

US006516429B1

United States Patent

(12) (10) Patent No.: US 6,516,429 B1
Bossen et al. (45) Date of Patent: Feb. 4, 2003

(54) METHOD AND APPARATUS FOR RUN-TIME 5,774,647 A * 6/1998 Raynham etal. TAL/L1S
DECONFIGURATION OF A PROCESSORIN 5,815,651 A * 9/1998 Litt oes 709/107
A SYMMETRICAL MULTI-PROCESSING 5,862,308 A * 1/1999 Andress et al... 710/260
SYSTEM 5,914,967 A * 6/1999 Yomtoubian0... 714/718

5,968,182 A * 10/1999 Chen etal. 0... 714/42

(75) Inventors: Douglas Craig Bossen, Austin, TX 5,974,576 A * 10/1999 ZHU w..eeececscceeeseeees 714/704
(US); Alongkorn Kitamorn, Austin, 6,119,246 A * 9/2000 McLaughlinetal. 714/15
TX (US); Charles Andrew 6,233,680 B1 * 5/2001 Bossen etal. oe. TA3/1
McLaughlin, Round Rock, TX (US); 6,378,027 B1 * 4/2002 Bealkowskietal. 709/223
John Thomas O’Quin, II, Austin, TX

(US) * cited by examiner

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) Primary Examiner—Robert Beausoleil

. . oo, . Assistant Examiner—Yolanda L. Wilson
(*) Notice: Subjectto any disclaimer, the term of this (74) Attorney, Agent, or Firm—Duke W. Yee; Mark E.

patent is extended or adjusted under 35 McBurney
US.C. 154(b) by 0 days.

(57) ABSTRACT
(21) Appl. No.: 09/434,767 . . .

A method and apparatus in a multiprocessor data processing
(22) Filed: Nov. 4, 1999 system for managing a plurality of processors. Monitoring

(SV) Tint. C17 eeeceeceeeeeeeeeeeeeeeeeseeeenenens G06F 11/00 for recoverable errors in a set of processors is performed.
(52) US. Cl 714/47: 714/10 Responsive to detecting a recoverable error for a processor

Bs Cde eseseresseresssreseeernseeenseeeene ; in the set of processors, a determination is made as to

(58) Field of Search.71438 * ‘s whether the recoverable error indicates a trend towards an
, a unrecoverable error. Responsive to a determination that the

(56) References Cited recoverable error indicates a trend towards an unrecoverable

Page 1 of 13

U.S. PATENT DOCUMENTS

5,649,090 A * 7/1997 Edwards et al. 0.0.00... 714/10

OPERATING SYSTEM

RUN TIME SYSTEM FIRMWARE 124

ERROR
REGISTER

1020

ERROR
REGISTER

1040

MEMORY110

error, actions are initiated to stop the processor.

48 Claims, 6 Drawing Sheets

100

ERROR
REGISTER

106a

SYSTEM
LOGIC

SERVICE
PROCESSOR

118

DECONFIGURATION
AREA

122

BMW and BOSCH EXHIBIT 1011

ZF, Ex. 10111

U.S. Patent

Feb. 4, 2003 Sheet 1 of 6

OPERATING SYSTEM

 RUN TIME SYSTEM FIRMWARE

ERROR

REGISTER

1020

 110

Page 2 of 13

MEMORY

ERROR ERROR

REGISTER REGISTER

104a 106a

SYSTEM

LOGIC

SERVICE

PROCESSOR

FIG. 1 yf

 300
 302

504

 306

FIG. §

US 6,516,429 B1

100

DECONFIGURATION

AREA

122

2

U.S. Patent Feb.4, 2003 Sheet 2 of 6 US 6,516,429 B1

FIG. 2A
BIT FIELD NAME DESCRIPTION, VALUES
(BIT NUMBER(S))

Version (0:7) A distinct value used to identify the architectural version of message.
Current version = (1)

 Severity (8:10) Severity level of error/event being reported:

FATAL (5)
ERROR (4)
ERROR_SYNC(3)
WARNING (2)
EVENT (1)
NO_ERROR (0)
reserved for future use (6-7)

Degree of recovery which RTAS hos performed prior to return after on error (value
is FULLY_RECOVERED if no error is being reported):

FULLY_RECOVERED(0)
Noted: Cannot be used when Severity is ‘‘Fotol”.

LIMITED_RECOVERY(1)
NOT_RECOVERED(2)
reserved for future use (3)

Indicates if an Extended Error Log follows this 32-bit quantity in memory:
PRESENT (1): The optional Extended Error Log is present.
NOT_PRESENT (0): The optional Extended Error Log is not present.

Reserved for future use (0:3)

RTAS Disposition
(11:12)

 Optional_Part_
Presence (13)

Reserved (14:15)

Intiotor (16:19) Abstroct entitiy that initiated the event or the foiled operation:
UNKNOWN (0): Unknown or Not Applicable
CPU (1): A CPU failure (in an MP system, the specific CPU is not differentiated here)
PCI (2): PCI host bridge or PCI device
ISA (3): ISA bus bridge or ISA device
MEMORY (4): Memory subsystem, including any caches
POWER_MANAGEMENT (5): Power Monogement subsystem
Reserved for future use (6-15)

Target (20:23) Abstract entity that wos apparent target of failed operation (UNKNOWN if Not Applicable):
Same values as Initiator field

Type (24:31)

 General event or error type being reported:

Internal errors:

RETRY (1): too many tries failed, and a retry count expired
TCE_ERR (2): range or access type error in an access through o TCE
INTERN_DEV_FAIL (3): some RTAS-abstraced device has foiled (for example, TODC)
TIMEOUT (4): intended target did not respond before a time-out occurred
DATA_PARITY (5): Parity error on data
ADDR_INVALID (8): access to reserved or undefined address, or access of an

unacceptable type for and address
ECC_UNCORR (9): uncorrectable ECC error
ECC_CORR (10): corrected ECC error
RESERVED (11-63): Reserved for future use

Environmental and Power Warnings:
EPOW(64): See Extended Error Log for sensor value
RESERVED (65-95): Reserved for future use

Power Management Events (96-159): power management event occured - see
bese CHRP document for details.

Reserved for future use (160-223)
Vendor—specific events (224-255): Non—architected
Other (0): none of the above

Extended Error Log| Length in bytes of Extended Error Log Information which follows (see 1.3,
Length (32:63) “Extended Error Log Format." on page 5)

Error Return Format (Fixed Part)

Page 3 of 13

3

U.S. Patent Feb.4, 2003 Sheet 3 of6 US 6,516,429 B1

BYTE|BIT(S)|DESCRIPTION

Fo|1 - Log Valid
oa|1 = Unrecoverable Error

1 = Recoverable (correctable or successfully retried) Error

3|1 = Unrecoverable Error, Bypassed - Degraded operation (for example, Single CPU|seeepg)ToveemsSe

unrecoverable foilure (for example, correctable ECC error threshold)

1 = “New” Log (always 1 for data returned from RTAS)

[5|1oFnonindicingBytndon

1 = A platform specific special error signature hos been detected. Bits 4:7 contain
an encoded value assigned to this special error signature for this platform|essences4:7|Platform-specific value (Ox)-OxF) assigned for reporting of unique error signatures,
used by diagnostics to generate a product-specific output that can be documented
in the product services guide and used by support for special problems

So|Set to 1-(Indicates log is in PowerPC format)

5|1 = No failing address wos available for recording within the loq’s Detailed Log Dato,
so the address field is invalid

4:7

 Log format indicator, defines format used for bytes 12-39:

0) Reserved
1) CPU - detected failure, see Table 111 on page 275
2) Memory - detected failure, see Table 112 on page 275
3) 1/0 - detected failure, see Toble 113 on page 277

‘ Power-On Self Test (POST) failure, see Table 114 on poge 2795

6)
]/-

2

Environmental ond Power Warning, see Table 115 on page 280
Power Management Event, see Table 116 on page 280
11) Reserved

12-15) Vendor-specific detail log, see general form in Table 100 on page 261

Bi IBM-specific Diagnostic log, see Table 91 on page 23313) IBM-specific service processor log, see Table 117 on page 281
14-15) Vendor~specific - Reserved

GENERAL EXTENDED ERROR LOG FORMAT

FIG. 2B

(
(
(
(
(
(
(
(

(
(
(
(

Page 4 of 13

4

IEQldJYMIW4C3L9IL30-Ndd_YO4TLIC901YOYNS

US 6,516,429 B1

(buissaippoyWq-Z¢J!Q=a4aps0—ybiy)s01aayd0940}SsauppyAuowayWyIq—79
Ne

<30119494SU01}/j090}04dsngwWa}shs
3

240433Ayuodsnqwayshs
DN

Q/|40)Bulyiom‘sojayno-awlyonJOJJ9}NO—awi}yngWa}sks
=

a4042}1q—ajbuis493ayo02jousa}xq
+

s1019993}Q-1]NWJOAyuodayooojousa}x3
<>

JO1s9J9|JOJJUODBYIODJOBYyI09jOWa}UI4)Q2q|J0Aws}iqasay}‘payojos!aqyouUDDasnyioy|:a}ON!8Y9D9DY}JaY}O‘4OI}JOUaIUIYq)
U.S. Patent

Page 5 of 13

5

U.S. Patent Feb.4, 2003 Sheet 5 of6 US 6,516,429 B1

400

RECOVERABLE

ERROR?

 CLEAR ERROR

FLAG AND CONTENT
OF LOCATION TABLE

416

 SET ERROR FLAG

START ERROR

LOCATION TABLE

404

 ERROR LOCATION

ON TABLE?

APPEND ERROR
LOCATION TO TABLE

9

UNIQUE ERROR
LOCATIONS?

 SAVE THE ERROR

IN NVRAM FOR FUTURE
BOOT TIME CPU

DECONFIGURATION

 REPORT PREDICTIVE
ERROR TO OPERATING

SYSTEM FOR RUN TIME
DECONFIGURATION

FIG. 4

Page 6 of 13

6

U.S. Patent Feb.4, 2003 Sheet 6 of6 US 6,516,429 B1

RECEIVE PREDICTIVE
ERROR RECORD

902

900

PROCESS 514
BOUND TO THIS

FIG. 5 CPU?
ABORT CPU

DECONFIGURATION

904 DISCONTINUE DISPATCH
OF PROCESSES TO CPU

FUNCTIONS

TIED TO A CPU
ID?

908
MIGRATE FUNCTIONS
TO ANOTHER CPU ID

310

DISCONTINUE

INTERRUPT ROUTING
TO CPU

CALL FIRMWARE

TO STOP CPU

912
 600 INFORM SYSTEM FIRMWARE OF

TRANSITION N TO N-1

CHANGE FIRMWARE STATE MACHINE

FLUSH LOCAL CACHES FOR THE CPU

PLACE CPU IN STOP STATE

602

FIC. 6
604

606
Page 7 of 13

7

US 6,516,429 B1
1

METHOD AND APPARATUS FOR RUN-TIME
DECONFIGURATION OF A PROCESSORIN

A SYMMETRICAL MULTI-PROCESSING
SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

The present invention is related to applications entitled
Method and System for Boot-Time Deconfiguration of a
Processor in a Symmetrical Multi-Processing System, Ser.
No. 09/165,952, filed Oct. 2, 1998; and Method and Appa-
ratus For Processor Deconfiguration Through Simulated
Error Condition In A Multiprocessor System, Ser. No.
09/299,936 filed Apr. 26, 1999, assigned to the same
assignee, and incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to an improved
data processing system and in particular to a method and
apparatus in a symmetrical multiprocessing system. Still
more particularly, the present invention provides a method
and apparatus for deconfiguring a processor in a symmetri-
cal multiprocessing system.

2. Description of Related Art
With the need for more and more processing power,

symmetrical multiprocessing (SMP) systemsare being used
more often. SMP is a computer architecture in which mul-
tiple processors share the same memory, containing one
copy of the operating system, one copy of any applications
that are in use, and one copy of the data. SMP reduces
transaction time because the operating system divides the
workload into tasks and assigns those tasks to whatever
processors are free.

SMPsystemsoften times experience failures. Sometimes
these failures are so-called hard or solid errors, from which
no recovery is possible. A hard error in a SMP system, in
general, causes a system failure. Thereafter, the device that
has caused the hard error is replaced. On the other hand, a
number of failures are repeatable or so-called soft errors,
which occur intermittently and randomly. In contrast to a
hard error, a soft error, with proper recovery and retry
design, can be recovered and prevent a SMP system from
failing. Often these soft errors are localized to a particular
processor within a SMP system.

A flaw in the semiconductor and computer hardware
usually causes an intermittent (soft) error. A flaw degrades
over times and becomesa hard or solid error. Therefore,
somerecoverable soft errors, which are localized or internal
to a particular processor within the SMP system, will
degrade overtimeto a hard error and cause a system failure.

Consequently, it would be advantageousto have a method
and apparatus for identifying or predicting degradation of a
processor in a SMP system and to remove such a processor
from the system configuration of the SMP system.

SUMMARYOF THE INVENTION

The present invention provides a method and apparatus in
a multiprocessor data processing system for managing a
plurality of processors. Monitoring for recoverable errors in
a set of processors is performed. Responsive to detecting a
recoverable error for a processor in the set of processors, a
determination is made as to whether the recoverable error

indicates a trend towards an unrecoverable error. Responsive
to a determination that the recoverable error indicates a trend

towards an unrecoverable error, actions are initiated to stop
the processor.

Page 8 of 13

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention

are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec-
tives and advantages thereof, will best be understood by
reference to the following detailed description of an illus-
trative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG.1 is a block diagram of a symmetric multiprocessing
(SMP) system depicted in accordance with a preferred
embodiment of the present invention;

FIGS. 2A-2C are diagrams of data found in an error log
depicted in accordance with a preferred embodimentof the
present invention;

FIG.3 is a flowchart of a process for run time deconfigu-
ration of a processor in a SMP system depicted in accor-
dance with a preferred embodimentof the present invention;

FIG. 4 is a flowchart of a process for predictive error
tracking for a CPU depicted in accordance with a preferred
embodiment of the present invention;

FIG. 5 is a flowchart of a process for dynamically
stopping a CPU depicted in accordance with a preferred
embodiment of the present invention; and

FIG. 6 is a flowchart of a process for stopping a CPU
depicted in accordance with a preferred embodimentof the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

With reference now to the figures and in particular with
reference now to FIG. 1, a block diagram of a symmetric
multiprocessing (SMP)system is depicted in accordance
with a preferred embodimentof the present invention. SMP
system 100 is an example of a data processing system in
which the present invention may be implemented. SMP
system 100 includes central processing units (CPUs) 102,
104, and 106. Although only three CPUsare illustrated in
this example, other numbers of CPUs may be used with the
present invention. Error registers 102a, 104a, and 106a are
located in CPUs 102, 104, and 106, respectively. These
registers are used to provide an indication of an error in a
processor based on a detection of the error in error logic
within the processor.

Bus 108 provides CPUs 102, 104, and 106 a connection
to system memory 110 and input/output (1/0) 112. L1/L2
caches 1026, 1045, and 1065 contain data used by the CPUs
102, 104, and 106 during processing ofinstructions. Bus 114
provides CPUs 102, 104, and 106 a connection to system
logic 116, which is used to provide a means to put a CPU in
a “stop-state”. In this way, system logic 116 mayisolate a
deconfigured CPU from the rest of the functioning system.
The service processor 118 is connected to the SMP system
via I/O 112 and has access to the system logic 116. Service
processor 118 includes firmware for gathering and analyzing
status information from each CPU in SMP system 100.
Software routines are stored in read-only memory (ROM).
Unlike random access memory (RAM), read-only memory
stays intact even in the absence of electrical power. Startup
routines and low-level input/output instructions are stored in
firmware. Nonvolatile random access memory (NVRAM)
120 is a nonvolatile memory device containing system
information. In addition, a deconfiguration area 122 is
included in NVRAM 120to store pertinent status informa-
tion and configuration states of CPUs 102, 104, and 106
received from the run time system firmware or the service

8

US 6,516,429 B1
3

processor 118. This status information includes indications
of soft errors occurring in CPUs 102, 104, and 106.

SMPsystem 100 also includes run time system firmware
124. This firmwareis also referred to as Run-Time Abstrac-

tion Service (RTAS) and provides an abstracted interface
between the operating system 126 and the system hardware.
Firmware 124 provides a set of hardware specific software
functions which an operating system can call to perform a
system hardware specific task. This firmware insulates the
operating system from writing hardware unique code for the
same task. In the depicted examples, operating system 126
is an Advanced Interactive Executive (AIX) operating
system, which is available from International Business
Machines Corporation.

Wheneveran error occurs, the run time system firmware
124 with the assistance from the service processor 118 as
required (system implementation specific), analyzes and
isolates the error to a specific CPU andreportthe error to the
operating system.

The present invention provides a method, apparatus, and
computer implemented instructions for run time deconfigu-
ration of a processor in a SMP system. Morespecifically, the
mechanism of the present invention identifies a degradation
of a processor in the system and deconfigures the processor
dynamically from the SMP system configuration. As used
herein deconfiguring a processor is a process used to stop
using and remove the processor from the system. The
dynamic deconfiguring meansthat this process is performed
during system run time. This process is used to prevent a
failure in the SMP system.

Theerror analysis performed by run time system firmware
124 or service processor 118 is used to identify soft errors,
such as, for example, multiple recoverable or correctable
internal CPU or external cache errors, occurring during
system run time that exceed a predefined threshold. A CPU
having these type of errors is identified as one to be
deconfigured. In response to identifying this type of error,
the error is reported to operating system 126 via a data
structure, such as, for example, an error log.

With reference now to FIGS. 2A-2C, diagrams of data
found in an error log are depicted in accordance with a
preferred embodiment of the present invention. These fig-
ures provide a description of the information sent to oper-
ating system 126 when a processor is to be deconfigured.
FIG. 2A illustrates the error return format for an error log.
Bits 8-10 indicate the severity of the error or event being
reported. Bit 13 indicates whether an extended error log is
part of the record. Bits 16-19 are used to identify the entity
initiating the event or failed operation while bits 20-23 are
used to identify the entity that was the target of the failed
operation. FIG. 2B showsthe error log format for extended
error log information in accordance with a preferred
embodimentof the present invention. In particular, bit 4 in
byte 0 contains an indication of whether the error is a
predictive error. In FIG. 2C, details of a CPU detected
failure are illustrated. Byte 13 contains the physical CPU ID
for a CPU detected failure.

FIGS. 2A-2C are meant to be illustrative of a way
information can be sent to dynamically deconfigure a pro-
cessor and not as a limitation to format of the present
invention. When operating system 126 in FIG.1 receives an
error log from run time system firmware 124, operating
system 126 will attempt to migrate all resources associated
with that processor to another processor. These resources
are, for example, processes, tasks, and interrupts. Thereafter,
operating system 126 will stop the processor by making a

Page 9 of 13

10

15

20

25

30

35

40

45

50

55

60

65

4

call to the run time system firmware routine called “stop-self
RTAS”. System firmware 124, with assistance from the
service processor as required (hardware implementation
dependent), places the CPU in a “stop state”.

Turning next to FIG. 3, a flowchart of a process for run
time deconfiguration of a processor in a SMP system is
depicted in accordance with a preferred embodimentof the
present invention. The process illustrated in FIG. 3 may be
implemented using run time system firmware 124, service
processor 118, system logic 116, and operating system 126
in FIG. 1 in these examples.

The process begins by identifying a predictive error (step
300). A run timeerrortracking firmware periodically checks,
tracks and maintains a record of the recoverable errors,
which are localized within a processor. This firmware may
be implemented using, for example, run time system firm-
ware 124 or a service processor 118 in FIG. 1. The exact
location will depend on a specific system hardware imple-
mentation. The firmware utilizes the error detection and

capture hardware circuitry within a CPU. When the error
record indicates a pattern of soft errors which trending
toward a hard error, the firmware marks the error record of
this CPU in the deconfiguration are of NVRAM 112 to
indicate that this CPU should notbe usedin the future. Then,
this error, a predictive error type, is reported to the operating
system with the associated CPU ID.

The operating system then initiates a process to stop the
CPU (step 302). When the operating system receives the
error log, the operating system will migrate all processes and
interrupt handlers off of the CPU identified as having the
predictive error. These processes and interrupt handlers are
migrated to other CPUsin the system. The operating system
will then stop dispatched tasks and interprocessor interrupts
to the CPU with the error.

Then, the operating system will send a call to “stop-self”
firmware portion of the run time system firmwareto stop the
CPU. The “stop-self” firmware, which is part of run time
system firmware 124, is running in the CPU to be decon-
figured. Depending on the specific system hardware
implementation, the “stop-self” firmware can put the CPU in
“stop-state” by itself, or it may need assistance from the
service processor.

Next, the system is informed ofthe transition (step 304).
The stop-self firmware portion of the run time system
firmware informsother part of the this system firmware and
service processor, that the SMP system is transitioning from
N processors to N-1 processors. The run time system
firmware and the service processor change their state
machines to manage and/or handle the system with N-1
processors. The stop-self firmware, then flushes the local
caches (L1 and L2) of the processor with “predictive error”
to ensure that all memory data that are stored in and
modified by this processor are stored back into memory. The
stop-self firmware, with assistance from the service proces-
sor as required,places the processorin “stop state” (or a hard
reset in some hardware implementation). Once this process
is completed, the CPU with the predictive error is removed
(step 306), and the SMP system continues to run with N-1
processors.

Thereafter, if the system is shutdown and rebooted, the
CPU with the predictive error is removed from the system
configuration during the next system boot process The
information used to remove the CPUis stored in a nonvola-

tile memory, such as NVRAM 120 in FIG.1. This state of
the processor is maintained within deconfiguration area 122
in NVRAM 120 in FIG. 1. More information on boot time

9

US 6,516,429 B1
5

deconfiguration of a processor is found in United States
Patent Application, entitled Method and System for Boot-
Time Deconfiguration of a Processor in a Symmetrical
Multi-Processing System, Ser. No. 09/165,952,filed Oct. 2,
1998, which is incorporated herein by reference.

With reference now to FIG.4,a flowchart of a process for
predictive error tracking for a CPU is depicted in accordance
with a preferred embodimentof the present invention. This
process is a more detailed description of step 300 in FIG.3.
The processillustrated in FIG. 4 may be implemented in run
time system firmware 124 with assistance from a service
processor 118, as required in these examples.

The firmware periodically checks CPUerror registers in
the SMP system. Whenanerror occurs, the process in FIG.
4 is initiated. The process begins with a determination being
made as to whether the error is a recoverable error (step
400). If the error is a recoverable error, an error flag is
checked to see whether the flag has been set (step 402). If the
flag has not beenset, the error flag is set and an error location
table is started for the CPU (step 404), with the process
terminating thereafter. The error location table is used to
track unique and multiple soft or recoverable error locations
within a specific CPU. The information in this table is used
to identify when a threshold has been exceeded and that the
CPUis to be dynamically deconfigured.

With reference again to step 402,if the error flag has been
set, a determination is made as to whether the error location
is on the table (step 406). An error location may be, for
example, a unique cache or memory address. A table is used
to store these error locations for processing. If the error
location for an error is on the table, the error is the same error
that was reported during previous check. One cache address
with a recoverable error can be accessed repeatedly, thus
producing multiple error indications from a single error.
Therefore, this process in FIG. 4 can differentiate between a
cache with a few error locations from a cache with a large
amountof recoverable error locations. If the error location

is not on the table, the error location is appendedto the table
(step 408). Next, a determination is made as to whetherfive
unique error locations are present in the table for the CPU
(step 410). This step is used to see whether the errors for the
CPU have exceeded a selected threshold, which is in this
case five uniqueerror locations. Of course, other numbers of
error locations may be used as a threshold depending on the
implementation. In addition, other types of mechanisms may
be used to predict trends toward hard errors other than error
locations. For example, in the alternative, a simple counter
used to count numberoferrors regardless of location may be
used in place of error locations, although it is less sophis-
ticated and may prematurely report a predictive trend.

If five uniqueerror locationsare present, the error is saved
in the deconfiguration area in the NVRAM for future boot
time CPU deconfiguration (step 412). In step 412, a decon-
figuration record is updated to identify the type of error and
the specific CPU.This record is used ata later time when the
SMPsystem is shutdown and then re-bootedor re-started up.

Thereafter, the predictive error is reportedto the operating
system for run time deconfiguration (step 414). In these
examples, the predictive error is sent in anerror log structure
as described above. Information of interest to the operating
system include, for example, the severity of the error, the
disposition or result of the error, the initiator (identification
of the CPU), identification of the error as a predictiveerror,
and identifying the error as a CPU detected error. The
process is ended and restarted at the next time period.

With reference again to step 410, if five unique error
locations are not present in the table, the process then
terminates.

Page 10 of 13

10

15

20

25

30

35

40

45

50

55

60

65

6

With reference again to step 400,if there is no recoverable
error present, the error flag is cleared as well as the content
of the location table (step 416) with the process then
terminating. If no recoverable error is present during this
checking period, the error trend is now broken. The previous
error logged in the location table could be caused by a
random, non repeating transient (soft) error which are
induced byeither alpha particle in lead material or cosmic
ray. This step is used filter out occasional occurrence of softerror.

The processing illustrated in FIG. 4 is applied to only one
error at a time. The firmware will exit the flow after

completing processing of one error. If another error exists,
this error will be processed during the next time period.

With reference now to FIG.5, a flowchart of a process for
dynamically stopping a CPU is depicted in accordance with
a preferred embodiment of the present invention. This
flowchart is a more detailed description of step 302 in FIG.
3. The steps in this process may be implemented in an
operating system, such as operating system 126 in FIG.1.

The process begins by receiving a predictive error record
(step 500). In these examples, the error record may take the
form of an error log as described above. A check is made to
determine whether the CPU specified by the error record has
one or more operating system processes that are required to
be run on that CPU(bound process) (step 502). The AIX
operating system used in these examples provides the appli-
cation with the capability to specify explicitly to run on a
logical CPU in the system. The software process with this
explicit direction to the AIX OSis called a bound process.
If no bound process(es) are present, then dispatch of oper-
ating system processes to that CPU are discontinued (step
504). A determination is made as to whether if there are
software functions that tie specifically to the CPU ID to be
deconfigured. (step 506). If the functions are tied to a CPU
ID, then those software functions are migrated to another
CPU ID (step 508). Thereafter, interrupt routing to the CPU
is discontinued (step 510). Further, the process also proceeds
directly to step 510 if no functions are tied to this CPU ID
(step 506). Next, a call is made to the “stop-self” run time
firmware to stop the CPU (step 512) with the process
terminating thereafter.

With reference again to step 502, if the check for a bound
processis positive, then the CPU deconfiguration is aborted
(step 514) with the process terminating thereafter.

With reference now to FIG.6, a flowchart of a process for
stopping a CPU is depicted in accordance with a preferred
embodiment of the present invention. The process in this
flowchart is a more detailed description of steps 304 and 306
in FIG. 3 and step 512 in FIG.5.

The process begins by informing system firmware and the
service processor that the SMP system istransitioning from
N CPUs to N-1 CPUs(step 600). In this example, the
“stop-self firmware” will inform other run time system
firmware routines and the service processor. Thereafter, the
run time firmware and the service processor state machines
are changed to manage and/or handle the SMP system with
N-1 processors (step 602). The local caches for the CPU
being deconfiguredare flushed (step 604). These cachesare,
for example, the L1 and L2 caches for the CPU. This step is
performed to insure that all data stored in the cache and
modified by the CPU are placed back into memory. The
mechanism used to flush the cache is processor implemen-
tation dependent.

The CPUis then placed into a stop state (step 606) with
the process terminating thereafter. This stop state is in

10

US 6,516,429 B1
7

essence hard reset in certain CPU hardware implementa-
tions. The mechanism used to place the CPU in a stop or
hard reset state may be implemented using known mecha-
nisms and is dependent on the particular CPU.

CPUs that are specifically marked for deconfiguration
remain offline in subsequent reboots. This state is main-
tained in these examples until the faulty CPU is replaced or
the CPU is manually reconfigured for use.

Thus, the present invention provides a mechanism for
identifying a CPU that has degraded over time and will
cause a hard error. The mechanism ofthe present invention
also allowsfor the identified CPU to be removed during run
time. During subsequent reboots, the identified CPU is left
out of the SMP system. In this manner, failures from
degrading CPUs may beavoided.

It is important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media such a floppy disc, a hard
disk drive, a RAM, and CD-ROMsand transmission-type
media such as digital and analog communications links.

The description of the present invention has been pre-
sented for purposes ofillustration and description, butis not
intended to be exhaustive or limited to the invention in the

form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. Although the
depicted examplesillustrate the deconfiguring of CPUs,the
processes of the present invention may be applied to other
types of processors.

In addition, the various processes may be implemented in
other portions of the SMP system other than those in the
examples. For example, error tracking may be implemented
in the run time system firmware or the service processor.If
implemented in the run time system firmware, the run time
system firmware will update the “fail status” field in a
deconfiguration record to “run time recoverable error thresh-
old exceeded, CPUinternal errors” or “run time recoverable
error threshold exceeded, external cache errors”. If the error
tracking is implemented in a service processor, error infor-
mation is passed to the run time system firmware for error
reporting to the operating system with the service processor
then updating a deconfiguration record. In this example, the
deconfiguration record is located in the NVRAM with the
“fail status” field in the deconfiguration record being
changed to “run time recoverable error threshold exceeded,
CPU internal errors” or “run time recoverable error thresh-

old exceeded, external cache errors”.
The embodiment was chosen and described in order to

best explain the principles of the invention, the practical
application, and to enable others of ordinary skill in the art
to understand the invention for various embodiments with

various modifications as are suited to the particular use
contemplated.

Whatis claimedis:

1. A method in a multiprocessor data processing system
for managinga plurality of processors, the method compris-
ing:

monitoring for recoverable errors in a set of processors;
responsive to detecting a recoverable error for a processor

in the set of processors, determining whether the recov-
erable error indicates a trend towards an unrecoverable

error; and

Page 11 of 13

wn

10

15

20

25

30

35

40

45

50

55

60

65

8

responsive to a determination that the recoverable error
indicates a trend towards an unrecoverable error, initi-
ating actions to stop the processor.

2. The method of claim 1 further comprising:
responsive to detecting a recoverable error for a processor

in the set of processors, maintaining a record of the
recoverable error.

3. The method of claim 2, wherein the determining step
comprises:

determining whether the record indicates a pattern of
recoverable errors trending towards a hard error.

4. The method of claim 3, wherein the pattern is a number
of errors exceeding a threshold.

5. The method of claim 1, wherein the initiating step
includes:

initiating a migration of processes from the processor to
other processors in the multiprocessor data processing
system.

6. The method of claim 1, wherein the initiating step
includes:

initiating a migration of interrupt handlers from the pro-
cessor to other processors in the multiprocessor data
processing system.

7. The method of claim 6, wherein the migration of
interrupt handlers are handled by an operating system for the
multiprocessor data processing system.

8. The method of claim 1, wherein the initiating step
includes:

stopping dispatch tasks on the processor.
9. The method of claim 1, wherein the initiating step

includes:

stopping inter-processor interrupts to the processor.
10. The method of claim 1, wherein the initiating step

includes:

storing data from a cache used by the processor in a
memory.

11. The method of claim 1 further comprising:
maintaining a record of the processor, wherein the pro-

cessors in the record are left out of the system con-
figuration on a system boot process.

12. The method of claim 1, wherein the monitoring,
determining, and initiating steps are located in firmware for
the multiprocessor data processing system.

13. A method in a multiprocessor data processing system
for managinga plurality of processors, the method compris-
ing:

monitoring the plurality of processors for errors;
responsive to detecting a recoverable error localized to a

processor within the plurality of processors, adding the
recoverable errorto a record oferrors for the processor;

responsive to adding the recoverable error to the record,
determining whether the record indicates a trend
towards an occurrence of an unrecoverable error; and

responsive to determining that the record indicates a trend
towards an occurrence of an unrecoverable error, iden-
tifying the processor as a processor that should be
removed.

14. The method of claim 13 further comprising:
sending the identification of the processor to an operating

system for the multiprocessor data processing system to
initiate actions to migrate processes away from the
processors to other processors within the plurality of
processors.

15. The method of claim 13 further comprising:
transitioning the multiprocessor data processing system to

managethe plurality of processors minus the processor.

11

US 6,516,429 B1
9

16. The method of claim 15 further comprising:

moving data from a cache used by the processor to a
memory in the multiprocessor data processing system.

17. The method of claim 15 further comprising:

removing the processors from a system configuration for
the multiprocessor data processing system during a
next system boot of the multiprocessor data processing
system.

18. The method of claim 13, wherein the multiprocessor
data processing system is a symmetrical multiprocessor
system.

19. The method of claim 13, wherein the steps of
monitoring, adding, determining, and identifying are per-
formed by a run time system firmware and a service pro-
cessor in the multiprocessor data processing system.

20. A data processing system comprising:

a set of processors;

a run time system firmware; and
a service processor connected to the set of processors,

wherein the run time system firmware and the service
processor monitor the set of processors for a selected
type of fault in which the selected type of fault is an
indication of a processor degradation, identify a pro-
cessor from the set of processors causing the selected
type of fault, and dynamically initiate actions to stop
the processor in response to detecting the selected type
of fault.

21. The data processing system of claim 20, wherein the
data processing system is a symmetric multiprocessing
system.

22. A data processing system comprising:

a set of processors;

a run time system firmware; and

a service processor connected to the set of processors,
wherein the run time system firmware and the service
processor monitor the set of processors for a selected
type of fault, wherein the selected type of fault is a fault
occurring often enough to exceed a threshold in which
the selected type of fault is an indication of a processor
degradation, identify a processor from the set of pro-
cessors causing the selected type of fault, and dynami-
cally initiate actions to stop the processor in response to
detecting the selected type of fault.

23. A data processing system comprising:

a set of processors;

a run time system firmware; and

a service processor connected to the set of processors,
wherein the run time system firmware and the service
processor monitor the set of processors for a selected
type of fault, wherein the selected type of fault is
pattern of soft errors trending towards a hard error in
which the selected type of fault is an indication of a
processor degradation,identify a processor from the set
of processors causing the selected type of fault, and
dynamically initiate actions to stop the processor in
response to detecting the selected type of fault.

24. A data processing system comprising:
a set of processors;
a run time system firmware; and
a service processor connected to the set of processors,

wherein the run time system firmware and the service
processor monitor the set of processors for a selected
type of fault, wherein the selected type of fault is a soft
fault in which the selected type of fault is an indication
of a processor degradation, identify a processor from

Page 12 of 13

5

10

15

20

25

30

35

40

45

50

55

60

65

10

the set of processors causing the selected type of fault,
and dynamically initiate actions to stop the processor in
response to detecting the selected type of fault.

25. The data processing system of claim 24, wherein the
processor is removed from the system configuration during
a next system boot of the data processing system.

26. A data processing system comprising:
a set of processors;
an operating system;
a run time system firmware; and
a service processor connected to the set of processors,

wherein the run time system firmware and the service
processor monitor the set of processors for a selected
type of fault in which the selected type of fault is an
indication of a processor degradation, identify a pro-
cessor from the set of processors causing the selected
type of fault, and dynamically initiate actions to stop
the processor in response to detecting the selected type
of fault and wherein the run time system firmware
initiates actions to stop the processor by sending an
error report to the operating system and wherein the
operating system migrates processes off of the proces-sor.

27. A data processing system comprising:
a set of processors;
a run time system firmware; and
a service processor connected to the set of processors,

wherein the run time system firmware and the service
processor monitor the set of processors for a selected
type of fault in which the selected type of fault is an
indication of a processor degradation, identify a pro-
cessor from the set of processors causing the selected
type of fault, and dynamically initiate actions to stop
the processor in response to detecting the selected type
of fault, wherein the data processing system includes a
system configuration to handle the set of processors and
wherein the run time system firmware and the service
processor initiates actions to change the system con-
figuration to handle the set of processors minus the
processor being stopped.

28. A data processing system for managing a plurality of
processors, the data processing system comprising:

monitoring means for monitoring for recoverableerrors in
a set of processors;

determining means, responsive to detecting a recoverable
error for a processor in the set of processors, for
determining whether the recoverable error indicates a
trend towards an unrecoverable error; and

initiating means, responsive to a determination that the
recoverable error indicates a trend towards an unrecov-

erableerror, for initiating actions to stop the processor.
29. The data processing system of claim 28 further

comprising:
maintaining means, responsive to detecting a recoverable

error for a processor in the set of processors, for
maintaining a record of the recoverable error.

30. The data processing system of claim 29, wherein the
means of determining comprises:

determining means for determining whether the record
indicates a pattern of recoverable errors trending
towards a hard error.

31. The data processing system of claim 30, wherein the
pattern is a frequency of errors exceeding a threshold within
a predefine time period.

32. The data processing system of claim 28, wherein the
meansfor initiating includes:

12

US 6,516,429 B1
11

initiating means for initiating a migration of processes
from the processor to other processors in the multipro-
cessor data processing system.

33. The data processing system of claim 28, wherein the
means for initiating includes:

initiating means for initiating a migration of interrupt
handlers from the processor to other processors in the
multiprocessor data processing system.

34. The data processing system of claim 33, wherein the
migration of interrupt handlers are handled by an operating
system for the multiprocessor data processing system.

35. The data processing system of claim 28, wherein the
means for initiating includes:

stopping means for stopping dispatch tasks on the pro-cessor.

36. The data processing system of claim 28, wherein the
means for initiating includes:

stopping means for stopping inter-processor interrupts to
the processor.

37. The data processing system of claim 28, wherein the
means for initiating includes:

storing means for storing data from a cache used by the
processor in a memory.

38. The data processing system of claim 28 further
comprising:

maintaining means for maintaining a record of the
processor, wherein the processors in the record are left
out of the system configuration on a system boot
process.

39. The data processing system of claim 28, wherein the
monitoring means, determining means,and initiating means
are located in firmware for the multiprocessor data process-
ing system.

40. A data processing system for managing a plurality of
processors, the data processing system comprising:

monitoring means for monitoring the plurality of proces-
sors for errors;

adding means, responsive to detecting a recoverable error
localized to a processor within the plurality of
processors, for adding the recoverable error to a record
of errors for the processor;

determining means, responsive to adding the recoverable
error to the record, for determining whether the record
indicates a trend towards an occurrence of an unrecov-

erable error; and

identifying means, responsive to determining that the
record indicates a trend towards an occurrence of an

unrecoverable error, for identifying the processor as a
processor that should be removed.

41. The data processing system of claim 40 further
comprising:

sending means for sending the identification of the pro-
cessor to an operating system for the multiprocessor
data processing system to initiate actions to migrate
processes away from the processors to other processors
within the plurality of processors.

Page 13 of 13

12

42. The data processing system of claim 40 further
comprising:

transitioning means for transitioning the multiprocessor
data processing system to manage the plurality of
processors minus the processor.

43. The data processing system of claim 42 further
comprising:

moving means for moving data from a cache used by the
processor to a memory in the multiprocessor data
processing system.

44. The data processing system of claim 42 further
comprising:

10

removing means for removing the processors from a
system configuration for the multiprocessor data pro-
cessing system during a next system boot of the mul-
tiprocessor data processing system.

45. The data processing system of claim 40, wherein the
multiprocessor data processing system is a symmetrical
multiprocessor system.

46. The data processing system of claim 40, wherein the
monitoring means, adding means, determining means, and
identifying meansare located in a run time system firmware
and a service processor in the multiprocessor data process-
ing system.

47. A computer program product in a computer readable
medium for managing a plurality of processors, the com-
puter program product comprising:

25

first instructions for monitoring for recoverable errors in
a set of processors;

second instructions, responsive to detecting a recoverable
error for a processor in the set of processors, for
determining whether the recoverable error indicates a

35 trend towards an unrecoverable error; and

third instructions, responsive to a determination that the
recoverable error indicates a trend towards an unrecov-

erableerror, for initiating actions to stop the processor.
48. A computer program product in a computer readable

medium for managing a plurality of processors, the com-
puter program product comprising:

first instructions for monitoring the plurality of processors
for errors;

second instructions, responsive to detecting a recoverable
error localized to a processor within the plurality of
processors, for adding the recoverable error to a record
of errors for the processor;

third instructions, responsive to adding the recoverable
error to the record, for determining whether the record
indicates a trend towards an occurrence of an unrecov-

erable error; and

50

fourth instructions, responsive to determining that the
record indicates a trend towards an occurrence of an

unrecoverable error, for identifying the processor as a
processor that should be removed.

55

13

