recover lock
step for pair 31. An example technique for resetting the lock
step processor pair 12 and reestablishing its lockstep in which
the lockStep processor pair 12 is then held as a hot spare is
described further in concurrently filed and commonly
assigned U.S. patent application Ser. No. 10/972,796 titled
SYSTEM AND METHOD FOR MAINTAINING IN A
MULTI-PROCESSOR SYSTEM A SPARE PROCESSOR
THAT IS IN LOCKSTEP FOR USE IN RECOVERING
FROM LOSS OF LOCKSTEP FOR ANOTHER PROCES
SOR, the disclosure of which is hereby incorporated herein
by reference.
One example system in which firmware 35 of FIG.3 may

be employed is shown in FIG. 4. FIG. 4 shows system 40 that
includes multi-processor cells A-D. labeled 41-41, respec
tively. Cell A 41 is shown in more detail, and should be
understood that cells B-D 41-41, have substantially the
same architecture as that of cell A 41 in this example. The
architecture of cell A 41 described hereafter corresponds to
that of Hewlett-Packard's SuperdomeTM systems. As shown,
multi-processor cell A41 includes coherency controller 404
that is communicatively coupled to two buses, labeled 405
and 406, respectively. A plurality of processors are included
within cell A41, shown as CPU 0, CPU 1, CPU 2 and CPU
3 (and labeled 400-403, respectively). More particularly, a
plurality of processors are communicatively coupled to each
of the buses 405 and 406. In this example, CPU 0 (400) and
CPU 1 (401) are each communicatively coupled to the first
bus 405, and CPU2 (402) and CPU3 (403) are each commu
nicatively coupled to the second bus 406. It should be under
stood that each of CPU 0 (400), CPU 1 (401), CPU 2 (402),

12

US 7,502,958 B2
11

and CPU3 (403) may inactuality be a lockstep processor pair,
such as the lockstep processor pair 12 of FIGS. 1-3. Thus, for
instance, CPU 0 (400) includes both a master processor and a
slave processor, as with processors 12A and 12B included in
the lockstep processor pair 12 of FIGS. 1-3.

Coherency controller 404 decodes the address an interrupt
is targeted towards and determines which bus (405 or 406) the
interrupt packet should be delivered to. Each CPU on the
destination bus sees the interrupt and compares the interrupt
target address with its internal “LID” register to determine if
it is the targeted CPU. If the match is correct, the CPU
responds to the interrupt. If the match is not correct, the CPU
ignores the interrupt packet.
As shown, the example firmware 35 described above with

FIG. 3 may be employed to manage the recovery from
detected LOLs for the processors of cells A-D (41-41). In
this example architecture, when designating a hot spare for
the boot processor, Such hot spare is selected to be another
processor communicatively coupled to the same bus as the
boot processor. For instance, Suppose that during the boot-up
of system 40, CPU2 (402) is designated as the boot processor.
Accordingly, firmware 35 will identify another processor that
is communicatively coupled to bus 406 to designate as a hot
spare for such boot processor, such as CPU 3 (403). During
runtime if a LOL is detected for CPU 2 (402), then firmware
35 operates according to the process described above in FIG.
3 to switch the designation of boot processor to the hot spare,
CPU3 (403). In performing this switch the LID register of the
CPU that lost lockstep is copied into the LID register of the
Hot-Spare CPU and the Hot-Spare CPU pair will then assume
the ID of the failed CPU and start responding to interrupts
directed to that ID. The LID of the failed CPU is quickly
re-written to a different value so that it will no longer respond
to interrupts directed to that ID. CPU2 (402) can then be reset
to recover its lockstep, and such CPU 2 (402) may then be
held as a hot spare for the new boot processor CPU 3 (403).

It should be recognized that in the example system of FIG.
4, if a hot spare were used for recovering from LOL for all
processors, rather than just for the boot processor, much of the
potential processing resources would be required to be held as
spare resources. For instance, a hot spare would be required
on each of the buses of each cell. Because there are two
processors coupled to each bus in this example (i.e., CPU 0
and CPU 1 coupled to bus 405, and CPU2 and CPU3 coupled
to bus 406), reserving a hot spare processor for each bus
would result in holding half of the total processing resources
in spare. This is an undesirably expensive and wasteful solu
tion. Thus, according to the illustrated embodiment, only a
hot spare processor is reserved for the boot processor. Thus,
continuing with the above example in which CPU2 is the boot
processor and CPU3 is held in idle as a hot spare, both of CPU
0 and CPU 1 are active (i.e., neither are held in spare). Further,
none of the processors of cells B-D need to be held as hot
spares. In the event of a recoverable LOL occurring for any of
non-boot processors of the cells, the lockstep recovery pro
cess of FIG. 1 (i.e., operational blocks 103-106) can be uti
lized without requiring a hot spare for lockstep recovery for
those non-boot processors.

While in the above example embodiment, a hot spare CPU
is maintained for recovery from LOL for the system's boot
processor, in an alternative embodiment a hot spare need not
be held as Such, but rather a processor can be dynamically
made a “spare” when needed for recovery from LOL encoun
tered for the system boot processor. That is, assuming as in the
above example of FIG. 4 that CPU 2 is the systems boot
processor, CPU 3 does not have to be held as a hot spare for
CPU 2, but instead CPU 3 can be idled and made a “spare”

10

15

25

30

35

40

45

50

55

60

65

12
upon detection of LOL in CPU 2. Thus, the resource of this
spare CPU need not be wasted during normal runtime, but can
be dynamically turned into a spare processor that is available
for recovering from LOL encountered on CPU 2 in the man
ner described above. As an example of this embodiment, the
firmware may send an "eject request on a healthy processor
pair (e.g., CPU 3), and lie to the OS by indicating (e.g., in
response to an ACPI STA method for the healthy processor
pair) that such processor pair is not functioning. This would
cause the OS to eject that processor pair as though it had
encountered a LOL. This processor would become the “hot
spare” and be used to replace the boot processor. The system
boot processor role would be assumed by the idled healthy
processor pair, just as described above in the example of FIG.
4 in which the healthy CPU3 is held idle for the system boot
processor, CPU 2. The only difference being that now the
firmware had to take some initial action to turn the healthy
processor pair into a "hot spare’ by idling it and making it
appear to the OS as though it was not functioning. Thus, the
LIDs would be swapped. That is, the LID register of the boot
processor that lost lockstep is copied into the LID register of
the now spare processor pair (CPU3 in this example), and the
LID register of this spare processor pair would be copied into
the LID register of the original boot processor. Lockstep is
then reestablished on the original boot processor, and it can be
reintroduced to the OS with the ID of the original non-boot
processor that replaced it as the system boot processor.

Turning now to FIG.5, an operational flow diagram for one
embodiment is shown. In operational block 501, the system is
powered on. In operational block 502, the system's firmware
establishes a hot spare for the system's boot processor. For
instance, in the example system 40 of FIG.4, if CPU 2 (402)
is designated as the boot processor, the firmware 35 identifies
a processor on the same bus as the boot processor, Such as
CPU 3 (403), as a hot spare, and firmware 35 updates the
device tree to designate that such CPU 3 (403) is a hot spare
for the boot processor CPU 2 (402). An example technique
that may be utilized by firmware 35 for establishing a hot
spare for the boot processor in accordance with certain
embodiments is described further in concurrently filed and
commonly assigned U.S. patent application Ser. No. 10/973,
O77 titled SYSTEMAND METHOD FORESTABLISH
ING A SPARE PROCESSOR FOR RECOVERING FROM
LOSS OF LOCKSTEP INA BOOT PROCESSOR, the dis
closure of which is hereby incorporated herein by reference.

In operational block 503, the firmware establishes lockstep
mode on the appropriate processor modules (or lockstep pro
cessor pairs). As described further in concurrently filed and
commonly assigned U.S. patent application Ser. No. 10/973,
OO4 titled SYSTEMAND METHOD FOR CONFIGUR
ING LOCKSTEP MODE OF A PROCESSORMODULE,
the disclosure of which is hereby incorporated herein by
reference, in certain embodiments whether lockStep is acti
vated for the system (or for any given partition of a system) is
configurable by a system administrator. Thus, rather than the
processors of a system being fixed in either lockStep mode or
not in lockstep mode, certain embodiments permit lockstep
mode to be activated and deactivated for a system as may be
desired by a system administrator. In the event that lockstep
mode is not activated for the system, then the processors that
would have been used as slave processors in lockstep mode
are available to be used as “master” processors for processing
instructions, thus increasing the total amount of computing
resources available to the OS. If for example, having a greater
number of processors available for computing separate
instructions is more desirable than guarding fully against
SDC on a given partition of a customer's system, then lock

13

US 7,502,958 B2
13

step processing may be disabled for Such partition, and lock
step processing may be enabled for those partitions in which
fully guarding against SDC is of more importance.

In operational block 504, the boot process boots the system
OS and completes with the firmware passing control of the
system over to the OS. During system runtime, if the system
is operating in lockStep mode, then error detect logic present
in the system (such as error detect logic 13A-13C of FIG. 1)
monitors for LOL. Thus, block 505 represents the continuous
monitoring by the error detect logic of their respective pro
cessors for LOL. Ifan LOL is detected by the error logic, then
the firmware is notified of the detected LOL in block 506. An
example technique that may be utilized for notifying the
firmware of the detected LOL in accordance with certain
embodiments is described further in concurrently filed and
commonly assigned U.S. patent application Ser. No. 10/972,
835 titled SYSTEMAND METHOD FORUSING INFOR
MATION RELATING TO ADETECTED LOSS OF LOCK
STEP FOR DETERMINING ARESPONSIVE ACTION,
the disclosure of which is hereby incorporated herein by
reference. As mentioned above, the firmware determines
whether the detected LOL is recoverable. If determined that
the LOL is recoverable, then operation continues in the firm
ware for recovering the LOL in the manner described here
after.

In block 507, the firmware determines whether the proces
sor for which the LOL is detected is the system's boot pro
cessor. This determination may be made by searching for the
processor for which the LOL is detected in the device tree
(e.g., tree 203 of FIG. 2) and evaluating the fields associated
with such processor in the device tree to determine whether
the device tree identifies such processor as the boot processor.

If the processor for which LOL is detected is not the system
boot processor, then operation advances to block 508 whereat
the processor for which the LOL is detected is idled, and
actions are taken to reestablish its lockStep. As described
above, an ACPI “eject' method may be used to instruct the
systems OS to idle the processor, such as described more
fully in concurrently filed and commonly assigned U.S.
patent application Ser. No. 10/973,003 titled “SYSTEM
AND METHOD FOR REESTABLISHING LOCKSTEP
FOR A PROCESSORMODULE FOR WHICH LOSS OF
LOCKSTEP IS DETECTED, the disclosure of which is
hereby incorporated herein by reference. In order to reestab
lish lockstep, the processor may be reset. At the end of this
step, the processor is executing in firmware space and lock
step has been reestablished for the processor.
The processor is then ready to be introduced back to the

OS. Thus, in block 509, the firmware reintroduces to the OS
the processor having its lockstep recovered. An example tech
nique that may be utilized for reintroducing the processor
back to the OS in block 509 in accordance with certain
embodiments is described further in concurrently filed and
commonly assigned U.S. patent application Ser. No. 10/973,
O75 titled SYSTEMAND METHOD FORREINTRODUC
INGAPROCESSORMODULE TO AN OPERATING SYS
TEM AFTER LOCKSTEP RECOVERY, the disclosure of
which is hereby incorporated herein by reference. Operation
then continues in block 510, wherein the processor whose
lockstep was recovered is available to run tasks as Scheduled
by the OS and the system's processors are monitored for
another LOL in block 505. That is, in block510 the system is
back to a stable state with full lockStep protection again being
provided.

Unfortunately, as mentioned above, in certain systems the
system boot processor that initialized the OS during the sys
tems bootup process cannot easily be idled and returned to

10

15

25

30

35

40

45

50

55

60

65

14
firmware control. Thus, a different technique than that
described above for nonboot processors is employed in this
embodiment. Accordingly, if determined in block 507 that the
LOL is detected for the system's boot processor, operation
advances to block 511 whereat the state of the “good’ boot
processor is copied to the hot spare that was established for
the boot processor in block 502. As mentioned above,
example techniques that may be utilized by the firmware for
Switching the state of a 'good processor in the lockstep
processor pair that is the system boot processor in accordance
with certain embodiments is described further in copending
U.S. patent application Ser. No. 10/187,833 (published with
publication no. US 2004/0006722 A1) filed Jul. 3, 2002 and
titled METHOD AND APPARATUS FOR RECOVERY
FROM LOSS OF LOCKSTEP' and in concurrently filed and
commonly assigned U.S. patent application Ser. No. 10/972,
588 titled SYSTEMAND METHOD FOR SWITCHING
THE ROLE OF BOOT PROCESSOR TO A SPARE PRO
CESSOR RESPONSIVE TO DETECTION OF LOSS OF
LOCKSTEP INA BOOT PROCESSOR, the disclosures of
which are each hereby incorporated herein by reference.

In operational block 512, the firmware reestablishes lock
step on the processor for which the LOL was detected (e.g., by
resetting the processor), and the firmware establishes the
processor having recovered lockstep as the hot spare for the
new boot processor. Such processor whose lockstep has been
recovered may be established as a spare for the new boot
processor in the manner described above in block 502, and as
discussed further in concurrently filed and commonly
assigned U.S. patent application Ser. No. 10/973,077 titled
SYSTEM AND METHOD FOR ESTABLISHING A
SPARE PROCESSOR FOR RECOVERING FROM LOSS
OF LOCKSTEP INA BOOT PROCESSOR, the disclosure
of which is hereby incorporated herein by reference. Opera
tion of the system continues in block 513 wherein the proces
sors are monitored for another LOL in block 505. In block
513 the system is back to a stable state with full lockstep
protection again being provided.

In certain embodiments, if the lockStep cannot be recov
ered in operational block 508 (e.g., the processor fails its
self-test when being reset), then that processor is simply not
reintroduced back to the OS in block 509. A message can be
generated for the system administrator to provide notice of
the loss of this processor, and if desired the system adminis
trator can schedule an orderly shutdown and service of the
system (e.g., for replacing the processor). Similarly, if the
lockstep cannot be recovered in operational block 512 (e.g.,
the processor fails its self-test when being reset), then a mes
sage can be generated for the system administrator to provide
notice of the loss of this processor (as thus loss of lockstep
recovery protection for the boot processor). In other words, if
the lockstep cannot be reestablished in block 512, then if a
LOL occurs in the new boot processor there will not be a spare
processor for taking over its role (and thus the system may
crash). If desired, the system administrator can schedule an
orderly shutdown and re-boot in order to establish a new boot
processor that has a hot spare available and/or schedule Ser
Vice of the system (e.g., for replacing the failed processor).

While a detailed flow diagram of one embodiment is shown
in FIG. 5, embodiments hereofare not limited to that example
operational flow. For instance, a more general operational
flow according to one embodiment is shown in FIG. 6. In FIG.
6, LOL for a pair of processors is detected in operational
block 61. In block 62, firmware triggers an OS to idle the
processors for which the LOL was detected. In block 63, the
firmware recovers lockstep between the pair of processors. In
block 64, after lockstep is recovered between the pair of

14

US 7,502,958 B2
15

processors, the firmware triggers the OS to recognize the
processors as again being available for receiving instructions.
As described above, the above technique may be modified for
recovering from LOL for the boot processor in certain sys
temS.
What is claimed is:
1. A method comprising:
detecting loss of lockstep for a lockStep pair of processors;
using firmware to trigger an operating system to idle the

lockStep pair of processors, recover lockStep for the
lockStep pair of processors, and trigger the operating
system to recognize the lockStep pair of processors hav
ing recovered lockStep; and

responsive to said detecting loss of lockstep, using said
firmware to determine if lockstep is recoverable for the
lockStep pair of processors, wherein said using said
firmware to determine if lockstep is recoverable further
comprises determining if a lockstep mismatch has
occurred between the lockstep pair of processors.

2. The method of claim 1 wherein said using firmware to
trigger an operating system to idle the lockStep pair of pro
cessors further comprises:

using the firmware to trigger the operating system to idle a
master processor of the lockstep pair of processors.

3. The method of claim 2 wherein said using firmware to
trigger the operating system to recognize the lockStep pair of
processors having recovered lockstep further comprises:

using the firmware to trigger the operating system to rec
ognize the master of the lockStep pair of processors.

4. The method of claim 1 wherein said detecting loss of
lockstep comprises:

detecting corrupt data in one of said lockstep pair of pro
cessors that would lead to a lockstep mismatch if acted
upon.

5. The method of claim 1 wherein said detecting loss of
lockstep comprises:

detecting a precursor to lockStep mismatch.
6. The method of claim 1 wherein said detecting loss of

lockstep comprises:
detecting lockStep mismatch between the lockstep pair of

processors.
7. The method of claim 1 further comprising:
if determined that a lockstep mismatch has not occurred

between the lockStep pair of processors, then determin
ing that the loss of lockstep is recoverable.

8. The method of claim 1 further comprising:
if determined that a lockStep mismatch has occurred

between the lockStep pair of processors, then determin
ing that the loss of lockstep is not recoverable.

9. The method of claim 1 further comprising:
determining if said lockstep pair of processors for which

said loss of lockStep is detected comprises a system boot
processor.

10. The method of claim 9 wherein if determined that said
lockstep pair of processors for which said loss of lockStep is
detected comprises a system boot processor, further compris
ing:

Swapping the role of system boot processor to another
processor in the system.

11. The method of claim 10 further comprising:
after said Swapping, recovering the lockStep for the lock

step pair of processors.
12. The method of claim 11 further comprising:
after recovering lockstep for the lockstep pair of proces

Sors, holding the recovered pair of processors in idle as
a spare for the processor to which the role of system boot
processor was Swapped.

10

15

25

30

35

40

45

50

55

60

65

16
13. A system comprising:
an Advanced Configuration and Power Interface (ACPI)-

compatible operating system;
master processor operable to process instructions Sched

uled by said ACPI-compatible operating system;
slave processor lockStepped with the master processor

operable to perform redundant processing of said
instructions Scheduled for the master processor, and

firmware operable, responsive to detection of loss of lock
step between the master and slave processors, to use an
ACPI method to trigger the operating system to idle the
master processor, attempt to recover lockStep between
the master and slave processors, and if recovery of lock
step is successful then use an ACPI method to reintro
duce the master processor to the operating system.

14. The system of claim 13 further comprising:
error detection logic for detecting loss of lockStep between

the master and slave processors.
15. The system of claim 13 further comprising:
error detection logic for detecting a precursor to loss of

lockStep.
16. The system of claim 15 wherein said precursor to loss

of lockstep is treated as said detection of loss of lockStep.
17. The system of claim 15 wherein said error detection

logic comprises a parity-based mechanism.
18. The system of claim 13 further comprising error detec

tion logic for detecting lockstep mismatch between the mas
ter and slave processors.

19. A system comprising a pair of lockStep processors and
computer-executable firmware code stored to a computer
readable medium, the computer-executable firmware code
comprising:

firmware code, responsive to detection of loss of lockstep
between the pair of lockstep processors, for determining
if the lockstep is recoverable for the pair of lockstep
processors, wherein said firmware code for determining
if the lockstep is recoverable further comprises firmware
code for determining if a lockStep mismatch has
occurred between the pair of lockstep processors; and

firmware code, responsive to determining that the lockstep
is recoverable, for triggering an operating system to idle
the processors, attempting to recover lockStep between
the pair of processors, and if lockstep is successfully
recovered between the pair of processors, triggering said
operating system to recognize the processors as being
available for receiving instructions.

20. The system of claim 19 wherein the code for attempting
to recover lockstep further comprises:

code for resetting the pair of processors.
21. The system of claim 19 wherein said operating system

is an Advanced Configuration and Power Interface (ACPI)-
compatible operating system, said code for triggering the
operating system to idle the processors comprises:

code for using an ACPI method to idle the processors.
22. The system of claim 19 wherein said operating system

is an Advanced Configuration and Power Interface (ACPI)-
compatible operating system, said code for triggering said
operating system to recognize the processors as being avail
able for receiving instructions comprises:

code for using an ACPI method to cause the operating
system to check for the processors.

23. A method comprising:
establishing, in a multi-processor System, a hot spare pro

cessor for a system boot processor,
detecting loss of lockStep for a lockstep pair of processors

in said multi-processor system;

15

US 7,502,958 B2
17 18

determining if said lockstep pair of processors for which 24. The method of claim 23 wherein if determined that said
the loss of lockstep is detected is the system boot pro- lockstep pair of processors for which the loss of lockstep is
cessor, the system boot processor further comprising:

if determined that said lockstep pair of processors for
which the loss of lockstep is the system boot processor, 5
copying a state of the system boot processor to the hot
spare processor, and

if determined that said lockstep pair of processors for
which the loss of lockstep is not the system boot proces
Sor, then triggering an operating system to a) idle the 10

attempting to recoverlockStep between the lockstep pair of
processors after copying the state of the system boot
processor to the hot spare processor.

25. The method of claim 24 wherein if determined that said
lockstep pair of processors for which the loss of lockstep is
the system boot processor further comprising:

lockStep pair of processors, b) attempt to recover lock- if lockstep is successfully recovered between the lockstep
step between the lockstep pair of processors, and c) if pair of processors, establishing the lockStep pair of pro
lockstep is successfully recovered between the lockstep cessors for which lockStep was recovered as a hot spare
pair of processors, trigger said operating system to rec- processor.
ognize the processors as being available for receiving 15
instructions. k

16

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,502,958 B2 Page 1 of 1
APPLICATIONNO. : 10/973076
DATED : March 10, 2009
INVENTOR(S) : Scott L. Michaelis et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

In column 7, line 2, delete “531 and insert -- 5-31 --, therefor.

Signed and Sealed this

Eighteenth Day of August, 2009

David J. Kappos
Director of the United States Patent and Trademark Office

17

