
(19) United States
US 2003O126498A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0126498A1
Bigbee et al. (43) Pub. Date: Jul. 3, 2003

(54) METHOD AND APPARATUS FOR
FUNCTIONAL REDUNDANCY CHECK
MODE RECOVERY

(76) Inventors: Bryant E. Bigbee, Scottsdale, AZ (US);
Shivnandan Kaushik, Portland, OR
(US); James B. Crossland, Banks, OR
(US)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD, SEVENTH
FLOOR
LOS ANGELES, CA 90025 (US)

(21) Appl. No.: 10/038,323

(22) Filed: Jan. 2, 2002

START

Publication Classification

(51) Int. Cl." ... G06F 11/00
(52) U.S. Cl. ... 714/10; 714/24

(57) ABSTRACT

A method and apparatus for functional redundancy check
mode recovery is disclosed. A method in accordance with
one embodiment includes detecting an event associated with
a device within a data processing System, initiating a plat
form-independent device removal Sequence for the device in
response to detecting the event, Virtually ejecting the device
from the data processing System in response to initiating the
platform-independent device removal Sequence, and Servic
ing the event associated with the device in response to
Virtually ejecting the device from the data processing Sys
tem.

AO2

HARDWARE DETECTS AN ERROR WITHNA FIRST PROCESSOR
CORE OF A PLURALITY OF PROCESSOR CORES OPERATING INFUNCTIONAL

REDUNDANCY CHECK (FRC) MODEASA SINGLE LOGICAL
PROCESSOR, DSABLES THE FIRST PROCESSOR CORE, AND GENERATES

A MACHINE CHECK EXCEPTION TO FIRMWARE

FIRMWARE GENERATES A SYSTEM CONTROL INTERRUPT (SC) TO
THE OPERATING SYSTEMAND RETURNS CONTROL OF A SECOND PROCESSOR
CORE OF THE PLURALITY OF PROCESSOR CORESTO THE OPERATING SYSTEM

OPERATING SYSTEM RESUMES NORMAL, EXECUTION ON THE
SECOND PROCESSOR CORE WHERE IT WAS

INTERRUPTED BY THE MACHINE CHECK EXCEPTION AND QUERIES
FRMWARE TO DETERMINE THE SOURCE OF THE SC

FRMWARE NOTFES THE OPERATING SYSTEM OF A
REQUEST FOR HOT REMOVAL OF THE PROCESSOR

OPERATING SYSTEM MODFES INTERNAL DATASTRUCTURES
TO INDICATE THAT THE PROCESSORS OFFLINE AND REOUESTS

FRMWARE EECTION OF THE PROCESSOR

FIRMWARE VIRTUALLY EJECTS THE PROCESSOR FROM THE SYSTEM,
RESETS THE PROCESSOR, RE-ENABLES FRCOPERATION OF THE FIRST
AND SECOND PROCESSOR CORES AND GENERATES AN SC TO THE

OPERATING SYSTEM

TO FIGURE 4B

ZF, Ex. 10051

Patent Application Publication Jul. 3, 2003 Sheet 1 of 5 US 2003/0126498A1

s s s S

2

Z "SOIH

US 2003/0126498A1 Jul. 3, 2003. Sheet 2 of 5

(170ZOVOZ870Z-, VV02-ºyzo?

ÅèHOWEWN

ÅèHOWNE W

Patent Application Publication

3

US 2003/0126498A1 Jul. 3, 2003 Sheet 3 of 5

Z ERHOO| HRH00 RHOSSE OORHdèHOSSE|00}}d

Patent Application Publication

4

Patent Application Publication Jul. 3, 2003. Sheet 4 of 5 US 2003/0126498A1

START

HARDWARE DETECTS AN ERROR WITH IN A FIRST PROCESSOR
CORE OF A PLURALITY OF PROCESSOR CORES OPERATING INFUNCTIONAL

REDUNDANCY CHECK (FRC) MODE ASA SINGLE LOGICAL
PROCESSOR, DISABLES THE FIRST PROCESSOR CORE, AND GENERATES

A MACHINE CHECK EXCEPTION TO FIRMWARE

FIRMWARE GENERATES ASYSTEM CONTROL INTERRUPT (SC) TO
THE OPERATING SYSTEMAND RETURNS CONTROL OF A SECOND PROCESSOR
CORE OF THE PLURALITY OF PROCESSOR CORESTO THE OPERATING SYSTEM

OPERATING SYSTEM RESUMES NORMAL, EXECUTION ON THE
SECOND PROCESSOR CORE WHERE IT WAS

INTERRUPTED BY THE MACHINE CHECK EXCEPTION AND OUERIES
FRMWARE TO DETERMINE THE SOURCE OF THE SC

FIRMWARE NOTFES THE OPERATING SYSTEM OF A
REQUEST FOR HOT REMOVAL OF THE PROCESSOR

OPERATING SYSTEMMODIFIES INTERNAL DATASTRUCTURES
TO INDICATE THAT THE PROCESSORS OFFLINE AND REOUESTS

FRMWARE EJECTION OF THE PROCESSOR

FIRMWARE VIRTUALLY EJECTS THE PROCESSOR FROM THE SYSTEM,
RESETS THE PROCESSOR,RE-ENABLES FRC OPERATION OF THE FIRST
AND SECOND PROCESSOR CORES AND GENERATES AN SC TO THE

OPERATING SYSTEM

TO FIGURE 4B

FIG. 4A

5

Patent Application Publication Jul. 3, 2003 Sheet 5 of 5 US 2003/0126498A1

FROM FIGURE 4A

OPERATING SYSTEM OUERIES FIRMWARE TO
DETERMINE THE SOURCE OF THE SCI

FIRMWARE NOTIFIES THE OPERATING SYSTEM OF A
REQUEST FOR HOT INSERTION OF THE PROCESSOR

OPERATING SYSTEMOUERIES FIRMWARE TO
DETERMINE STATUS AND ASSOCATED RESOURCES

OF THE PROCESSOR TO BEINSERTED

FIRMWARE PROVIDES STATUS AND ASSOCATED
RESOURCES DATA FOR THE PROCESSORTO BE

INSERTED TO THE OPERATING SYSTEM

OPERATING SYSTEM REQUESTS FIRMWARE
INSERTION OF THE PROCESSOR

FIRMWARE VIRTUALLY INSERTS THE
PROCESSOR INTO THE SYSTEM

OPERATING SYSTEMMODIFIES INTERNAL DATA
STRUCTURESTO INDICATE THAT THE PROCESSOR

IS ONLINE

FINISHY-30
FIG. 4B

6

US 2003/O126498A1

METHOD AND APPARATUS FOR FUNCTIONAL
REDUNDANCY CHECK MODE RECOVERY

BACKGROUND OF THE INVENTION

0001. The present invention relates generally to an
improved method and apparatus for data processing. More
particularly, the present invention relates to an improved
method and apparatus for error detection and recovery
within a data processing System. Still more particularly, the
present invention relates to a method and apparatus for
functional redundancy check mode recovery.

DESCRIPTION OF THE RELATED ART

0002 Many modern data processing (e.g. computer) Sys
tems employ redundancy of System elements to improve
system reliability and to decrease the amount of “downtime”
resulting from component failures, faults, or internal errors.
According to one technique for improving System reliability,
two or more physical processing elements or “cores' are
asSociated with and function as a single logical processor.
Each processor core may have its own physical processor
package or alternatively, two or more processor cores may
be incorporated into a Single processor package. The pro
ceSSor cores are operated in a functional redundancy check
(FRC) mode in which identical instructions are provided to
each core and concurrently executed on identical data So that
any error occurring within a Single core will produce an
inconsistent result as compared to the remaining cores
asSociated with a given processor. Specialized FRC logic
performs this comparison and generates a Signal Such as an
interrupt or exception once an inconsistent result has been
detected.

0003. In some conventional data processing systems,
proprietary System management Software has been utilized
to perform Similar error recovery while in other Systems,
Specialized firmware has been used. According to one tech
nique, hardware is utilized to generate a System-transparent
interrupt in response to detecting a mismatch in redundantly
operated processor cores. Specialized firmware receives the
hardware-generated interrupt and performs appropriate
recovery mechanisms. One drawback to this technique is
that most conventional operating Systems have a maximum
tolerable interrupt latency before System errors or failures
occur which varies dependent on the workload and asSoci
ated devices of a data processing System. Another drawback
asSociated with this technique is that Since processor State
rather than Software context is typically Saved it may be
more difficult to validate a System's capability to recover
from an error occurring at any point of the System's opera
tion.

0004. According to another technique, hardware is uti
lized to generate a specific System-visible interrupt in
response to detecting a mismatch in redundantly operated
processor cores. A proprietary operating System program
receives the hardware-generated interrupt and performs
appropriate recovery mechanisms. Since Software context
rather than processor State is typically saved, it may be easier
to validate a Systems ability to recover from errors utilizing
this technique. Significant drawbacks associated with this
technique however include that it burdens the operating
System, limits the number and types of operating Systems
which may be utilized with a particular hardware platform,

Jul. 3, 2003

limits the ability of the platform to evolve, and prevents
differentiation in terms of the underlying platform imple
mentation.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 The present invention is illustrated by way of
example and not limitation in the figures of the accompa
nying drawings in which Similar references are utilized to
indicate Similar elements and in which:

0006 FIG. 1 illustrates an abstraction layer block dia
gram of a data processing System according to one embodi
ment of the present invention;
0007 FIG. 2 illustrates an exemplary data processing
System according to one embodiment of the present inven
tion;
0008 FIG. 3 illustrates an exemplary block diagram of
processor package 204a of FIG. 2 according to one embodi
ment of the present invention;
0009 FIG. 4a illustrates a process flow diagram for a

first portion of a method according to one embodiment of the
present invention; and
0010 FIG. 4b illustrates a process flow diagram for a
Second portion of a method according to one embodiment of
the present invention.

DETAILED DESCRIPTION

0011. A method and apparatus for functional redundancy
check mode recovery are described herein. In the following
detailed description, numerous specific details Such as Spe
cific data processing System, processor package, and
abstraction layer interface architectures are set forth in order
to provide a more thorough understanding of the present
invention. It should be evident however, that these and other
Specific details described need not be utilized to practice the
present invention. In other circumstances, well-known Struc
tures, elements, or connections have been omitted, or have
not been described in particular detail in order to avoid
unnecessarily obscuring the present invention.
0012 Embodiments of the present invention may include
data processing hardware, firmware, Software, and various
processing operations further described herein. The meth
ods, features, and process operations of the present invention
may be provided utilizing executable instructions embodied
within a machine-accessible medium according to the
present invention.
0013 A machine-accessible medium may include any
mechanism that provides (i.e., Stores and/or transmits) infor
mation in a form accessible by a machine (e.g., a data
processing System or computer). For example, a machine
accessible medium includes but is not limited to: read only
memory (ROM); random access memory (RAM); magnetic
disk Storage media, optical Storage media; flash memory
devices, electrical, optical, acoustical or other form of
propagated signals (e.g., carrier Waves, infrared signals,
digital signals, etc.); or the like. The executable instructions
may be utilized to cause a general or Special purpose
processing element, programmed with the instructions, to
perform methods or processes of the present invention.
Alternatively, methods, features and operations of the
present invention may be performed utilizing Specific hard

7

US 2003/O126498A1

ware components that contain hard-wired logic, or by any
combination of programmed data processing components
and custom hardware components.
0.014 FIG. 1 illustrates an abstraction layer block dia
gram of a data processing System 100 according to one
embodiment of the present invention. The illustrated data
processing system 100 includes hardware 102, system man
agement programs according to the present invention includ
ing firmware 104 and operating System 106, and application
programs 108. Hardware 102 may comprise a wide variety
of devices including processing elements, chipsets, volatile
and nonvolatile memories, mass Storage devices, and input
output (I/O) devices accessed utilizing firmware 104.
0.015 Firmware 104 contains basic input-output system
(BIOS) program code for data processing system 100 and it
initializes, configures, and tests hardware 102 within data
processing System 100 and loads. Some or all of an operating
System 106, typically from Storage, into memory in a
process called initial program load (IPL). Firmware 104
provides an abstraction layer between higher (application
108 and operating system 106) layers of data processing
system 200 and hardware 102 and, in one embodiment,
handles machine check exceptions. Once loaded, operating
system 106, which may include a kernel and various inter
faces, interrupt handlers, resource managers, and device
drivers, manages the various application programs 108 and
hardware 102 of data processing system 100.
0016. In one embodiment, system 100 comprises an
advanced configuration and power interface (ACPI)-com
pliant data processing System. Accordingly, operating SyS
tem 106 includes operating System-directed power manage
ment (OSPM) program code, and an ACPI device driver and
firmware 104 comprises an ACPI BIOS including ACPI
machine language (AML) program code describing what
hardware devices are present within data processing System
100, as well as their configuration and interfaces, via ACPI
control methods, objects, registers, and tables. The disclosed
ACPI device driver within operating system 106 acts as an
AML interpreter to interpret and execute AML program
code.

0.017. When an event occurs within data processing sys
tem 100, firmware 104 or hardware 102 causes a bit to be set
within an event Status register, Such as a general purpose
event (GPE) status register, to indicate the occurrence of the
event. If a corresponding bit is Set within an event enable
register, the occurrence of the event may be signaled to
operating System 106 via the generation of a System-Visible
interrupt (e.g. a system control interrupt or “SCI”). The
operating System 106 receives the System-Visible interrupt,
determines what event caused the interrupt, and then Ser
vices the event by executing program code (e.g. control
methods) corresponding to bits set in the event status
register. Control methods may be written in an ACPI source
language (ASL) and compiled into AML for inclusion with
the system's BIOS. The operating system 106 executes a
control method by retrieving its associated AML code from
BIOS and then interpreting the retrieved code utilizing its
ACPI device driver/AML interpreter.
0.018. In another embodiment, firmware 104 includes an
extensible firmware interface (EFI), a system abstraction
level (SAL), and a processor abstraction level (PAL). The
PAL provides an abstraction of implementation-specific

Jul. 3, 2003

processor features while the SAL provides a platform
abstraction, isolating the EFI and operating system 106 from
implementation-specific platform differences. The EFI in
turn provides an application programming interface (API) to
operating System 106, allowing the operating System 106 to
interact with hardware 102 via the system and processor
abstraction levels. When a machine check exception occurs,
it may be handled by hardware, firmware, System manage
ment (e.g. operating System) Software, or not at all. For
example, Single bit data error correcting code (ECC) errors
occurring in processor cache may be handled by processor
hardware while multi-bit data ECC or parity errors occurring
in processor cache may be handled by an associated PAL.

0019. In one embodiment, hardware 102 includes two or
more processor packages, where each physical processor
package includes two or more physical processor cores
operating lock Step in FRC mode as a Single logical pro
cessor from the point of view of operating system 106.
Hardware 102 of the disclosed embodiment further includes
FRC logic. FRC logic detects errors within individual pro
ceSSor cores of the described embodiment which causes
hardware 102 to break lock step between at least two
processor cores within a processor package, disabling FRC
mode operation. Hardware 102 then disables any of the
package's error containing cores, placing them into a "Zom
bie” State, and generates a recoverable machine check
exception. The generated machine check exception in turn
triggers the execution of a processor error handler within a
PAL of one of the package's error-free cores.

0020. Thereafter, the processor error handler causes a
platform error handler within a SAL associated with the
package to be executed which initiates a platform-indepen
dent device removal Sequence for a processor associated
with the processor package by generating a System control
interrupt (SCI) to operating system 106. In one embodiment,
the SCI is generated using an INT OUT command capabil
ity associated with, for example, the 870 chipset manufac
tured by Intel Corporation of Santa Clara, Calif.

0021. In another embodiment, the disclosed processor
error handler comprises a PALE CHECK firmware routine
within a PAL of one of the package's error-free cores and the
platform error handler comprises SALE ENTRY and SAL
CHECK firmware routines within an associated SAL.
PALE CHECKsaves minimal processor state, determines if
the machine check exceptions associated errorS/events are
processor-related, Saves processor-related error information,
attempts to correct processor-related errors where possible,
and then passes control to SALE ENTRY which branches to
SAL CHECK. SAL CHECK in turn saves additional pro
ceSSor and platform error and State information, attempts to
correct any platform hardware-specific errors, and then
generates an SCI to operating System 106 as described.

0022 Firmware 104, via the disclosed SAL and PAL,
then returns control of the package's error-free cores to
operating System 106 which resumes its execution at the
point it was interrupted by the generation of the machine
check exception. Operating System 106 receives or detects
the firmware-generated SCI and utilizes ACPI control meth
ods to determine that the interrupt was caused by a request
for processor removal or ejection. Operating System 106
responsively modifies its internal data Structures to reflect
that the package's associated processor is offline including

8

US 2003/O126498A1

Saving the context of any threads being executed by oper
ating System 106 on the associated processor, removing it
from the mask of current processors, and disabling interrupts
to and from the processor. In another embodiment, operating
system further writes back the contents of and then disables
the associated processor's caches.
0023 Operating system 106 next utilizes ACPI control
methods to virtually eject the processor from data processing
system 100. In one embodiment of the invention, this has no
effect on hardware 102 other than to communicate to the
ACPI BIOS within firmware 104 that the processor's pack
age is being taken offline and to ensure that it is reset or
“re-initialized” to the state needed for it to be subsequently
awakened or “activated” by operating system 106. In
another embodiment, Virtually ejecting the processor results
in the physical removal of power from its associated pro
cessor package.
0024 Firmware 104, via ACPI BIOS program code then
resets the package to its original State at the time of operating
system 106 initial load/boot. In alternative embodiments of
the invention, this reset may comprise a “cold’ reset or
“RESET operation or a “warm” or “INIT" reset operation.
An associated SAL reinitializes the package and re-enables
FRC mode lock step operation between two or more of the
package's associated processor cores in response to detect
ing the ACPI BIOS-initiated reset operation. In yet another
embodiment, the packages associated SAL initiates a plat
form-independent device insertion Sequence for the proces
Sor package's associated processor by generating a System
control interrupt (SCI) to operating system 106 via the
previously disclosed INT OUT command capability.
0.025 Operating system 106 receives the firmware-gen
erated SCI and utilizes ACPI control methods to determine
that the interrupt was caused by a request for processor
insertion. Operating system 106 responsively modifies its
internal data Structures to reflect that the packages associ
ated processor is being brought online and then wakes and
configures the associated processor for use. While Specific
firmware components have been described herein, it should
be appreciated that alternative embodiments of the present
invention may be implemented utilizing alternative firm
ware components and/or a combination of platform inde
pendent and dependent Software components.
0.026 FIG. 2 illustrates an exemplary data processing
system 200 according to one embodiment of the present
invention. The data processing system 200 of the illustrated
embodiment includes a first node 202a "Node A” and a
second node 202b “Node B' coupled together and to various
shared resources (e.g. memory, mass storage devices, I/O
devices, etc.) via a shared interconnect including one or
more scalability port Switches. For example, Node A202a of
the illustrated embodiment may be coupled to and commu
nicate with Node B 202b and various shared storage and I/O
devices via a shared interconnect comprising a first Scal
ability port switch (SPS) 212a “SPS-A” and a second SPS
212b “SPS-B'.

0027 Node A 202a of the illustrated embodiment
includes a plurality of processor packages 204a-d and a
memory 206a. Each processor package 204a-d may contain
one or more physical processor cores associated with one or
more logical processors. In one embodiment, each of the
illustrated processor packages 204a-d includes a pair of

Jul. 3, 2003

processor cores operable in an FRC mode as a single logical
processor. Memory 206a is capable of Storing data and/or
processor-executable instructions and may comprise any
Suitable memory Such as dynamic random access memory
(DRAM) for example. Node A 202a further includes a
scalable node controller (SNC) 208a “SNC-A” coupled to
each processor package 204a-d via a shared bus 205a and to
memory 206a via a memory interconnect 210a. SNC-A
208a of the illustrated embodiment may be further utilized
to coupled Node A 202a to SPS-A212a and SPS-B 212b of
the shared interconnect as illustrated. Additional nodes (e.g.
Node B 202b) may include substantially identical compo
nents operating in a Substantially identical manner as those
of Node A202a. Node B 202b of the illustrated embodiment
has accordingly not been described in order to avoid unnec
essarily obscuring the present invention.
0028. Each SPS (212a, 212b) may in turn be coupled to
a first I/O hub (IOH) 214a “IOH-A” and a second IOH 214b
“IOH-B” as illustrated, allowing a greater number and
variety of shared devices Such as memory, mass Storage
devices (e.g. optical or magnetic Storage devices), and I/O
devices (e.g. display devices, keyboards, mice, trackballs,
network interface cards, etc.) to be coupled to data process
ing system 200 via each IOH's hub interfaces 222. For
example, IOH-A214a may be coupled to and communicate
with a conventional I/O hub 216a "ICH2', one or more
peripheral component interconnect (PCI) or PCI extended
(PCI-X) controller hubs 2.18a “P64H2", and an Infiniband
controller hub 220a “IVXB' via hub interfaces 222 as
illustrated. IOH-B 214b may be similarly coupled to a
conventional I/O hub 216b, PCI/PCI-X controller hubs
218a, and an Infiniband controller hub 220a as shown,
however, in alternative embodiments of the present inven
tion, each IOH may be coupled to any number or combina
tion of controller hubs, mass Storage, memory, or I/O
devices, or the like.

0029 ICH2216a of the illustrated embodiment provides
an interface to peripheral components or other devices for
data processing system 200. ICH2216.a may comprise any
suitable interface controller to provide for any suitable
communication link to IOH-A 214a and/or to any suitable
device or component in communication with ICH2216a.
ICH2216.a for one embodiment provides suitable buffering
and arbitration for each interface. ICH2216a may be further
coupled to and provide an interface to a firmware hub
(FWH) 224a as illustrated. FWH 224a may comprise any
suitable interface controller to provide for any suitable
communication link to ICH2216a. In the illustrated embodi
ment, FWH 224a comprises a memory 226a to store one or
more firmware interfaces (e.g. SAL or ACPI BIOS program
code) according to the present invention. Memory 226 a may
comprise any Suitable memory capable of Storing data
and/or processor-executable instructions. In one embodi
ment, memory 226a comprises a non-volatile memory Such
as a read-only memory (ROM), programmable read-only
memory (PROM), flash memory, or the like.
0030. While a specific embodiment of data processing
system 200 has been illustrated herein, it should be appre
ciated that additional alternative embodiments as well as
variations or modifications of the illustrated exemplary
embodiment may be implemented within the scope of the
present invention. For example, in one alternative embodi
ment, data processing System 200 may be implemented with

9

US 2003/O126498A1

a single node having more or fewer components than the
nodes 202a-b depicted. A node may accordingly be coupled
to available resources without the use of a Scalability port
Switch by coupling, for example an associated Scalable node
controller directly to one or more I/O hubs. Firmware
interfaces (e.g. SAL or ACPI BIOS program code) according
to the present invention may also be stored within Node A
202a either within existing memory 206a or an additional
memory coupled to SNC-A 208a directly or via a conven
tional I/O hub and FWH as described with respect to
memory 226a.
0031. It should similarly be appreciated that the present
invention may be practiced utilizing a data processing
System 200 having a greater or lesser number of components
as the illustrated exemplary System. For example, data
processing System 200 may comprise, in alternative embodi
ments of the present invention, one of a wide variety of
Server or client computer Systems or devices Such as a
workstation, personal computer, “thin client' (i.e. network
computer or NetPC), Internet appliance, terminal, palmtop
computing device, robust cellular or Personal Communica
tions Services (PCS) telephone, “thin server” (sometimes
called an appliance Server, application Server, or Specialty
Server), or the like. In one embodiment, data processing
system 200 comprises a high-availability server data pro
cessing System.

0.032 FIG. 3 illustrates an exemplary block diagram of
processor package 204a of FIG. 2 according to one embodi
ment of the present invention. In the illustrated embodiment,
a processor package 204a may be coupled to a shared "front
side' bus 205a, and may include functional redundancy
check (FRC) logic 308, a shared cache memory 306, and a
first processor core 302a and a second processor core 302b,
each having an associated private cache memory 304a and
304b, respectively. Within the present description, the term
“processor core” or “core” describes a physical processing
element or execution entity, the term “processor package” or
"package' describes a physical entity which incorporates,
houses, or contains one or more processor cores. The term
“processor” may therefore be utilized to describe either a
physical processing element or execution entity, or a logical
processing element or execution entity as viewed by System
management or application Software (e.g. operating System
software).
0033. In one embodiment, the first and second processor
cores 302a-b within the depicted processor package 204a
may be bound together to function as a single logical
processor from the point of View of operating System
Software. Both cores 302a and 302b operate in an FRC mode
in which identical instructions may be provided to each core
and concurrently executed on identical data utilizing FRC
logic 308. Processor cores 302a, 302b may each comprise
any Suitable processor architecture and for one embodiment
comprise an Intel' Architecture, used for example, in the
Itanium TM family of processors available from IntelTM Cor
poration of Santa Clara, Calif. FRC logic 308 operates
processor cores 302a-b as a single logical processor by
concurrently providing each with identical data and instruc
tions. Each processor core 302a-b executes instructions and
processes data to generate results which may then be stored
within an associated private (e.g. 304a–b) and/or shared (e.g.
306) cache. FRC logic 308 monitors processor core store
operations or “writes” to shared cache 306 to detect incon

Jul. 3, 2003

Sistencies in the generated results which indicate an FRC
mismatch error. Such inconsistencies can occur as a result of
partial or total hardware failure, or the effect of an alpha
particle or other form of natural or artificial radiation
impacting one or more processor cores.

0034). In alternative embodiments, FRC logic 308 may be
implemented as executable firmware or dedicated hardware
coupled with or incorporated into one or more of the
processor package's 204a components. In yet another
embodiment, a plurality of processor packages are provided,
each including a single processor core with FRC logic being
provided either within each processor package or external to
each package to operate two or more of the package's
asSociated processor cores in an FRC mode.

0035 FIG. 4a illustrates a process flow diagram for a
first portion of a method according to one embodiment of the
present invention. The illustrated process begins (block 402)
and thereafter hardware (e.g. FRC logic) detects an error
within a first processor core of a plurality of processor cores
operating in an FRC mode as a Single logical processor,
disables the first processor core, and generates a System
transparent machine check exception (block 404) which in
turn causes firmware (e.g. SAL program code) to generate a
System-Visible system control interrupt (SCI) to operating
System (OS) Software and return control of at least a second,
error-free processor core of the plurality of processor cores
to the OS (block 406). In alternative embodiments in which
the described plurality includes three or more processor
cores, additional error-free cores may also be turned over to
operating System control.

003.6 OS Software then resumes execution on the second
processor core where it was interrupted by the machine
check exception and queries firmware (e.g. ACPI BIOS) to
determine the source of the SCI (block 408). In one embodi
ment, this may be accomplished by the OS executing an
LXX control method. Firmware responds to the OS query by

notifying the operating System of a request for processor hot
removal (block 410). This may be accomplished using an
ACPI Notify command. The operating system then modifies
its internal data Structures to indicate that the processor is
offline and requests firmware ejection of the processor
(block 412). In one embodiment, the operating System
requests firmware ejection of the processor by executing an
EJX control method.
0037. In response to the operating system ejection
request, firmware virtually ejects the processor from the
System, resets the processor, re-enables FRC operation of at
least the first and Second processor cores and generates an
SCI to the Operating System (block 414) before beginning
a second portion of the illustrated method embodiment
depicted in FIG. 4b. Thereafter, in the process illustrated in
FIG. 4b, operating System Software queries firmware (e.g.
ACPI BIOS) to determine the source of the previously
generated SCI (block 416). Firmware responds to the OS
query by notifying the operating System of a request for
processor hot insertion (block 418). Next, the operating
System queries firmware to determine the Status and to
identify the associated resources of the processor to be
inserted (block 420) and firmware provides the operating
system with the requested data (block 422). In one embodi
ment, this may be accomplished by executing one or more
control methods (e.g., STA, MAT, and CRS). Once the

10

US 2003/0126498 Al

relevant status and resource data is received, the operating
system requests insertion of the processor (block 424) and
the firmware virtually inserts the processor into the system
(block 426). In one embodiment, the operating system may
request insertion of the processor using a _PSO control
method which puts a device into its DO or “active” state.
Once the processor has been inserted and/or activated as
described, the OS modifies its internal data structures to
indicate that the processoris online and available before the
illustrated process terminates (block 430).

[0038] In the foregoing description, the present invention
has been described with reference to specific exemplary
embodiments thereof. It will be apparent however, that
variations or modifications of the exemplary embodiments
described as well as alternative embodiments of the present
invention may be implemented without departing from the
broaderspirit or scope of the present invention as defined in
the appended claims. The specification and drawings are
accordingly to be regarded in an illustrative rather than a
restrictive sense.

Whatis claimedis:

1. A method comprising:

detecting an event associated with a device within a data
processing system;

initiating a platform-independent device removal
sequence for said device in response to detecting said
event associated with said device;

virtually ejecting said device from said data processing
system in responseto initiating said platform-indepen-
dent device removal sequence for said device; and

servicing said event associated with said device in
response to virtually ejecting said device from said data
processing system.

2. The method of claim 1, wherein initiating a platform-
independent device removal sequence for said device in
response to detecting said event associated with said device
comprises generating a system control interrupt.

3. The method of claim 2, wherein generating a system
control interrupt comprises generating a system control
interrupt utilizing an INT_OUT command.

4. The method of claim 1, wherein said device comprises
a processor including a first processor core and a second
processor core, said method further comprising operating
said first processor core and said second processor core in a
functional redundancy check mode.

5. The method of claim 4, wherein detecting an event
associated with a device within a data processing system
comprises detecting an error within at least one of saidfirst
processor core and said second processor core.

6. The method of claim 4, said method further comprising
disabling interrupts to said processor in response to initiating
a platform-independent device removal sequence for said
device.

7. The method of claim 4, wherein operating said first
processor core and said second processor core in a func-
tional redundancy check mode comprises concurrently
executing a thread on said first processor core and said
second processor core, said method further comprising:

saving a context of said thread in response to initiating a
platform-independent device removal sequencefor said
device.

Page 11 of 12

Jul. 3, 2003

8. The method of claim 5, said method further comprising
disabling said functional redundancy check mode in
response to detecting said error within at least one of said
first processor core and said second processor core.

9. The method of claim 8, wherein servicing said event
associated with said device in response to virtually ejecting
said device from said data processing system comprises:

resetting said processor; and

re-enabling said functional redundancy check mode in
response to resetting said processor.

10. The method of claim 1, said method further compris-
ing:

initiating a platform-independent device insertion
sequence for said device in response to servicing said
event associated with said device; and

virtually inserting said device into said data processing
system in responseto initiating said platform-indepen-
dent device insertion sequence for said device.

11. A machine-accessible medium having machine-ex-
ecutable instructions embodied therein which, when
executed by a machine, causes said machine to perform a
method comprising:

detecting an event associated with a device within a data
processing system;

initiating a platform-independent device removal
sequence for said device in response to detecting said
even t associated with said device;

virtually ejecting said device from said data processing
system in responseto initiating said platform-indepen-
dent device removal sequence for said device; and

servicing said event associated with said device in
response to virtually ejecting said device from said data
processing system.

12. The machine-accessible medium of claim 11, wherein
said device comprises a processorincludingafirst processor
core and a second processor core, said method further
comprising operating said first processor core and said
second processor core in a functional redundancy check
mode.

13. The machine-accessible medium of claim 12, wherein
detecting an event associated with a device within a data
processing system comprises detecting an error within at
least one of said first processor core and said second
processor core.

14. The machine-accessible medium of claim 12, said
method further comprising disabling interrupts to said pro-
cessor in response to initiating a platform-independent
device removal sequence for said device.

15. The machine-accessible medium of claim 12, wherein
operating said first processor core and said second processor
core in a functional redundancy check mode comprises
concurrently executing a thread on said first processor core
and said second processor core, said method further com-
prising:

saving a context of said thread in responseto initiating a
platform-independent device removal sequencefor said
device.

16. The machine-accessible medium of claim 13, said
method further comprising disabling said functional redun-

11

US 2003/O126498A1

dancy check mode in response to detecting Said error within
Said at least one of Said first processor core and Said Second
processor core.

17. The machine-accessible medium of claim 16, wherein
Servicing Said event associated with Said device in response
to Virtually ejecting Said device from Said data processing
System comprises:

resetting Said processor, and
re-enabling Said functional redundancy check mode in

response to resetting Said processor.
18. A data processing System comprising:
a proceSSOr, and

a memory coupled to Said processor, Said memory includ
ing a firmware interface to initiate a platform-indepen
dent device removal Sequence for Said processor in
response to a detection of an event associated with Said
processor, to virtually eject Said processor from Said
data processing System in response to an initiation of a
platform-independent device removal Sequence for Said
processor, and to Service Said event associated with Said
processor in response to a virtual ejection of Said
processor from Said data processing System.

19. The data processing system of claim 18, wherein said
firmware interface to initiate a platform-independent device
removal Sequence for Said processor in response to a detec
tion of an event associated with Said processor comprises a
firmware interface to generate a System control interrupt.

20. The data processing system of claim 19, wherein said
firmware interface to generate a System control interrupt
comprise a firmware interface to generate a System control
interrupt utilizing an INT OUT command.

21. The data processing System of claim 18, wherein Said
processor comprises a first processor core and a Second
processor core, Said data processing System further com
prising functional redundancy check logic to operate Said
first processor core and Said Second processor core in a
functional redundancy check mode.

22. The data processing System of claim 21, wherein Said
firmware interface to initiate a platform-independent device
removal Sequence for Said processor in response to a detec
tion of an event associated with Said processor comprises a
firmware interface to initiate a platform-independent device
removal Sequence for Said processor in response to a detec
tion of an error within at least one of Said first processor core
and Said Second processor core.

23. The data processing System of claim 21, Said memory
further including an operating System to disable interrupts to
Said processor in response to an initiation of a platform
independent device removal Sequence for Said processor.

24. The data processing System of claim 21, wherein
Said functional redundancy check logic to operate Said

first processor core and Said Second processor core in a
functional redundancy check mode comprises func
tional redundancy check logic to concurrently execute
a thread on Said first processor core and Said Second
processor core, and

Jul. 3, 2003

Said memory further includes an operating System to Save
a context of Said thread in response to an initiation of
a platform-independent device removal Sequence for
Said processor.

25. The data processing System of claim 21, wherein Said
firmware interface further comprises a firmware interface to
disable Said functional redundancy check mode in response
to Said detection of an event associated with Said processor.

26. The data processing System of claim 25, wherein Said
firmware interface to Service Said event associated with Said
processor in response to a virtual ejection of Said processor
from Said data processing System comprises a firmware
interface to reset Said processor and to re-enable Said func
tional redundancy check mode in response to a reset of Said
processor.

27. The data processing System of claim 18, wherein Said
firmware interface further comprises a firmware interface to
initiate a platform-independent device insertion Sequence
for Said processor in response to a Servicing of Said event
asSociated with Said processor and to virtually insert Said
processor into Said data processing System in response to an
initiation of a platform-independent device insertion
Sequence for Said processor.

28. An apparatus comprising:
a first firmware interface to detect an event associated

with a processor within a data processing System;

a Second firmware interface to initiate a platform-inde
pendent device removal Sequence for Said processor in
response to a detection of Said event associated with
Said processor;

a third firmware interface to virtually eject Said processor
from Said data processing System in response to an
initiation of a platform-independent device removal
Sequence for Said processor; and

a fourth firmware interface to Service Said event associ
ated with Said processor in response to a virtual ejection
of Said processor from Said data processing System.

29. The apparatus of claim 28, wherein said second
firmware interface to initiate a platform-independent device
removal Sequence for Said processor in response to a detec
tion of Said event associated with Said processor comprises
a firmware interface to generate a System control interrupt.

30. The apparatus of claim 28, said apparatus further
comprising:

a fifth firmware interface to initiate a platform-indepen
dent device insertion Sequence for Said processor in
response to a Servicing of Said event associated with
Said processor; and

a sixth firmware interface to Virtually insert Said processor
into Said data processing System in response to an
initiation of a platform-independent device insertion
Sequence for Said processor.

12

