
UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

ZF FRIEDRICHSHAFEN AG, ZF ACTIVE SAFETY AND ELECTRONICS US
LLC, AND NISSAN MOTOR COMPANY, LTD.,

Petitioners

v.

FORAS TECHNOLOGIES LTD.,
Patent Owner

Patent No. 7,502,958
Filing Date: October 25, 2004
Issue Date: March 10, 2009

Title: SYSTEM AND METHOD FOR PROVIDING FIRMWARE
RECOVERABLE LOCKSTEP PROTECTION

Inter Partes Review No.: IPR2024-00969

DECLARATION OF R. JACOB BAKER, PH.D., P.E.

ZF, Ex. 1002

ii

TABLE OF CONTENTS

Page

I. Introduction .. 1

II. Professional Background and Qualifications .. 2

III. Materials Reviewed ... 7

IV. Understanding of Applicable Legal Standards .. 8

A. Legal Standard for Prior Art .. 8

B. Legal Standard for Anticipation .. 10

C. Legal Standard for Obviousness ... 10

D. Legal Standard for Claim Construction .. 16

V. Technical Background ... 20

 Lockstep Processors or FRC Processors Were Known 20

 Determining Whether Lockstep Is Recoverable Was
Known ... 23

 Handling Recoverable or Non-Recoverable Errors
Differently Was Known .. 26

 Using Firmware to Detect and Handle Processor Errors
Was Known ... 28

 Designating Spare Processors to Boot the System in the
Event the Current Boot Processor Suffers a Problem Was
Known ... 29

VI. Overview of the ’958 Patent .. 30

VII. The Prosecution History of the ’958 Patent .. 34

VIII. Overview of the Relied Upon Prior Art .. 34

 Overview of Bigbee (Ex. 1005) .. 34

 Overview of Nguyen (Ex. 1006) ... 36

 Bigbee and Nguyen are Analogous Art to the ’958 Patent 40

 Overview of Suffin (Ex. 1020) .. 41

 Overview of Goodrum (Ex. 1021) .. 43

 Overview of Safford (Ex. 1007) .. 43

iii

 Suffin, Goodrum, and Safford are Analogous Art to the
’958 Patent ... 45

IX. The Relevant Art and Level of Ordinary Skill In the Relevant Art 46

X. Claim Construction .. 47

 “Detection of Loss of Lockstep” and “Detecting Loss of
Lockstep” ... 47

 “Lockstep Is Recoverable” and “Loss of Lockstep Is
Recoverable” ... 49

 All Other Claim Terms .. 49

XI. Summary of Analysis .. 50

XII. Ground A: Claims 9-12 are Rendered Obvious By Bigbee-Nguyen In View
of Goodrum .. 51

 Overview of the Bigbee-Nguyen Combination that
Teaches Claim 1 ... 51

 A POSITA Would Have Found it Obvious to Combine
Bigbee and Nguyen ... 54

 Independent Claim 1 ... 63

iv

 Overview of The Bigbee-Nguyen-Goodrum Combination 72

 Dependent Claim 9: “The method of claim 1 further
comprising: determining if said lockstep pair of
processors for which said loss of lockstep is detected
comprises a system boot processor.” .. 78

 Dependent Claim 10: “The method of claim 9 wherein if
determined that said lockstep pair of processors for
which said loss of lockstep is detected comprises a
system boot processor, further comprising: swapping the
role of system boot processor to another processor in the
system.” ... 80

 Dependent Claim 11: “The method of claim 10 further
comprising: after said swapping, recovering the lockstep
for the lockstep pair of processors.” .. 82

 Dependent Claim 12: “The method of claim 11 further
comprising: after recovering lockstep for the lockstep
pair of processors, holding the recovered pair of
processors in idle as a spare for the processor to which
the role of system boot processor was swapped.” 83

XIII. Ground B: Claims 9-12 are Rendered Obvious By Bigbee-Nguyen In View
of Suffin ... 85

 Overview of Bigbee-Nguyen-Suffin Combination 85

 Dependent Claim 9: “The method of claim 1 further
comprising: determining if said lockstep pair of
processors for which said loss of lockstep is detected
comprises a system boot processor.” .. 90

 Dependent Claim 10: “The method of claim 9 wherein if
determined that said lockstep pair of processors for
which said loss of lockstep is detected comprises a
system boot processor, further comprising: swapping the
role of system boot processor to another processor in the
system.” ... 92

v

 Dependent Claim 11: “The method of claim 10 further
comprising: after said swapping, recovering the lockstep
for the lockstep pair of processors.” .. 94

 Dependent Claim 12: “The method of claim 11 further
comprising: after recovering lockstep for the lockstep
pair of processors, holding the recovered pair of
processors in idle as a spare for the processor to which
the role of system boot processor was swapped.” 96

XIV. Ground C: Claims 23-25 and 12 are Rendered Obvious By Bigbee-Nguyen-
Suffin-Safford .. 98

 Overview of Bigbee-Nguyen-Suffin-Safford
Combination .. 98

 Independent Claim 23 ... 101

vi

 Dependent Claim 24: “The method of claim 23 wherein
if determined that said lockstep pair of processors for
which the loss of lockstep is the system boot processor
further comprising: attempting to recover lockstep
between the lockstep pair of processors after copying the
state of the system boot processor to the hot spare
processor.” ... 105

 Dependent Claim 25: “The method of claim 24 wherein
if determined that said lockstep pair of processors for
which the loss of lockstep is the system boot processor
further comprising: if lockstep is successfully recovered
between the lockstep pair of processors, establishing the
lockstep pair of processors for which lockstep was
recovered as a hot spare processor.” ... 107

 Dependent Claim 12: “The method of claim 11 further
comprising: after recovering lockstep for the lockstep
pair of processors, holding the recovered pair of
processors in idle as a spare for the processor to which
the role of system boot processor was swapped.” 109

XV. Ground D: Claims 23-25 and 12 are Rendered Obvious By Bigbee-Nguyen-
Goodrum-Safford ...110

 Independent Claim 23 ... 110

vii

 Dependent Claim 24: “The method of claim 23 wherein
if determined that said lockstep pair of processors for
which the loss of lockstep is the system boot processor
further comprising: attempting to recover lockstep
between the lockstep pair of processors after copying the
state of the system boot processor to the hot spare
processor.” ... 112

 Dependent Claim 25: “The method of claim 24 wherein
if determined that said lockstep pair of processors for
which the loss of lockstep is the system boot processor
further comprising: if lockstep is successfully recovered
between the lockstep pair of processors, establishing the
lockstep pair of processors for which lockstep was
recovered as a hot spare processor.” ... 114

 Dependent Claim 12: “The method of claim 11 further
comprising: after recovering lockstep for the lockstep
pair of processors, holding the recovered pair of
processors in idle as a spare for the processor to which
the role of system boot processor was swapped.” 115

XVI. Concluding Statement ..116

APPENDIX A ... A-1

APPENDIX B ..B-1

1

I, R. Jacob Baker, declare that I have personal knowledge of the facts set forth

in this declaration and, if called to testify as a witness, could and would do so

competently.

I. INTRODUCTION

1. My name is R. Jacob Baker Ph.D., P.E., and I am a Professor of

Electrical and Computer Engineering at the University of Nevada, Las Vegas. I have

been retained as an expert witness and have prepared this declaration on behalf of

Petitioners ZF Friedrichshafen AG, ZF Active Safety and Electronics US LLC, and

Nissan Motor Company, Ltd., for the above-referenced inter partes review

proceeding.

2. In this declaration, I will give my opinion as to whether claims 9-12

and 23-25 of U.S. Patent No. 7,502,958 (“the ’958 Patent”) (Ex. 1001) are valid. I

also provide herein the technical bases for these opinions, as appropriate. I

understand that the ’958 Patent is owned by Foras Technologies Ltd.

3. This declaration contains statements of my opinions formed to date, and

the bases and rationale for these opinions. I may offer additional opinions based on

further review of materials in this case, including opinions and/or testimony of other

expert witnesses.

4. For my efforts in connection with the preparation of this declaration, I

have been compensated at my usual and customary rate for this type of consulting

2

activity. My compensation is in no way contingent on the results of these or any

other proceedings related to the ’958 Patent.

II. PROFESSIONAL BACKGROUND AND QUALIFICATIONS

5. My qualifications generally are set forth in my curriculum vitae, which

is submitted as Ex. 1003 to this declaration.

6. I have been working as an Engineer since 1985 and I have been teaching

Electrical and Computer Engineering courses since 1991. I am currently a Professor

of Electrical and Computer Engineering at the University of Nevada, Las Vegas

(“UNLV”). I am also currently an industry consultant for Freedom Photonics.

7. I received B.S. and M.S. degrees in Electrical Engineering from UNLV

in 1986 and 1988, respectively. I received my Ph.D. in Electrical Engineering from

the University of Nevada, Reno, in 1993.

8. My doctoral research, culminating in the award of a Ph.D., investigated

the use of power MOSFETs in the design of very high peak power, and high-speed,

instrumentation.

9. I am the named inventor on over 150 U.S. patents resulting from my

industry work. Many of these patents relate to processor technology including

redundant system design and error correction.

10. I have done technical and expert witness consulting for over 200

companies since I started working as an engineer in 1985. From 1985 to 1993 I

3

worked for EG&G Energy Measurements and the Lawrence Livermore National

Laboratory designing nuclear diagnostic instrumentation for underground nuclear

weapon tests at the Nevada test site. During this time, I designed, and oversaw the

fabrication of, over 30 electronic and electro-optic instruments including high-speed

cable and fiber-optic receiver/transmitters, PLLs, frame and bit-syncs, data

converters, streak-camera sweep circuits, Pockel’s cell drivers, micro-channel plate

gating circuits, charging circuits for battery backup of equipment for recording test

data, and analog oscilloscope electronics. Many of these electronic instruments

included redundant system design features including redundant image processing.

This was required since the cost of the nuclear tests were significant and the

Physicists performing the experiments did not want lose data for any reason.

11. From 1994 to 1996 I worked at Micron Display and Micron

Technology, Inc. (“Micron”) in Boise, Idaho. The image processing work I

performed at Micron often involved redundant designs to ensure manufacturability

and improve product yield.

12. I am a licensed Professional Engineer and have extensive industry

experience in circuit design, fabrication, and manufacture of Dynamic Random

Access Memory (DRAM) semiconductor integrated circuit chips, Phase-Change

Random Access Memory (PCRAM) chips, and CMOS Image Sensors (CISs) at

Micron Technology, Inc. (“Micron”) in Boise, Idaho. I spent considerable time

4

working on the development of Flash memory chips while at Micron. My efforts

resulted in more than a dozen patents relating to Flash memory. One of my projects

at Micron included the development, design, and testing of circuit design techniques

for a multi-level cell (MLC) Flash memory using signal processing. Another project

focused on the design of buffers for high-speed double-data rate DRAM which

resulted in around 10 US patents in buffer design. Among many other experiences,

I led the development of the delay locked loop (DLL) in the late 1990s so that Micron

DRAM products could transition to the DDR memory protocol, used in mobile and

non-mobile (server, desktop, cell phones, tablets, etc.) computing systems as main

computer memory, for addressing and controlling accesses to memory via

interprocess communications (IPC) with the memory controller (MC). I provided

technical assistance with Micron’s acquisition of Photobit during 2001 and 2002,

including transitioning the manufacture of CIS products into Micron’s process

technology.

13. I have extensive experience in the development of instrumentation and

commercial products in a multitude of areas including: integrated

electrical/biological circuits and systems, array (memory, imagers, and displays)

circuit design, CMOS analog and digital circuit design, diagnostic electrical and

electro-optic instrumentation for scientific research, CAD tool development and

online tutorials, low-power interconnect and packaging techniques, design of

5

communication/interface circuits (to meet commercial standards such as USB,

firewire, DDR, PCIe, SPI, etc.), circuit design for the use and storage of renewable

energy, and power electronics.

14. I was an adjunct faculty member in the Electrical Engineering

department of the University of Nevada, Las Vegas in 1991 and 1992. From 1993

to 2000, I served on the faculty at the University of Idaho as an Assistant Professor

and then as a tenured Associate Professor of Electrical Engineering. In 2000, I

joined a new Electrical and Computer Engineering program at Boise State

University (“BSU”) where I served as department chair from 2004 to 2007. At BSU,

I helped establish graduate programs in Electrical and Computer Engineering

including, in 2006, the university’s second Ph.D. degree. In 2012, I re-joined the

faculty at UNLV. Over the course of my career as a professor I have advised over

100 masters and doctoral students.

15. On numerous occasions, I have been recognized for my contributions

as an educator in the field. While at Boise State University, I received the President’s

Research and Scholarship Award (2005), Honored Faculty Member recognition

(2003), and Outstanding Department of Electrical Engineering Faculty recognition

(2001). In 2007, I received the Frederick Emmons Terman Award (the “Father of

Silicon Valley”). The Terman Award is bestowed annually upon an outstanding

young electrical/computer engineering educator in recognition of the educator’s

6

contributions to the profession. In 2011, I received the IEEE Circuits and Systems

Education Award. I received the Tau Beta Pi Outstanding Electrical and Computer

Engineering Professor Award every year it was awarded while I have been back at

UNLV.

16. I have authored several books and papers in the electrical and computer

engineering area. My published books include CMOS Circuit Design, Layout, and

Simulation (Baker, R.J., Wiley-IEEE, ISBN: 9781119481515 (4th ed., 2019)) and

CMOS Mixed-Signal Circuit Design (Baker, R.J., Wiley-IEEE, ISBN:

9780470290262 (2nded., 2009) and ISBN: 978-0471227540 (1st ed., 2002)). I co-

authored DRAM Circuit Design: Fundamental and High-Speed Topics (Keeth, B.,

Baker, R.J., Johnson, B., and Lin, F., Wiley-IEEE, ISBN: 9780470184752 (2008)),

DRAM Circuit Design: A Tutorial (Keeth, B. and Baker, R.J., Wiley-IEEE, ISBN:

0780360141 (2001)), and CMOS Circuit Design, Layout and Simulation (Baker,

R.J., Li, H.W., and Boyce, D.E., Wiley-IEEE, ISBN: 9780780334168 (1998)). I

contributed as an editor and co-author on several other electrical and computer

engineering books.

17. I have performed technical and expert witness consulting for over 125

companies and laboratories and given more than 50 invited talks at conferences,

companies, and universities. Further, I am the author or co-author of more than 100

7

papers and presentations in the areas of electrical and computer engineering design,

fabrication and packaging.

18. I currently serve, or have served, as a volunteer on: the IEEE Press

Editorial Board (1999-2004); as editor for the Wiley-IEEE Press Book Series on

Microelectronic Systems (2010-2018); as the Technical Program Chair of the 2015

IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS

2015); on the IEEE Solid-State Circuits Society (SSCS) Administrative Committee

(2011-2016); as a Distinguished Lecturer for the SSCS (2012-2015); as the

Technology Editor (2012-2014) and Editor-in-Chief (2015-2020) for the IEEE

Solid-State Circuits Magazine; IEEE Kirchhoff Award Committee (2020-present);

and advisor for the student branch of the IEEE at UNLV (2013-present). These

meetings, groups, and publications are intended to allow researchers to share and

coordinate research. My active participation in these meetings, groups, and

publications allowed me to see what other researchers in the field have been doing.

In addition to the above, I am an IEEE Fellow and a member of the honor societies

Eta Kappa Nu and Tau Beta Pi.

III. MATERIALS REVIEWED

19. I have considered information from various sources in forming my

opinions. For example, a list of materials I have considered is included in a list of

exhibits attached as Appendix A to this declaration. That list includes the ’958

8

Patent itself (Ex. 1001), the prosecution history of the ’958 Patent (Ex. 1004), and

numerous other publications. I may review additional documents filed in connection

with this proceeding as they become available.

20. I have also reviewed the petition for inter partes review of the ’958

Patent, the Declaration of Dr. Michael C. Brogioli, and the Decision – Granting

Institution of Inter Partes Review, for IPR2023-1373. I have also reviewed the

prosecution history of the re-examination of the ’958 Patent (Appl. No. 90/019,245).

I have analyzed the following sections of Dr. Brogioli’s declaration with which I

generally agree: overview of The State of Art, Overview of the ’958 Patent,

Overview of Bigbee (Ex. 1005), Overview of Nguyen (Ex. 1006), discussion of

Bigbee and Nguyen as analogous art to the ’958 Patent, Claim Construction analysis,

and analysis of claim 1 (from ground A explaining that claim 1 is obvious over

Bigbee in view of Nguyen). Sections of my declaration herein follow language

contained in these sections from Dr. Brogioli’s declaration, but all portions of this

declaration are my own opinions and I am not relying on Dr. Brogioli’s opinions as

support for my opinions.

IV. UNDERSTANDING OF APPLICABLE LEGAL STANDARDS

21. I have applied the following legal principles provided to me by counsel

in arriving at the opinions set forth in this declaration.

A. Legal Standard for Prior Art

9

22. I understand that a patent or other publication must first qualify as prior

art before it can be used to invalidate a patent claim.

23. I understand that a U.S. or foreign patent or patent publication qualifies

as prior art, under pre-AIA 35 U.S.C. § 102(a), to an asserted patent if the date of

issuance or publication of the patent or patent publication is prior to the alleged

invention of the asserted patent. I further understand that a printed publication, such

as a book or an article published in a magazine or trade publication, qualifies as prior

art, under pre-AIA 35 U.S.C. § 102(a), to an asserted patent if the date of publication

(e.g., the date it was made publicly accessible) is prior to the alleged invention of the

asserted patent.

24. I understand that a U.S. or foreign patent or patent publication qualifies

as prior art, under pre-AIA 35 U.S.C. § 102(b), to an asserted patent if the date of

issuance or publication of the patent or patent publication is more than one year

before the filing date of the asserted patent. I further understand that a printed

publication, such as a book or an article published in a magazine or trade publication,

qualifies as prior art, under pre-AIA 35 U.S.C. § 102(b), to an asserted patent if the

date of publication (e.g., the date it was made publicly accessible) is more than one

year before the filing date of the asserted patent.

25. I understand that a U.S. patent or patent publication qualifies as prior

art, under pre-AIA 35 U.S.C. § 102(e), to the asserted patent if the application

10

resulting in that patent or patent publication was filed in the United States before the

alleged invention of the asserted patent.

26. I understand that documents and materials that qualify as prior art can

be used to invalidate a patent claim as anticipated or as obvious.

B. Legal Standard for Anticipation

27. I understand that once the claims of a patent have been properly

construed, the second step in determining anticipation of a patent claim requires a

comparison of the properly construed claim language to the prior art on a limitation-

by-limitation basis.

28. I understand that a single prior art reference “anticipates” an asserted

claim, and thus renders the claim invalid, if each and every element of the claim is

disclosed in that prior art reference, either explicitly or inherently (i.e., necessarily

present), and it enables a person having ordinary skill in the art (POSITA) to make

and use the claimed invention without undue experimentation.

29. I understand that a patent is anticipated if before such person’s

invention thereof, the invention was made in this country by another inventor who

had not abandoned, suppressed, or concealed it.

30. I have written this declaration with the understanding that in an inter

partes review anticipation must be shown by a preponderance of the evidence.

C. Legal Standard for Obviousness

11

31. I have been instructed by counsel on the law regarding obviousness,

and understand that even if a patent is not anticipated, it is still invalid if the

differences between the claimed subject matter and the prior art are such that the

subject matter as a whole would have been obvious to a POSITA at the time the

invention was made.

32. I understand that a POSITA provides a reference point from which the

prior art and claimed invention should be viewed. This reference point prevents a

person from using one’s own insight or hindsight in deciding whether a claim is

obvious. I understand that hindsight is impermissible and that permissible reasoning

takes into account only knowledge which was within the level of ordinary skill in

the art at the time the claimed invention was made and does not include knowledge

gleaned only from the ’958 Patent’s disclosure.

33. I also understand that an obviousness determination includes the

consideration of various factors such as (1) the scope and content of the prior art, (2)

the differences between the prior art and the challenged claims, (3) the level of

ordinary skill in the pertinent art, and (4) the existence of objective evidence of non-

obviousness (i.e., “secondary considerations”) such as commercial success, long-felt

but unresolved needs, failure of others, etc.

34. I am informed that secondary considerations of non-obviousness may

include (1) a long felt but unmet need in the prior art that was satisfied by the claimed

12

invention of the patent; (2) commercial success attributable to the claimed invention;

(3) unexpected results achieved by the claimed invention; (4) praise of the claimed

invention by others skilled in the art; (5) taking of licenses under the patent by others

for reasons related to the alleged non-obviousness of the claimed invention; (6)

deliberate copying of the claimed invention instead of using the prior art; (7) failure

of others; (8) teaching away by others; and (9) skepticism by experts. I also

understand that there must be a relationship, or nexus, between any such secondary

indicia and the claimed invention. I further understand that contemporaneous and

independent invention by others is a secondary consideration supporting an

obviousness determination.

35. I understand that an obviousness evaluation can be based on a

combination of multiple prior art references. I understand that rationales that may

support a conclusion of obviousness include:

(A) Combining prior art elements according to known methods to yield

predictable results;

(B) Substituting one known element for another to obtain predictable results;

(C) Using known techniques to improve similar devices (methods, or

products) in the same way;

(D) Applying a known technique to a known device (method, or product)

ready for improvement to yield predictable results;

13

(E) Using an “obvious to try” solution, i.e., choosing from a finite number of

identified, predictable solutions, with a reasonable expectation of success;

(F) Applying work known in one field of endeavor to yield variations of that

work for use in either the same field or a different one based on design

incentives or other market forces if the variations are predictable to one

of ordinary skill in the art; and

(G) Applying some teaching, suggestion, or motivation in the prior art that

would have led one of ordinary skill to modify the prior art reference or

to combine prior art reference disclosures to arrive at the claimed

invention.

36. Accordingly, I understand that the prior art references themselves may

provide a suggestion, motivation, or reason to combine, but other times the link

between two or more prior art references is simple common sense. I further

understand that obviousness analysis recognizes that market demand, rather than

scientific literature, often drives innovation, and that a motivation to combine

references may be supplied by the direction of the marketplace.

37. I understand that if a technique has been used to improve one device,

and a POSITA would have recognized that it would improve similar devices in the

same way, using the technique is obvious unless its actual application is beyond his

or her skill.

14

38. I also understand that practical and common-sense considerations

should guide a proper obviousness analysis, because familiar items may have

obvious uses beyond their primary purposes. I further understand that a POSITA

looking to overcome a problem will often be able to fit the teachings of multiple

publications together like pieces of a puzzle, although the prior art need not be like

two puzzle pieces that must fit perfectly together. I understand that obviousness

analysis therefore considers the inferences and creative steps that a POSITA would

employ under the circumstances.

39. I understand that a particular combination may be proven obvious by

showing that it was obvious to try the combination. For example, when there is a

design need or market pressure to solve a problem and there are a finite number of

identified, predictable solutions with a reasonable expectation of success, a POSITA

has good reason to pursue the known options within his or her technical grasp

because the result is likely the product not of innovation but of ordinary skill and

common sense.

40. I understand that the combination of familiar elements according to

known methods may be proven obvious when it does no more than yield predictable

results. When a work is available in one field of endeavor, design incentives and

other market forces can prompt variations of it, either in the same field or a different

15

one. If a POSITA can implement a predictable variation, that variation likely bars

its patentability.

41. It is further my understanding that a proper obviousness analysis

focuses on what was known or obvious to a POSITA, not just the patentee.

Accordingly, I understand that any need or problem known in the field of endeavor

at the time of the claimed invention and addressed by the patent can provide a reason

for combining the elements in the manner claimed.

42. I understand that a claim can be obvious in light of a single reference,

without the need to combine references, if the elements of the claim that are not

found explicitly or inherently in the reference can be supplied by the common sense

or technical knowledge of the POSITA. For example, combining two embodiments

disclosed adjacent to each other in a prior art reference probably does not require a

leap of inventiveness.

43. I understand that a POSITA could have combined two pieces of prior

art or substituted one prior art element for another if the substitution can be made

with predictable results, even if the swapped-in element is different from the

swapped-out element. In other words, the prior art need not be like two puzzle pieces

that must fit together perfectly. The relevant question is whether prior art techniques

are interoperable with respect to one another, such that a POSITA would view them

16

as a design choice, or whether a POSITA would apply prior art techniques into a

new combined system.

44. In sum, my understanding is that prior art teachings are properly

combined where a POSITA having the understanding and knowledge reflected in

the prior art and motivated by the general problem facing the inventor, would have

been led to make the combination of elements recited in the claims. Under this

analysis, the prior art references themselves, or any need or problem known in the

field of endeavor at the time of the invention, can provide a reason for combining

the elements of multiple prior art references in the claimed manner.

45. I have been informed and understand that the obviousness analysis

requires a comparison of the properly construed claim language to the prior art on a

limitation-by-limitation basis, while observing whether the differences between the

claimed subject matter and the prior art are such that the subject matter as a whole

would have been obvious to a POSITA at the time the invention was made.

46. I have written this declaration with the understanding that in an inter

partes review obviousness must be shown by a preponderance of the evidence.

D. Legal Standard for Claim Construction

47. I have been instructed by counsel on the law regarding claim

construction and patent claims and understand that a patent may include two types

of claims, independent claims and dependent claims. An independent claim stands

17

alone and includes only the limitations it recites. A dependent claim can depend

from an independent claim or another dependent claim. I understand that a

dependent claim includes all the limitations that it recites in addition to all of the

limitations recited in the claim from which it depends.

48. It is my understanding that in proceedings before the USPTO, claims

are construed similarly as in district court litigation, and that this standard is

sometimes referred to as the Phillips standard. Under this standard, it is my

understanding that claim terms are given their ordinary and customary meaning as

would be understood by a POSITA at the time of the claimed invention, in view of

the specification and prosecution history.

49. In comparing the claims of the ’958 Patent to the prior art, I have

carefully considered the ’958 Patent and its prosecution history in light of the

understanding of a POSITA at the time of the alleged invention.

50. I understand that to determine how a POSITA would understand a claim

term, one should look to those sources available that show what a POSITA would

have understood the claim term to mean. Such sources include the words of the

claims themselves, the remainder of the patent’s specification, the prosecution

history of the patent (all considered “intrinsic” evidence), and “extrinsic” evidence

concerning relevant scientific principles, the meaning of technical terms, and the

state of the art.

18

51. I understand that, in construing a claim term, one looks primarily to the

intrinsic patent evidence, including the words of the claims themselves, the

remainder of the patent specification, and the prosecution history.

52. I understand that extrinsic evidence, which is evidence external to the

patent and the prosecution history, may also be useful in interpreting patent claims

when the intrinsic evidence itself is insufficient.

53. I understand that words or terms should be given their ordinary and

accepted meaning unless it appears that the inventors were using them to mean

something else. In making this determination, the claims, the patent specification,

and the prosecution history are of paramount importance. Additionally, the

specification and prosecution history must be consulted to confirm whether the

patentee has acted as its own lexicographer (i.e., provided its own special meaning

to any disputed terms), or intentionally disclaimed, disavowed, or surrendered any

claim scope.

54. I understand that the claims of a patent define the scope of the rights

conferred by the patent. The claims must particularly point out and distinctly claim

the subject matter which the patentee regards as his invention. Because the patentee

is required to define precisely what he claims his invention to be, it is improper to

construe claims in a manner different from the plain import of the terms used

consistent with the specification. Accordingly, a claim construction analysis must

19

begin and remain centered on the claim language itself. Additionally, the context in

which a term is used in the asserted claim can be highly instructive. Likewise, other

claims of the patent in question, both asserted and unasserted, can inform the

meaning of a claim term. For example, because claim terms are normally used

consistently throughout the patent, the usage of a term in one claim can often

illuminate the meaning of the same term in other claims. Differences among claims

can also be a useful guide in understanding the meaning of particular claim terms.

55. I understand that in general, a term or phrase found in the introductory

words of the claim, the preamble of the claim, should be construed as a limitation if

it recites essential structure or steps, or is necessary to give life, meaning, and vitality

to the claim. Conversely, a preamble term or phrase is not limiting where a patentee

defines a structurally complete invention in the claim body and uses the preamble

only to state a purpose or intended use for the invention.

56. I understand that pre-AIA 35 U.S.C. § 112 ¶ 6 allows for means plus

function limitations. In particular, I understand that a “means plus function”

limitation should be interpreted to cover only the corresponding structure described

in the specification, and equivalents thereof. I also understand that a limitation will

be presumed to be a means plus function limitation if (a) the claim limitation uses

the phrase “means for”; (b) the “means for” is modified by functional language; and

20

(c) the “means for” is not modified by sufficient structure for achieving the specified

function.

57. I understand that a structure will be considered structurally equivalent

to the corresponding structure identified in the specification only if the differences

between them are insubstantial. For example, a structure may be deemed to be a

structural equivalent to the corresponding structure where the structure performs the

same function in substantially the same way to achieve substantially the same result.

V. TECHNICAL BACKGROUND

 Lockstep Processors or FRC Processors Were Known

58. Prior to the filing date of the ’958 Patent, lockstep processing was used

to improve the fault tolerance of a computer system. For example, shown below are

two processors 22 and 24 (or two processor units or two processor cores) that are

paired together to execute the same instructions on identical data in parallel. The

outputs of the two processors are compared by lockstep logic 26, which may include

a comparator or an XOR gate. Safford, [0003]-[0004]; see also Bigbee, [0033];

Nguyen, [0006], [0038]; Kondo, [0004]; Ex. 1001, 2:13-19. A discrepancy between

the outputs of the pair of processors detected by lockstep logic 26 is considered to

be a loss of lockstep. Safford, [0004].

21

Safford, FIG. 1B.

59. Because lockstep processors execute redundant instructions in parallel,

lockstep systems are said to perform a “functional redundancy check.” Safford-181,

1:67-2:3. Accordingly, processors operating in lockstep are also referred to as

processors operating in functional redundancy check (FRC) mode or FRC mode. A

POSITA would have understood that the terms FRC processor or lockstep processor

both refer to a processor including two or more processor cores operating in FRC

mode or in lockstep.

60. When a comparison of the outputs of the pair of processors indicates

that the pair of processors have produced the same outputs, it is assumed that there

is no error in processing. In contrast, when a comparison of the outputs of the pair

22

of processors indicates a difference or mismatch, it is assumed that at least one

processor has an error. Safford, [0016]. An example of such an error is a data cache

error or a soft error.1 Id., [0003]; Nguyen, [0008]. A loss of lockstep, if not promptly

corrected, may cause the computer system to crash. That is, a failure of one of the

pair of processors may halt the entire computer system, even if the other processor

does not encounter an error. Safford, [0003].

61. It was well known to a POSITA that the processors in a pair of lockstep

processors are often differentiated by designating one as a master processor and the

other as the slave processor, and that these roles may change over time. It also was

well known to a POSITA that processors have status registers for recording such

designations. Marshall, 1:11-16; Kondo, [0086]; Tu, [0031].

62. It was also known to a POSITA that an error detected in an individual

processor of a pair of lockstep processors may signal an impending mismatch error.

1 A POSITA would have understood that a “soft error” occurs when, for example, a

high-energy particle switches the state of a memory element causing a parity or

other error. Nguyen, [0004]; Kondo, [0006]. Soft errors are generally correctable

by rewriting the affected memory location. Soft errors are distinct from “hard”

errors which indicate the actual failure of a hardware element.

23

Safford, [0015]-[0017] (an error detected in a single processor core of a lockstep

processor signals an impending loss of lockstep); Kondo, [0101] (detecting an error

in the processor provides early warning of a divergence), [0103] (“When utilizing

lockstepped processors, a recoverable error on one processor … will nevertheless

result in a divergence, since it will take additional processing and some number of

clock cycles on the part of the one processor to recover from the error.”), [0106]

(divergence between the processor cores of an FRC processor can be predictively

detected by detecting errors in the processor cores); Nguyen, [0008] (soft errors in

“FRC-enabled processors … are likely to be manifested as FRC errors, since they

take the execution cores out of lock-step”), [0022] (data corruption in a processor

core of an FRC processor can trigger an FRC error) (emphasis added).

 Determining Whether Lockstep Is Recoverable Was Known

63. It was known to a POSITA that lockstep is recoverable from some

errors in a lockstep processor, such as soft errors. It was also known that lockstep is

not recoverable from some other errors, such as some lockstep mismatch errors.

64. For example, lockstep may be recoverable from an error that is detected

in an individual processor before a mismatch error is detected and signaled. As

shown below, for example, a pair of lockstep processors 111 and 113 can include

error detection and signaling logic 112 and 114, respectively, to signal an impending

loss of lockstep. Safford, [0017].

24

Safford, FIG. 2.

65. It was known to a POSITA that detecting and handling such errors

before signaling a mismatch error improves processor and/or system availability.

Safford, [0017] (using the error detected in the processors of a lockstep processor

pair to signal an impending loss of lockstep and improve availability of the processor

assets); Nguyen, [0046] (detecting an error in the processor core before triggering

an FRC reset allows recovery from the error); Kondo, [0100] (a processor error that

will produce a divergence but will not compromise data integrity is a correctable

memory error).

25

66. It was also known to a POSITA that lockstep may be non-recoverable

from a mismatch error in various situations. For example, lockstep is not recoverable

from a hard error that caused the mismatch (e.g., a partial or total hardware failure).

Bigbee, [0033] (such inconsistencies can occur as a result of a partial or total

hardware failure); Bossen, 1:35-40 (no recovery is possible for hard errors). Also,

lockstep is not recoverable if it is not possible to determine which processor core

was responsible for the mismatch error. Nguyen, [0023] (“Not all FRC-errors are

traceable to underlying parity/ECC or other correctible soft errors.”) 2; Safford-181,

6:53-56 (“It can be difficult to recover from a lockstep error because typically it is

not possible to determine which one of the cores … was responsible for the lockstep

mismatch.”).

67. As another example, lockstep is not recoverable if the mismatch error

is triggered before the detection of the error in the individual processor. Nguyen,

[0022] (triggering a non-recoverable FRC error before the underlying parity/ECC

error in the processors is detected). Lockstep is also not recoverable if the mismatch

2 A POSITA would have understood that the acronym “ECC” refers to error

checking and correction, which includes techniques for coding data such that errors

can not only be detected, but also corrected.

26

error is detected in the absence of detecting an error in the individual processor.

Marshall, 2:17-34 (if an error is detected based on comparing outputs of the two

processors, the system is stopped since comparison checks indicate only that there

was a failure but do not indicate which processor failed). Such mismatch errors

typically indicate a high risk of corrupt data or indicate incorrect results about to

propagate through the system. Kondo, [0089] (divergence detection is indicative of

potential error or data corruption about to propagate); Kondo, [0102] (divergence

detection in the absence of detecting errors in the processors typically would indicate

a more serious error).

 Handling Recoverable or Non-Recoverable Errors Differently
Was Known

68. It was known to a POSITA that once an error was detected in relation

to FRC processors, the appropriate action responsive to the recoverability of the

detected error should be taken to handle both non-recoverable and recoverable errors

so as to reduce the impact of the errors on the system.

69. It was known for non-recoverable errors, for example, that there is risk

of corrupt data or results propagating through the system. An appropriate action for

responding to a non-recoverable error would have been immediately resetting or

rebooting the system to return the system to a safe state or shut down the processor.

Nguyen, [0007] (FRC errors are detectable but not recoverable; the FRC error

handling routine typically resets the system, which is time consuming and reduces

27

system availability); Marshall, 2:3-6 (the only recovery action responsive to an

output mismatch is to reset the system); Kondo, [0039] (conducting a hard-reset of

the lockstep computer processing system in response to a non-recoverable error),

[0190] (conventional non-recoverable error handling entails shutting down a

processor, losing it as a resource, followed by repair/replacement); Schultz, [0030]

(“When an error is not recoverable, the system may be rebooted to return it to a safe

state”); Marisetty, 5:21-28 (for errors that cannot be corrected, the system will need

a reboot and execution cannot continue).

70. A mismatch error can be non-recoverable because it indicates a non-

recoverable partial or total hardware failure of the processor (Bigbee, [0033]), for

which an appropriate action would have been replacing it with another processor.

Klein, 1:19-66 (hot swapping a failed processor while the system is running); Fox,

Abstract, [0005]-[0014] (replacing a failed processor with a hot spare processor);

Arai, 1:39-45, 2:23-41 (replacing a failed processor with a reserved processor).

71. For recoverable errors, it was known that various recovery routines

have been used for handling such errors to reduce the impact to the overall system,

such as those disclosed in Bigbee, Nguyen, Kondo, and Safford. Kondo, [0191]

(structuring error recoveries to ensure data corruption will not leave the processor).

72. Treating an otherwise recoverable error as a non-recoverable error

would reduce system availability. Recovering lockstep from a recoverable error can

28

be implemented with lower latency as compared to recovering lockstep in response

to a non-recoverable error, which typically involves the reset or the

repair/replacement of a processor. Nguyen, [0022]-[0023], [0040].

73. Similarly, treating a non-recoverable error as a recoverable error would

reduce system reliability. For example, handling a non-recoverable error as a

recoverable error would create risks of having corrupt data or results propagating

through the system. Kondo, [0101] (the detection and signaling of an error may be

taken as an indicator of imminent divergence; the longer time that passes from error

or divergence detection without remedial action, the more serious the impact of the

error or divergence will be); Marisetty, 2:38-50 (other processors of a multiprocessor

system may continue execution without knowledge of the error, propagating the

error and causing further damage in the system), 2:51-52 (multiprocessor systems

may have to reboot or shut down for errors because of a lack of proper error

handling).

 Using Firmware to Detect and Handle Processor Errors Was
Known

74. It was known to a POSITA that firmware can be used for detecting

lockstep errors. Bigbee, [0034] (FRC logic 308 may be implemented as executable

firmware); Safford-181, 15:60-64 (lockstep logic may be implemented in firmware).

75. It was also known that firmware can be used for handling processor

errors. Nguyen, [0045] (using PAL or SAL layers of BIOS— firmware—for

29

implementing error recovery mechanisms in Itanium® family processors); Marisetty,

FIGS. 1-2, 5:48-8:64 (teaching the use of firmware including PAL and SAL to

execute error handling routines); Schultz, FIGS. 1-3, [0017]-[0018] (teaching the

use of firmware including PAL and SAL for correcting an error that is not

correctable directly by hardware); Bigbee, [0014]-[0025].

 Designating Spare Processors to Boot the System in the Event the
Current Boot Processor Suffers a Problem Was Known

76. It was known to a POSITA to designate a particular processor as the

boot processor in a multi-processor system. Natu, 1:5-9, 2:20-36; Goodrum, 2:15-

31, 2:40-43, 6:1-3, 6:49-51, 8:60-61; Suffin, 12:3-18, 13:16-20. It was also known

that the designated boot processor would be responsible for turning on and testing

the other processors or otherwise initializing the overall system. Goodrum, 2:15-31;

Natu, 2:20-36. If a designated boot processor does not function properly, then the

overall system may become incapacitated as the remaining processors could not be

turned on or the overall system could not be initialized, for example, because the

operating system would not be booted. Goodrum, 2:15-31; Natu, 2:20-50.

77. It was therefore known to a POSITA to establish a backup processor to

take over boot processor functions should the designated boot processor fail.

Goodrum, 1:17-20, 3:7-31, 8:60-64, 9:39-50; Suffin, 2:18-3:11, 13:20-14:2, Fig. 4A;

Natu, 1:5-9, 2:57-3:13. By having a backup processor fulfill the responsibilities of

the initially designated boot processor, the reliability of the overall multi-processor

30

system is improved. Goodrum, 2:15-31; Natu, 2:20-50. Further, allowing another

processor to take on the role of boot processor enables the system to diagnose errors

with the failed boot processor. Absent a backup boot processor, a reset of the system

is typically necessary. The reset clears the operational status of the system, including

operational status information associated with the failed boot processor, thereby

often preventing the system from being able to determine why a particular failure of

the boot processor occurred, unless a backup boot processor is used. Suffin, 1:1-5,

1:12-3:3, 16:9-17:11.

78. Use of a backup boot processor also enables an operational state of a

functional processor to be copied over to the failed boot processor for recovery.

Suffin, 1:1-5, 1:12-3:3, 16:9-17:11. Further, it was also known that the operation

state of a failed processor may be copied over to a backup processor to facilitate

recovery. Safford, [0006], [0018], [0021], Fig. 4.

VI. OVERVIEW OF THE ’958 PATENT

79. The ’958 Patent was filed on October 25, 2004. Ex. 1001, 1. The ’958

Patent discloses a system and method for detecting loss of lockstep (LOL) between

pairs of processors and LOL recovery. Ex. 1001, 3:51-59; FIGS. 1-6. The ’958

Patent describes a system that includes a lockstep processor pair, including a master

processor and a slave processor, each with error detect logic to detect errors present

in the respective processor. Id., 4:14-46, FIG. 1 (reproduced below). The system

31

also includes an error detect logic to detect a lockstep mismatch between the master

and slave processors. Id., 4:46-55. The specification describes detecting LOL as

including at least one of (1) detecting mismatch of the output of the paired processors

(“lockstep mismatch error”); and (2) detecting an error in either of the processors

that may eventually propagate to a lockstep mismatch error. Id., 2:26-59, 4:37-67.

The specification also refers to detecting an error in either of the processors by the

error detect logic before detecting a lockstep mismatch as a detection of a “precursor

to lockstep mismatch.” Id., 4:60-67.

32

Ex. 1001, FIG. 1 (annotated).

80. Once the system detects LOL, the system uses firmware to determine

whether lockstep is recoverable (or whether the detected LOL is a recoverable LOL);

33

if recoverable, the system’s firmware cooperates with the operating system (“OS”)

via standard OS methods to recover the lockstep. Id., 5:49-6:1, FIG. 1 (step 101). If

the OS is Advanced Configuration and Power Interface (ACPI) compatible, the

firmware uses ACPI methods to interact with the OS to idle the processors, recover

lockstep of the processors, and reintroduce the processors to the OS. Id., 6:9-7:21,

FIG. 1 (steps 103-107). In the event the loss of lockstep is in the boot processor (the

processor from which the system boots up), the system will transfer the role of boot

processor to a “hot spare” processor. Id., 9:15-29, 10:7-12, 10:26-31, FIG. 3. Loss

of lockstep is then recovered in the processor that was the boot processor, and that

processor becomes the new hot spare processor in the event the current boot

processor loses lockstep. Id.

81. Independent claims 1 and/or 23 of the ’958 Patent recite six primary

components, all of which were disclosed in the prior art and all of which would have

been obvious to a POSITA at the time:

1) Detecting loss of lockstep between a pair of lockstep processors;

2) With firmware, determining if lockstep is recoverable;

3) With firmware, determining if lockstep mismatch has occurred;

4) Triggering an operating system to idle the processors;

5) Attempting to recover lockstep; and

34

6) If recovered, triggering the operating system to recognize the processors

to be available.

VII. THE PROSECUTION HISTORY OF THE ’958 PATENT

82. As I note, I have reviewed the prosecution history of the ’958 Patent

(Ex. 1004).

VIII. OVERVIEW OF THE RELIED UPON PRIOR ART

 Overview of Bigbee (Ex. 1005)

83. Bigbee discloses a data processing system including hardware 102,

firmware 104, and an operating system 106. Bigbee, [0014]-[0025], FIG. 1

(reproduced below).

Bigbee, FIG. 1.

35

84. Hardware 102 includes two or more processor packages, with each

processor package including two processor cores (e.g., Itanium® family processors)

operating in lockstep FRC mode as a single logical processor from the point of view

of the operating system 106. Id., [0019], [0032]-[0033], FIG. 3 (reproduced below);

see above Section V.A. The two processor cores concurrently execute identical

instructions on identical data and each processor generates results. Id., [0002],

[0033]. FRC logic 308 monitors and detects inconsistencies in the results of the two

processor cores that indicate an FRC mismatch error, which may be the result of an

alpha particle impacting on one or both processor cores. Id.

Bigbee, FIG. 3 (annotated).

36

85. The FRC logic also detects an error within each of the processor cores

and generates a system machine check to cause the firmware and the operating

system to implement an error recovery routine that recovers the FRC operation

(“lockstep”) of the cores. Id., [0035]-[0037], FIGS. 4A-4B.

 Overview of Nguyen (Ex. 1006)

86. Nguyen discloses a processor including two cores 120A and 120B that

operate in an FRC mode (“lockstep”), an FRC checker 130 that compares results

from the two cores, and an error detector 140 that detects errors in the respective

cores. Nguyen, Abstract, [0006], [0020]-[0022], [0039], [0045], FIG. 1 (reproduced

below). Each execution core 120 includes a data pipeline 124 and an error pipeline

128 that feed into both FRC checker 130 and error detector 140. Id., [0021]. Error

pipeline 128 represents logic that operates on various types of data to detect errors

in the data and to provide appropriate signals, such as parity or ECC error flags, to

detector 140. Id. Nguyen further discloses that one of the two cores “may be

designated as the master core and the other as the slave core.” Id., [0047].

37

Nguyen, FIG. 1 (annotated).

87. Nguyen discloses determining if lockstep is recoverable or non-

recoverable from three types of errors that take the two cores out of lockstep, such

as a soft error or a mismatch error, and handling the detected error based on the

determination. Id., [0005], [0007]-[0008], [0022]-[0025], [0040]-[0041], [0056]-

[0058].

38

88. First, Nguyen discloses lockstep is not recoverable from an FRC error

detected by FRC checker 130. Id., [0007], [0022], [0040]. If FRC checker 130

signals an FRC error indicating a mismatch before error detector 140 detects an

underlying soft error, the FRC error is not recoverable and a reset module 160 resets

the system. Id., [0007], [0022]-[0023]. This error is a mismatch error where the

processor causing the underlying soft error cannot be determined, thereby requiring

the whole system to be reset.

89. Second, Nguyen discloses lockstep is recoverable from a soft error

detected before detecting a mismatch error. Id., [0005], [0022]-[0024]. If error

detector 140 detects a soft error in either processor core (e.g., resulting from an alpha

particle collision) before FRC checker 130 detects an FRC error indicating

mismatch, error detector 140 disables FRC checker 130 and a recovery module 150

implements a recovery routine to restore the cores and the FRC mode (“lockstep”).

Id.

90. Third, Nguyen discloses lockstep is recoverable from a mismatch error

detected before an FRC error is triggered. Id., [0056]-[0058]. As shown below,

Nguyen’s FRC checker includes a compare unit 734 and a timer unit 738. Id.

Compare unit 734 compares the data from both cores and sets a status flag to indicate

if the comparison yields a match. Id. If the data does not match, compare unit 734

sets the status flag to indicate the mismatch and triggers timer unit 738 to begin a

39

countdown interval. Id. If error detector 140 receives an error flag before the

timeout interval expires, it disables FRC checker 730 and triggers recovery module

150. Id. But if the timeout interval does expire, the FRC checker signals a non-

recoverable FRC error and triggers reset module 160 to reset the system. Id., [0022],

[0056]-[0058]. Nguyen’s process for determining if lockstep is recoverable from an

error in a lockstep processor pair was known to a POSITA and disclosed in the prior

art. See e.g., Tu (Ex. 1017), [0041]-[0043], FIG. 5.

Nguyen, FIG. 7.

40

 Bigbee and Nguyen are Analogous Art to the ’958 Patent

91. Like the ’958 Patent, both Bigbee and Nguyen relate to fault tolerant

systems that operate despite loss of lockstep in the system. A POSITA would have

understood that, like the ’958 Patent, Bigbee’s processor package’s two cores or

Nguyen’s processor’s two cores, both operating in FRC mode or lockstep, are a

lockstep pair of processors.3 Safford-181, 1:67-2:3 (“Because lockstepped

processors execute redundant instruction streams, lockstepped systems are said to

perform a ‘functional redundancy check.’”).

92. A POSITA would also have understood that Bigbee’s detecting errors

within the individual processor cores by its FRC logic and Nguyen’s detecting FRC

errors, soft errors, or mismatch errors by its error detector and FRC checker each

would constitute detecting LOL as claimed. See Section X.A, infra.

93. A POSITA would have understood that, like the ’958 Patent, both

Bigbee and Nguyen disclose that FRC mode or lockstep of the processor cores is

3 A POSITA would have understood that an FRC processor or a lockstep processor

refers to a processor including two or more processor cores operating in FRC mode

or in lockstep.

41

recoverable from a detected recoverable error by implementing a recovery routine.

Bigbee, [0037] (teaching re-enabling FRC operation of the processor cores);

Nguyen, [0046] (teaching that FRC mode is restored). And both Bigbee and Nguyen

disclose using firmware, such as a processor abstraction level (PAL), a system

abstraction level (SAL), or a basic input/output system (BIOS), to implement a

recovery routine to recover lockstep of the processor cores. Bigbee, [0015], [0018]-

[0023], [0035]-[0037]; Nguyen, [0045]-[0046]. Accordingly, Bigbee and Nguyen

are analogous to the ’958 Patent.

 Overview of Suffin (Ex. 1020)

94. Suffin, like the Bigbee and Nguyen references, discloses a computer

system having multiple redundant CPUs and associated controllers, operating in

lockstep. Suffin, 6:1-7:14, FIG. 2. When a failure occurs in a processor, such as can

occur from a loss of lockstep (Id., 7:12-16), Suffin describes using an ordered list of

processors (a “boot list”) to determine which processor to use as a boot processor.

Id., 2:5-4:5, 11:3-9, 11:23-12:18, 13:1-7, 13:16-14:10. If booting up using a first

processor is unsuccessful, then the system selects the next processor on the list to be

the boot processor. Id. When recovering from a system failure, if a processor is

suspended or not operating, then that processor is skipped on the boot list, so that

the next processor on the list is used for rebooting. Id., 16:20-17:11, 13:1-7. Further,

the state of the processor that failed may be copied for analysis. Id.

42

95. The swapping of the role of boot processor from one processor to

another is shown, for instance, in Figure 4A, below.

Suffin, FIG. 4A.

96. The system determines the boot list in step 450, then determines which

processors on the boot list are available (skipping those that are not) in step 452, and

then will use the first available processor on the list to boot in step 458 – and if that

is not successful, then the system selects another processor as the boot processor in

step 462. Id., 11:23-12:18, 13:1-14:6, 14:15-15:3, 16:9-17:11, claims 21, 30, FIG.

43

4A. Suffin further teaches that the system can iterate the boot list, to avoid repetitive

failures that could be caused by trying to boot from a failed processors, which allows

another (e.g., backup processor) to remain the boot processor and the original boot

processor to become a backup processor. Id. 16:20-17:11.

 Overview of Goodrum (Ex. 1021)

97. Goodrum, like Suffin, discloses a multiple processor system and

methods for switching the role of boot processor to another processor in the event of

a failure of the boot processor. For example, “a hot spare boot circuit …

automatically reassigns the power up responsibilities to an operational second

processor should the primary processor fail.” Goodrum, 3:10-13, 8:60-64, 9:39-50,

18:34-49, claims 1, 4, 7, 10, FIG. 2. Goodrum generally uses a timer to determine

that the boot processor has failed and thus needs to reassign the role of boot processor

to another of the processors. Id.

 Overview of Safford (Ex. 1007)

98. Safford, like Bigbee and Suffin, relates to a multi-processor system

with processors operating in lockstep. Safford, Abstract, [0001], [0006]-[0007],

[0015]-[0016], [0018]-[0021], claim 1, FIGS. 2-4. In order to “enhance recovery

from loss of lock step,” Safford copies the state of one or more of the processors in

a processor pair for which a loss of lockstep has been detected to a spare processing

unit, which becomes an active processor unit in the computer system. Id., [0006]-

44

[0007], [0021]. This process is shown, for instance, in Figure 4, step 220 (Safford,

[0027]):

Safford, FIG. 4.

99. After the processor with the loss of lockstep is idled and lockstep is

recovered, then that processor (whose state was copied to the standby processor)

becomes the new hot standby processor, as seen in step 230. Id.

45

 Suffin, Goodrum, and Safford are Analogous Art to the ’958
Patent

100. Like the ’958 Patent, Suffin, Goodrum, and Safford relate to fault

tolerant multi-processor systems that operate despite the occurrence of an error in a

processor. Suffin explains that it “is directed to methods and apparatus for robust

operation of a fault-tolerant computer system with redundant components.” Suffin,

2:5-6. Like the ’958 Patent, Suffin provides a spare or backup processor for a

system boot processor when it fails. Id., 2:6-9 (“It provides methods and apparatus

for booting a computer system with redundant hardware and/or software components

in a deterministic fashion.”), 2:18-21. Goodrum similarly describes providing a

spare or backup processor to an initially designated system boot processor that

experiences an error. Goodrum, 1:17-20 (“The invention relates to multiprocessor

computer systems, and more particularly, to a circuit for reassigning the power-on

processor in a dual processor system when a processor fails.”), 3:7-10 (“It is

therefore an object of the present invention to identify an operational microprocessor

in a multiprocessor system so that the system can be properly powered up when the

primary microprocessor is nonoperational.”). Safford, like the ’958 Patent, describes

providing a hot standby processor to speed recovery from a loss of lockstep

experienced by a processor pair. Safford, [0001], [0006]-[0007], [0018], [0020].

Accordingly, Suffin, Goodrum, and Safford are analogous to the ’958 Patent.

46

IX. THE RELEVANT ART AND LEVEL OF ORDINARY SKILL IN THE
RELEVANT ART

101. I understand that my assessment of the claims of the ’958 Patent must

be undertaken from the perspective of what would have been known or understood

by a person having ordinary skill in the art, reading the ’958 Patent on its relevant

priority date and in light of the specification and file history of that patent. In this

declaration I refer to such a hypothetical person as a “POSITA”. In determining the

characteristics of a POSITA at the time of the claimed invention (which I understand

to be October 25, 2004), I considered several things, including (a) the types of

problems encountered by those working in the field and prior art solutions thereto;

(b) the sophistication of the technology in question, and the rapidity with which

innovations occur in the field; (c) the educational level of active workers in the field;

and (d) the educational level of the inventor.

102. In my opinion, the relevant field of art for the ’958 Patent is the field of

fault-tolerant computing systems as of October 25, 2004, the filing date of the ’958

Patent. Ex. 1001, 2:13-15, 3:51-59. With over 35 years of experience in electrical

and computer engineering, I am well acquainted with the level of ordinary skill

required to implement the subject matter of the ’958 Patent.

103. In my opinion, at the time of the alleged invention of the ’958 Patent, a

POSITA would have at least a bachelor’s degree in Computer Science, Computer

Engineering, or equivalent, and at least two years of prior work experience with

47

computer architecture design, including fault tolerant computer architecture design.

Additional education could substitute for professional experience and vice versa.

104. My analysis and opinions regarding the claims of the ’958 Patent have

been based on the perspective of a POSITA as defined above as of October 25, 2004

(the filing date of the ’958 Patent). In this Declaration, wherever I refer to a

POSITA, I am referring to a POSITA as of October 25, 2004, as I have defined such

a hypothetical person in this section.

X. CLAIM CONSTRUCTION

105. As discussed in more detail above, I understand that, in an inter partes

review proceeding, the claim terms under consideration are to be given their ordinary

and customary meaning, as would be understood by a POSITA at the time of the

invention, consistent with the specification and the prosecution history.

 “Detection of Loss of Lockstep” and “Detecting Loss of Lockstep”

106. It is my opinion that the terms “detection of loss of lockstep” and

“detecting loss of lockstep” should be construed to include both mismatch errors and

errors that may eventually result in a mismatch error constituting a “precursor to

lockstep mismatch.” Ex. 1001, 4:56-67. Therefore, as used in the claims, the terms

“detection of loss of lockstep” and “detecting loss of lockstep” should be construed

as including at least one of: (1) detecting a lockstep mismatch error; and (2) detecting

an error that may eventually cause a lockstep mismatch error.

48

107. The specification of the ’958 Patent describes detecting these two types

of errors as examples of detection of LOL. Ex. 1001, 2:26-59, 4:37-67. The

specification states that “[l]ockstep mismatch is one way of detecting a LOL”—

(mismatch errors, definition 1). Ex. 1001, 4:56-57. The specification also states that

“[b]ecause the detection of LOL … may occur before an actual lockstep mismatch

occurs, the detection of LOL … may be referred to as a detection of a ‘precursor to

lockstep mismatch’”—(errors that may eventually cause a lockstep mismatch error,

definition 2). Ex. 1001, 4:60-64. Both lockstep mismatch and precursors to lockstep

mismatch are detection of loss of lockstep in the specification of the ’958 Patent

because, as the specification explains, 1) mismatch errors indicate that lockstep is

already lost and 2) precursors to lockstep mismatch indicate that the “error may

eventually propagate to a lockstep mismatch error.” Ex. 1001, 4:56-67.

108. These proposed constructions are also consistent with the claims. For

example, dependent claims 4-8 reflect that detection of LOL should cover these two

examples. Ex. 1001, 15:7-19, 15:30-49 (claims 1, 4-8).

109. Claim 4, for example, further defines “detecting loss of lockstep” as

comprising “detecting corrupt data … that would lead to a lockstep mismatch.” Ex.

1001, 15:30-34. Similarly, claim 5 defines “detecting loss of lockstep” as comprising

“detecting a precursor to lockstep mismatch.” Ex. 1001, 15:35-37. Both claims 4

and 5 expressly require that a precursor to lockstep mismatch (errors that may

49

eventually cause a lockstep mismatch error—definition 2) is included in the

definition of “detecting loss of lockstep.”

110. Claim 6 further defines “detecting loss of lockstep” as “detecting

lockstep mismatch between the lockstep pair of processors,” expressly requiring that

lockstep mismatch (mismatch errors—definition 1) are included. Ex. 1001, 15:38-

41.

111. Accordingly, it is my opinion that “detection of loss of lockstep” and

“detecting loss of lockstep” should be construed as including at least one of (1)

detecting a lockstep mismatch error; and (2) detecting an error that may eventually

cause a lockstep mismatch error.

 “Lockstep Is Recoverable” and “Loss of Lockstep Is Recoverable”

112. It is my opinion that the terms “lockstep is recoverable” and “loss of

lockstep is recoverable” should be construed as “lockstep is recoverable from the

detected loss of lockstep” because the specification only describes lockstep recovery

from the detected LOL—“whether the detected LOL is a recoverable LOL.” Ex.

1001, 5:49-62.

 All Other Claim Terms

113. For all other claim terms, I have considered and applied their plain and

ordinary meaning as they would have been understood by one skilled in the art at

the time of the alleged invention and consistent with the specification.

50

XI. SUMMARY OF ANALYSIS

114. Based on my study of the references listed in the table below, as well

as on my education and years of experience in the relevant art, it is my opinion that

those references in various combinations render obvious all of the elements of the

claims shown therein. In the table, I have associated each of the ’958 Patent claims

with a specific combination of references, following the legal principles that I

explained in Section IV above, and using the Phillips standard discussed above in

Section IV.D. Furthermore, in accordance with the legal principles that I explained

in Section IV above, there is an appropriate basis to combine the references, as I

explain below. I understand that the Petitioners have assigned labels (e.g., [1A],

[1B], etc.) to different limitations of the claims to facilitate analysis of the claims.

Accordingly, in my analysis below, I have referred to the claim limitations using

those same labels, which are shown in the Claim Listing Appendix attached to this

declaration as Appendix B.

51

Ground Prior Art Basis Claims
Challenged

A Obvious under 35 U.S.C. § 103 over
Bigbee, Nguyen, and Goodrum § 103(a) 9-12

B Obvious under 35 U.S.C. § 103 over
Bigbee, Nguyen, and Suffin § 103(a) 9-12

C Obvious under 35 U.S.C. § 103 over
Bigbee, Nguyen, Safford, and Suffin § 103(a) 23-25, 12

D Obvious under 35 U.S.C. § 103 over
Bigbee, Nguyen, Safford, and Goodrum § 103(a) 23-25, 12

XII. GROUND A: CLAIMS 9-12 ARE RENDERED OBVIOUS BY
BIGBEE-NGUYEN IN VIEW OF GOODRUM

 Overview of the Bigbee-Nguyen Combination that Teaches Claim
1

115. Claims 9-12 all depend from claim 1 (either directly or indirectly

through other claims). As I explain below, it is my opinion that the elements of

claim 1 are taught by the combination of Bigbee and Nguyen. It is my further

opinion that the additional elements of claims 9-12 are taught by Goodrum and/or

Bigbee, rendering these claims obvious in light of Bigbee-Nguyen-Goodrum

(among other combinations I discuss further below). Below, I provide an overview

of the Bigbee-Nguyen combination that teaches the elements of claim 1.

116. It is my opinion that Bigbee discloses most of the limitations of claim

1. Bigbee discloses a pair of lockstep processors, using firmware and an operating

system to detect loss of lockstep, and recovering from loss of lockstep using

52

firmware. Bigbee, therefore, discloses all elements of claim 1 except for those

elements that require determining if the lockstep of a lockstep processor pair is

recoverable.

117. Nguyen discloses a high-reliability processor that includes a lockstep

processor pair along with a method of determining if the lockstep of the processor

pair is recoverable or non-recoverable, before using firmware to recover lockstep if

the error is recoverable. It is my opinion that Bigbee’s firmware performing

Nguyen’s determining if the lockstep is recoverable or non-recoverable renders

claim 1 obvious. In addition, a POSITA would have known that Nguyen’s

determination can be performed with firmware. See above Section V.D.

118. Applying the combination of Bigbee and Nguyen to the six core

components of independent claim 1, each limitation is expressly disclosed in the

combination:

Core Claim Requirement Prior Art Reference

1) Detecting loss of lockstep between a

pair of lockstep processors

Bigbee

2) With firmware, determining if lockstep

is recoverable

Bigbee (with firmware)

Nguyen (determining if

lockstep is recoverable)

3) With firmware, determining if lockstep

mismatch has occurred

Bigbee

53

4) Triggering an operating system to idle

the processors

Bigbee

5) Attempting to recover lockstep Bigbee

6) If recovered, trigger the operating

system to recognize the processors to be

available

Bigbee

119. The combined system, when implementing Nguyen’s express

disclosure of determining whether loss of lockstep is recoverable, in Bigbee’s

firmware (e.g., including FRC Logic) responsive to Bigbee’s detection of loss of

lockstep would be as follows:

Bigbee, FIG. 3 (annotated).

54

Bigbee, FIG. 4A (annotated, modified).

 A POSITA Would Have Found it Obvious to Combine Bigbee and
Nguyen

120. By the time of the ’958 Patent, a known problem in the art was

addressing errors causing loss of lockstep in a lockstep pair of processers that were

both recoverable and non-recoverable. It is my opinion that a POSITA would have

understood that a complete and robust system would be able to handle both

recoverable (e.g., soft errors) and non-recoverable errors (e.g., mismatch errors).

Bigbee only addresses handling recoverable errors. But diagnosing and managing

non-recoverable errors was a known solution to the problem at the time. Nguyen

discloses one known solution to addressing both recoverable and non-recoverable

errors, explaining the benefits of being able to determine whether an error is

55

recoverable or non-recoverable, and addressing the error accordingly. Bigbee’s

recoverable error specific system would have been understood by a POSITA to be

ready for the improvement of Nguyen’s determination and non-recoverable error

responsive system to provide the known benefits of reducing impact of the detected

errors, and increasing the system’s fault tolerance and availability by reducing

system downtime.

121. Bigbee discloses detecting errors within a lockstep pair of processors

using FRC logic including detecting both recoverable (e.g., soft errors) and non-

recoverable errors (e.g., mismatch errors when the processor causing the error cannot

be determined). Bigbee, [0033]. But Bigbee only discloses a responsive routine for

recovering from recoverable errors. See above Section VIII.A. Bigbee does not

disclose handling non-recoverable errors. Because Bigbee only discloses recovering

from recoverable lockstep errors, Bigbee does not disclose performing a threshold

determination of whether detected errors are recoverable or non-recoverable.

Bigbee, [0019], [0035], [0037] (error recovery routine re-enables FRC operation of

the processor cores).

122. A POSITA would have recognized that Bigbee’s disclosure omits the

portion of the process after a non-recoverable error is detected (e.g., a mismatch

error when the processor causing the error cannot be determined) and would have

56

been motivated to add a process for handling non- recoverable errors. Nguyen is one

such reference disclosing such a process.

123. Nguyen discloses detecting errors within a lockstep pair of processors

and determining if lockstep is recoverable from the detected errors using an error

detector and FRC checker before taking an appropriate error handling routine.

Nguyen, [0056]-[0057].

124. A POSITA would have found it obvious to incorporate Nguyen’s

determination of whether the errors detected by Bigbee’s FRC logic were

recoverable or non-recoverable to properly handle the detected errors, reduce the

impact of the detected errors, and increase system fault tolerance and availability by

reducing system downtime. This was expressly recognized by the prior art. Bigbee,

[0002] (it is desirable to reduce the amount of “downtime” resulting from component

failures, faults, or internal errors of system with FRC processors); Nguyen, [0008]-

[0009] (handling otherwise recoverable errors as non-recoverable errors, such by

resetting the system, reduces system availability and efficiency); Kondo, [0002]

(recovering FRC processors from recoverable errors reduces the impact of the

recoverable error).

125. Combining Bigbee and Nguyen would result in a Bigbee-Nguyen

system that would have been capable of handling both recoverable and non-

recoverable errors efficiently. Taking step 404 of Bigbee’s Figure 2, and adding

57

Nguyen’s step of determining whether lockstep is recoverable after Bigbee detects

loss of lockstep, would address both recoverable and non-recoverable errors, as the

following figure shows.

Bigbee, FIG. 4A (annotated, modified).

126. As I noted, it is my opinion that a POSITA would have been motivated

to build a system that would handle both recoverable and non-recoverable errors.

Because Bigbee does not address handling non-recoverable errors, a POSITA would

have been motivated to modify Bigbee’s firmware FRC logic to perform Nguyen’s

disclosed determination of whether lockstep is recoverable from the detected errors

to create a system that can handle both types of lockstep errors.

1. Motivation - A POSITA would have been motivated to add
Nguyen’s determining whether lockstep is recoverable from
the detected error.

58

127. It is my opinion that a POSITA would have been motivated to

implement Nguyen’s determination of whether the detected error causing the loss of

lockstep is recoverable by Bigbee’s firmware FRC logic in order to appropriately

handle the detected error. Because different responsive actions should be taken to

handle each of non-recoverable and recoverable errors, determining whether the

error is recoverable or non-recoverable is important to reduce the impact of the errors

on the system. See above Section V.C; Marisetty, 4:43-5:63 (the processor of a

multiprocessor system divides errors into four categories ranging from least severe

to most severe), 7:24-27 (after detection of an error, the processor determines the

severity of the error and takes action depending on the severity); Kondo, [0100]

(determining whether an error is a) fatal to the processor or b) a correctable error

that will produce a divergence but will not compromise data integrity); Schultz,

[0027] (processor errors are classified into five different categories of increasing

severity, including a firmware corrected category), [0154] (firmware SAL reports

the appropriate error severity as being fatal or recoverable), [0021] (errors detected

are classified according to the error type and severity).

128. As I discussed in Section V.C, non-recoverable errors cause a risk of

data corruption or propagating an incorrect result if the system is not immediately

rebooted or reset to return to a safe state. As I also explained in Section V.C,

recoverable errors can be recovered using known recovery routines that reduce the

59

impact on the system. Therefore, it is my opinion that a POSITA would have

understood that it is critical to handle recoverable errors differently from non-

recoverable errors.

129. Handling recoverable errors differently from non-recoverable errors

prevents loss of system availability. Nguyen expressly teaches that treating a

recoverable error as a non-recoverable error would reduce system availability, i.e.,

increase system downtime. Nguyen, [0007]-[0008], [0022]-[0023], [0040].

Recovery of lockstep from a recoverable error can be implemented with lower

latency compared to the reset or repair/replacement processes for handling a non-

recoverable error. Id.

130. Likewise, handling non-recoverable errors differently from recoverable

errors prevents reduction in system reliability. For example, handling non-

recoverable errors as recoverable creates risks of having corrupt data or incorrect

results propagating through the system. Kondo, [0101] (the detection and signaling

of an error may be taken as an indicator of imminent divergence; the longer time that

passes from error or divergence detection without remedial action, the more serious

the impact of the error or divergence will be), [0103] (a nonrecoverable error

involves the risk of data corruption); Marisetty, 2:38-50 (other processors of a

multiprocessor system may continue execution without knowledge of the error,

propagating the error and causing further damage in the system), 2:51-52

60

(Multiprocessor systems may have to reboot or shut down for errors because of a

lack of proper error handling); Safford, [0003] (a data cache error in one processor,

if not promptly corrected, may cause the computer system to crash).

131. A POSITA would have understood that reducing system availability or

reliability by handling errors incorrectly—either restarting the entire system when

an error can be recovered or attempting to recover a non-recoverable error and

causing error propagation—would have been undesirable for fault-tolerant

multiprocessor systems, particularly for systems that need to have high reliability

and availability, such as server systems (Bigbee, [0030]), resources in a network

(Kondo, [0191]), electronic fund transfer systems or airline traffic control systems

(Klein, 1:19-24).

132. Accordingly, it is my opinion that a POSITA would have understood

that it would be desirable for fault tolerant systems to distinguish between

recoverable and non-recoverable errors by first determining whether an error is

recoverable and then responding accordingly based on the determination.

133. Based on a POSITA’s knowledge of handling recoverable and non-

recoverable errors detected in FRC processors, they would have been motivated to

use Bigbee’s FRC logic to determine whether lockstep is recoverable and take the

appropriate action responsive to the recoverability of the error, thereby reducing the

impact of the error and improving system reliability and availability.

61

2. Reasonable Expectation of Success - A POSITA would have
understood how to use Bigbee’s disclosed firmware to
perform Nguyen’s determining whether a detected error is
recoverable or non-recoverable.

134. It is my opinion that a POSITA would have understood how to

implement Nguyen’s determining whether a detected error is recoverable or non-

recoverable using Bigbee’s firmware FRC logic with a reasonable expectation of

success. Bigbee, [0034]. Implementing logical steps in firmware was known in the

art. Bigbee, [0034]; Safford-181, 15:60-64 (lockstep logic may be implemented in

firmware).

135. It is my opinion that a POSITA would further have expected success in

implementing Nguyen’s determining step in Bigbee’s firmware because Bigbee

discloses that its system is compliant with well-known industry standards. For

example, Bigbee discloses that its system is ACPI-compliant and its firmware

includes ACPI BIOS code and a processor abstraction level (PAL) that provides an

abstraction of implementation-specific processor features. Bigbee, [0016]-[0018].

136. A POSITA would have known how to use ACPI Source Language

(ASL) to program Bigbee’s firmware code to implement Nguyen’s determining step

using ordinary computer programming skills. Indeed, using such firmware, such as

the PAL or SAL layer of ACPI BIOS, for implementing error diagnosis and recovery

routines was well known and only involves ordinary skill and common knowledge.

Schultz, [0027] (processor errors are classified into five different categories of

62

increasing severity, including a firmware corrected category), [0154] (firmware SAL

reports the appropriate error severity as being fatal or recoverable); Nguyen, [0045]

(using PAL or SAL layers of BIOS for implementing error recovery mechanisms in

processors); Marisetty, FIGS. 1-2, 5:48-8:64 (teaching using firmware including

PAL and SAL to execute error handling routines); Schultz, FIGS. 1-3, [0017]-

[0018] (teaching using firmware including PAL and SAL for correcting an error that

is not correctable directly by hardware).

137. A POSITA would have understood that firmware is one of three

possible solutions—firmware, hardware, or combination—all of which would have

been obvious to try, and any of which would be a suitable alternative for the others.

A POSITA would have been familiar with logic design and would have understood

the concepts of logic delays, timing, and the possibility of race conditions4 as well

the ability to handle such conditions using each of the alternatives.

4 A POSITA would understand that a race condition may occur in a system, e.g.,

when a logic gate combines signals that travel different paths from the same

source, thereby causing the inputs to the logic gate to change at different times in

response to a change in the same source signal.

63

138. A POSITA would have understood the benefits of implementing

Nguyen’s determination in firmware. As a POSITA would have understood,

firmware is flexible. Firmware can be modified after production, updated, and

supported relatively quickly and inexpensively. Hardware, on the other hand, is

inflexible. Once manufactured, hardware cannot be easily modified, and any

modification or revision is often expensive because it requires remanufacture of new

components. Therefore, a POSITA would have understood that a firmware

implementation of Nguyen’s determining step would have been desirable.

 Independent Claim 1

1. Limitation [1A]: “A method comprising: detecting loss of
lockstep for a lockstep pair of processors;”

139. It is my opinion that Bigbee teaches element [1A].

140. Bigbee discloses that the FRC logic detects loss of lockstep between

the lockstep pair of processors and further discloses implementing FRC logic by

executable firmware. Bigbee, [0019], [0034].

141. As shown below, Bigbee discloses a processor package including two

processor cores, each with a private cache, which are coupled to a shared cache.

Bigbee, FIG. 3, [0032]. The two processor cores function as a single logical

processor and operate in an FRC mode (“lockstep pair of processors”), executing

identical instructions on identical data to generate results for storage in associated

private cache and/or the shared cache. Bigbee, [0033]. Bigbee discloses “detecting

64

loss of lockstep for a lockstep pair of processors” because the FRC logic detects both

inconsistencies in the generated results that indicate an FRC mismatch error and

errors within the processor cores of a processor package that cause a break in the

lockstep between the cores, disabling FRC mode operation. Bigbee, [0019], [0033];

see above Section VIII.A. Bigbee further discloses implementing the FRC logic as

executable firmware. Bigbee, [0034]; see also Safford-181, 15:60-64.

Bigbee, FIG. 3.

2. Limitation [1B]: “using firmware to trigger an operating
system to idle the lockstep pair of processors, recover
lockstep for the lockstep pair of processors, and trigger the
operating system to recognize the lockstep pair of
processors having recovered lockstep”

142. Bigbee in view of Nguyen teaches this claim element.

65

143. As I explained above, a POSITA would have incorporated Nguyen’s

determining if the lockstep is recoverable into Bigbee to take an appropriate action

responsive to the recoverability of the error detected in the lockstep processor pair.

See above Section XII.B.1. Bigbee in view of Nguyen further teaches, responsive to

determining if the lockstep is recoverable from the detected error, that the firmware

triggers the operating system to idle the processors and to recover the lockstep

between the pair of processors.

144. First, Bigbee discloses “using firmware to trigger an operating system

to idle the lockstep pair of processors.” As shown in Figure 4A below, Bigbee

discloses that firmware (e.g., SAL program code) generates a system control

interrupt (SCI) to the operating system. Bigbee, [0035], FIG. 4A (block 406). In

response to the SCI, the operating system queries firmware (ACPI BIOS) to

determine the source of the SCI; the firmware responds to the query by notifying the

operating system of a request for processor hot removal (e.g., by an ACPI Notify

66

command).5 Bigbee, [0036], FIG. 4A (blocks 408-410) (“trigger an operating

system”). The operating system then modifies its internal data structures to indicate

that the processor is offline and requests firmware ejection of the processor, e.g., by

executing an _EJX control method (“to idle the lockstep pair of processors”). Bigbee,

[0036]-[0037], FIG. 4A (block 412); Ex. 1022, 162-163.

5 The term “processor” used in Bigbee’s error recovering routine refers to the

single logical processor that includes the pair of processor cores operating in

lockstep. See Bigbee, [0032], [0035]-[0038].

67

Bigbee, FIG. 4A.

145. Second, Bigbee discloses “using firmware to … recover lockstep for

the lockstep pair of processors.” In response to the operating system’s ejection

request, Bigbee’s firmware virtually ejects the processor from the system, resets the

68

processor, re-enables FRC operation of the processor cores (“recover lockstep for

the lockstep pair of processor”), and generates an SCI to the operating system.

Bigbee, [0037], FIG. 4A (block 414).

146. The ’958 Patent similarly discloses idling the processors, the firmware

uses an ACPI method to “eject” the processors, thereby triggering the operating

system to idle the master processor, resets the processor pair, and recovers lockstep.

Ex. 1001, 6:9-17, 6:40-42, 6:55-57.

147. Further, Bigbee discloses that the firmware generates an SCI to the

operating system after recovering lockstep between the pair of processors. Bigbee,

[0037], FIG. 4A (block 414). The operating system queries firmware (e.g., ACPI

BIOS) to determine the source of the SCI, and the firmware responds to the query

by notifying the operating system of a request for processor hot insertion (“trigger

the operating system”). Bigbee, [0037], FIG. 4B (block 416-418). The firmware also

provides the operating system with status and resource data of the processor to be

inserted via one or more ACPI methods (e.g., _STA, _MAT, and _CRS). Bigbee,

[0037], FIG. 4B (block 422). The operating system then requests insertion of the

processor by calling an ACPI method (e.g., _PS0), which the firmware virtually

executes to insert the processor into the system. Bigbee, [0037], FIG. 4B (block 424-

426). Once the processor has been inserted, the operating system modifies its internal

data structures to indicate that the processor is online and available (“recognize the

69

lockstep pair of processors having recovered lockstep”). Bigbee, [0037], FIG. 4B

(e.g., block 428).

Bigbee, FIG. 4B.

70

148. The ’958 Patent similarly discloses that the firmware provides the

operating system with status of the processors using an ACPI method (e.g., _STA),

and uses an ACPI method to trigger the operating system to recognize the processors

as available and as having recovered lockstep. Ex. 1001, 6:55-7:12.

3. Limitation [1C]: “responsive to said detecting loss of
lockstep, using said firmware to determine if lockstep is
recoverable for the lockstep pair of processors, wherein said
using said firmware to determine if lockstep is recoverable
further comprises determining if a lockstep mismatch has
occurred between the lockstep pair of processors.”

149. Bigbee-Nguyen renders obvious element [1C].

150. As I explained above for element [1A], Bigbee teaches detecting a loss

of lockstep using firmware. Section XII.C.1.

151. Nguyen discloses determining if lockstep is recoverable in response to

detection of lockstep errors. See above Section VIII.B. Nguyen also discloses that

responsive to the detection of an error in the processor cores (“responsive to said

detecting loss of lockstep”), the FRC checker and error detector operate together to

determine whether lockstep is recoverable from the detected error. Nguyen, [0022]-

[0025], [0039]-[0041], [0056]-[0057].

152. Nguyen’s FRC checker and error detector determine whether lockstep

is recoverable from the detected error in two instances and non-recoverable from the

detected error in one instance. First, Nguyen’s FRC checker and error detector

determine that lockstep is recoverable from a soft error detected by the error detector

71

before detecting an FRC error. Nguyen, [0022], [0046]. Second, Nguyen’s FRC

checker and error detector determine lockstep is recoverable from a mismatch error

if an error in the processors is detected within a timeout interval from the detection

of the mismatch error. Nguyen, [0023], [0030]. Third, Nguyen’s FRC checker and

error detector determine an FRC error is not recoverable. Nguyen, [0007], [0023],

[0037]; see above Section VIII.B.

153. As explained in Section XII.B.1, a POSITA would have been motivated

to incorporate Nguyen’s determination of whether lockstep is recoverable into

Bigbee’s FRC logic to reduce the impact of errors and increase system fault tolerance

and availability. A POSITA would have had an expectation of success in

implementing Nguyen’s determining step in Bigbee’s firmware FRC logic for the

reasons explained in Section XII.B.2.

154. Accordingly, Bigbee in view of Nguyen discloses “using said firmware

to determine if lockstep is recoverable.” Bigbee-Nguyen further discloses “using

said firmware . . . [for] determining if a lockstep mismatch has occurred between the

pair of lockstep processors.”

155. Nguyen discloses “determining if a lockstep mismatch has occurred

between the lockstep pair of processors” because Nguyen determines if the lockstep

is recoverable or non-recoverable after detecting a mismatch error between the pair

of lockstep processors. For example, with Nguyen’s determining if lockstep is

72

recoverable or non-recoverable: (1) Nguyen’s FRC checker’s compare unit

compares the data from both cores, and it sets a status flag to indicate whether the

data matches or mismatches (“determining if a lockstep mismatch has occurred”);

and (2) Nguyen’s error detector detects an error in the processors before (lockstep

recoverable) or after (lockstep non-recoverable) the timeout interval of timer unit

expires (“determine if lockstep is recoverable”). Nguyen, [0056]- [0057]; see above

Section VIII.B.

156. As explained in Section XII.B.1, a POSITA would have been motivated

to incorporate Nguyen’s determination of whether lockstep is recoverable, and

therefore Nguyen’s additional determination if a lockstep mismatch has occurred, in

Bigbee’s firmware FRC logic to reduce impact of errors and increase system fault

tolerance and availability. A POSITA would have had an expectation of success in

implementing Nguyen’s determining step in Bigbee’s firmware FRC logic for the

reasons explained in Section XII.B.2.

 Overview of The Bigbee-Nguyen-Goodrum Combination

157. As I noted above (Section XII.A), claims 9-12 all depend from claim 1

(either directly or indirectly through other claims). As I explained above, the

elements of claim 1 are taught by Bigbee-Nguyen. Section XII.C. As I explain

below, it is my opinion that the additional elements of claims 9-12 are taught by

73

Goodrum and/or Bigbee, rendering these claims obvious in light of Bigbee-Nguyen-

Goodrum. Sections XII.E-H, infra.

158. Goodrum recognizes that a fault-tolerant scheme is desirable to ensure

that a multiprocessor system continues to function despite the occurrence of a failure

in a processor. Goodrum, 2:15-31. Goodrum further recognizes the criticality of a

boot processor in a multiprocessor system. Goodrum, 1:17-20, 2:15-31. As

explained by Goodrum, typically one processor in a multiprocessor system is

assigned the role of boot processor, which is responsible for initializing the system

and turning on the remaining processors. Goodrum, 2:15-31, 9:39-50. Goodrum

explains that if the boot processor fails during startup, then it may not turn on the

other processors, leaving the system incapacitated. Goodrum, 2:15-31.

159. To provide a fault-tolerant system, Goodrum describes a hot spare boot

circuit that detects a failure of a designated boot processor and reassigns the role of

boot processor to a backup processor. Goodrum, Abstract, 1:17-20, 2:15-64, 3:7-

31, 5:66-6:3, 6:28-57, 8:11-16, 8:60-64, 9:39-63, 17:7-16, 18:34-49, FIG. 2.

Goodrum distinguishes the boot processor from the backup processor using, for

example, first and second identifier values, respectively. Goodrum, 8:14-16, 17:7-

19. In response to detecting a failure with the initial boot processor, the hot spare

circuit disables the boot processor, modifies the identifier value of the backup

processor to designate the backup processor as the new boot processor (by changing

74

the identifier value of the backup processor to the first identifier value that is used

to identify or designate the boot processor), and then causes the new boot processor

to complete system power on operations. Goodrum, 3:7-31, 9:39-63, 18:34-49.

160. A POSITA would have understood the benefits to the Bigbee-Nguyen

system of applying Goodrum’s techniques for providing a backup processor for a

failed boot processor. In particular, based on the teachings of Goodrum and Bigbee-

Nguyen, it is my opinion that a POSITA would have understood the desirability of

detecting an error associated with a boot processor and the ability to identify a

replacement backup processor both at startup and after startup (e.g., at any time

during the operation of the system). While Goodrum focuses on detecting boot

processor errors during startup, Bigbee-Nguyen describes continuously monitoring

its processors, and idling and restarting a processor for which a loss of lockstep is

detected. After startup, if a failed boot processor is not switched to a backup

processor, then on a subsequent system reset, the system would attempt to power up

using the failed boot processor which Goodrum explains would leave the system

incapacitated. Further, a POSITA would have understood that it would be beneficial

for Bigbee-Nguyen’s processor, for which loss of lockstep was detected and then

recovered, to be used as a backup or spare processor for the newly designated boot

processor, based on Goodrum’s teaching regarding the benefits of maintaining a

backup boot processor. The addition of Goodrum to the Bigbee-Nguyen system

75

does not remove the functionality of Bigbee-Nguyen that reads on claim 1, as

described above.

161. Accordingly, a POSITA would have been motivated to modify Bigbee-

Nguyen’s response to a detected loss of lockstep error to include determining if the

error was experienced by a boot processor (based on Goodrum’s teachings of using

identifiers to distinguish a boot processor from other processors), to reassign the role

of boot processor to a backup processor (as further taught by Goodrum), and once

lockstep is recovered (as is still taught by Bigbee and Nguyen), to use the original

boot processor as a backup processor for the newly identified boot processor (based

on the teachings of Goodrum to provide a spare processor). Further, the Bigbee-

Nguyen-Goodrum system would replace the faulty original boot processor with the

spare processor before attempting to recover from any error (e.g., loss of lockstep)

experienced by the faulty original boot processor. A POSITA would have

understood that doing so furthers the goal of reducing the amount of time the system

is without an identified, operational boot processor as taught by Goodrum

(Goodrum, 2:15-31) and because recovering from errors may require a significant

amount of time and recovery is not certain. Overall, by doing so, a POSITA would

have understood that the reliability and availability of the Bigbee-Nguyen system

would be improved, by ensuring that a reliable boot processor is always available to

power up the system in response to a system reset and/or to help recover lockstep or

76

reset the processor for which a loss of lockstep was detected. The addition of

Goodrum does not remove the functionality of Bigbee-Nguyen that reads on claim 1,

as described above in Section XII.A-C.

162. It is my opinion that a POSITA would have understood that Bigbee-

Nguyen’s firmware-based processor error handling routines, which already detect a

loss of lockstep in the processors, would be modified to determine if a processor

error (e.g., loss of lockstep) occurred in the processor identified as the boot processor

and, if so, to cause a backup processor take over the role of boot processor and to

use the initial boot processor as a backup to the new boot processor once the error

experienced by the original boot processor was addressed, based on Goodrum’s

teachings. A POSITA would have further understood that combining the teachings

of Bigbee-Nguyen and Goodrum in this regard is nothing more than applying a

known technique (Goodrum’s technique for providing a backup processor for a boot

processor and for identifying a boot processor and a backup processor, and

designating the backup processor as the new boot processor when the originally-

designated boot processor has an error detected) to a known device (Bigbee-

Nguyen’s system having multiple processors in lockstep that can suffer a loss of

lockstep fault involving a boot processor) ready for improvement (the ability to

designate a spare, non-faulty processor as the boot processor when there is a fault

with the boot processor and to use the recovered original boot processor as backup

77

processor to the new boot processor) to yield a predictable result (Bigbee-Nguyen-

Goodrum which, when a loss of lockstep is detected that involves a boot processor,

identifies another processor to act as the boot processor and uses the recovered

original boot processor as a spare for the new boot processor, yielding better system

reliability).

163. A POSITA would have expected success in combining Goodrum with

Bigbee-Nguyen because this combination merely involves routine programming

skills that a POSITA would have had. As I explained above (Section XII.B), a

POSITA would know how to use ASL to program Bigbee-Nguyen’s firmware. As

acknowledged by Bigbee, control methods for handling processor errors may be

written in ASL and ACPI provides the ability to store information regarding the

hardware devices (e.g., processors) present in a system. Bigbee, [0016] (“firmware

104 comprises an ACPI BIOS including ACPI machine language (AML) program

code describing what hardware devices are present within data processing system

100, as well as their configuration and interfaces, via ACPI control methods, objects,

registers, and tables.”), [0017] (“Control methods may be written in an ACPI source

language (ASL) and compiled into AML for inclusion with the system's BIOS. The

operating system 106 executes a control method by retrieving its associated AML

code from BIOS and then interpreting the retrieved code utilizing its ACPI device

driver/AML interpreter.”), [0018]-[0019], [0020]-[0021] (describing a disclosed

78

processor error handler as comprising a firmware routine), [0022]. A POSITA

would therefore use ASL and/or other available ACPI features to program Bigbee-

Nguyen’s firmware to, for example, (1) associate different identifiers to a boot

processor and a backup processor, (2) determine if a processor with an error detected

is designated as a boot processor based on the identifier of the processor, and (3) if

so, to cause a backup processor to take over the role of boot processor and to use the

original boot processor as a spare processor for the new boot processor once the error

to the original boot processor is addressed. Thus, a POSITA would have expected

success in combining Goodrum with Bigbee-Nguyen as set forth above.

 Dependent Claim 9: “The method of claim 1 further comprising:
determining if said lockstep pair of processors for which said loss
of lockstep is detected comprises a system boot processor.”

164. As I explained above in section XII.C, Bigbee-Nguyen teaches the

method of claim 1. Claim 9 further requires the step of determining if the lockstep

pair of processors for which said loss of lockstep is detected comprises a system boot

processor. As I explained above (Section XII.D), determining whether an error

occurs in a boot processor is taught by Goodrum. Goodrum teaches a system

whereby the primary processor is designated as such, e.g., by having a particular

identifier. Goodrum, 3:1-31, 8:14-16, 17:7-19; Sections VIII.E, XII.D. Goodrum

also notes that an identifier of CPU0 is typically used to designate the boot processor.

Goodrum, 2:39-50. As explained above, Goodrum identifies the boot processor so

79

that it can switch to a spare processor in the event an error or failure is detected in

the boot processor. Goodrum, Abstract, 1:17-20, 2:15-64, 3:7-31, 5:66-6:3, 6:28-

57, 8:11-16, 8:60-64, 9:39-63, 17:7-16, 18:34-49. I discussed the motivations for

incorporating this teaching into Bigbee-Nguyen above. Section XII.D. For

example, a POSITA would have been motivated to modify Bigbee-Nguyen’s

response to a detected loss of lockstep error to include determining if the error was

experienced by a boot processor (based on Goodrum’s teachings of using identifiers

to distinguish a boot processor from other processors), to reassign the role of boot

processor to a backup processor (as further taught by Goodrum), and once lockstep

is recovered (as is still taught by Bigbee and Nguyen), to use the original boot

processor as a backup processor for the newly identified boot processor (based on

the teachings of Goodrum to provide a spare processor). By doing so, a POSITA

would have understood that the reliability and availability of the Bigbee-Nguyen

system would be improved, by ensuring that a reliable boot processor is always

available to power up the system in response to a system reset and/or to help recover

lockstep or reset the processor for which a loss of lockstep was detected.

165. Accordingly, in the Bigbee-Nguyen-Goodrum system, when a loss of

lockstep is detected for a pair of processors, as taught in Bigbee-Nguyen (Section

XII.C), the Bigbee-Nguyen-Goodrum system would also identify whether the pair

80

includes a processor designated as the boot processor and if so, would then identify

a different, standby processor as the new boot processor.

166. Thus, Bigbee-Nguyen-Goodrum renders claim 9 obvious.

 Dependent Claim 10: “The method of claim 9 wherein if
determined that said lockstep pair of processors for which said
loss of lockstep is detected comprises a system boot processor,
further comprising: swapping the role of system boot processor to
another processor in the system.”

167. As I explained above (Section XII.E.), claim 9 is taught by Bigbee-

Nguyen-Goodrum. Goodrum also teaches the additional limitation of claim 10, and

this claim is rendered obvious by Bigbee-Nguyen-Goodrum.

168. In particular, Goodrum teaches that, when a failure is detected in a

designated boot processor, the role of boot processor is reassigned to a backup

processor. Goodrum, Abstract, 1:17-20, 2:15-64, 3:7-31, 5:66-6:3, 6:28-57, 8:11-

16, 8:60-64, 9:39-63, 17:7-16, 18:34-49.

169. As I explained above (Section XII.D), Goodrum teaches that this

beneficially allows for a more fault-tolerant system that can continue to operate,

even when the boot processor suffers a failure, in part because it will not attempt to

reboot, if that becomes necessary, from a malfunctioning processor. Goodrum, 2:15-

3:13. I also explained the motivations to make this combination above. Section

XII.D. For example, a POSITA would have been motivated to modify Bigbee-

Nguyen’s response to a detected loss of lockstep error to include determining if the

81

error was experienced by a boot processor (based on Goodrum’s teachings of using

identifiers to distinguish a boot processor from other processors), to reassign the role

of boot processor to a backup processor (as further taught by Goodrum), and once

lockstep is recovered (as is still taught by Bigbee and Nguyen), to use the original

boot processor as a backup processor for the newly identified boot processor (based

on the teachings of Goodrum to provide a spare processor). By doing so, a POSITA

would have understood that the reliability and availability of the Bigbee-Nguyen

system would be improved, by ensuring that a reliable boot processor is always

available to power up the system in response to a system reset and/or to help recover

lockstep or reset the processor for which a loss of lockstep was detected.

170. Accordingly, in the Bigbee-Nguyen-Goodrum system, when a loss of

lockstep is detected, as taught in Bigbee-Nguyen (Section XII.C) and as still occurs

in Bigbee-Nguyen-Goodrum, the identifier of the CPU for which the loss of lockstep

was detected would indicate whether the processor was the boot processor, and if so,

the system would identify a different, operational spare CPU as the boot processor.

This spare processor would then be used for further rebooting, if needed.

171. Thus, Bigbee-Nguyen-Goodrum renders claim 10 obvious.

82

 Dependent Claim 11: “The method of claim 10 further
comprising: after said swapping, recovering the lockstep for the
lockstep pair of processors.”

172. As I explained above (Section XII.F), claim 10 is taught by Bigbee-

Nguyen-Goodrum. Bigbee teaches the additional limitation of claim 11, and so this

claim is rendered obvious by Bigbee-Nguyen-Goodrum.

173. In particular, as I explained in Section XII.C.2 with respect to element

[1B], Bigbee teaches to recover the loss of lockstep. In Bigbee-Nguyen-Goodrum,

the system will recover loss of lockstep after having (as taught in Goodrum) swapped

the role of boot processor to the spare processor. I explained the motivations for

adding Goodrum’s teachings to swap the processors above. Section XII.D. For

example, a POSITA would have been motivated to modify Bigbee-Nguyen’s

response to a detected loss of lockstep error to include determining if the error was

experienced by a boot processor (based on Goodrum’s teachings of using identifiers

to distinguish a boot processor from other processors), to reassign the role of boot

processor to a backup processor (as further taught by Goodrum), and once lockstep

is recovered (as is still taught by Bigbee and Nguyen), to use the original boot

processor as a backup processor for the newly identified boot processor (based on

the teachings of Goodrum to provide a spare processor). Further, the Bigbee-

Nguyen-Goodrum system would replace the faulty original boot processor with the

spare processor before attempting to recover from any error (e.g., loss of lockstep)

83

experienced by the faulty original boot processor as Goddrum (Goodrum, 2:15-31)

teaches the benefits of reducing the amount of time the system is without an

identified, operational boot processor. By doing so, a POSITA would have

understood that the reliability and availability of the Bigbee-Nguyen system would

be improved, by ensuring that a reliable boot processor is always available to power

up the system in response to a system reset and/or to help recover lockstep or reset

the processor for which a loss of lockstep was detected.

174. Thus, claim 11 is rendered obvious by Bigbee-Nguyen-Goodrum.

 Dependent Claim 12: “The method of claim 11 further
comprising: after recovering lockstep for the lockstep pair of
processors, holding the recovered pair of processors in idle as a
spare for the processor to which the role of system boot processor
was swapped.”

175. As I explained above (Section XII.G), claim 11 is taught by Bigbee-

Nguyen-Goodrum. Bigbee-Nguyen-Goodrum also teaches the additional limitation

of claim 12, and this claim is rendered obvious by Bigbee-Nguyen-Goodrum.

176. As described above for Bigbee-Nguyen, and which also occurs in

Bigbee-Nguyen-Goodrum, when the loss of lockstep is recovered, the processor pair

for which loss of lockstep has been recovered is inserted and the operating system

modifies its internal data structures to indicate that the processor is “online and

available” (claimed “holding the recovered pair of processors in idle”). Section

XII.C.2; Bigbee, [0037]. As taught by Bigbee, in the Bigbee-Nguyen-Goodrum

84

system, insertion of the processor “puts [the] device into its D0 or ‘active’ state.”

Bigbee, [0037]. A POSITA would have understood that a processor in the D0 or

“active” state is fully on and operational and would have also understood that

Bigbee’s description of a processor as “available” teaches that the processor is

capable and ready to execute instructions. Ex. 1022, p. 35; Bigbee, [0037], FIG. 4B

(block 430). The ’958 Patent explains that a processor in idle (e.g., a hot spare

processor) is similarly available to the system. Ex. 1001, 9:23-27, 10:26-34. Bigbee

therefore describes holding a recovered processor in the same manner (i.e., in idle).

And, applying the further teachings of Goodrum, the processor pair would be

available for use as a spare boot processor because it would be operational, yet would

not be identified as the boot processor (claimed “spare for the processor to which the

role of system boot processor was swapped”), and so this claim is also rendered

obvious by Bigbee-Nguyen-Goodrum.

177. I described the motivations for adding Goodrum’s teachings to

recognize that the idled processor pair for which lockstep was recovered is available

as a spare boot processor above. Section XII.D. For example, a POSITA would

have been motivated to modify Bigbee-Nguyen’s response to a detected loss of

lockstep error to include determining if the error was experienced by a boot

processor (based on Goodrum’s teachings of using identifiers to distinguish a boot

processor from other processors), to reassign the role of boot processor to a backup

85

processor (as further taught by Goodrum), and once lockstep is recovered (as is still

taught by Bigbee and Nguyen), to use the original boot processor as a backup

processor for the newly identified boot processor (based on the teachings of

Goodrum to provide a spare processor). By doing so, a POSITA would have

understood that the reliability and availability of the Bigbee-Nguyen system would

be improved, by ensuring that a reliable boot processor is always available to power

up the system in response to a system reset and/or to help recover lockstep or reset

the processor for which a loss of lockstep was detected. It is my opinion that a

POSITA would have recognized that, once recovered, the processor pair which was

no longer identified as the boot processor would become the spare processor,

because of the reliability benefits of having a spare processor as described above.

178. Accordingly, claim 12 is rendered obvious by Bigbee-Nguyen-

Goodrum.

XIII. GROUND B: CLAIMS 9-12 ARE RENDERED OBVIOUS BY
BIGBEE-NGUYEN IN VIEW OF SUFFIN

 Overview of Bigbee-Nguyen-Suffin Combination

179. As I noted above, claims 9-12 all depend from claim 1 (either directly

or indirectly through other claims). Sections XII.A, XII.D. As I explained above,

the elements of claim 1 are taught by the combination of Bigbee and Nguyen.

Section XII.C. As I explain below, the additional elements of claims 9-12 are taught

86

by Suffin and/or Bigbee, rendering these claims obvious in light of Bigbee-Nguyen-

Suffin. Sections XIII.B-E, infra.

180. Suffin teaches the known concept of having a list of processors that

may be used for booting a computer system, determining which of those processors

are available, skipping those on the list that are not, and then booting the system

using an available processor. Suffin, 2:5-4:5, 11:3-9, 11:23-12:18, 13:1-7, 13:16-

14:10, 16:20-17:11, FIG. 4A. Since Suffin’s list tracks which processor is the

current boot processor and which processors have had an error detected, it detects

when the boot processor has an error detected. Further, if boot up is not successful

using that processor, then the next processor on the list is used. Id., 13:16-14:10,

16:20-17:11. Suffin teaches that this prevents the system from being unable to

reboot due to a failure of the boot processor. Id. Suffin further teaches that the

system can iterate the list so that the backup processor remains the boot processor

and the original boot processor is now a backup processor, which helps avoid

repetitive failures. Id., 16:20-17:11.

181. Suffin explains that using this fault-tolerant process beneficially allows

for “robust operation of a fault-tolerant computer, including initialization and

recovery from operational failures.” Suffin, 1:1-6, 2:5-17. Suffin also touts the

“superior reliability” caused by having such built-in redundancy, and that the use of

a second processor for reboot beneficially allows analysis of the faulty processor,

87

because its state characteristics can be copied for later analysis, and the state

characteristics of the non-faulty processor can be copied to the faulty processor. Id.,

1:12-18, 3:16-4:5, 16:20-17:11.

182. A POSITA would have applied Suffin to Bigbee-Nguyen to yield a

Bigbee-Nguyen-Suffin system that monitors the processors for loss of lockstep (as

taught by Bigbee-Nguyen) and determines whether the faulty processor having a

loss of lockstep is the boot processor (as taught by Suffin). If it is, then the Bigbee-

Nguyen-Suffin system identifies a spare processor from Suffin’s boot list to act as

the boot processor. Further, the Bigbee-Nguyen-Suffin system would replace the

faulty original boot processor with the spare processor before attempting to recover

from any error (e.g., loss of lockstep) experienced by the faulty original boot

processor as taught by Suffin (Suffin, Abstract (describing selecting a spare

processor before restarting the failed processor), 3:22-4:5, 12:3-18, 13:16-14:6). A

POSITA would have understood that doing so furthers the goal of reducing the

amount of time the system is without an identified, operational boot processor

because recovering from errors may require a significant amount of time and

recovery is not certain. If the loss of lockstep is recovered, as is still taught by

Bigbee-Nguyen, then the recovered processor is once again available for being used

as a boot processor on Suffin’s boot list, but it is now a backup processor. As Suffin

teaches the benefits of always having a backup processor to the boot processor, a

88

POSITA would have understood the benefits of using the original boot processor

that experienced an error as a backup processor to the new boot processor, once the

error experienced by the original boot processor was addressed. The addition of

Suffin to the Bigbee-Nguyen system does not remove the functionality of Bigbee-

Nguyen that reads on claim 1, as described above.

183. It is my opinion that a POSITA would have been motivated to apply

Suffin’s teaching to achieve the benefits described in Suffin: including (a) superior

reliability from having spare processors identified to be used for rebooting when the

boot processor fails and (b) the ability to better diagnose and correct faults with the

boot processor. Suffin, 1:1-6, 1:12-18, 2:5-17. This is applying a known technique

(Suffin’s technique of changing boot processors when there is a fault identified in

the initial current boot processor and if the initial boot processor is recovered, having

it available as a spare processor to the new boot processor) to a known device

(Bigbee-Nguyen’s system having multiple processors in lockstep that can suffer a

loss of lockstep fault involving a boot processor) ready for improvement (the ability

to boot from a spare, non-faulty processor when there is a fault with the boot

processor) to yield predictable results (a Bigbee-Nguyen-Suffin system which, when

a loss of lockstep is detected that involves a boot processor, identifies a spare

processor to act as the boot processor, yielding better reliability, fault correction, and

diagnosis).

89

184. It also is an example of applying a known technique (Suffin’s

techniques described above) to improve similar devices (Bigbee-Nguyen’s system

which, like the system of Suffin, has multiple processors operating in lockstep that

are subject to faults) in the same way (when a loss of lockstep is detected that

involves a boot processor, identifying another processor to act as the boot processor,

yielding better reliability, fault correction, and diagnosis).

185. A POSITA would have expected success in combining Suffin with

Bigbee-Nguyen because this combination merely involves routine programming

skills that a POSITA would have had. As I noted above (Sections XII.B, XII.D), a

POSITA would know how to use ASL to program Bigbee-Nguyen’s firmware to

modify its processor error handling responses. A POSITA would therefore use ASL

or other ACPI features to program Bigbee-Nguyen’s firmware to (1) access Suffin’s

processor list to determine if a processor with an error detected is a boot processor

and (2) if so, to cause a backup processor to take over the role of boot processor and

use the original boot processor, once recovered from the error it experienced, as a

spare processor for the newly designated boot processor. Thus, a POSITA would

have expected success in combining Suffin with Bigbee-Nguyen.

90

 Dependent Claim 9: “The method of claim 1 further comprising:
determining if said lockstep pair of processors for which said loss
of lockstep is detected comprises a system boot processor.”

186. As I explained above in Section XII.C, Bigbee-Nguyen teaches the

method of claim 1. Claim 9 further requires the step of determining if the lockstep

pair of processors for which said loss of lockstep is detected comprises a system boot

processor. As I explain below, determining whether an error, such as a loss of

lockstep, occurs in a boot processor is taught by Suffin.

187. In Suffin, the boot list contains values for each processor indicating

whether each processor is functioning properly, and the boot list also contains

processor identification values to distinguish processors. Suffin, 12:3-18. Thus,

Suffin monitors whether a particular processor, such as the first processor on the

boot list which was used to initially boot the system (i.e., the boot processor),

remains functional, including whether it has suffered a loss of lockstep with another

processor. Id., 6:9-11, 7:4-16, 8:1-4, 12:3-18, 13:1-7, 14:15-18, 15:7-18. As

explained above, Suffin teaches that this beneficially allows for a more robust,

reliable system that can better diagnose problems with processors and that will not

attempt to reboot the system, if that becomes necessary, from a malfunctioning

processor. I explained the motivations to make the Bigbee-Nguyen-Suffin above.

Section XIII.A. For example, a POSITA would have applied Suffin to Bigbee-

Nguyen to yield a Bigbee-Nguyen-Suffin system that monitors the processors for

91

loss of lockstep (as taught by Bigbee-Nguyen) and determines whether the faulty

processor having a loss of lockstep is the boot processor (as taught by Suffin). If it

is, then the Bigbee-Nguyen-Suffin system identifies a spare processor from Suffin’s

boot list to act as the boot processor. If the loss of lockstep is recovered, as is still

taught by Bigbee-Nguyen, then the recovered processor is once again available for

being used as a boot processor on Suffin’s boot list, but it is now a backup processor.

As Suffin teaches the benefits of always having a backup processor to the boot

processor, a POSITA would have understood the benefits of using the original boot

processor that experienced an error as a backup processor to the new boot processor,

once the error experienced by the original boot processor was addressed. Further, a

POSITA would have been motivated to apply Suffin’s teaching to achieve the

benefits described in Suffin: including (a) superior reliability from having spare

processors identified to be used for rebooting when the boot processor fails and (b)

the ability to better diagnose and correct faults with the boot processor. Suffin, 1:1-

6, 1:12-18, 2:5-17.

188. Accordingly, in Bigbee-Nguyen-Suffin, when a loss of lockstep is

detected, as taught in Bigbee-Nguyen (Section XII.C), the system’s boot list would

indicate which processors were involved with the loss of lockstep detection, so that

a different processor would be used for further rebooting, if needed. In the event the

detected loss of lockstep involved the system boot processor, then the Bigbee-

92

Nguyen-Suffin system would have identified that the boot processor had a loss of

lockstep detected, idled it as described above with respect to claim 1, and the

processor would be treated as unavailable for use as a boot processor until it was

recovered. The role of boot processor would be assigned to a different, functioning

processor on the boot list.

189. Thus, Bigbee-Nguyen-Suffin renders claim 9 obvious.

 Dependent Claim 10: “The method of claim 9 wherein if
determined that said lockstep pair of processors for which said
loss of lockstep is detected comprises a system boot processor,
further comprising: swapping the role of system boot processor to
another processor in the system.”

190. As I explained above, claim 9 is taught by Bigbee-Nguyen-Suffin.

Section XIII.B. Suffin also teaches the additional limitation of claim 10, and this

claim is rendered obvious by Bigbee-Nguyen-Suffin.

191. In particular, Suffin monitors the functionality of the processors and

teaches that a malfunctioning processor (such as the processor for which a loss of

lockstep was detected and which is idled in Bigbee-Nguyen-Suffin) will not be used

as the boot processor, but instead is replaced by an available processor on the boot

list (claimed “swapping the role of system boot processor to another processor in the

system”). Suffin, 9:1-4, 11:23-12:18, 13:1-7, 13:16-14:6, 16:9-17:2, FIG. 4A. As I

explained above (Section XIII.A), Suffin teaches that this beneficially allows for a

more robust, reliable system that can better diagnose problems with processors and

93

that will not attempt to reboot the system, if that becomes necessary, from a

malfunctioning processor. The motivations to make this combination were

described above. Section XIII.A. For example, a POSITA would have applied

Suffin to Bigbee-Nguyen to yield a Bigbee-Nguyen-Suffin system that monitors the

processors for loss of lockstep (as taught by Bigbee-Nguyen) and determines

whether the faulty processor having a loss of lockstep is the boot processor (as taught

by Suffin). If it is, then the Bigbee-Nguyen-Suffin system identifies a spare

processor from Suffin’s boot list to act as the boot processor. If the loss of lockstep

is recovered, as is still taught by Bigbee-Nguyen, then the recovered processor is

once again available for being used as a boot processor on Suffin’s boot list, but it is

now a backup processor. As Suffin teaches the benefits of always having a backup

processor to the boot processor, a POSITA would have understood the benefits of

using the original boot processor that experienced an error as a backup processor to

the new boot processor, once the error experienced by the original boot processor

was addressed. Further, a POSITA would have been motivated to apply Suffin’s

teaching to achieve the benefits described in Suffin: including (a) superior reliability

from having spare processors identified to be used for rebooting when the boot

processor fails and (b) the ability to better diagnose and correct faults with the boot

processor. Suffin, 1:1-6, 1:12-18, 2:5-17.

94

192. Accordingly, it is my opinion that in Bigbee-Nguyen-Suffin, when a

loss of lockstep is detected and the processors are idled, as taught in Bigbee-Nguyen

(Section XII.C) and as still occurs in Bigbee-Nguyen-Suffin, the system’s boot list

would indicate which processors were involved with the loss of lockstep detection

and thus unavailable, so that a different processor on the boot list would be swapped

in as the current boot processor and used for rebooting.

193. Thus, Bigbee-Nguyen-Suffin renders claim 10 obvious.

 Dependent Claim 11: “The method of claim 10 further
comprising: after said swapping, recovering the lockstep for the
lockstep pair of processors.”

194. As I explained above (Section XIII.C), claim 10 is taught by Bigbee-

Nguyen-Suffin. Bigbee also teaches the additional limitation of claim 11, which is

simply the recovery of lockstep that is part of element [1B] (Section XII.C.2), and

which is taught in Bigbee and still occurs in Bigbee-Nguyen-Suffin, rendering this

claim obvious.

195. In particular, as I explained in Section XII.C.2 with respect to element

[1B], Bigbee teaches to recover the loss of lockstep after it is detected. In Bigbee-

Nguyen-Suffin, the system will recover that loss of lockstep after having (as taught

in Suffin) detected the error and swapped the role of boot processor to the spare

processor when the previous boot processor was idled and thus determined to be

unavailable on the boot list. I described the motivations for adding Suffin’s

95

teachings to remove the faulty, idled processor from the available processors on the

boot list above. Section XIII.A. For example, a POSITA would have applied Suffin

to Bigbee-Nguyen to yield a Bigbee-Nguyen-Suffin system that monitors the

processors for loss of lockstep (as taught by Bigbee-Nguyen) and determines

whether the faulty processor having a loss of lockstep is the boot processor (as taught

by Suffin). If it is, then the Bigbee-Nguyen-Suffin system identifies a spare

processor from Suffin’s boot list to act as the boot processor. Further, the Bigbee-

Nguyen-Suffin system would replace the faulty original boot processor with the

spare processor before attempting to recover from any error (e.g., loss of lockstep)

experienced by the faulty original boot processor as taught by Suffin (Suffin,

Abstract (describing selecting a spare processor before restarting the failed

processor), 3:22-4:5, 12:3-18, 13:16-14:6), which furthers the goal of reducing the

amount of time the system is without an identified, operational boot processor. If

the loss of lockstep is recovered, as is still taught by Bigbee-Nguyen, then the

recovered processor is once again available for being used as a boot processor on

Suffin’s boot list, but it is now a backup processor. As Suffin teaches the benefits

of always having a backup processor to the boot processor, a POSITA would have

understood the benefits of using the original boot processor that experienced an error

as a backup processor to the new boot processor, once the error experienced by the

original boot processor was addressed. Further, a POSITA would have been

96

motivated to apply Suffin’s teaching to achieve the benefits described in Suffin:

including (a) superior reliability from having spare processors identified to be used

for rebooting when the boot processor fails and (b) the ability to better diagnose and

correct faults with the boot processor. Suffin, 1:1-6, 1:12-18, 2:5-17

196. Accordingly, claim 11 is rendered obvious by Bigbee-Nguyen-Suffin.

 Dependent Claim 12: “The method of claim 11 further
comprising: after recovering lockstep for the lockstep pair of
processors, holding the recovered pair of processors in idle as a
spare for the processor to which the role of system boot processor
was swapped.”

197. As explained above, Claim 11 is taught by Bigbee-Nguyen-Suffin.

Suffin teaches the additional limitation of claim 12, and this claim is rendered

obvious by Bigbee-Nguyen-Suffin. As described above for Bigbee-Nguyen, and

which also occurs in Bigbee-Nguyen-Suffin, when the loss of lockstep is recovered,

the processor pair for which loss of lockstep has been recovered is inserted and the

operating system modifies its internal data structures to indicate that the processor

pair is online and available (claimed “holding the recovered pair of processors in

idle”). Section XII.C.2. As I noted in Section XII.H, Bigbee describes a recovered

processor as being available to execute instructions in the same manner that the ’958

Patent describes holding a processor (e.g., a hot standby processor) as available to a

system. Ex. 1001, 9:23-27, 10:26-34. Applying the teachings of Suffin (Suffin,

16:20-17:11, 13:1-7), the processor pair would then be available for use as a spare

97

boot processor on the boot list (claimed “spare for the processor to which the role of

system boot processor was swapped”), and so this claim is also rendered obvious by

Bigbee-Nguyen-Suffin.

198. I described the motivations for adding Suffin’s teachings to recognize

that the idled processor pair for which lockstep was recovered is available as a spare

boot processor above. Section XIII.A. For example, a POSITA would have applied

Suffin to Bigbee-Nguyen to yield a Bigbee-Nguyen-Suffin system that monitors the

processors for loss of lockstep (as taught by Bigbee-Nguyen) and determines

whether the faulty processor having a loss of lockstep is the boot processor (as taught

by Suffin). If it is, then the Bigbee-Nguyen-Suffin system identifies a spare

processor from Suffin’s boot list to act as the boot processor. If the loss of lockstep

is recovered, as is still taught by Bigbee-Nguyen, then the recovered processor is

once again available for being used as a boot processor on Suffin’s boot list, but it is

now a backup processor. As Suffin teaches the benefits of always having a backup

processor to the boot processor, a POSITA would have understood the benefits of

using the original boot processor that experienced an error as a backup processor to

the new boot processor, once the error experienced by the original boot processor

was addressed. Further, a POSITA would have been motivated to apply Suffin’s

teaching to achieve the benefits described in Suffin: including (a) superior reliability

from having spare processors identified to be used for rebooting when the boot

98

processor fails and (b) the ability to better diagnose and correct faults with the boot

processor. Suffin, 1:1-6, 1:12-18, 2:5-17. It is my opinion that a POSITA would

have recognized that, once recovered, the processor pair which was no longer

identified as the boot processor would become the spare processor, because of the

reliability benefits of having a spare processor described above.

199. Accordingly, claim 12 is rendered obvious by Bigbee-Nguyen-Suffin.

XIV. GROUND C: CLAIMS 23-25 AND 12 ARE RENDERED OBVIOUS
BY BIGBEE-NGUYEN-SUFFIN-SAFFORD

 Overview of Bigbee-Nguyen-Suffin-Safford Combination

200. Claims 23-25 include limitations that are similar to those found in

claims 1 and 9-12, but also add that, if a loss of lockstep is determined to have

occurred in the boot processor, the system will copy a state of the system boot

processor to the spare boot processor. It is my opinion that this limitation is taught

by Safford (Safford, Abstract, [0006]-[0007], [0018]-[0021], Figs. 3-4), and it is my

further opinion that claims 23-25 are taught by Bigbee-Nguyen-Suffin-Safford.

201. Safford explicitly provides a motivation to combine, as it explains that

a benefit of copying the state of the processor for which a loss of lockstep has been

detected is to “enhance recovery from loss of lock step.” Safford, [0006], [0021],

Abstract.

202. A POSITA would have applied Safford to Bigbee-Nguyen-Suffin to

yield a Bigbee-Nguyen-Suffin-Safford system that, pursuant to the teachings of

99

Safford, upon detecting a loss of lockstep for a processor (including when the

processor is the boot processor), copies the processor’s state to the hot spare

processor. The addition of Safford to the system does not remove the functionality

of Bigbee-Nguyen-Suffin that reads on claims 9-12, as described above (Section

XIII).

203. A POSITA would have been motivated to apply Safford’s teaching to

achieve the benefits described in Safford: enhanced, quicker recovery from a loss of

lockstep. Safford, Abstract, [0005]-[0007], [0021]. This is simply applying a known

technique (Safford’s technique of copying the state of a processor for which a loss

of lockstep has been detected to the hot spare processor) to a known device (Bigbee-

Nguyen-Suffin’s system having multiple processors in lockstep that can suffer a loss

of lockstep fault in a boot processor that causes another, spare processor to become

the boot processor) ready for improvement (enhanced, quicker, recovery from a loss

of lockstep) to yield predictable results (Bigbee-Nguyen-Suffin-Safford which,

when a loss of lockstep is detected that involves a boot processor, identifies a spare

processor to act as the boot processor and copies the state of the boot processor to

the spare processor).

204. It also is an example of applying a known technique (Safford’s

techniques described above) to improve similar devices (Bigbee-Nguyen-Suffin’s

system which, like the system of Safford, has multiple processors operating in

100

lockstep that are subject to faults, and spare processors that become active in the

event a processor has a loss of lockstep detected) in the same way (when a loss of

lockstep is detected that involves a boot processor, identifying another processor to

act as the boot processor and copying the state of the first processor to the second,

yielding enhanced recovery from the loss of lockstep).

205. A POSITA would have expected success in combining Safford with

Bigbee-Nguyen-Suffin because this combination merely involves routine

programming skills that a POSITA would have had. As I noted above (Sections

XII.B.2, XII.D, XIII.A), a POSITA would know how to use ASL to program Bigbee-

Nguyen-Suffin’s firmware to modify its processor error handling responses. Bigbee

explains that these processor error responses include saving processor state

information and ensuring that the state of a processor for which an error is detected

is reinitialized to enable reintroduction. Bigbee, [0021] (describing a firmware

routine that “saves minimal processor state” and “saves additional processor and

platform error and state information”), [0023] (using firmware “to ensure that [the

processor’s package] is reset or ‘re-initialized’ to the state needed for it to be

subsequently awakened or ‘activated’ by operating system 106.”), [0024]. It is my

opinion that a POSITA would therefore use ASL or other ACPI features to program

Bigbee-Nguyen-Suffin’s firmware to copy to a hot spare processor the saved state

of a processor for which a loss of lockstep has been detected, based on the

101

capabilities of firmware to do so as taught by Bigbee. Thus, a POSITA would have

expected success in combining Safford with Bigbee-Nguyen-Suffin.

 Independent Claim 23

1. Limitation [23A]: “A method comprising: establishing, in a
multi-processor system, a hot spare processor for a system
boot processor;”

206. Limitation [23A] is rendered obvious by Bigbee-Nguyen-Suffin.

Bigbee-Nguyen-Suffin possesses the functionality of Bigbee-Nguyen, described

above in Sections XII.A-C, and also adds the teachings of Suffin, as described in

Section XIII. In the Bigbee-Nguyen-Suffin system there are multiple processors,

and, per the teachings of Suffin (Suffin, 2:5-4:5, 11:3-8, 11:23-12:18, 13:1-7, 13:16-

14:10, FIG. 4A), the Bigbee-Nguyen-Suffin system has a boot list that contains a

listing of the current boot processor and other available (functioning) processors,

any of which is a claimed “hot spare” processor for the system boot processor,

because each such processor can be designated as the boot processor if the boot

processor becomes unavailable (i.e., malfunctions).

207. Safford also teaches limitation [23A]], and this claim is rendered

obvious by Bigbee-Nguyen-Suffin-Safford. Specifically, Safford teaches, when a

loss of lockstep is detected in a multi-processor system, “moving an architected state

of the processor unit experiencing the loss of lock step to a spare processor unit,

wherein the spare processor unit becomes an active processor unit in the computer

102

system.” Safford, [0007], [0018]-[0021] (discussion of using “hot standby”

processors), FIGs. 3-4 (copying architected state of processor to “hot standby”

processor, designating new processor as hot standby processor), Abstract. I

described the benefits and motivations for having such a spare processor above and

apply equally to Safford’s teaching of this feature. Sections XIII.A, XIII.E, XIV.A.

208. Accordingly, Bigbee-Nguyen-Suffin-Safford teach limitation [23A].

2. Limitation [23B]: “detecting loss of lockstep for a lockstep
pair of processors in said multi-processor system;”

209. As I described with respect to limitation [1A], this step is taught by

Bigbee and is performed in the Bigbee-Nguyen-Suffin-Safford system. Section

XII.C.1.

3. Limitation [23C]: “determining if said lockstep pair of
processors for which the loss of lockstep is detected is the
system boot processor;”

210. As I described with respect to claim 9, this step is taught by Suffin and

is performed in the Bigbee-Nguyen-Suffin-Safford system. Section XIII.B.

4. Limitation [23D]: “if determined that said lockstep pair of
processors for which the loss of lockstep is the system boot
processor, copying a state of the system boot processor to
the hot spare processor; and”

211. Bigbee-Nguyen-Suffin-Safford teaches this step.

212. As I described above (Sections VIII.F, XIV.A), Safford, like Bigbee-

Nguyen-Suffin, relates to a multi-processor system with processors operating in

lockstep. Safford, Abstract, [0001], [0006]-[0007], [0018]-[0021], Figs. 2-4. In

103

order to “enhance recovery from loss of lock step,” Safford copies the state of one

or more of the processors in a processor pair for which a loss of lockstep has been

detected to a hot spare processing unit, which becomes an active processor unit in

the computer system. Id. This process is shown, for instance, in Figure 4, step 220:

Safford, FIG. 4, [0021].

Once the processor with the loss of lockstep is idled and lockstep is recovered, then

that processor (whose state was copied to the standby processor) becomes the new

hot standby processor, as seen in step 230. Id.

104

213. Accordingly, in Bigbee-Nguyen-Suffin-Safford, when the processor for

which a loss of lockstep has been detected is the boot processor, the system will copy

a state of the system boot processor to the hot spare processor. I discussed the

motivations for adding this teaching of Safford in the introduction to this ground.

Section XIV.A. For example, Safford explicitly provides a motivation to combine,

as it explains that a benefit of copying the state of the processor for which a loss of

lockstep has been detected is to “enhance recovery from loss of lock step.” Safford,

[0006], [0021], Abstract. A POSITA would have applied Safford to Bigbee-

Nguyen-Suffin to yield a Bigbee-Nguyen-Suffin-Safford system that, pursuant to the

teachings of Safford, upon detecting a loss of lockstep for a processor (including

when the processor is the boot processor), copies the processor’s state to the hot

spare processor. A POSITA would have been motivated to apply Safford’s teaching

to achieve the benefits described in Safford: enhanced, quicker recovery from a loss

of lockstep. Safford, Abstract, [0005]-[0007], [0021]. Bigbee-Nguyen-Suffin-

Safford therefore teaches this limitation.

5. Limitation [23E]: “if determined that said lockstep pair of
processors for which the loss of lockstep is not the system
boot processor, then triggering an operating system to a)
idle the lockstep pair of processors, b) attempt to recover
lockstep between the lockstep pair of processors, and c) if
lockstep is successfully recovered between the lockstep pair
of processors, trigger said operating system to recognize the
processors as being available for receiving instructions.”

214. Bigbee-Nguyen-Suffin-Safford teaches this step.

105

215. Limitation [23E] is substantively included in limitation [1B], and it is

my opinion that it is taught by Bigbee-Nguyen-Suffin-Safford for the same reasons

that Bigbee-Nguyen teaches limitation [1B]. Section XII.C.2. The addition of

Safford’s and Suffin’s teachings do not remove the functionality of Bigbee-Nguyen

that teaches limitation [1B].

216. Accordingly, Bigbee-Nguyen-Suffin-Safford teaches claim 23.

 Dependent Claim 24: “The method of claim 23 wherein if
determined that said lockstep pair of processors for which the loss
of lockstep is the system boot processor further comprising:
attempting to recover lockstep between the lockstep pair of
processors after copying the state of the system boot processor to
the hot spare processor.”

217. Bigbee-Nguyen-Suffin-Safford teaches this step.

218. As I explained above, claim 23 is taught by Bigbee-Nguyen-Suffin-

Safford. Section XIV.B. As I explained with respect to claim 11, Bigbee-Nguyen-

Suffin teach that loss of lockstep for the processor pair is recovered after swapping

the role of boot processor to the spare processor Section XIII.D. This functionality

remains in the Bigbee-Nguyen-Suffin-Safford combination. Further, Safford

explicitly teaches in Figure 4 that the copying occurs before attempting to recover

the loss of lockstep, wherein step 225 (attempting to recover lockstep) occurs after

step 220 (the copying of the processor to the hot spare):

106

Safford, FIG. 4, [0006]-[0007], [0021]; Section XIV.A. Therefore, in the combined

Bigbee-Nguyen-Suffin-Safford system, the attempted recovery of the loss of

lockstep occurs after copying the state of the system boot processor to the hot spare

processor. I explained the motivations for applying Safford to Bigbee-Nguyen-

Suffin above in Section XIV.A. For example, Safford explicitly provides a

motivation to combine, as it explains that a benefit of copying the state of the

processor for which a loss of lockstep has been detected is to “enhance recovery

from loss of lock step.” Safford, [0006], [0021], Abstract. A POSITA would have

applied Safford to Bigbee-Nguyen-Suffin to yield a Bigbee-Nguyen-Suffin-Safford

107

system that, pursuant to the teachings of Safford, upon detecting a loss of lockstep

for a processor (including when the processor is the boot processor), copies the

processor’s state to the hot spare processor. A POSITA would have been motivated

to apply Safford’s teaching to achieve the benefits described in Safford: enhanced,

quicker recovery from a loss of lockstep. Safford, Abstract, [0005]-[0007], [0021].

219. Accordingly, Bigbee-Nguyen-Suffin-Safford teaches claim 24.

 Dependent Claim 25: “The method of claim 24 wherein if
determined that said lockstep pair of processors for which the loss
of lockstep is the system boot processor further comprising: if
lockstep is successfully recovered between the lockstep pair of
processors, establishing the lockstep pair of processors for which
lockstep was recovered as a hot spare processor.”

220. Bigbee-Nguyen-Suffin-Safford teaches this step.

221. As I explained above (Section XIV.C), claim 24 is taught by Bigbee-

Nguyen-Suffin-Safford. As I explained with respect to claim 12, Bigbee-Nguyen-

Suffin teaches that, when the loss of lockstep is recovered in the boot processor pair,

the boot processor pair becomes available as a spare processor. Section XIII.E. This

functionality remains in the Bigbee-Nguyen-Suffin-Safford combination, which

renders claim 25 obvious.

222. Further, Safford also teaches that, once loss of lockstep is recovered in

the processor pair that was idled and copied, that processor pair is designated as the

hot standby processor. Safford, FIG, 4, [0021] (discussing that the recovered

processors “become the new ‘hot standby’ processor pair”). As I noted above

108

(Sections XIII.A, XIV.A), a POSITA would have recognized that, once recovered,

the processor which was no longer identified as the boot processor would become a

spare processor, because of the reliability benefits (also taught in Safford) of having

a spare processor. I described the motivations for applying Safford to Bigbee-

Nguyen-Suffin above (Section XIV.A) and the motivations for having a hot spare

processor described with respect to the teachings of Suffin and Goodrum (to provide

a more reliable and fault-tolerant system) also apply to those teachings in Safford.

Moreover, Safford explicitly provides a motivation to combine, as it explains that its

system beneficially can “enhance recovery from loss of lock step.” Safford, [0006],

[0021], Abstract. A POSITA would have applied Safford to Bigbee-Nguyen-Suffin

to yield a Bigbee-Nguyen-Suffin-Safford system that, pursuant to the teachings of

Safford, upon detecting a loss of lockstep for a processor (including when the

processor is the boot processor), copies the processor’s state to the hot spare

processor and uses the recovered processor as a new spare processor (as taught by

Suffin). A POSITA would have been motivated to apply Safford’s teaching to

achieve the benefits described in Safford: enhanced, quicker recovery from a loss of

lockstep. Safford, Abstract, [0005]-[0007], [0021]. And, as I note above, having

the recovered processor available as a hot spare to the new boot processor increases

the robustness of the system. Accordingly, for this reason also, Bigbee-Nguyen-

Suffin-Safford renders claim 25 obvious.

109

 Dependent Claim 12: “The method of claim 11 further
comprising: after recovering lockstep for the lockstep pair of
processors, holding the recovered pair of processors in idle as a
spare for the processor to which the role of system boot processor
was swapped.”

223. As I explained above, claim 11 is taught by Bigbee-Nguyen-Suffin.

Section XIII.D. As also explained in Section XIV.D, immediately above, Safford

also teaches that, after lockstep is recovered for a pair of processors, the recovered

pair of processors become the new hot standby processors, which are held in idle

until needed. Safford, [0021], [0006]-[0007], Abstract, FIG. 4; Ex. 1001, 6:11-15,

9:23-27, 10:26-34. I described the motivations for applying Safford to Bigbee-

Nguyen-Suffin above. Section XIV.A. For example, Safford explicitly provides a

motivation to combine, as it explains that a benefit of copying the state of the

processor for which a loss of lockstep has been detected is to “enhance recovery

from loss of lock step.” Safford, [0006], [0021], Abstract. A POSITA would have

applied Safford to Bigbee-Nguyen-Suffin to yield a Bigbee-Nguyen-Suffin-Safford

system that, pursuant to the teachings of Safford, upon detecting a loss of lockstep

for a processor (including when the processor is the boot processor), copies the

processor’s state to the hot spare processor. A POSITA would have been motivated

to apply Safford’s teaching to achieve the benefits described in Safford: enhanced,

quicker recovery from a loss of lockstep. Safford, Abstract, [0005]-[0007], [0021].

Thus, Bigbee-Nguyen-Suffin-Safford renders claim 12 obvious.

110

XV. GROUND D: CLAIMS 23-25 AND 12 ARE RENDERED OBVIOUS
BY BIGBEE-NGUYEN-GOODRUM-SAFFORD

224. Ground D adds the teachings of Safford to Bigbee-Nguyen-Goodrum

in the same way that they are added to Bigbee-Nguyen-Suffin in Ground C, and the

motivations for adding Safford to Bigbee-Nguyen-Goodrum are the same as

described above with respect to Bigbee-Nguyen-Suffin. Section XIV.

 Independent Claim 23

1. Limitation [23A]: “A method comprising: establishing, in a
multi-processor system, a hot spare processor for a system
boot processor;”

225. Limitation 23A is rendered obvious by Bigbee-Nguyen-Goodrum.

Bigbee-Nguyen-Goodrum possesses the functionality of Bigbee-Nguyen, described

above in Section XII.A-C, and also adds teachings of Goodrum, as described in

Section XII.D-H. In the Bigbee-Nguyen-Goodrum system there are multiple

processors, and, per the teachings of Goodrum (Goodrum, 1:17-20, 3:10-13, 8:60-

64, 9:39-50, 18:34-49), the system identifies one of the processors as the current

boot processor and the other available (functioning) processor is a claimed “hot

spare” processor for the system boot processor, because it will be designated as the

boot processor if the boot processor becomes unavailable (i.e., malfunctions).

226. As described in Section XIV.B.1, Safford also teaches limitation [23A],

and it is my opinion that a POSITA would be motivated to add this teaching to

111

Bigbee-Nguyen-Goodrum for the same reasons as described for combining it with

Bigbee-Nguyen-Suffin. Sections XII.D, XIV.A, XIV.B.1.

227. Accordingly, Bigbee-Nguyen-Goodrum-Safford teaches the method of

limitation [23A].

2. Limitation [23B]: “detecting loss of lockstep for a lockstep
pair of processors in said multi-processor system;”

228. As described with respect to limitation [1A], this step is taught by

Bigbee and is performed in the Bigbee-Nguyen-Goodrum-Safford system. Section

XII.C.1.

3. Limitation [23C]: “determining if said lockstep pair of
processors for which the loss of lockstep is detected is the
system boot processor;”

229. As described with respect to claim 9, this step is taught by Goodrum

and is performed in the Bigbee-Nguyen-Goodrum-Safford system. Section XII.E.

4. Limitation [23D]: “if determined that said lockstep pair of
processors for which the loss of lockstep is the system boot
processor, copying a state of the system boot processor to
the hot spare processor; and”

230. Bigbee-Nguyen-Goodrum-Safford teaches this step.

231. As described in Section XIV.B.4, Safford, in order to “enhance

recovery from loss of lock step,” copies the state of one or more of the processors in

a processor pair for which a loss of lockstep has been detected to a hot spare

processing unit, which becomes an active processor unit in the computer system.

Safford, Abstract, [0006]-[0007], [0018]-[0021], FIG. 4.

112

232. Accordingly, in Bigbee-Nguyen-Goodrum-Safford, when the processor

for which a loss of lockstep has been detected is the boot processor, the system will

copy a state of the system boot processor to the hot spare processor. I discussed the

motivations for adding this teaching of Safford in the introduction to this ground

(Section XV) and in Section XIV.A. Bigbee-Nguyen-Goodrum-Safford thus

teaches this limitation.

5. Limitation [23E]: “if determined that said lockstep pair of
processors for which the loss of lockstep is not the system
boot processor, then triggering an operating system to a)
idle the lockstep pair of processors, b) attempt to recover
lockstep between the lockstep pair of processors, and c) if
lockstep is successfully recovered between the lockstep pair
of processors, trigger said operating system to recognize the
processors as being available for receiving instructions.”

233. Bigbee-Nguyen-Goodrum-Safford teaches this step.

234. Limitation [23E] is substantively included in limitation [1B], and it is

taught by Bigbee-Nguyen-Goodrum-Safford for the same reasons that Bigbee-

Nguyen teaches limitation [1B]. Section XII.C.2. The addition of Safford’s and

Goodrum’s teachings do not remove the functionality of Bigbee-Nguyen that teaches

limitation [1B].

235. Accordingly, Bigbee-Nguyen-Goodrum-Safford teaches claim 23.

 Dependent Claim 24: “The method of claim 23 wherein if
determined that said lockstep pair of processors for which the loss
of lockstep is the system boot processor further comprising:
attempting to recover lockstep between the lockstep pair of

113

processors after copying the state of the system boot processor to
the hot spare processor.”

236. Bigbee-Nguyen-Suffin-Safford teaches this step.

237. As I explained above (Section XV.A), claim 23 is taught by Bigbee-

Nguyen-Goodrum-Safford. As I explained with respect to claim 11, Bigbee-

Nguyen-Goodrum teaches that loss of lockstep for the processor pair is recovered

after swapping the role of boot processor to the spare processor Section XII.G. This

functionality remains in the Bigbee-Nguyen-Goodrum-Safford combination.

Further, Safford explicitly teaches in Figure 4 that the copying occurs before

attempting to recover the loss of lockstep, wherein step 225 (attempting to recover

lockstep) occurs after step 220 (the copying of the processor to the hot spare):

114

Safford, FIG. 4, [0006]-[0007], [0021]; Section XV.A. Therefore, in the combined

Bigbee-Nguyen-Goodrum-Safford system, the attempted recovery of the loss of

lockstep occurs after copying the state of the system boot processor to the hot spare

processor. I described the motivations for applying Safford to Bigbee-Nguyen-

Goodrum in the introduction to this ground (Section XV) and in Section XIV.A.

238. Accordingly, Bigbee-Nguyen-Goodrum-Safford renders claim 24

obvious.

 Dependent Claim 25: “The method of claim 24 wherein if
determined that said lockstep pair of processors for which the loss
of lockstep is the system boot processor further comprising: if

115

lockstep is successfully recovered between the lockstep pair of
processors, establishing the lockstep pair of processors for which
lockstep was recovered as a hot spare processor.”

239. Bigbee-Nguyen-Goodrum-Safford teaches this step.

240. As I explained above (Section XV.B), claim 24 is taught by Bigbee-

Nguyen-Goodrum-Safford. As explained with respect to claim 12, Bigbee-Nguyen-

Goodrum teaches that, when the loss of lockstep is recovered in the boot processor

pair, the boot processor pair becomes available as a spare processor. Section XII.H.

This functionality remains in the Bigbee-Nguyen-Goodrum-Safford combination,

and therefore renders claim 25 obvious.

241. Further, Safford also teaches that, once loss of lockstep is recovered in

the processor pair that was idled and copied, that processor pair is designated as the

hot standby processor. Safford, FIG. 4, [0021] (discussing that the recovered

processors “become the new ‘hot standby’ processor pair”). As I noted above

(Sections XIV.A, XIV.E, XV, introduction), a POSITA would have recognized that,

once recovered, the processor which was no longer identified as the boot processor

would become the spare processor, because of the reliability benefits (also taught in

Safford) of having a spare processor. For this reason also, the Bigbee-Nguyen-

Goodrum-Safford combination renders claim 25 obvious.

 Dependent Claim 12: “The method of claim 11 further
comprising: after recovering lockstep for the lockstep pair of
processors, holding the recovered pair of processors in idle as a

116

spare for the processor to which the role of system boot processor
was swapped.”

242. As explained above (Section XII.G), claim 11 is taught by Bigbee-

Nguyen-Goodrum. As explained in Section XV.C, immediately above, Safford also

teaches that, after lockstep is recovered for a pair of processors, the recovered pair

of processors become the new hot standby processors, which are held in idle until

needed. Safford, [0021], [0006]-[0007], Abstract, FIG. 4; Ex. 1001, 6:11-15, 9:23-

27, 10:26-34. The motivations for applying Safford to Bigbee-Nguyen-Goodrum

were described by me above in Section XV, introduction. Thus, Bigbee-Nguyen-

Goodrum-Safford renders claim 12 obvious.

XVI. CONCLUDING STATEMENT

243. In conclusion, as set forth above, claims 9-12 and 23-25 of the ’958

Patent are unpatentable as rendered obvious by the aforementioned prior art

references.

244. Prior to working on this declaration, I had never heard of the inventors

on the ’958 Patent, nor had I heard of the ’958 Patent. I have never heard anyone

offer praise for the ’958 Patent, nor am I aware of any commercial success

attributable to the ’958 Patent.

245. I am unaware of any copying of the alleged invention of the ’958 Patent.

Thus, I am unaware of any secondary considerations supporting the nonobviousness

of the ’958 Patent.

117

246. Under penalty of perjury, all statements made herein of my own

knowledge are true, and I believe that all statements made herein on information and

belief are true, it being understood that my final draft of this declaration is being

forwarded on my behalf via Counsel. I have been warned and I am aware that willful

false statements are punishable by fine or imprisonment or both under Section 1001

of Title 18 of the United States Code.

247. In signing this Declaration, I understand that the Declaration will be

filed as evidence in a contested case before the Patent Trial and Appeal Board of the

United States Patent and Trademark Office. I acknowledge that I may be subject to

cross-examination in the case and that such cross-examination will take place in the

United States. If cross examination is required of me, I undertake to appear within

the United States during the time allotted for cross-examination, and within the

limits of my ability so to do.

A-1

APPENDIX A

List of Materials Considered

Ex. 1001: U.S. Patent No. 7,502,958 to Michaelis et al. (“the ’958 Patent”)

Ex. 1004: Prosecution History of the ’958 Patent

Ex. 1005: U.S. Patent Application Publication No. US 2003/0126498 A1 to
Bigbee et al., filed January 2, 2002, published July 3, 2003
(“Bigbee”)

Ex. 1006: U.S. Patent Application Publication No. US 2004/0123201 Al to
Nguyen et al., filed December 19, 2002, published June 24, 2004
(“Nguyen”)

Ex. 1007: U.S. Patent Application Publication No. US 2004/0006722 Al to
Safford, filed July 3, 2002, published January 8, 2004
(“Safford”)

Ex. 1008: U.S. Patent No. 7,085,959 B2 to Safford, filed July 3, 2002,
issued August 1, 2006 (“Safford-959”)

Ex. 1009: U.S. Patent No. 7,296,181 B2 to Safford, filed April 6, 2004,
issued November 13, 2007 (“Safford-181”)

Ex. 1010: U.S. Patent Application Publication No. US 2002/0144177 Al to
Kondo et al., filed January 31, 2002, published October 3, 2002
(“Kondo”)

Ex. 1011: U.S. Patent No. 6,516,429 B1 to Bossen, filed November 4,
1999, issued February 4, 2003 (“Bossen”)

Ex. 1012: U.S. Patent No. 6,158,015 to Klein, filed March 30, 1998, issued
December 5, 2000 (“Klein”)

Ex. 1013: U.S. Patent Application Publication No. US 2005/0172164 A1 to
Fox et al., filed January 21, 2004, published August 4, 2005
(“Fox”)

Ex. 1014: U.S. Patent No. 7,404,105 B2 to Arai, filed August 16, 2004,
issued July 22, 2008 (“Arai”)

A-2

Ex. 1015: U.S. Patent No. 6,675,324 B2 to Marisetty et al., filed September
27, 1999, issued January 6, 2004 (“Marisetty”)

Ex. 1016: U.S. Patent Application Publication No. US 2003/0074601 A1 to
Schultz et al., filed September 28, 2001, published April 17, 2003
(“Schultz”)

Ex. 1017: U.S. Patent Application Publication No. 2003/0126142 A1 to Tu
et al., filed December 31, 2001, published July 3, 2003 (“Tu”)

Ex. 1018: U.S. Patent No. 5,915,082 to Marshall et al., filed June 7, 1996,
issued June 22, 1999 (“Marshall”)

Ex. 1020: PCT Patent Application No. WO 01/80007 A2 to Suffin, filed
April 12, 2001, published October 25, 2001 (“Suffin”)

Ex. 1021: U.S. Patent No. 5,627,962 to Goodrum et al., filed December 30,
1994, issued May 6, 1997 (“Goodrum”)

Ex. 1022: Advanced Configuration and Power Interface Specification,
Revision 2.0, July 27, 2000 (“ACPI 2.0”)

Ex. 1030: U.S. Patent No. 5,790,850 to Natu, filed September 30, 1996,
issued August 4, 1998 (“Natu”)

B-1

APPENDIX B

Claim Listing Appendix

Designation Claim Language

Claim 1

[1A] 1. A method comprising:
detecting loss of lockstep for a lockstep pair of processors;

[1B] using firmware to trigger an operating system to idle the lockstep
pair of processors, recover lockstep for the lockstep pair of
processors, and trigger the operating system to recognize the
lockstep pair of processors having recovered lockstep; and

[1C] responsive to said detecting loss of lockstep, using said firmware to
determine if lockstep is recoverable for the lockstep pair of
processors, wherein said using said firmware to determine if
lockstep is recoverable further comprises determining if a lockstep
mismatch has occurred between the lockstep pair of processors.

Claim 9
[9A] 9. The method of claim 1 further comprising:

[9B] determining if said lockstep pair of processors for which said loss
of lockstep is detected comprises a system boot processor.

Claim 10
[10A] 10. The method of claim 9 wherein if determined that said lockstep

pair of processors for which said loss of lockstep is detected
comprises a system boot processor, further comprising:

[10B] swapping the role of system boot processor to another processor in
the system.

Claim 11
[11A] 11. The method of claim 10 further comprising:

[11B] after said swapping, recovering the lockstep for the lockstep pair of
processors.

Claim 12
[12A] 12. The method of claim 11 further comprising:

[12B] after recovering lockstep for the lockstep pair of processors, holding
the recovered pair of processors in idle as a spare for the processor
to which the role of system boot processor was swapped.

B-2

Designation Claim Language

Claim 23
[23A] 23. A method comprising:

establishing, in a multi-processor system, a hot spare processor for
a system boot processor;

[23B] detecting loss of lockstep for a lockstep pair of processors in said
multi-processor system;

[23C] determining if said lockstep pair of processors for which the loss of
lockstep is detected is the system boot processor;

[23D] if determined that said lockstep pair of processors for which the loss
of lockstep is the system boot processor, copying a state of the
system boot processor to the hot spare processor; and

[23E] if determined that said lockstep pair of processors for which the loss
of lockstep is not the system boot processor, then triggering an
operating system to a) idle the lockstep pair of processors, b)
attempt to recover lockstep between the lockstep pair of processors,
and c) if lockstep is successfully recovered between the lockstep
pair of processors, trigger said operating system to recognize the
processors as being available for receiving instructions.

Claim 24
[24A] 24. The method of claim 23 wherein if determined that said lockstep

pair of processors for which the loss of lockstep is the system boot
processor further comprising:

[24B] attempting to recover lockstep between the lockstep pair of
processors after copying the state of the system boot processor to
the hot spare processor.

Claim 25
[25A] 25. The method of claim 24 wherein if determined that said lockstep

pair of processors for which the loss of lockstep is the system boot
processor further comprising:

[25B] if lockstep is successfully recovered between the lockstep pair of
processors, establishing the lockstep pair of processors for which
lockstep was recovered as a hot spare processor.

	I. Introduction
	II. Professional Background and Qualifications
	III. Materials Reviewed
	IV. Understanding of Applicable Legal Standards
	A. Legal Standard for Prior Art
	B. Legal Standard for Anticipation
	C. Legal Standard for Obviousness
	D. Legal Standard for Claim Construction

	V. Technical Background
	A. Lockstep Processors or FRC Processors Were Known
	B. Determining Whether Lockstep Is Recoverable Was Known
	C. Handling Recoverable or Non-Recoverable Errors Differently Was Known
	D. Using Firmware to Detect and Handle Processor Errors Was Known
	E. Designating Spare Processors to Boot the System in the Event the Current Boot Processor Suffers a Problem Was Known

	VI. Overview of the ’958 Patent
	VII. The Prosecution History of the ’958 Patent
	VIII. Overview of the Relied Upon Prior Art
	A. Overview of Bigbee (Ex. 1005)
	B. Overview of Nguyen (Ex. 1006)
	C. Bigbee and Nguyen are Analogous Art to the ’958 Patent
	D. Overview of Suffin (Ex. 1020)
	E. Overview of Goodrum (Ex. 1021)
	F. Overview of Safford (Ex. 1007)
	G. Suffin, Goodrum, and Safford are Analogous Art to the ’958 Patent

	IX. The Relevant Art and Level of Ordinary Skill In the Relevant Art
	X. Claim Construction
	A. “Detection of Loss of Lockstep” and “Detecting Loss of Lockstep”
	B. “Lockstep Is Recoverable” and “Loss of Lockstep Is Recoverable”
	C. All Other Claim Terms

	XI. Summary of Analysis
	XII. Ground A: Claims 9-12 are Rendered Obvious By Bigbee-Nguyen In View of Goodrum
	A. Overview of the Bigbee-Nguyen Combination that Teaches Claim 1
	B. A POSITA Would Have Found it Obvious to Combine Bigbee and Nguyen
	1. Motivation - A POSITA would have been motivated to add Nguyen’s determining whether lockstep is recoverable from the detected error.
	2. Reasonable Expectation of Success - A POSITA would have understood how to use Bigbee’s disclosed firmware to perform Nguyen’s determining whether a detected error is recoverable or non-recoverable.

	C. Independent Claim 1
	1. Limitation [1A]: “A method comprising: detecting loss of lockstep for a lockstep pair of processors;”
	2. Limitation [1B]: “using firmware to trigger an operating system to idle the lockstep pair of processors, recover lockstep for the lockstep pair of processors, and trigger the operating system to recognize the lockstep pair of processors having reco...
	3. Limitation [1C]: “responsive to said detecting loss of lockstep, using said firmware to determine if lockstep is recoverable for the lockstep pair of processors, wherein said using said firmware to determine if lockstep is recoverable further compr...

	D. Overview of The Bigbee-Nguyen-Goodrum Combination
	E. Dependent Claim 9: “The method of claim 1 further comprising: determining if said lockstep pair of processors for which said loss of lockstep is detected comprises a system boot processor.”
	F. Dependent Claim 10: “The method of claim 9 wherein if determined that said lockstep pair of processors for which said loss of lockstep is detected comprises a system boot processor, further comprising: swapping the role of system boot processor to ...
	G. Dependent Claim 11: “The method of claim 10 further comprising: after said swapping, recovering the lockstep for the lockstep pair of processors.”
	H. Dependent Claim 12: “The method of claim 11 further comprising: after recovering lockstep for the lockstep pair of processors, holding the recovered pair of processors in idle as a spare for the processor to which the role of system boot processor ...

	XIII. Ground B: Claims 9-12 are Rendered Obvious By Bigbee-Nguyen In View of Suffin
	A. Overview of Bigbee-Nguyen-Suffin Combination
	B. Dependent Claim 9: “The method of claim 1 further comprising: determining if said lockstep pair of processors for which said loss of lockstep is detected comprises a system boot processor.”
	C. Dependent Claim 10: “The method of claim 9 wherein if determined that said lockstep pair of processors for which said loss of lockstep is detected comprises a system boot processor, further comprising: swapping the role of system boot processor to ...
	D. Dependent Claim 11: “The method of claim 10 further comprising: after said swapping, recovering the lockstep for the lockstep pair of processors.”
	E. Dependent Claim 12: “The method of claim 11 further comprising: after recovering lockstep for the lockstep pair of processors, holding the recovered pair of processors in idle as a spare for the processor to which the role of system boot processor ...

	XIV. Ground C: Claims 23-25 and 12 are Rendered Obvious By Bigbee-Nguyen-Suffin-Safford
	A. Overview of Bigbee-Nguyen-Suffin-Safford Combination
	B. Independent Claim 23
	1. Limitation [23A]: “A method comprising: establishing, in a multi-processor system, a hot spare processor for a system boot processor;”
	2. Limitation [23B]: “detecting loss of lockstep for a lockstep pair of processors in said multi-processor system;”
	3. Limitation [23C]: “determining if said lockstep pair of processors for which the loss of lockstep is detected is the system boot processor;”
	4. Limitation [23D]: “if determined that said lockstep pair of processors for which the loss of lockstep is the system boot processor, copying a state of the system boot processor to the hot spare processor; and”
	5. Limitation [23E]: “if determined that said lockstep pair of processors for which the loss of lockstep is not the system boot processor, then triggering an operating system to a) idle the lockstep pair of processors, b) attempt to recover lockstep b...

	C. Dependent Claim 24: “The method of claim 23 wherein if determined that said lockstep pair of processors for which the loss of lockstep is the system boot processor further comprising: attempting to recover lockstep between the lockstep pair of proc...
	D. Dependent Claim 25: “The method of claim 24 wherein if determined that said lockstep pair of processors for which the loss of lockstep is the system boot processor further comprising: if lockstep is successfully recovered between the lockstep pair ...
	E. Dependent Claim 12: “The method of claim 11 further comprising: after recovering lockstep for the lockstep pair of processors, holding the recovered pair of processors in idle as a spare for the processor to which the role of system boot processor ...

	XV. Ground D: Claims 23-25 and 12 are Rendered Obvious By Bigbee-Nguyen-Goodrum-Safford
	A. Independent Claim 23
	1. Limitation [23A]: “A method comprising: establishing, in a multi-processor system, a hot spare processor for a system boot processor;”
	2. Limitation [23B]: “detecting loss of lockstep for a lockstep pair of processors in said multi-processor system;”
	3. Limitation [23C]: “determining if said lockstep pair of processors for which the loss of lockstep is detected is the system boot processor;”
	4. Limitation [23D]: “if determined that said lockstep pair of processors for which the loss of lockstep is the system boot processor, copying a state of the system boot processor to the hot spare processor; and”
	5. Limitation [23E]: “if determined that said lockstep pair of processors for which the loss of lockstep is not the system boot processor, then triggering an operating system to a) idle the lockstep pair of processors, b) attempt to recover lockstep ...

	B. Dependent Claim 24: “The method of claim 23 wherein if determined that said lockstep pair of processors for which the loss of lockstep is the system boot processor further comprising: attempting to recover lockstep between the lockstep pair of proc...
	C. Dependent Claim 25: “The method of claim 24 wherein if determined that said lockstep pair of processors for which the loss of lockstep is the system boot processor further comprising: if lockstep is successfully recovered between the lockstep pair ...
	D. Dependent Claim 12: “The method of claim 11 further comprising: after recovering lockstep for the lockstep pair of processors, holding the recovered pair of processors in idle as a spare for the processor to which the role of system boot processor ...

	XVI. Concluding Statement
	APPENDIX A
	APPENDIX B

