
(19) United States
(12) Patent Application Publication (io> Pub. No.: US 2004/0123201 Al

Nguyen et al. (43) Pub. Date: Jun. 24,2004

US 20040123201A1

(54) ON-DIE MECHANISM FOR
HIGH-RELIABILITY PROCESSOR

(76) Inventors: Hang T. Nguyen, Tempe, AZ (US);
Steven J. Th, Phoenix, AZ (US);
Alexander J. Honcharik, Holden, MA
(US); Sujat Jamil, Chandler, AZ (US)

Correspondence Address:
Leo V. Novakoski
BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
LLP
Seventh Floor
12400 Wilshire Boulevard
Los Angeles, CA 90025-1026 (US)

(21) Appl. No.: 10/324,957

(22) Filed: Dec. 19, 2002

Publication Classification

(51) Int. Cl.7 G01R 31/28; G06F 11/00
(52) U.S. Cl... 714/736

(57) ABSTRACT

A processor includes first and second execution cores that
operate in a redundant (FRC) mode, an FRC check unit to
compare results from the first and second execution cores,
and an error check unit to detect recoverable errors in the
first and second cores. The error detector disables the FRC
checker, responsive to detection of a recoverable error. A
multi-mode embodiment of the processor implements a
multi-core mode in addition to the FRC mode. An arbitration
unit regulates access to resources shared by the first and
second execution cores in multi-core mode. The FRC
checker is located proximate to the arbitration unit in the
multi-mode embodiment.

1111111111111111 IIIIII IIIII 11111 1111111111 111111111111111 1111111111 111111111111111 11111111
US 20040123201Al

(19) United States
(12) Patent Application Publication

Nguyen et al.
(10) Pub. No.: US 2004/0123201 Al
(43) Pub. Date: Jun. 24, 2004

(54) ON-DIE MECHANISM FOR
HIGH-RELIABILITY PROCESSOR

Publication Classification

(76)

(21)

(22)

Inventors: Hang T. Nguyen, Tempe, AZ (US);
Steven J. Tu, Phoenix, AZ (US);
Alexander J. Honcharik, Holden, MA
(US); Sujat Jamil, Chandler, AZ (US)

Correspondence Address:
Leo V. Novakoski
BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
LLP
Seventh Floor
12400 Wilshire Boulevard
Los Angeles, CA 90025-1026 (US)

Appl. No.:

Filed:

10/324,957

Dec. 19, 2002

I
124(A)_

120(A)

128(A)

I
I

(51) Int. Cl.7 G0lR 31/28; G06F 11/00
(52) U.S. Cl. .. 714/736

(57) ABSTRACT

A processor includes first and second execution cores that
operate in a redundant (FRC) mode, an FRC check unit to
compare results from the first and second execution cores,
and an error check unit to detect recoverable errors in the
first and second cores. The error detector disables the FRC
checker, responsive to detection of a recoverable error. A
multi-mode embodiment of the processor implements a
multi-core mode in addition to the FRC mode. An arbitration
unit regulates access to resources shared by the first and
second execution cores in multi-core mode. The FRC
checker is located proximate to the arbitration unit in the
multi-mode embodiment.

110
120(8)

-- -

ltllifil 128(8)

+---- ----- ---- --------------
• •

FRC CHECKER
ERROR DETECTOR

- 140
130

L
RECOVERY MODULE

150
I'

SHARED RESOURCE(S)
170 ---------------+ 1 04

•
RESET

MODULE
160

ZF, Ex. 10061

Patent Application Publication Jun. 24, 2004 Sheet 1 of 8 US 2004/0123201 AlPatent Application Publication Jun. 24, 2004 Sheet 1 of 8 US 2004/0123201 Al

120(A)
110

120(8)

124lA) 128(A) 1241B1 128(8)

J
I

.,_ ________ _ ---- --------------

FRC CHECKER
130

SHARED RESOURCE(S)
170

' I
I

: ERROR DETECTOR
.. --:--------;-,---, 140

RESET
MODULE

160

RECOVERY MODULE
150

- -------- ---- __ _,. 104

FIG. 1

2

Patent Application Publication Jun. 24, 2004 Sheet 2 of 8 US 2004/0123201 AlPatent Application Publication Jun. 24, 2004 Sheet 2 of 8 US 2004/0123201 Al

120(A)
110

120(8)

124(A) 128(A) 124{8) 128(8)

+------ --- ---- -- ------------
'I' r ' '. '" r

ARBITRATION
UNIT

FRC ERROR DETECTOR
CHECKER 1•~-------.----1 140

180 130

I

SHARED RESOURCE(S)
170

RESET
MODULE

16_Q

RECOVERY MODULE
150

--- - ---- - - -----+ 104

FIG. 2

3

Patent Application Publication Jun. 24, 2004 Sheet 3 of 8 US 2004/0123201 Al

FIG. 3A

Patent Application Publication Jun. 24, 2004 Sheet 3 of 8 US 2004/0123201 Al

NON-VOLATILE
MEMORY 390

MAIN
300 1 392 1 1 394 1 MEMORY

CHIPSET
380

~ ~ 370 1 392 1 I
PERIPHERAL

1 394 1 DEVICE
398

~

~ '--" FSB
360

I

+
SNOOP SHARED CACHE BLOCK 340 V 362

~ ~ ~ ~
- -- INT_C INT_C XOR

.... 366
2 378(A) 378(8) 4 2 4
330 30 --- ~-~ -

...... {/ ···········~~t .. ··················
............ {; - 2

._

I I

BUS CLUSTER BUS CLUSTER
INT_C INT_C

328(A) 328_(_8)
374(A) 374(8)

G:J ~
370(A) 370(8)

A B

EXECUTION EXECUTION
RESOURCES RESOURCES

324(A) 324(8)

320(A) 320(8)

...................
···········1·······

310

FIG. 3A

4

Patent Application Publication Jun. 24, 2004 Sheet 4 of 8 US 2004/0123201 Al

FI
G

. 3
B

32
0(

A)

ER
RO

R
I3

36
(A

)I
SI

G
N

AL
(A

)

32
0(

8)

ER
RO

R
13

36
(8

)1

SI
G

N
AL

(B
)

FI
G.

 3
8

ER
RO

R
SI

G
N

AL

SI
G

N
AL

 F
RO

M

CO
RE

 1
20

(A
)

FR
C

CH
EC

KE
R

33
2

SI
G

N
AL

 F
RO

M

CO
RE

 1
20

(8
)

SH
AR

ED

RE
SO

UR
CE

S
ER

RO
R

~

~

~
 ,i;

;..

0,

0
0

5

Patent Application Publication Jun. 24, 2004 Sheet 5 of 8 US 2004/0123201 Al

FIG. 4

Patent Application Publication Jun. 24, 2004 Sheet 5 of 8 US 2004/0123201 Al

CACHE FSB
340 360

i
/ 460 \ ; 470 \

• -~ ' ' '

WOB
~ 410 r--

,- RLB 440(A) ~
444

SOB
,-. RLB 440(8) i+-

~
r-- ~

420
~

'" ' WLBmA; ~ ,__ ~

434
I-- WLB.43.Q.(B: ,~

l -•r

\ 480 / -
~ CB 450(A) ,-

454
~ CB ~50(8) ,-

-
., 1

EXECUTION CORE EXECUTION CORE
320(A) 320(8)

FIG. 4

6

Patent Application Publication Jun. 24, 2004 Sheet 6 of 8 US 2004/0123201 Al

FIG. 5

Patent Application Publication Jun. 24, 2004 Sheet 6 of 8 US 2004/0123201 Al

BROADCAST ERROR SIGNAL
510

H

SAVE STATE OF GOOD CORE
520

,,
INITIALIZE BOTH CORES

530

,,
RESTORE STATE TO BOTH CORES

540

,,
REENTER FRC MODE

550

,,
RETURN TO INTERRUPTED CODE

560

FIG. 5

7

Patent Application Publication Jun. 24, 2004 Sheet 7 of 8 US 2004/0123201 AlPatent Application Publication Jun. 24, 2004 Sheet 7 of 8

DISABLE FRC UNIT
630

SUSPEND ACTIVITIES
650

INITIALIZE CORE
674

YES

600

SIGNAL
- ---- - - - --- - - - SLAVE

6.42

FULL RESET
644 ----+---

US 2004/0123201 Al

YES

SAVE MACHINE STATE
660

FLUSH QUEUES
664

SIGNAL RESET
.668

INITIALIZE CORE
fil6

ACTIVATE FRC MODE ..,._ ____ _
680

RESTORE SAVED
STATE
684

RETURN TO CODE
SEQUENCE

690 FIG. 6

8

Patent Application Publication Jun. 24, 2004 Sheet 8 of 8 US 2004/0123201 Al

CORE (A) CORE (B)

Patent Application Publication Jun. 24, 2004 Sheet 8 of 8 US 2004/0123201 Al

CORE (A)
SIGNALS

QUEUE
736

CORE (B)
SIGNALS

1

COMPARE
UNIT
734

l
TIMER

738

FRC CHECKER
730

TO SHARED
RESOURCE(S)

ERROR ERROR
SIGNAL(A) SIGNAL(B)

RESET MODULE
1160

FIG. 7

ERROR DETECTOR
140

RECOVERY MODULE
150

9

US 2004/0123201 Al Jun. 24, 2004
1

ON-DIE MECHANISM FOR HIGH-RELIABILITY
PROCESSOR

BACKGROUND OF THE INVENTION

[0001] 1. Technical Field

[0002] The present invention relates to microprocessors
and, in particular, to mechanisms for handling errors in
FRC-enabled processors.

[0003] 2. Background Art

[0004] Servers and other high-end computing and com
munication systems are designed to provide high levels of
reliability and availability. Soft errors pose a major chal
lenge to both of these properties. Soft errors result from
collisions between high-energy particles, e.g. alpha par
ticles, and charge storing nodes. They are prevalent in
storage arrays, such as caches, TLBs, and the like, which
include large numbers of charge storing nodes. They also
occur in random state elements and logic. Rates of occur
rence of soft errors (soft error rates or SERs) will likely
increase as device geometry decreases and device densities
increase.

[0005] Highly reliable systems include safeguards to
detect and manage soft errors, before they lead to silent, e.g.
undetected, data corruption (SDC). However, to the extent
error detection/handling mechanisms that support high-reli-
ability operations take a system away from its normal
operations, the system’s availability is reduced. For
example, one such mechanism resets the system to its last
known valid state if an error is detected. The system is
unavailable to carry out its assigned task while it is engaged
in the reset operation.

[0006] One well-known mechanism for detecting soft
errors is functional redundancy checking (FRC). A single
processor enabled for FRC may include replicated instruc
tion execution cores on which the same instruction code is
run. Depending on the particular embodiment, each repli
cated execution core may include one or more caches,
register files and supporting resources in addition to the
basic execution units (integer, floating point, load store,
etc.). FRC-hardware compares results generated by each
core, and if a discrepancy is detected, the FRC system passes
control to an error-handling routine. The point(s) at which
results from different execution cores are compared repre
sents the FRC-boundary for the system. Errors that are not
detected at the FRC boundary can lead to SDC.

[0007] Since FRC errors indicate only that the execution
cores disagree on a result, FRC errors are detectable but not
recoverable. As noted above, the FRC error handling routine
typically resets the system to the last known point of reliable
data. This reset mechanism is relatively time consuming. It
takes the system away from its normal operations, reducing
system availability.

[0008] FRC is only one mechanism for handling soft
errors, and for random logic and random state elements, it is
the primary mechanism. Array structures present a different
picture. Array structures typically include parity and/or ECC
hardware, which detect soft errors by examining properties
of the data. In many cases, the system can correct errors
created by data corruption using relatively fast hardware or
software mechanisms. However, for FRC-enabled proces

sors, such errors are likely to be manifested as FRC errors,
since they take the execution cores out of lock-step. Han
dling these otherwise recoverable errors through a reset
mechanism reduces system availability.

[0009] The present invention addresses mechanisms for
combining recoverable and non-recoverable error handling
mechanisms efficiently in FRC-enabled processors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present invention may be understood with
reference to the following drawings, in which like elements
are indicated by like numbers. These drawings are provided
to illustrate selected embodiments of the present invention
and are not intended to limit the scope of the invention.

[0011] FIG. 1 is a block diagram of a processor including
dual execution cores and FRC-detection and handling logic.

[0012] FIG. 2 is a block diagram of an embodiment of the
processor of FIG. 1 that is capable of operating in multiple
modes.

[0013] FIG. 3A is a block diagram of one embodiment of
a computing system that implements the multi mode pro
cessor of FIG. 2.

[0014] FIG. 3B is a block diagram of a mechanism for
signaling recoverable errors in the computing system of
FIG. 3A.

[0015] FIG. 4 is a block diagram representing the data
paths of the computing system of FIG. 3A.

[0016] FIG. 5 is a flowchart representing one embodiment
of a mechanism for recovering from soft error in an execu
tion core.

[0017] FIG. 6 is a flowchart representing one embodiment
of a mechanism for recovering from a soft error in a multi
execution core processor.

[0018] FIG. 7 is a block diagram representing one
embodiment of an FRC checker that mitigates race condi
tions between recoverable and non-recoverable error mecha
nisms.

DETAILED DESCRIPTION OF THE
INVENTION

[0019] The following discussion sets forth numerous spe
cific details to provide a thorough understanding of the
invention. However, those of ordinary skill in the art, having
the benefit of this disclosure, will appreciate that the inven
tion may be practiced without these specific details. In
addition, various well-known methods, procedures, compo
nents, and circuits have not been described in detail in order
to focus attention on the features of the present invention.
For example, aspects of the present invention are illustrated
using a dual-core processor, but persons skilled in the art
will recognize that more than two cores may be used with
appropriate modifications of the reset and recovery mecha
nisms.

[0020] FIG. 1 is a block diagram representing one
embodiment of an FRC-enabled processor 110 in accor
dance with the present invention. Processor 110 includes
first and second execution cores 120(a), 120(b) (generically,
execution core 120), an FRC checker 130, an error detector

US 2004/0123201 Al

ON-DIE MECHANISM FOR HIGH-RELIABILITY
PROCESSOR

BACKGROUND OF THE INVENTION

[0001] 1. Technical Field

[0002] The present invention relates to microprocessors
and, in particular, to mechanisms for handling errors in
PRC-enabled processors.

[0003] 2. Background Art

[0004] Servers and other high-end computing and com
munication systems are designed to provide high levels of
reliability and availability. Soft errors pose a major chal
lenge to both of these properties. Soft errors result from
collisions between high-energy particles, e.g. alpha par
ticles, and charge storing nodes. They are prevalent in
storage arrays, such as caches, TLBs, and the like, which
include large numbers of charge storing nodes. They also
occur in random state elements and logic. Rates of occur
rence of soft errors (soft error rates or SERs) will likely
increase as device geometry decreases and device densities
mcrease.

[0005] Highly reliable systems include safeguards to
detect and manage soft errors, before they lead to silent, e.g.
undetected, data corruption (SDC). However, to the extent
error detection/handling mechanisms that support high-reli
ability operations take a system away from its normal
operations, the system's availability is reduced. For
example, one such mechanism resets the system to its last
known valid state if an error is detected. The system is
unavailable to carry out its assigned task while it is engaged
in the reset operation.

[0006] One well-known mechanism for detecting soft
errors is functional redundancy checking (FRC). A single
processor enabled for FRC may include replicated instruc
tion execution cores on which the same instruction code is
run. Depending on the particular embodiment, each repli
cated execution core may include one or more caches,
register files and supporting resources in addition to the
basic execution units (integer, floating point, load store,
etc.). PRC-hardware compares results generated by each
core, and if a discrepancy is detected, the FRC system passes
control to an error-handling routine. The point(s) at which
results from different execution cores are compared repre
sents the PRC-boundary for the system. Errors that are not
detected at the FRC boundary can lead to SDC.

[0007] Since FRC errors indicate only that the execution
cores disagree on a result, FRC errors are detectable but not
recoverable. As noted above, the FRC error handling routine
typically resets the system to the last known point of reliable
data. This reset mechanism is relatively time consuming. It
takes the system away from its normal operations, reducing
system availability.

[0008] FRC is only one mechanism for handling soft
errors, and for random logic and random state elements, it is
the primary mechanism. Array structures present a different
picture. Array structures typically include parity and/or ECC
hardware, which detect soft errors by examining properties
of the data. In many cases, the system can correct errors
created by data corruption using relatively fast hardware or
software mechanisms. However, for PRC-enabled proces-

1
Jun.24,2004

sors, such errors are likely to be manifested as FRC errors,
since they take the execution cores out of lock-step. Han
dling these otherwise recoverable errors through a reset
mechanism reduces system availability.

[0009] The present invention addresses mechanisms for
combining recoverable and non-recoverable error handling
mechanisms efficiently in PRC-enabled processors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present invention may be understood with
reference to the following drawings, in which like elements
are indicated by like numbers. These drawings are provided
to illustrate selected embodiments of the present invention
and are not intended to limit the scope of the invention.

[0011] FIG. 1 is a block diagram of a processor including
dual execution cores and PRC-detection and handling logic.

[0012] FIG. 2 is a block diagram of an embodiment of the
processor of FIG. 1 that is capable of operating in multiple
modes.

[0013] FIG. 3A is a block diagram of one embodiment of
a computing system that implements the multi mode pro
cessor of FIG. 2.

[0014] FIG. 3B is a block diagram of a mechanism for
signaling recoverable errors in the computing system of
FIG. 3A.

[0015] FIG. 4 is a block diagram representing the data
paths of the computing system of FIG. 3A.

[0016] FIG. 5 is a flowchart representing one embodiment
of a mechanism for recovering from soft error in an execu
tion core.

[0017] FIG. 6 is a flowchart representing one embodiment
of a mechanism for recovering from a soft error in a multi
execution core processor.

[0018] FIG. 7 is a block diagram representing one
embodiment of an FRC checker that mitigates race condi
tions between recoverable and non-recoverable error mecha
msms.

DETAILED DESCRIPTION OF THE
INVENTION

[0019] The following discussion sets forth numerous spe
cific details to provide a thorough understanding of the
invention. However, those of ordinary skill in the art, having
the benefit of this disclosure, will appreciate that the inven
tion may be practiced without these specific details. In
addition, various well-known methods, procedures, compo
nents, and circuits have not been described in detail in order
to focus attention on the features of the present invention.
For example, aspects of the present invention are illustrated
using a dual-core processor, but persons skilled in the art
will recognize that more than two cores may be used with
appropriate modifications of the reset and recovery mecha
msms.

[0020] FIG. 1 is a block diagram representing one
embodiment of an PRC-enabled processor 110 in accor
dance with the present invention. Processor 110 includes
first and second execution cores 120(a), 120(b) (generically,
execution core 120), an FRC checker 130, an error detector

10

US 2004/0123201 Al Jun. 24, 2004
2

140, a recovery module 150, a reset module 160, and shared
resources 170. A portion of the FRC-boundary is indicated
by dashed line 104. For purposes of illustration, recovery
module 150 and reset module 160 are shown as part of
processor 110. These modules may be implemented in whole
or in part as hardware, firmware or software and located on
or off of the processor die. Similarly, shared resources 170
may include components that are on the processor die as
well as components that are on one or more different die.

[0021] Each execution core 120 includes a data pipeline
124 and an error pipeline 128 that feed into FRC checker
130 and error detector 140, respectively. Data pipeline 124
represents the logic that operates on various types of data as
it moves through processor 110 toward FRC checker 130.
Data processed by data pipeline 124 may include result
operands, status flags, addresses, instructions and the like
that are generated and staged through processor 110 during
code execution. Error pipeline 128 represents the logic that
operates on various types of data to detect errors in the data
and provide appropriate signals to error detector 140. For
example, the signals may be one or more bits (flags)
representing the parity or ECC status of data retrieved from
various storage arrays (not shown) of processor 110. Soft
errors in these arrays may appear as parity or ECC error flags
when the corrupted data is accessed.

[0022] If an error reaches error detector 140 from either
core 120, recovery module 150 is activated to implement a
recovery routine. Recovery can be implemented with rela
tively low latency by hardware, software, firmware or some
combination of these. For example, there is an extremely
small probability that data is corrupted in both execution
cores 120 at the same (or nearly the same) time. This leaves
an uncorrupted copy of the data available to restore data
integrity to processor 110. However, an FRC error will be
triggered if the corrupted data from one execution core and
an uncorrupted version of the data from the other execution
are allowed to reach FRC checker 130 before recovery
module 150 is activated. Since FRC errors are not recover
able, reset module 160 resets the system, if FRC checker 130
signals an FRC error before the underlying parity/ECC error
is detected.

[0023] Not all FRC-errors are traceable to underlying
parity/ECC or other correctible soft errors. For those that
are, it is faster for error detector 140 to address the under
lying soft error than for FRC-checker to address the FRC
error that results when the corrupted data reaches FRC
boundary 104. As noted above, the reset process has a
significantly longer latency than the recovery process, and it
is to be avoided if the error can be corrected by recovery
module 150. In addition, reset usually brings the entire
system down, whereas recovery only results in a temporary
performance loss. For this reason, FRC checker 130 is
temporarily disabled if error detector 140 detects an error in
either error pipeline 128, since execution cores 120 are no
longer in lock step.

[0024] Execution cores 120 operate in lock step during
normal FRC mode, but data pipeline 124 and error pipeline
128 may operate relatively independently. For example,
ECC hardware is relatively complex and, consequently,
relatively slow, especially for 2-bit errors. A flag signaling
such an error may reach error detector 140 before, after, at
the same time as the data with which it is associated reaches

FRC checker 130. This flexibility is generally beneficial. For
example, it allows data to be used speculatively before its
error status is determined. Since soft errors are relatively
rare, and error pipeline 128 is generally as fast as data
pipeline 124, this flexibility is net positive. As long as the
error flag arrives at error detector 140 in time to disable FRC
checker 130 before it acts on a mismatch attributable to the
corrupted data, the relatively low latency recovery routine is
engaged.

[0025] As discussed below, processor 110 may implement
strategies to mitigate the race between recoverable and
non-recoverable error mechanisms. For example, a stream
lined signaling mechanism may be used in FRC mode to
speed disabling of FRC checker 130 in the event of a
non-FRC error. In addition, FRC errors may be delayed for
an interval prior to reset, in case a late arriving recoverable
error signal obviates the need for reset.

[0026] For one embodiment of the invention, processor
110 is capable of operating in a high reliability (e.g. FRC)
mode or a high performance (e.g. multi-core) mode. The
operating mode may be selected, for example, when a
computing system that includes processor 110 is booted or
reset. In FRC mode, execution cores 120(a) and 120(b) may
appear to the operating system as a single logical processor.
Execution cores 120(a) and 120(b) process the same code
sequence, and the results generated are compared by FRC
checker 130. If the results agree, a machine state corre
sponding to the code sequence is updated.

[0027] In FRC mode, one of execution cores 120 may be
designated as the master. The master refers to the execution
core that is responsible for updating the resources shared by
execution cores 120. The other execution core 120 may be
designated as the slave. The slave is responsible for gener
ating results from the same code sequence to be checked
against those of the master. Since an error may occur in
either the master or slave, embodiments of the present
invention allow the master/slave designation to be changed
dynamically. As discussed below, this allows the slave to
take over the master designation to implement recovery if a
recoverable error is detected in the execution core that is
currently designated as master.

[0028] In multi-core mode, execution cores 120(a) and
120(b) may appear to the operating system as two different
logical processors on a single processor die. In this mode,
execution cores 120(a) and 120(b) process different code
sequences, and each updates a machine state associated with
the code sequence it processes. Portions of the machine state
of a logical processor may be stored in a cache and/or
register associated with the corresponding execution core.
At some point(s) on the processor die, results from execution
cores 120(a) and 120(b) are routed to shared resource(s) 170
for, e.g., storage (cache) or transmission off of the processor
die (bus). For this embodiment, additional logic is provided
to mediate access to shared resources 170 by execution cores
120(a) and 120(b). In general, multi-core mode allows the
execution cores of the processor to be controlled separately.

[0029] FIG. 2 is a block diagram representing an embodi
ment of processor 110 that is capable of operating in
multiple modes, e.g. FRC mode and multi-core mode. For
the disclosed embodiment, an arbitration unit 180 is pro
vided to manage transactions to shared resources 170 by
execution cores 120(a) and 120(b), when processor 110

US 2004/0123201 Al

140, a recovery module 150, a reset module 160, and shared
resources 170. A portion of the PRC-boundary is indicated
by dashed line 104. For purposes of illustration, recovery
module 150 and reset module 160 are shown as part of
processor 110. These modules may be implemented in whole
or in part as hardware, firmware or software and located on
or off of the processor die. Similarly, shared resources 170
may include components that are on the processor die as
well as components that are on one or more different die.

[0021] Each execution core 120 includes a data pipeline
124 and an error pipeline 128 that feed into FRC checker
130 and error detector 140, respectively. Data pipeline 124
represents the logic that operates on various types of data as
it moves through processor 110 toward FRC checker 130.
Data processed by data pipeline 124 may include result
operands, status flags, addresses, instructions and the like
that are generated and staged through processor 110 during
code execution. Error pipeline 128 represents the logic that
operates on various types of data to detect errors in the data
and provide appropriate signals to error detector 140. For
example, the signals may be one or more bits (flags)
representing the parity or ECC status of data retrieved from
various storage arrays (not shown) of processor 110. Soft
errors in these arrays may appear as parity or ECC error flags
when the corrupted data is accessed.

[0022] If an error reaches error detector 140 from either
core 120, recovery module 150 is activated to implement a
recovery routine. Recovery can be implemented with rela
tively low latency by hardware, software, firmware or some
combination of these. For example, there is an extremely
small probability that data is corrupted in both execution
cores 120 at the same (or nearly the same) time. This leaves
an uncorrupted copy of the data available to restore data
integrity to processor 110. However, an FRC error will be
triggered if the corrupted data from one execution core and
an uncorrupted version of the data from the other execution
are allowed to reach FRC checker 130 before recovery
module 150 is activated. Since FRC errors are not recover
able, reset module 160 resets the system, if FRC checker 130
signals an FRC error before the underlying parity/ECC error
is detected.

[0023] Not all PRC-errors are traceable to underlying
parity/ECC or other correctible soft errors. For those that
are, it is faster for error detector 140 to address the under
lying soft error than for PRC-checker to address the FRC
error that results when the corrupted data reaches FRC
boundary 104. As noted above, the reset process has a
significantly longer latency than the recovery process, and it
is to be avoided if the error can be corrected by recovery
module 150. In addition, reset usually brings the entire
system down, whereas recovery only results in a temporary
performance loss. For this reason, FRC checker 130 is
temporarily disabled if error detector 140 detects an error in
either error pipeline 128, since execution cores 120 are no
longer in lock step.

[0024] Execution cores 120 operate in lock step during
normal FRC mode, but data pipeline 124 and error pipeline
128 may operate relatively independently. For example,
ECC hardware is relatively complex and, consequently,
relatively slow, especially for 2-bit errors. A flag signaling
such an error may reach error detector 140 before, after, at
the same time as the data with which it is associated reaches

2
Jun.24,2004

FRC checker 130. This flexibility is generally beneficial. For
example, it allows data to be used speculatively before its
error status is determined. Since soft errors are relatively
rare, and error pipeline 128 is generally as fast as data
pipeline 124, this flexibility is net positive. As long as the
error flag arrives at error detector 140 in time to disable FRC
checker 130 before it acts on a mismatch attributable to the
corrupted data, the relatively low latency recovery routine is
engaged.

[0025] As discussed below, processor 110 may implement
strategies to mitigate the race between recoverable and
non-recoverable error mechanisms. For example, a stream
lined signaling mechanism may be used in FRC mode to
speed disabling of FRC checker 130 in the event of a
non-FRC error. In addition, FRC errors may be delayed for
an interval prior to reset, in case a late arriving recoverable
error signal obviates the need for reset.

[0026] For one embodiment of the invention, processor
110 is capable of operating in a high reliability (e.g. FRC)
mode or a high performance (e.g. multi-core) mode. The
operating mode may be selected, for example, when a
computing system that includes processor 110 is booted or
reset. In FRC mode, execution cores 120(a) and 120(b) may
appear to the operating system as a single logical processor.
Execution cores 120(a) and 120(b) process the same code
sequence, and the results generated are compared by FRC
checker 130. If the results agree, a machine state corre
sponding to the code sequence is updated.

[0027] In FRC mode, one of execution cores 120 may be
designated as the master. The master refers to the execution
core that is responsible for updating the resources shared by
execution cores 120. The other execution core 120 may be
designated as the slave. The slave is responsible for gener
ating results from the same code sequence to be checked
against those of the master. Since an error may occur in
either the master or slave, embodiments of the present
invention allow the master/slave designation to be changed
dynamically. As discussed below, this allows the slave to
take over the master designation to implement recovery if a
recoverable error is detected in the execution core that is
currently designated as master.

[0028] In multi-core mode, execution cores 120(a) and
120(b) may appear to the operating system as two different
logical processors on a single processor die. In this mode,
execution cores 120(a) and 120(b) process different code
sequences, and each updates a machine state associated with
the code sequence it processes. Portions of the machine state
of a logical processor may be stored in a cache and/or
register associated with the corresponding execution core.
At some point(s) on the processor die, results from execution
cores 120(a) and 120(b) are routed to shared resource(s) 170
for, e.g., storage (cache) or transmission off of the processor
die (bus). For this embodiment, additional logic is provided
to mediate access to shared resources 170 by execution cores
120(a) and 120(b). In general, multi-core mode allows the
execution cores of the processor to be controlled separately.

[0029] FIG. 2 is a block diagram representing an embodi
ment of processor 110 that is capable of operating in
multiple modes, e.g. FRC mode and multi-core mode. For
the disclosed embodiment, an arbitration unit 180 is pro
vided to manage transactions to shared resources 170 by
execution cores 120(a) and 120(b), when processor 110

11

US 2004/0123201 Al Jun. 24, 2004
3

operates in multi-core mode. Arbitration unit 180 is associ
ated with FRC unit 130, placing the arbitration point for
multi-core mode operation proximate to the FRC boundary
for FRC mode operation. In multi-core mode, signals from
execution cores 120, e.g. transaction request signals, may be
processed by arbitration unit 180, which manages access to
shared resource(s) 170. In FRC mode, signals from execu
tion cores 120 may be processed by FRC checker 130, which
compares them to detect soft errors in either execution core.
Locating FRC checker 130 and arbitration unit 180 in close
proximity expands the FRC boundary to encompass most, if
not all, of the logic for which signals from the two execution
cores remain distinct. It also reduces the wiring necessary to
support processor 110 in FRC and multi-core modes.

[0030] Expansion of the FRC boundary in this manner
naturally increases the time necessary to propagate signals to
FRC checker 130. This increased “flight time” provides
more time for a parity or ECC error to reach detector 140,
which increases the opportunity for error recovery. As noted
above, the recovery routine triggered by error detector 140
provides greater system availability than the reset routine
triggered by FRC checker 130. Expanding the FRC bound
ary thus increases both the amount of logic that is duplicated
for execution cores 120 and the flight time, during which
detectable errors may be identified. The former increases
FRC protection, albeit through a reset mechanism. The latter
increases the likelihood that errors identifiable through par
ity, ECC or similar core-specific protections are handled
through recovery rather than reset.

[0031] FIG. 3A is a block diagram representing one
embodiment of a computing system 300 in accordance with
the present invention. The disclosed embodiment of system
300 includes a processor 310, chipset 370, main memory
380, non-volatile memory 390 and peripheral device(s) 398.
For the disclosed embodiment of system 300, processor 310
may be operated in FRC mode or in multi-core mode. The
mode may be selected, e.g., when computing system 300 is
booted or reset. Chipset 370 manages communications
among processor 310, main memory 380, non-volatile
memory 390 and peripheral devices 398.

[0032] Processor 310 includes first and second execution
cores 320(a) and 320(b), respectively (generically, execu
tion cores 320). Each execution core includes execution
resources 324 and a bus cluster 328. Execution resources
324 may include, for example, one or more integer, floating
point, load/store, and branch execution units, as well as
register files and cache(s) to supply them with data (e.g.
instructions, operands, addresses). Bus cluster 328 repre
sents logic for managing transactions to a cache 340 that is
shared by execution cores 320(a) and 320(b), as well as to
a front side bus 360, for those transactions that may miss in
shared cache 340. Resources corresponding to the error
pipeline of FIGS. 1 and 2 may be associated with execution
resources 324 and/or bus cluster 328.

[0033] Interface units (IFU) 330(a), 330(b) (generically,
IFU 330) represent a boundary between execution cores 320
and shared resources, cache 340 and FSB 360. The disclosed
embodiment of IFU 330 includes an FRC unit 332 and an
arbitration unit 334. As noted above, FRC unit 332 and
arbitration unit 334 receive signals from execution cores
320, and locating them proximate to each other results in
significant savings of wiring on the processor die. Also

shown in FIG. 3A are error units 336(a) and 336(b), which
include components to monitor for detectable errors in
execution cores 320(a) and 320(b).

[0034] For FRC mode, FRC unit 332 compares signals
from execution cores 320 for transactions to shared
resources like cache 340 and FSB 360. FRC unit 332 thus
forms part of the FRC boundary of processor 310. For
multi-core mode, arbitration unit 334 monitors signals from
execution cores 320 and grants access to its associated
shared resource according to an arbitration algorithm. The
arbitration algorithm implemented by arbitration unit 334
may be, for example, a round robin scheme, a priority-based
scheme or similar arbitration algorithms. For both FRC and
multi-core mode, error unit 336 may monitor signals from
execution cores 320 for recoverable errors.

[0035] Portions of recovery module 150 and reset module
160 (FIG. 2) may be located on processor 310 or elsewhere
in system 300. For one embodiment, a recovery routine 392
and a reset routine 394 may be stored in non-volatile
memory 390 and images of these routines may be loaded in
main memory 380 for execution. For this embodiment,
recovery module 150 and reset module 160 may include
pointers to recovery routine 392 and reset-routine 394,
respectively (or their images in main memory 380).

[0036] The disclosed embodiment of system 300 also
includes interrupt controllers 370(a) and 370(b) (generically,
interrupt controller(s) 370) to process interrupts for execu
tion cores 320(a) and 320(b), respectively. Each interrupt
controller 370 is shown having first and second components
374 and 378, respectively, to accommodate the different
clock domains in which interrupt controller 370 may oper
ate. For example, FSB 360 typically operates at a different
frequency than processor 310. Consequently, components of
processor 310 that interact directly with FSB 360 typically
operate in its clock domain, which is indicated as area 364
on processor 310.

[0037] The disclosed embodiment of interrupt controller
370 also includes an FRC-boundary-like component in the
form of XOR 372. XOR 372 signals an FRC error if it
detects a mismatch between outgoing signals, e.g. interrupt
responses, of components 374(a) and 374(b) from execution
cores 320(a) and 320(b). Errors attributable to interrupt
controllers 370 may still arise, however, from soft errors in
components 378(a), 378(b) in FSB clock domain 364. These
error may be detected by the discrepancies they introduce
between the subsequent operations of execution cores
320(a) and 320(b).

[0038] For the disclosed embodiment of system 300, a
common snoop block 362 processes snoop transactions to
and from execution cores 320(a) and 320(b). XOR 366
provides FRC-checking on snoop responses from execution
cores 320(a), 320(b) and signals an error if a mismatch is
detected. XORs 372 and 366 may be disabled if processor
310 is operating in multi-core mode.

[0039] FIG. 3B is a block diagram representing one
embodiment of an apparatus 344 for broadcasting-recover-
able error conditions to components of computing system
300. For example, error units 336(a) and 336(b) may rep
resent ECC or parity error detection logic for various arrays
(register, caches, buffers, etc) of execution cores 320(a) and
320(b), respectively, and/or exception logic to handle these

US 2004/0123201 Al

operates in multi-core mode. Arbitration unit 180 is associ
ated with FRC unit 130, placing the arbitration point for
multi-core mode operation proximate to the FRC boundary
for FRC mode operation. In multi-core mode, signals from
execution cores 120, e.g. transaction request signals, may be
processed by arbitration unit 180, which manages access to
shared resource(s) 170. In FRC mode, signals from execu
tion cores 120 may be processed by FRC checker 130, which
compares them to detect soft errors in either execution core.
Locating FRC checker 130 and arbitration unit 180 in close
proximity expands the FRC boundary to encompass most, if
not all, of the logic for which signals from the two execution
cores remain distinct. It also reduces the wiring necessary to
support processor 110 in FRC and multi-core modes.

[0030] Expansion of the FRC boundary in this manner
naturally increases the time necessary to propagate signals to
FRC checker 130. This increased "flight time" provides
more time for a parity or ECC error to reach detector 140,
which increases the opportunity for error recovery. As noted
above, the recovery routine triggered by error detector 140
provides greater system availability than the reset routine
triggered by FRC checker 130. Expanding the FRC bound
ary thus increases both the amount of logic that is duplicated
for execution cores 120 and the flight time, during which
detectable errors may be identified. The former increases
FRC protection, albeit through a reset mechanism. The latter
increases the likelihood that errors identifiable through par
ity, ECC or similar core-specific protections are handled
through recovery rather than reset.

[0031] FIG. 3A is a block diagram representing one
embodiment of a computing system 300 in accordance with
the present invention. The disclosed embodiment of system
300 includes a processor 310, chipset 370, main memory
380, non-volatile memory 390 and peripheral device(s) 398.
For the disclosed embodiment of system 300, processor 310
may be operated in FRC mode or in multi-core mode. The
mode may be selected, e.g., when computing system 300 is
booted or reset. Chipset 370 manages communications
among processor 310, main memory 380, non-volatile
memory 390 and peripheral devices 398.

[0032] Processor 310 includes first and second execution
cores 320(a) and 320(b), respectively (generically, execu
tion cores 320). Each execution core includes execution
resources 324 and a bus cluster 328. Execution resources
324 may include, for example, one or more integer, floating
point, load/store, and branch execution units, as well as
register files and cache(s) to supply them with data (e.g.
instructions, operands, addresses). Bus cluster 328 repre
sents logic for managing transactions to a cache 340 that is
shared by execution cores 320(a) and 320(b), as well as to
a front side bus 360, for those transactions that may miss in
shared cache 340. Resources corresponding to the error
pipeline of FIGS. 1 and 2 may be associated with execution
resources 324 and/or bus cluster 328.

[0033] Interface units (IFU) 330(a), 330(b) (generically,
IFU 330) represent a boundary between execution cores 320
and shared resources, cache 340 and FSB 360. The disclosed
embodiment of IFU 330 includes an FRC unit 332 and an
arbitration unit 334. As noted above, FRC unit 332 and
arbitration unit 334 receive signals from execution cores
320, and locating them proximate to each other results in
significant savings of wiring on the processor die. Also

3
Jun.24,2004

shown in FIG. 3A are error units 336(a) and 336(b), which
include components to monitor for detectable errors in
execution cores 320(a) and 320(b).

[0034] For FRC mode, FRC unit 332 compares signals
from execution cores 320 for transactions to shared
resources like cache 340 and FSB 360. FRC unit 332 thus
forms part of the FRC boundary of processor 310. For
multi-core mode, arbitration unit 334 monitors signals from
execution cores 320 and grants access to its associated
shared resource according to an arbitration algorithm. The
arbitration algorithm implemented by arbitration unit 334
may be, for example, a round robin scheme, a priority-based
scheme or similar arbitration algorithms. For both FRC and
multi-core mode, error unit 336 may monitor signals from
execution cores 320 for recoverable errors.

[0035] Portions of recovery module 150 and reset module
160 (FIG. 2) may be located on processor 310 or elsewhere
in system 300. For one embodiment, a recovery routine 392
and a reset routine 394 may be stored in non-volatile
memory 390 and images of these routines may be loaded in
main memory 380 for execution. For this embodiment,
recovery module 150 and reset module 160 may include
pointers to recovery routine 392 and reset-routine 394,
respectively (or their images in main memory 380).

[0036] The disclosed embodiment of system 300 also
includes interrupt controllers 370(a) and 370(b) (generically,
interrupt controller(s) 370) to process interrupts for execu
tion cores 320(a) and 320(b), respectively. Each interrupt
controller 370 is shown having first and second components
374 and 378, respectively, to accommodate the different
clock domains in which interrupt controller 370 may oper
ate. For example, FSB 360 typically operates at a different
frequency than processor 310. Consequently, components of
processor 310 that interact directly with FSB 360 typically
operate in its clock domain, which is indicated as area 364
on processor 310.

[0037] The disclosed embodiment of interrupt controller
370 also includes an PRC-boundary-like component in the
form of XOR 372. XOR 372 signals an FRC error if it
detects a mismatch between outgoing signals, e.g. interrupt
responses, of components 374(a) and 374(b) from execution
cores 320(a) and 320(b). Errors attributable to interrupt
controllers 370 may still arise, however, from soft errors in
components 378(a), 378(b) in FSB clock domain 364. These
error may be detected by the discrepancies they introduce
between the subsequent operations of execution cores
320(a) and 320(b).

[0038] For the disclosed embodiment of system 300, a
common snoop block 362 processes snoop transactions to
and from execution cores 320(a) and 320(b). XOR 366
provides PRC-checking on snoop responses from execution
cores 320(a), 320(b) and signals an error if a mismatch is
detected. XORs 372 and 366 may be disabled if processor
310 is operating in multi-core mode.

[0039] FIG. 3B is a block diagram representing one
embodiment of an apparatus 344 for broadcasting-recover
able error conditions to components of computing system
300. For example, error units 336(a) and 336(b) may rep
resent ECC or parity error detection logic for various arrays
(register, caches, buffers, etc) of execution cores 320(a) and
320(b), respectively, and/or exception logic to handle these

12

US 2004/0123201 Al Jun. 24, 2004
4

errors. An OR gate 338 monitors error signals from execu
tion cores 320 and asserts a signal to disable FRC unit 332
if either error signal is asserted. The error signal may be a
high level interrupt, such as the machine check abort (MCA)
defined for Itanium® processors. The output of OR gate 338
is also fed back to execution cores 320 to indicate to the
error-free execution core that a recovery mechanism is to be
initiated. A second OR gate 339 is provided to transfer error
signals to execution cores 320 from the shared resources.

[0040] If the error signal does not disable FRC unit 332 the
corrupted data triggers an FRC error, and an otherwise
recoverable error is treated as a non-recoverable, e.g. FRC,
error. That is, the system goes through a reset operation
rather than a shorter recovery operation. Depending on the
particular implementation of the system, there may be a
number of cases in which the race to FRC unit 332 between
the error signal and the mismatched data signals from the
execution cores (created by the recoverable error) is close.
For this reason, apparatus 344 may include a mechanism to
accelerate error signal propagation, at least in FRC mode.

[0041] For one embodiment, apparatus 334 supports a
high level interrupt such as an MCA that operates in both
FRC and high performance modes. In high performance
mode, the error signal is subject to pipeline stalls, e.g., in the
front end of the execution core or in the L2 cache. This
ensures that no unnecessary MCAs are taken, since the event
that triggered the stall may make the error signal moot. In
FRC mode, the error signal bypasses these stalls. Bypassing
stalls in FRC may result in the processing of some unnec
essary error signals, but it also reduces the probability that
an FRC error is triggered before the (non-FRC) error signal
disables FRC unit 332. As discussed in conjunction with
FIG. 7, embodiments of processor 110 may also include a
hardware mechanism to mitigate the race between the error
signal and the core signals that reflect the corrupted data.

[0042] FIG. 4 is a block diagram representing data paths
for one embodiment of computing system 310, including
FRC components to support processor 310 in FRC mode.
For the disclosed embodiment, cache 340, FSB 360 and
execution cores 320 are coupled through a series of buffers.
For example, a write-out buffer (WOB) 410 stages data
evicted from cache 340 to main memory 380, and a snoop
data buffer (SDB) 420 provides snoop data from execution
cores 320 or cache 340 to FSB 360, responsive to a snoop
hit in these structures (Execution cores 320 may each have
one or more levels of cache in addition to shared cache 340).

[0043] A pair of write-line buffers (WLB) 430(a), 430(b)
stage data from execution cores 320(a), 320(b), respectively,
to cache 340 or FSB 360, and a pair of read-line buffers
440(a), 440(b) stage data from FSB 360 to cache 340 or
execution cores 320. Coalescing buffers (CB) 450(a), 450(b)
collect data to be written to memory 380 and forward it to
FSB 360, periodically. For example, multiple data writes to
the same line of memory may be collected in CBs 450 before
triggering a write transaction on FSB 360.

[0044] For the disclosed embodiment, logic associated
with these buffers provides the FRC-checking and data
routing functions when processor 310 is operated in FRC
mode. For example, logic block 454 represents MUX and
XOR functions for data in CBs 450(a), 450(b). The XOR
function provides FRC checking if processor 310 is oper
ating in FRC mode. The MUX function provides data

routing if processor is operating in multi-core mode. Logic
blocks 434 and 444 provide similar functions for data in
WLBs 430(a), 430(b) and RLBs 440(a), 440(b), respec
tively. MUXs 460, 470 and 480 route data from different
sources to cache 340, FSB 360 and execution cores 320.

[0045] As noted above, the recovery mechanism for errors
detected within the FRC boundary may be handled by
various combinations of hardware, software and firmware
modules. One embodiment of the recovery mechanism
employs code that is closely associated with the processor.
For example, the Itanium® Processor Family of Intel®
Corporation, employs a layer of firmware called the proces
sor abstraction layer (PAL), which provides an abstraction of
the processor to the rest of the computing system. Imple
menting recovery in the PAL hides the recovery process
from system level code, such as the system abstraction layer
(SAL), e.g. BIOS, and the operating system. PAL-based
implementations of the recovery mechanism should be able
to complete quickly enough to avoid triggering a time-out
period enforced by the operating system. Recovery mecha
nisms may also be implemented using system level code,
e.g. SAL/BIOS, or operating system code. The latter imple
mentations may not be subject to the same time constraints
as the PAL-based implementation. Unless otherwise noted,
the recovery mechanisms discussed below may be imple
mented using code associated with any of the foregoing
sources.

[0046] FIG. 5 is a flowchart representing a mechanism for
recovering from an error detected in one of the execution
cores before it triggers an FRC reset. Responsive to a parity,
ECC or other error detected in one of the execution cores, a
signal is broadcast 510 to indicate the start of a recovery
routine. As long as the error is detected before it triggers an
FRC reset, the corrupted data can be localized to one of the
execution cores, leaving the machine state data of the other
execution core available for recovery. Accordingly, the
machine state of the good core is saved 520. To prepare the
processor for recovery, both cores are initialized 530 to a
specified condition, and the saved machine state is restored
540 to the initialized cores. FRC mode is then restored 550
and the processor returns 560 to the interrupted code.

[0047] For one embodiment of the invention, one of
execution cores 120 may be designated as the master core
and the other as the slave core when processor 10 is
operating in FRC mode. For this embodiment, signals gen
erated by the master and slave cores are compared at the
FRC boundary to determine if reset is necessary. If no FRC
reset is warranted, signals generated by the master core are
transferred to shared resource(s) 170, and signals generated
by the slave core are dropped. For this embodiment, a bit in
a status register of each execution core 120 may be used to
indicate its status as master or slave. The bit may be set, for
example, when the system is booted or reset. As discussed
below in greater detail, the master/slave status of an execu
tion may also be changed dynamically to allow recovery for
an error in either core. For errors detected within the FRC
boundary, e.g. recoverable errors, the actions of the master
and slave core may differ, depending on which core gener
ated the error.

[0048] FIG. 6 is a flowchart representing one embodiment
of a mechanism 600 for recovering from an error detected in
an execution core designated as the slave execution core.

US 2004/0123201 Al

errors. An OR gate 338 monitors error signals from execu
tion cores 320 and asserts a signal to disable FRC unit 332
if either error signal is asserted. The error signal may be a
high level interrupt, such as the machine check abort (MCA)
defined for Itanium® processors. The output of OR gate 338
is also fed back to execution cores 320 to indicate to the
error-free execution core that a recovery mechanism is to be
initiated. A second OR gate 339 is provided to transfer error
signals to execution cores 320 from the shared resources.

[0040] If the error signal does not disable FRC unit 332 the
corrupted data triggers an FRC error, and an otherwise
recoverable error is treated as a non-recoverable, e.g. FRC,
error. That is, the system goes through a reset operation
rather than a shorter recovery operation. Depending on the
particular implementation of the system, there may be a
number of cases in which the race to FRC unit 332 between
the error signal and the mismatched data signals from the
execution cores (created by the recoverable error) is close.
For this reason, apparatus 344 may include a mechanism to
accelerate error signal propagation, at least in FRC mode.

[0041] For one embodiment, apparatus 334 supports a
high level interrupt such as an MCA that operates in both
FRC and high performance modes. In high performance
mode, the error signal is subject to pipeline stalls, e.g., in the
front end of the execution core or in the L2 cache. This
ensures that no unnecessary MCAs are taken, since the event
that triggered the stall may make the error signal moot. In
FRC mode, the error signal bypasses these stalls. Bypassing
stalls in FRC may result in the processing of some unnec
essary error signals, but it also reduces the probability that
an FRC error is triggered before the (non-FRC) error signal
disables FRC unit 332. As discussed in conjunction with
FIG. 7, embodiments of processor 110 may also include a
hardware mechanism to mitigate the race between the error
signal and the core signals that reflect the corrupted data.

[0042] FIG. 4 is a block diagram representing data paths
for one embodiment of computing system 310, including
FRC components to support processor 310 in FRC mode.
For the disclosed embodiment, cache 340, FSB 360 and
execution cores 320 are coupled through a series of buffers.
For example, a write-out buffer (WOE) 410 stages data
evicted from cache 340 to main memory 380, and a snoop
data buffer (SDB) 420 provides snoop data from execution
cores 320 or cache 340 to FSB 360, responsive to a snoop
hit in these structures (Execution cores 320 may each have
one or more levels of cache in addition to shared cache 340).

[0043] A pair of write-line buffers (WLB) 430(a), 430(b)
stage data from execution cores 320(a), 320(b), respectively,
to cache 340 or FSB 360, and a pair of read-line buffers
440(a), 440(b) stage data from FSB 360 to cache 340 or
execution cores 320. Coalescing buffers (CB) 450(a), 450(b)
collect data to be written to memory 380 and forward it to
FSB 360, periodically. For example, multiple data writes to
the same line of memory may be collected in CBs 450 before
triggering a write transaction on FSB 360.

[0044] For the disclosed embodiment, logic associated
with these buffers provides the PRC-checking and data
routing functions when processor 310 is operated in FRC
mode. For example, logic block 454 represents MUX and
XOR functions for data in CBs 450(a), 450(b). The XOR
function provides FRC checking if processor 310 is oper
ating in FRC mode. The MUX function provides data

4
Jun.24,2004

routing if processor is operating in multi-core mode. Logic
blocks 434 and 444 provide similar functions for data in
WLBs 430(a), 430(b) and RLBs 440(a), 440(b), respec
tively. MUXs 460, 470 and 480 route data from different
sources to cache 340, FSB 360 and execution cores 320.

[0045] As noted above, the recovery mechanism for errors
detected within the FRC boundary may be handled by
various combinations of hardware, software and firmware
modules. One embodiment of the recovery mechanism
employs code that is closely associated with the processor.
For example, the Itanium® Processor Family of Intel®
Corporation, employs a layer of firmware called the proces
sor abstraction layer (PAL), which provides an abstraction of
the processor to the rest of the computing system. Imple
menting recovery in the PAL hides the recovery process
from system level code, such as the system abstraction layer
(SAL), e.g. BIOS, and the operating system. PAL-based
implementations of the recovery mechanism should be able
to complete quickly enough to avoid triggering a time-out
period enforced by the operating system. Recovery mecha
nisms may also be implemented using system level code,
e.g. SAL/BIOS, or operating system code. The latter imple
mentations may not be subject to the same time constraints
as the PAL-based implementation. Unless otherwise noted,
the recovery mechanisms discussed below may be imple
mented using code associated with any of the foregoing
sources.

[0046] FIG. 5 is a flowchart representing a mechanism for
recovering from an error detected in one of the execution
cores before it triggers an FRC reset. Responsive to a parity,
ECC or other error detected in one of the execution cores, a
signal is broadcast 510 to indicate the start of a recovery
routine. As long as the error is detected before it triggers an
FRC reset, the corrupted data can be localized to one of the
execution cores, leaving the machine state data of the other
execution core available for recovery. Accordingly, the
machine state of the good core is saved 520. To prepare the
processor for recovery, both cores are initialized 530 to a
specified condition, and the saved machine state is restored
540 to the initialized cores. FRC mode is then restored 550
and the processor returns 560 to the interrupted code.

[0047] For one embodiment of the invention, one of
execution cores 120 may be designated as the master core
and the other as the slave core when processor 10 is
operating in FRC mode. For this embodiment, signals gen
erated by the master and slave cores are compared at the
FRC boundary to determine if reset is necessary. If no FRC
reset is warranted, signals generated by the master core are
transferred to shared resource(s) 170, and signals generated
by the slave core are dropped. For this embodiment, a bit in
a status register of each execution core 120 may be used to
indicate its status as master or slave. The bit may be set, for
example, when the system is booted or reset. As discussed
below in greater detail, the master/slave status of an execu
tion may also be changed dynamically to allow recovery for
an error in either core. For errors detected within the FRC
boundary, e.g. recoverable errors, the actions of the master
and slave core may differ, depending on which core gener
ated the error.

[0048] FIG. 6 is a flowchart representing one embodiment
of a mechanism 600 for recovering from an error detected in
an execution core designated as the slave execution core.

13

US 2004/0123201 Al Jun. 24, 2004
5

Operations of the slave execution core are shown on the left,
and operations of the master execution core are shown on the
right.

[0049] Routine 600 is initiated if the slave execution core
detects 610 an error (parity, ECC, etc.). The slave core
triggers 620 an interrupt to signal the error condition to other
components of the computing system. For embodiments of
routine 600 implemented by PAL or comparable processor
level code, broadcast of the interrupt signal may be limited
to components within the processor chip, such as the master
execution core. In addition to signaling the error, the slave
execution core disables 630 the FRC unit and suspends its
activities. Disabling the FRC unit prevents the error from
triggering an FRC reset when it reaches the FRC boundary,
and suspending activities in the slave core prevents it from
disrupting the recovery process.

[0050] In response 624 to the interrupt, the master execu
tion core determines 640 whether its state data contains any
errors. For example, each execution core may include a
status bit that is set if an error is detected. The master
execution core may check this bit to determine if it has also
generated an error. Except for the very rare case in which
soft errors occur in both execution cores almost simulta
neously, the master core is likely to be clean. If it is not clean
640, there is no uncorrupted processor state with which to
implement a recovery. In this case, the master core signals
642 a reset condition to the slave core and the computing
system executes 644 a full, e.g. FRC-level, reset.

[0051] If the state data for the master core is not corrupted,
the master core saves 660 its machine state and flushes 664
queues and buffers in its pipeline. For example, the master
core may save the contents of its data and control registers
and low-level cache(s) to a protected area of memory. The
master core also signals 668 a limited reset to the slave core
and sets 676 it resources to a specified state, e.g. initializes
its pipeline. The slave core detects 670 the limited reset and
initializes 674 its pipeline, synchronizing the states of the
cores.

[0052] With the cores thus synchronized, FRC mode is
reactivated 680. This may be accomplished, for example, by
having each core execute a handler routine, which sets
appropriate state bits in its status/control registers. The saved
state is restored 684 to both execution cores, and control is
returned 690 to the interrupted code sequence.

[0053] Method 600 represents an embodiment of the
recovery mechanism for the case in which the error is
detected in the execution core that is currently designated as
the slave core. For one embodiment, the slave core is the
execution core that does not “control” the shared
resource(s). For example, in FRC mode, signals from the
slave execution core are dropped following comparison with
those from the master execution core at the FRC boundary.
If no FRC error is detected, signals from the master core are
used to control the shared resources outside the FRC bound
ary.

[0054] If the error originates in the master core rather than
the slave core, recovery may be handled by changing the
master/slave designations of the execution cores. For
example, master/slave designation may be indicated by the
state of a bit in a status register associated with each
execution core. The execution core for which this status bit

is in the master state controls the shared resources, which are
used to implement the state-saving operations of recovery
routine 600, e.g. operation 660.

[0055] For one embodiment of the recovery routine, the
execution core in which the error originates may check its
master/slave status bit. If the status bit indicates it is the
slave, method 600 may be implemented as described. If the
status bit indicates it is the master, it may signal the slave to
change its status to master, change its own status to slave,
and suspend activities.

[0056] FIG. 7 is a block diagram illustrating an embodi
ment of an FRC-checker 730 that mitigates race conditions
between recoverable and non-recoverable error handling.
The disclosed embodiment of FRC checker 730 includes a
compare unit 734, queue 736, and timer unit 738. Queue 736
receives data from execution core (a), and compare unit 734
compares the data from cores A and B, and sets a status flag
to indicate if the comparison yields a match. If the data
matches, the status flag is set to indicate the match.

[0057] If the data does not match, the status flag is set to
indicate the mismatch and timer unit 738 is triggered to
begin a countdown interval. If error detector 140 receives an
error flag before the timeout interval expires, it disables FRC
checker 730 and triggers recovery unit 150 to implement the
recovery routine.

[0058] There has thus been disclosed a mechanism for
handling recoverable and non-recoverable errors in multi
core processor. The multiple cores may be operated in FRC
mode, in which case, one or more checker units compare
signals from the cores to detect non-recoverable errors. In
addition, each core includes an error unit to detect recover
able errors. If a recoverable error is detected, the checker
units are disabled and a recovery routine is implemented. A
multi-core mode embodiment of the multi-core processor
may include an arbitration unit, proximate to the checker, to
control access to the shared resource(s). Proximity of the
FRC boundary to the shared resources increases the logic
protected by the FRC boundary and reduces wiring neces
sary for the multi-core mode implementation.

[0059] Embodiments of the present invention detect vir
tually all errors that are undetected in non-FRC-enabled
systems, and they support recovery of virtually all detectable
errors, including those that are typically handled through
reset in other FRC-enabled processors.

[0060] The disclosed embodiments have been provided to
illustrate various features of the present invention. Persons
skilled in the art of processor design, having the benefit of
this disclosure, will recognize variations and modifications
of the disclosed embodiments, which none the less fall
within the spirit and scope of the appended claims.

We claim:
1. A processor comprising:

first and second execution cores to operate in an FRC
mode;

a resource to process a transaction from at least one of the
first and second execution cores; and

an interface control unit to regulate access to the resource
by the first and second execution cores, the interface
control unit including an FRC check unit to compare

US 2004/0123201 Al

Operations of the slave execution core are shown on the left,
and operations of the master execution core are shown on the
right.

[0049] Routine 600 is initiated if the slave execution core
detects 610 an error (parity, ECC, etc.). The slave core
triggers 620 an interrupt to signal the error condition to other
components of the computing system. For embodiments of
routine 600 implemented by PAL or comparable processor
level code, broadcast of the interrupt signal may be limited
to components within the processor chip, such as the master
execution core. In addition to signaling the error, the slave
execution core disables 630 the FRC unit and suspends its
activities. Disabling the FRC unit prevents the error from
triggering an FRC reset when it reaches the FRC boundary,
and suspending activities in the slave core prevents it from
disrupting the recovery process.

[0050] In response 624 to the interrupt, the master execu
tion core determines 640 whether its state data contains any
errors. For example, each execution core may include a
status bit that is set if an error is detected. The master
execution core may check this bit to determine if it has also
generated an error. Except for the very rare case in which
soft errors occur in both execution cores almost simulta
neously, the master core is likely to be clean. If it is not clean
640, there is no uncorrupted processor state with which to
implement a recovery. In this case, the master core signals
642 a reset condition to the slave core and the computing
system executes 644 a full, e.g. PRC-level, reset.

[0051] If the state data for the master core is not corrupted,
the master core saves 660 its machine state and flushes 664
queues and buffers in its pipeline. For example, the master
core may save the contents of its data and control registers
and low-level cache(s) to a protected area of memory. The
master core also signals 668 a limited reset to the slave core
and sets 676 it resources to a specified state, e.g. initializes
its pipeline. The slave core detects 670 the limited reset and
initializes 674 its pipeline, synchronizing the states of the
cores.

[0052] With the cores thus synchronized, FRC mode is
reactivated 680. This may be accomplished, for example, by
having each core execute a handler routine, which sets
appropriate state bits in its status/control registers. The saved
state is restored 684 to both execution cores, and control is
returned 690 to the interrupted code sequence.

[0053] Method 600 represents an embodiment of the
recovery mechanism for the case in which the error is
detected in the execution core that is currently designated as
the slave core. For one embodiment, the slave core is the
execution core that does not "control" the shared
resource(s). For example, in FRC mode, signals from the
slave execution core are dropped following comparison with
those from the master execution core at the FRC boundary.
If no FRC error is detected, signals from the master core are
used to control the shared resources outside the FRC bound
ary.

[0054] If the error originates in the master core rather than
the slave core, recovery may be handled by changing the
master/slave designations of the execution cores. For
example, master/slave designation may be indicated by the
state of a bit in a status register associated with each
execution core. The execution core for which this status bit

5
Jun.24,2004

is in the master state controls the shared resources, which are
used to implement the state-saving operations of recovery
routine 600, e.g. operation 660.

[0055] For one embodiment of the recovery routine, the
execution core in which the error originates may check its
master/slave status bit. If the status bit indicates it is the
slave, method 600 may be implemented as described. If the
status bit indicates it is the master, it may signal the slave to
change its status to master, change its own status to slave,
and suspend activities.

[0056] FIG. 7 is a block diagram illustrating an embodi
ment of an PRC-checker 730 that mitigates race conditions
between recoverable and non-recoverable error handling.
The disclosed embodiment of FRC checker 730 includes a
compare unit 734, queue 736, and timer unit 738. Queue 736
receives data from execution core (a), and compare unit 734
compares the data from cores A and B, and sets a status flag
to indicate if the comparison yields a match. If the data
matches, the status flag is set to indicate the match.

[0057] If the data does not match, the status flag is set to
indicate the mismatch and timer unit 738 is triggered to
begin a countdown interval. If error detector 140 receives an
error flag before the timeout interval expires, it disables FRC
checker 730 and triggers recovery unit 150 to implement the
recovery routine.

[0058] There has thus been disclosed a mechanism for
handling recoverable and non-recoverable errors in multi
core processor. The multiple cores may be operated in FRC
mode, in which case, one or more checker units compare
signals from the cores to detect non-recoverable errors. In
addition, each core includes an error unit to detect recover
able errors. If a recoverable error is detected, the checker
units are disabled and a recovery routine is implemented. A
multi-core mode embodiment of the multi-core processor
may include an arbitration unit, proximate to the checker, to
control access to the shared resource(s). Proximity of the
FRC boundary to the shared resources increases the logic
protected by the FRC boundary and reduces wiring neces
sary for the multi-core mode implementation.

[0059] Embodiments of the present invention detect vir
tually all errors that are undetected in non-PRC-enabled
systems, and they support recovery of virtually all detectable
errors, including those that are typically handled through
reset in other PRC-enabled processors.

[0060] The disclosed embodiments have been provided to
illustrate various features of the present invention. Persons
skilled in the art of processor design, having the benefit of
this disclosure, will recognize variations and modifications
of the disclosed embodiments, which none the less fall
within the spirit and scope of the appended claims.

We claim:
1. A processor comprising:

first and second execution cores to operate m an FRC
mode;

a resource to process a transaction from at least one of the
first and second execution cores; and

an interface control unit to regulate access to the resource
by the first and second execution cores, the interface
control unit including an FRC check unit to compare

14

US 2004/0123201 Al Jun. 24, 2004
6

transaction signals from the first and second execution
cores and to signal an error if the comparison indicates
a mismatch.

2. The processor of claim 1, further comprising an error
detector to detect errors in the first and second execution
cores and to disable the FRC checker responsive to detecting
an error.

3. The processor of claim 2, wherein the error detector
comprises first and second error detectors to detect errors in
the first and second execution cores, respectively.

4. The processor of claim 3, wherein the first error
detector triggers an error signal, responsive to an error in the
first execution core, to disable the FRC check unit and to
initiate a recovery procedure using the second execution
core.

5. The processor of claim 4, wherein the second execution
core is designated as an FRC slave and is re-designated as
an FRC master, responsive to the error signal.

6. The processor of claim 5, wherein the second execution
core saves its machine state data to a memory location, and
executes a reset sequence.

7. The processor of claim 2, wherein the first and second
execution cores may also operate in a multi-core mode and
the interface control unit further comprises an arbitration
unit to regulate access to the shared resource by the execu
tion cores if they operate in multi-core mode.

8. The processor of claim 7, wherein the shared resource
comprises a cache that may process transactions from both
the first and second cores in multi-core mode and that may
process transactions from only one of the first and second
core in FRC mode.

9. The processor of claim 7, wherein, responsive to
detecting an error the error detector triggers an interrupt if
the processor is in multi-core mode and an accelerated
interrupt if the processor is in FRC mode.

10. The processor of claim 9, wherein the accelerated
interrupt bypasses portions of an execution core traversed by
the interrupt in multi-core mode.

11. A system comprising:

a first memory location to store a recovery routine;

a second memory location to store a reset routine;

first and second execution cores capable of operating in an
FRC mode;

an error unit to initiate the recovery routine responsive to
detecting an error in one of the first and second execu
tion cores; and

an FRC checker to initiate the reset routine responsive to
detecting a mismatch between signals from the first and
second execution cores.

12. The system of claim 11, wherein the error unit disables
the FRC checker, responsive to detecting the error in one of
the first and second execution cores.

13. The system of claim 12, wherein the reset routine
includes instructions executable by the first and second
execution cores to initialize the first and second execution
cores in either a multi-core mode or the FRC mode.

14. The system of claim 13, further comprising a cache to
be shared by the first and second execution cores if the first
and second execution cores are initialized in multi-core
mode.

15. The system of claim 14, further comprising an arbi
tration unit to manage access to the cache by the first and
second execution cores in multi-core mode.

16. The system of claim 15, wherein the FRC checker
monitors transaction signals to the arbitration unit from the
first and second execution cores in FRC mode and initiates
the reset routine responsive to a mismatch in the transaction
signals.

17. The system of claim 11, wherein the first and second
execution cores operate as master and slave, respectively, in
an FRC mode.

18. The system of claim 17, wherein the first execution
core is disabled and the second execution core operates as
the master, responsive to an error in the first execution core.

19. The system of claim 11, wherein the first and second
execution cores may be initialized in a multi-core mode or
an FRC mode.

20. The system of claim 19, wherein the error unit triggers
an interrupt to the first and second execution cores, respon
sive to an error in one of the execution cores.

21. The system of claim 20, wherein the interrupt is an
accelerated interrupt if the execution cores are in FRC mode.

22. The system of claim 21, wherein the accelerated
interrupt bypasses a portion of the execution core.

23. A method comprising:

operating first and second execution cores in an FRC
mode;

monitoring data of the first and second execution cores for
errors;

comparing signals generated by the first and second
execution cores;

executing a recovery routine, responsive to an error in the
first or second execution core; and

executing a reset routine, responsive to a mismatch
between signals generated by the first and second
execution cores.

24. The method of claim 23, further comprising suspend
ing signal comparison responsive to the error in the first or
second execution core.

25. The method of claim 24, wherein executing a reset
routine responsive to the mismatch further comprises:

triggering a delay interval responsive to the mismatch;

executing the reset routine if no error is monitored in the
execution cores before the delay interval expires.

26. The method of claim 25, further comprising executing
the recovery routine if an error is detected in one of the
execution cores before the delay interval expires.

27. The method of claim 23, wherein operating the first
and second execution cores in an FRC mode comprises
operating the first and second cores in the FRC mode or in
a multi-core mode, responsive to a reset signal.

28. The method of claim 27, wherein executing the
recovery routine comprises:

executing the recovery routine responsive to an error
signaled by an interrupt if the cores are operating in
multi-core mode; and

US 2004/0123201 Al

transaction signals from the first and second execution
cores and to signal an error if the comparison indicates
a mismatch.

2. The processor of claim 1, further comprising an error
detector to detect errors in the first and second execution
cores and to disable the FRC checker responsive to detecting
an error.

3. The processor of claim 2, wherein the error detector
comprises first and second error detectors to detect errors in
the first and second execution cores, respectively.

4. The processor of claim 3, wherein the first error
detector triggers an error signal, responsive to an error in the
first execution core, to disable the FRC check unit and to
initiate a recovery procedure using the second execution
core.

5. The processor of claim 4, wherein the second execution
core is designated as an FRC slave and is re-designated as
an FRC master, responsive to the error signal.

6. The processor of claim 5, wherein the second execution
core saves its machine state data to a memory location, and
executes a reset sequence.

7. The processor of claim 2, wherein the first and second
execution cores may also operate in a multi-core mode and
the interface control unit further comprises an arbitration
unit to regulate access to the shared resource by the execu
tion cores if they operate in multi-core mode.

8. The processor of claim 7, wherein the shared resource
comprises a cache that may process transactions from both
the first and second cores in multi-core mode and that may
process transactions from only one of the first and second
core in FRC mode.

9. The processor of claim 7, wherein, responsive to
detecting an error the error detector triggers an interrupt if
the processor is in multi-core mode and an accelerated
interrupt if the processor is in FRC mode.

10. The processor of claim 9, wherein the accelerated
interrupt bypasses portions of an execution core traversed by
the interrupt in multi-core mode.

11. A system comprising:

a first memory location to store a recovery routine;

a second memory location to store a reset routine;

first and second execution cores capable of operating in an
FRC mode;

an error unit to initiate the recovery routine responsive to
detecting an error in one of the first and second execu
tion cores; and

an FRC checker to initiate the reset routine responsive to
detecting a mismatch between signals from the first and
second execution cores.

12. The system of claim 11, wherein the error unit disables
the FRC checker, responsive to detecting the error in one of
the first and second execution cores.

13. The system of claim 12, wherein the reset routine
includes instructions executable by the first and second
execution cores to initialize the first and second execution
cores in either a multi-core mode or the FRC mode.

14. The system of claim 13, further comprising a cache to
be shared by the first and second execution cores if the first
and second execution cores are initialized in multi-core
mode.

6
Jun.24,2004

15. The system of claim 14, further comprising an arbi
tration unit to manage access to the cache by the first and
second execution cores in multi-core mode.

16. The system of claim 15, wherein the FRC checker
monitors transaction signals to the arbitration unit from the
first and second execution cores in FRC mode and initiates
the reset routine responsive to a mismatch in the transaction
signals.

17. The system of claim 11, wherein the first and second
execution cores operate as master and slave, respectively, in
an FRC mode.

18. The system of claim 17, wherein the first execution
core is disabled and the second execution core operates as
the master, responsive to an error in the first execution core.

19. The system of claim 11, wherein the first and second
execution cores may be initialized in a multi-core mode or
an FRC mode.

20. The system of claim 19, wherein the error unit triggers
an interrupt to the first and second execution cores, respon
sive to an error in one of the execution cores.

21. The system of claim 20, wherein the interrupt is an
accelerated interrupt if the execution cores are in FRC mode.

22. The system of claim 21, wherein the accelerated
interrupt bypasses a portion of the execution core.

23. A method comprising:

operating first and second execution cores m an FRC
mode;

monitoring data of the first and second execution cores for
errors;

comparing signals generated by the first and second
execution cores;

executing a recovery routine, responsive to an error in the
first or second execution core; and

executing a reset routine, responsive to a mismatch
between signals generated by the first and second
execution cores.

24. The method of claim 23, further comprising suspend
ing signal comparison responsive to the error in the first or
second execution core.

25. The method of claim 24, wherein executing a reset
routine responsive to the mismatch further comprises:

triggering a delay interval responsive to the mismatch;

executing the reset routine if no error is monitored in the
execution cores before the delay interval expires.

26. The method of claim 25, further comprising executing
the recovery routine if an error is detected in one of the
execution cores before the delay interval expires.

27. The method of claim 23, wherein operating the first
and second execution cores in an FRC mode comprises
operating the first and second cores in the FRC mode or in
a multi-core mode, responsive to a reset signal.

28. The method of claim 27, wherein executing the
recovery routine comprises:

executing the recovery routine responsive to an error
signaled by an interrupt if the cores are operating in
multi-core mode; and

15

US 2004/0123201 Al Jun. 24, 2004
7

executing the recovery routine responsive to an error
signaled by an accelerated interrupt if the cores are
operating in FRC mode.

29. The method of claim 23, wherein operating the first
and second execution cores in an FRC mode further com
prises designating the first and second execution cores as
master and slave execution cores, respectively.

30. The method of claim 23, wherein executing the
recovery routine further comprises disabling the first execu
tion core and designating the second execution core as
master, responsive to an error in the first execution core.

US 2004/0123201 Al

executing the recovery routine responsive to an error
signaled by an accelerated interrupt if the cores are
operating in FRC mode.

29. The method of claim 23, wherein operating the first
and second execution cores in an FRC mode further com
prises designating the first and second execution cores as
master and slave execution cores, respectively.

7
Jun.24,2004

30. The method of claim 23, wherein executing the
recovery routine further comprises disabling the first execu
tion core and designating the second execution core as
master, responsive to an error in the first execution core.

* * * * *

16

