
(19) United States
US 2005O172164A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0172164A1
Fox et al. (43) Pub. Date: Aug. 4, 2005

(54) AUTONOMOUS FAIL-OVER TO HOT-SPARE
PROCESSOR USING SMI

(75) Inventors: Thomas James Fox, Apex, NC (US);
Eric R. Kern, Durham, NC (US);
Michael Scott Rollins, Durham, NC
(US)

Correspondence Address:
DILLON & YUDELL LLP
8911 N. CAPITAL OF TEXAS HWY.,
SUTE 2110
AUSTIN, TX 78759 (US)

(73) Assignee: International Business Machines Cor
poration, Armonk, NY (US)

(21) Appl. No.: 10/761,721

(22) Filed: Jan. 21, 2004

Publication Classification

(51) Int. Cl. .. G06F 11/00

A-32
SPARE

PROCESSOR
122

NC
111

FO CONTROLLER
15

(52) U.S. Cl. .. 714/13

(57) ABSTRACT

A method and System for dynamically replacing a failing
processor in a Server System configured with IA-32 archi
tecture without requiring hardware changes to the IA-32
architecture or administrative effort. At least one processor
of the multiprocessor system (MP) is initially provided as a
reserve (or hot-spare) processor that remains in an idle, off,
or low-power mode. While in that mode, the OS is prevented
from initially utilizing the hot-spare processor. When a
processor failure is detected, SMI code running on a good
processor instructs the OS to hold off allocating processes to
the failing processor. Contemporaneously, the SMI (and OS)
activates and completes an initialization of the hot-spare
processor to prepare it to begin receiving the held-off
processes. Control is then returned to the OS, which updates
the “active” processor list and allocates the threads that were
running on the failing processor to the hot-spare processor.

IA-32 IA-32 sé
PR OCESSORO - PROCESSOR so 120 120 122

112

111

MEMORY
CONTROLLER

17

ZF, Ex. 10131

I aum6.J.,

US 2005/0172164 A1 Patent Application Publication Aug. 4, 2005 Sheet 1 of 4

2

Patent Application Publication Aug. 4, 2005 Sheet 2 of 4 US 2005/0172164 A1

120

APIC BUS 11

LINTO (INTR) 143

LINT1 (NMI) 144

figure 2A

3

Patent Application Publication Aug. 4, 2005 Sheet 3 of 4 US 2005/0172164 A1

D
H
CO
X
CMO
O
-

4

Patent Application Publication Aug

BIOS SETUP
NSTALL P1 & P2

301

P1 & P2 PROCESS
APP CODE AND OS

303

. 4, 2005 Sheet 4 of 4

ONITOR
FAILURE

DETECTED ON
P1/P2
305

NITIATE HOT
SWITCH-OVER TO
SPARE PROCESSOR

307

STOP OPERATIONS
ON FALNG

PROCESSOR (P1)
309

UPDATE BIOS/OS/
BUS CNTL, ETC. TO

PONT TOPS
3.11

TRANSFER
PROCESSES 8.
QUEUED

INSTRUCTIONS TO
SPARE PROC, PS

313.

CONTINUE
PROCESSINGAPP
CODE 8, OS ON P2 8.

PS
315

SIGNAL P1 FAILURE
317

figure 3

US 2005/0172164 A1

5

US 2005/0172164 A1

AUTONOMOUS FAIL-OVER TO HOT-SPARE
PROCESSOR USING SMI

BACKGROUND OF THE INVENTION

0001) 1. Technical Field
0002 The present invention relates generally to data
processing Systems and in particular to System response to
processor failure in a multi-processor data processing SyS
tem. Still more particularly, the present invention relates to
a method and System for dynamically activating a Spare
processor when processor failure is detected in a multi
processor data processing System.

0003 2. Description of the Related Art
0004 Conventional data processing systems are often
configured with multiple processors interconnected to each
other and other System components. These multiple proces
SorS may exist on a Single chip or may be manufactured on
Separate chips. The processors operate in tandem to effi
ciently complete tasks associated with application code
being executed. Those skilled in the art are familiar with the
various configuration and operations of multiprocessor SyS
tems (MPs).
0005. Occasionally, while a system is running and the
processors are executing application code, one (or more) of
the processors may fail (i.e., begin to provide inaccurate
processing results and/or begin operating outside of pre
established or “ideal” operating parameters, etc.). When
Such processor failure occurs, the System's technician has to
replace the failing processor (or processor chip) with a new
one in order to maintain the level of processing desired for
the System. This changing of processors is normally a
manual operation, which requires the technician to halt all
executing processes (across the System including the oper
ating system (OS)), shut down the MP, obtain a new/
replacement processor, complete the Switch out of the failing
processors, reboot the System, and then restart the executing
processes across the MP.
0006 During the system reboot, the replacement proces
sor is recognized by the MP's BIOS (basic input/output
System) and activated for operation within the System.
Conventionally, the failed (or failing) processor is physically
detached (or removed) from the System bus (or intercon
nect), and the replacement processor is connected (plugged
in) to the interconnect in place of the removed processor.
This replacement method is convenient when non-critical
processes are being completed on the MP, however, the time
required to replace the processor and downtime in proceSS
ing is un-acceptable for critical processes that require con
tinuous up-time of the MP.
0007 Also, with current replacement methods, a separate
replacement processor is required to be plugged-in after the
failure condition is detected. This requires a technician to
Swap out the failed processor with the replacement, and as
described above, the OS and executing processes are halted
until the Swap of the processors is completed.
0008. The traditional method of responding to processor
failure Severely limits the ability of larger Systems (e.g.,
multiprocessor Server Systems) with non-failing processors
to continue executing despite the presence of the failing
processor. In lager Server Systems that require continuous

Aug. 4, 2005

up-time, replacement of a failing processor has to be com
pleted without shutting down the entire System. Typically, in
a Server System, when a processor begins to fail, the pro
ceSSor must be taken out of the processing pipeline and
replaced by another processor to avoid the entire MP crash
ing. Depending on the built-in redundancy and complexity
of the MP, Such a temporary removal may have wide ranging
effects, from Slightly degrading the overall performance of
the MP to temporarily removing the MP from service.
0009 Currently, manufacturers of server systems provide
different types of Server architectures, with common archi
tectures being the S/390 architecture and the Intel Architec
ture-32 bit (IA-32). The S/390 architecture has a machine
instruction for Switching to a backup processor, while IA-32
does not have a similar machine instruction. Rather, IA-32
is designed with the functionality to generate an SMI
(Systems Management Interrupt) after a CPU fault. Genera
tion of SMIS for Standard System management tasks is
unique to the IA-32 and the proceSS is described in detailed
in U.S. Pat. No. 6,625,679.
0010 Realizing that shutting down the entire MP and
then restarting all processes is an unacceptable method of
handling Single processor failures, manufacturers designed
Some conventional MPs with a failure response mechanism
that involves a hot-spare processor and hardware changes to
the System architecture to Support processor failure condi
tions. Implementation of the failure response mechanism is
based on the type of Server architecture.
0011 U.S. Pat. No. 6,115,829 provides a hot spare pro
cessor for solving processor problems relating to the S/390
architecture. The Solution involves the utilization of a hard
ware instruction built into the processor that is usable only
by millicode. Since the problems in the S/390 architecture
are Specific to that architecture, the above Solution is not
available to the IA-32 architecture, which has a different
processor configuration and exhibits a different Set of pro
cessor problems. Those skilled in the art are familiar with the
functional and architectural differences in the two types of
architectures and appreciate that different response methods
unique to each architecture must be implemented for pro
ceSSor failure.

0012. As another example, U.S. Pat. No. 4,819,232 pro
vides a hardware instruction for Software programs to utilize
when completing fault recovery to a spare processor from
the primary processor. Implementation of this process in an
IA-32 system would require architecture (hardware)
changes to current IA-32. Another patent, U.S. Pat. No.
5,155,729 provides a redundant processor that engages in a
ping-ponging process with the primary processor during a
hot swap condition. This process is also specific to the S/390
architecture and not provided within the IA-32 architecture.
Finally, U.S. Pat. No. 6,370,657 places the system into
Standby prior to hot-Swapping the processors; however, the
response mechanism does not provide a hot-spare nor does
it provide a means to keep the OS running during the Switch
between processors.
0013 With server systems, processor downtime is an
undesirable condition, and thus a fast fault-response mecha
nism/Scheme is required. It would be desirable for Such a
scheme to include the ability to detect when one of the
multiple processors has failed. Additionally, when a proces
Sor failure has been detected, it would also be desirable for

6

US 2005/0172164 A1

the fault-response mechanism to quickly respond to the
failure by providing a replacement processor without the
System having to Suspend processing and with minimal
disruption to the overall System. The present invention
recognizes that it would be desirable to provide a processor
failure response mechanism that provides a replacement
processor in a SeamleSS manner So that executing processes
and the OS continue executing during dynamic replacement
of the failed processor.

SUMMARY OF THE INVENTION

0.014 Disclosed is a method and system for dynamically
replacing a failing processor in a Server System configured
with IA-32 architecture without requiring hardware changes
to the IA-32 architecture or administrative effort. The
method enables a System to remain operational, i.e., con
tinue executing operating System (OS) processes and appli
cation processes on the other processors, while the failing
processor is automatically de-activated and a replacement
processor is dynamically activated. Negligible System
downtime occurs during the transfer of executing threads/
processes to the replacement processor, unlike other meth
ods which require temporary halting of the OS processing
and, in Some instances, halting all other processes across the
System.

0.015 Implementation of the invention involves the uti
lization of Systems Management Interrupt (SMI) function
ality provided within basic input output system (BIOS) of
the IA-32 architecture. At least one processor of the multi
processor system (MP) is initially provided as a reserve (or
hot-spare) processor that remains in an idle, off, or low
power mode. While in that mode, the OS is prevented from
initially utilizing the hot-spare processor. When a processor
failure is detected, SMI code running on a good processor
instructs the OS to hold off allocating processes to the failing
processor. Contemporaneously, the SMI (and OS) activates
and completes an initialization of the hot-spare processor to
prepare it to begin receiving the held-off processes. Control
is then returned to the OS, which updates the “active”
processor list and allocates the threads that were running on
the failing processor to the hot-spare processor.
0016. Thus, a processor is able to autonomically fail-over
to a hot-spare processor without affecting the OS or execut
ing applications. The invention Substantially eliminates the
problems related to high availability during Single processor
failure without crashing all of the processors. Further, the
invention completes this processor replacement without
requiring Specialized OS or middleware features. Finally, the
invention provides a method for dynamic, hot Swap of Spare
processors without the need of processor architecture
changes. That is, no special hardware instruction is built into
the processor, as in other methods.
0.017. The above as well as additional objects, features,
and advantages of the present invention will become appar
ent in the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

0.018. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself however, as well as a preferred mode of use, further
objects and advantages thereof, will best be understood by
reference to the following detailed description of an illus

Aug. 4, 2005

trative embodiment when read in conjunction with the
accompanying drawings, wherein:
0019 FIG. 1 is a block diagram of a multiprocessor
computer System (MP) designed according to IA-32 archi
tecture and a spare processor according to one illustrative
embodiment of the present invention;
0020 FIG. 2A is a block diagram depicting two major
internal components of one of the IA-32 processors of FIG.
1A, according to one illustrative embodiment of the present
invention;
0021 FIG. 2B is a block diagram of a multiprocessor
chip designed with dual IA-32 processors and a spare IA-32
processor to enable dynamic Switching out of a filed pro
ceSSor during failure response in accordance with one
embodiment of the present invention; and
0022 FIG. 3 is a flow chart illustrating the process of
detecting and responding to processor failure with the Spare
processor configuration of FIGS. 1 and 2B according to one
embodiment of the present invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE

EMBODIMENT(S)
0023 The present invention provides a method for
dynamically replacing failing processors in a IA-32 config
ured multiprocessor computer system (MP) by providing the
MP with a spare processor that is initially held-off and is
later brought into the group of executing processors when
ever one of the main processors is detected as failing. The
invention provides a Substantially Seamless transfer of
executing processes from the failing processor to the
replacement processor, without halting the execution of the
operating System (OS) and/or applications on the overall
MP. That is, a failing processor is able to autonomically
fail-over to a hot-spare processor without affecting the OS or
executing applications. The failure response method of the
invention is completed without requiring Special hardware
instructions built into the processors.
0024. With reference now to the figures and in particular
to FIG. 1, there is illustrated a multiprocessor system (MP)
designed with a Spare processor and other components that
enable the implementation of the various features of the
invention. MP 100 is designed according to IA-32 architec
ture and comprises an IA-32 processor System 120 coupled
to system components by a bridge 112. The IA-32 processor
system 11 may include one or more processors 120,122 that
perform various computing functions. The processors 14 are
coupled to a common bus 114, and may be coupled to a local
advanced programmable interrupt controller (APIC) bus
(described below). The processors 120, 122 share access to
the common bus 114, and may also share other resources
Such as memory, input/output (I/O) devices, and interrupt
handlers, for example. The System components provide
enhanced functionality, and can be used with the existing
IA-32 processors 120, 122, provided that appropriate hard
ware and/or Software is used to ensure compatibility
between the IA-32 processor System and the System com
ponents

0025 MP 100 also comprises a spare processor 122. The
processors are interconnected to each other via processor
interconnect 114. Each processor 120,122 comprises service
processor logic (not shown), which communicates with

7

US 2005/0172164 A1

other Service processors of other processors as well as
buS/interconnect logic (e.g., bridge 112) to allow the pro
ceSSorS 120, 122 to operate in a coherent manner with each
other and the rest of the MP 100.

0026. As shown by FIG. 2A, each processor 120, 122
includes a core unit 140 that controls processing on the
processor 120, 122 and an APIC 141 that processes external
and normal interrupts that the processor 120, 122 may
receive at its interrupt pins 143 and 144. APIC 141 also
includes a connection to the APIC bus 18, used to deliver
interrupts to the application processors. The interrupt pins
143 and 144 may be programmed to receive Specific types
of interrupts.

0027. The system components include one or more I/O
controllers 105, which are coupled to a memory controller
(MC) 107. The I/O controllers 105 are coupled to I/O device
buses 109. The buses 109 may include a peripheral computer
interface (PCI) bus, for example, the buses 109 may connect
Standard computer peripherals Such as a keyboard.
0028 Coupled to MC 107 is a system memory 110,
within which is stored software for controlling the MP and
executing application processes. These Software include: the
OS 113, BIOS 116, which includes SMI, and program
applications 117. SMI notifies the OS of additional proces
Sor resources within the MP (i.e., increase/decrease in num
ber of processors) as well as addition/removal of other
System resources (i.e., memory and I/O, etc.).
0029. A system bus 110 connects the memory controller
107 and other components to IA-32 processors 120, 122, via
bridges 112, and processor buses 114. The IA-32 processors
120, 122 and the bridges 112 are grouped at nodes 111.
0030 The bridge 112 takes the interrupts that are being
delivered over the system bus 110 and signals the interrupt
to the appropriate IA-32 processor 120, 122. To ensure that
a particular interrupt reaches the appropriate IA-32 proces
Sor 120, 122, all interrupt transactions on the system bus 110
contain target node 111 and IA-32 processor identification.
0031 Software may initialize the I/O controllers 105 to
transfer an interrupt transaction in a manner that identifies
the IA-32 processor 120, 122 to be interrupted. The bridge
112 that is connected to the same processor bus 114 as the
destination IA-32 processor 120, 122 recognizes the inter
rupt transaction, and asserts an interrupt pin at the targeted
IA-32 processor 120, 122.
0032. During operation, the OS and software code from
the program application are executed by the processors to
complete Specific tasks or functions associated with the
application. The processors are interconnected to the other
components (memory, etc.) via System interconnect 110.
Interconnect fabric 110 includes wires and control logic for
routing communication between the components as well as
controlling the response of the OS of MP 100 to changes in
the hardware configuration. In the present invention, BIOS
comprises processor failure response logic 207, which gen
erates the SMI, and configuration setting logic 209.
0.033 FIG. 2B provides a block diagram representation
of a multiprocessor chip designed with main IA-32 proces
sors 120 and a spare processor 122. Also provided with MP
chip 200 is a register 209 for tracking active processors on
MP chip 200, as described below. In one alternate imple

Aug. 4, 2005

mentation, processors 120, 122 are interconnected to each
other via processor-to-processor buses 203. Processors 120,
122 are also connected to bridge (bus controller) 207 via
individual control buses 205. Control buses enable transfer
of control data from the bus controller that indicates which
processor is active within MP chip 200. Control bus then
provides a connector 211 that couples MP chip 200 to larger
processing system such as MP 100 of FIG. 1 via pins 213.
0034. When the MP is initially activated for processing,
one IA-32 processor is held off as a spare processor. Holding
off the processor involves having the basic input output
System (BIOS) recognize the processor as a spare during
BIOS boot (i.e., power on self test (POST), etc. of the MP
and having the BIOS respond by not enabling the spare
processor to be initially allocated for OS and application
processing. This particular Set-up of the MP may require
Some administrative input and Support. However, in one
embodiment, the processor initialization/identification code
includes a Software tag to identify the processor as a Spare
processor to the OS and other components. The other
processors are initiated and identified to the OS for regular
processing.

0035) In one embodiment, during boot, BIOS utilizes
advanced configuration and power interface (ACPI) Speci
fication and/or the S3 State to put the processor in a low
power, standby, or “off” state. The S3 state is a computer
sleep state defined by the ACPI specification in which the
System is not powered nor running, but the memory remains
intact, powered and in a continuous refresh cycle. This initial
removal of the Spare processor from the group of executing
processors occurs before the BIOS hands over control to the
OS. In another embodiment the system is made to enable the
“hot spare processor” feature on-the-fly by the OS with a
driver-OS-SMI handshake. Tracking which processors are
active may be completed by an Software table of active
processors, which is available to be read by the OS, when
determining work load allocation to each of the active
processors.

0036) Notably, the present invention maintains system
uptime even while a processor in the MP is failing. This
feature of the invention is particularly applicable to opera
tions in a critical Server environment that requires continu
ous uptime of the System.
0037. The spare processor remains hidden until one of the
primary processorS fails and the Spare processor is needed to
replace the failing processor. As illustrated in FIG. 2B, the
Spare processor may be built on the same board as the main
processors. However, in another implementation, the Spare
processor is provided on a separate processing board to
make Serviceability easier. For example, with the Spare
processor operation for Series x440 models, the bottom
most board with CPU's is identified as the ideal board on
which to reserve a hot-spare CPU(s), since the bottom CPU
board is not as accessible. This enables a failed CPU to be
disabled while the OS remains running.
0038. The spare processor is interconnected similarly to
each primary processor with the exception that BIOS does
not initialize the Spare nor initially present the Spare pro
cessor to the OS following the POST. During POST, BIOS
hides the spare processor from the OS. This is accomplished
either through a setup of the MP table and/or an ACPI setup.
The BIOS brings the spare processor all the way online, then

8

US 2005/0172164 A1

puts it into a spin lock (i.e., a tight Software loop in the SMI
handler). This has the effect of completely hiding the pro
ceSSor from the OS until the Spare processor is needed. Once
processor failure occurs and the Spare processor is activated,
the Spare processor is then placed under complete OS
control.

0.039 Possible triggers for the failure-response features
of the invention includes the following: (1) CPU thermal
trends are observed by a System management utility, which
may be hardware (HW), firmware (FW), and/or software
(SW). In one implementation, the System manager utility
also provides an SMI handler itself; (2) The CPU tempera
ture goes over or near Some operational breaking point; and
(3) The system management entity causes an SMI to be
invoked, indicating which CPU is to be off-loaded to the hot
spare CPU.

004.0 Implementation of the invention involves the uti
lization of Systems Management Interrupt (SMI) function
ality provided within basic input output system (BIOS) of
the IA-32 Systems. At least one processor of the multipro
ceSSor System is reserved as a hot-spare processor that
remains in an idle, off, or low-power mode. While in that
mode, the OS is prevented from initially utilizing the hot
spare processor. When a processor failure is detected, SMI
code running on a good processor instructs the OS to hold
off allocating processes to the failing processor. Contempo
raneously, the SMI (and OS) activates and completes an
initialization of the hot-spare processor to prepare it to begin
receiving the held-off processes. Control is then returned to
the OS, which updates the “active” processor list and
allocates the threads that were running on the failing pro
ceSSor to the hot-spare processor.

0041. The SMI is generated by hardware during various
processor failure conditions. During an SMI, the System
State of each processor is completely saved to memory and
the caches and pipelines are flushed. A BIOS interrupt
handler (i.e., the SMI handler) then takes control of the
system until a resume (RSM) instruction is performed by the
OS. The SMI handler is utilized to allow BIOS to swap out
processors. The BIOS places the failing processor in a halt
State and contemporaneously brings the Standby processor
out of the held-off State and into an active State. Additionally,
the BIOS switches the memory save state from the old
processor to the new processor. In one embodiment, the
above processes are accomplished by providing a Software
register of active processors in the OS and Setting the
register to reflect the Spare processor as active and the failing
processor as inactive.

0042. In the present invention also, SMI allows BIOS to
detect a failure and control the reallocation of processing
from a good CPU to the hot spare CPU. The SMIs are
generated through hardware, and an internal monitoring
mechanism is provided for each processor or group of
processors that generates the SMI. In the described embodi
ment, the Specific processor-fault SMI is generated when a
processor is failing. The SMI identifies to the OS and the
BIOS which one of the processors is failing. SMIs are
invoked periodically and/or asynchronously by the hardware
or other System events, and possibly by Software control. A
description of the functionality and utilization of the SMI
and SMI handler is described in detail in U.S. Pat. No.
6,463,492.

Aug. 4, 2005

0043. Whenever a CPU fault occurs, an SMI is automati
cally generated by the existing hardware, as described in the
above referenced patent. The SMI is utilized as a trigger that
initiates the activation of the spare processor by the BIOS.
Notably, unlike with other conventional methods, no hard
ware Switching logic is needed to accomplish the fail-over
process of the invention. That is, the invention provides a
Software-only Solution for processor failure response.
0044) Thus, a processor is able to autonomically fail-over
to a hot-spare processor without affecting the OS or execut
ing applications. The invention Substantially eliminates the
problems related to high availability during Single processor
failure without crashing all of the processors. Further, the
invention completes this Solution in a way that also does not
require specialized OS or middleware features. Finally, the
invention provides a method for hot Swap Spare processors
without the need of processor architecture changes. That is,
no special hardware instruction is required built into the
processor as in other methods.
004.5 FIG. 3 is a flow chart illustrating the process of
failure detection and response according to one implemen
tation of the invention. For simplicity, the process is
described with reference to the MP and processor configu
ration of FIGS. 1 and 2A, 2B. As provided at block 301, the
process begins with the BIOS Setting up and installing the
main processors, P0 and P1, during the initial POST of the
MP. The presence of the Spare processor is registered in the
BIOS and that processor is initially left in power-down
(held-off) or inactive mode. The OS and applications are not
provided with an indication of the Spare processor, So no
operations are initially allocated to that processor. The
primary processors commence processing application code
and OS operations on the MP, as shown at block 303. The
System monitors the processors for a detection of failure on
one of the processors, and a determination is made at block
305 whether a failure is detected. In one implementation, the
processors detect failure within their Subsystem, generating
a processor fault SMI, and message the failure to the SMI
handle. If no failure occurs, the processing of application
and OS continues as normal on the main processors.
0046) If failure is detected, however, the receipt of a
processor fault SMI by the OS immediately activates a
Switch over response to replace the failing processor with
the spare processor as indicated at block 307. The spare
processor is brought out of the held-off State. Concurrently,
processes (instructions, threads, etc.) initially allocated to
the failing processor are held by the OS and processing on
the failing processor is stopped as shown at block 309. Once
the Spare processor has been Successfully brought on line,
the BIOS (table) is updated and the OS, bus controllers, etc.
are messaged to change their configurations to reflect a
processor change from the failing processor to the Spare
processor as shown at block 311. The processes initially
allocated to the failing processor are Sent to the Spare
processor as indicated at block 313, and the application code
and OS continue processing on the processors that are now
functional (i.e., the other main processor and the spare
processor) as provided at block 315. Notably, for this
Seamless transfer to be possible, all processors in the System
must be identical or proceSS instructions in an identical
manner. Otherwise a degradation or improvement in pro
cessing may become noticeable and affect overall through
put. Once the fail-over to the Spare processor has been

9

US 2005/0172164 A1

completed, a signal/message is generated indicating (to the
administrator) that the processor has failed and is replaced
with a spare, as shown at block 317. Then the process ends
as depicted at block 319.
0047 The invention provides a method for hot Swap
Spare processors without the need of processor architecture
changes, i.e., without requiring a hardware instruction built
into the processor. The invention provides high availability
of processing resources and eliminates delayS due to per
Sonal Switching out failing processors manually. Further, the
invention completes this Solution in a way that also does not
require Specialized OS or middleware features.
0.048. The present invention provides several advantages
over other available methods including: (1) no specialized
Software is needed because SMI is in BIOS, and the reaction
to a failing processor is automatic. Also, (2) using an SMI,
a Service processor is able to identify a failing processor &
halt it's execution from an outside perspective, unlike the
limitation with a software implementation. Furthermore, (3)
an alert about a hot-spare processor Switching event can be
generated.

0049. The other software methods do not utilize SMIs or
SMI functionality and encounter several drawbacks, includ
ing: (1) customers must purchase the OS/Software license
that provides the hot-spare-processor feature, Since not all
OS support this feature; and (2) the OS has to makes the
decision to Switch to a hot Spare processor may be running
decision threads atop the faulting processor, leading to
incorrect code execution.

0050. While the invention has been particularly shown
and described with reference to a preferred embodiment, it
will be understood by those skilled in the art that various
changes in form and detail may be made therein without
departing from the Spirit and Scope of the invention.

What is claimed is:
1. In an multiprocessor data processing System (MP)

configured according to IA-32 architecture, a method for
dynamically providing Spare processor resources when an
operating processor fails, Said method comprising:

holding-off a spare processor during a POST (power on
Self test), wherein said spare processor is available
within said MP along with at least two operating
processors, and Said Spare processor is not allocated
any processing load by the operating System (OS)
following the POST;

when one of the operating processors is determined to be
failing, dynamically activating Said Spare processor to
replace the failing operating processor, wherein the
processing load of the failing processor is automatically
Sent to the Spare processor for processing.

2. The method of claim 1, wherein said MP includes a
basic input/output System (BIOS) and a processor register
linked to said BIOS, which indicates which processors
among Said operating processors and Said spare processors
are currently available to Said OS for allocating load,
wherein Said holding off of the Spare processor comprises:

Setting a bit within Said register corresponding to each of
Said operating processors to an active State during Said
initial POST, wherein said active state indicates to said

Aug. 4, 2005

OS that the corresponding operating processor is avail
able for allocating load; and

Setting a bit corresponding to Said spare processor an
inactive State.

3. The method of claim 2, wherein said dynamically
activating Step comprises:

re-setting a bit corresponding to the failing processor to an
inactive State; and

Setting Said bit corresponding to Said spare processor to an
active State.

4. The method of claim 1, wherein said holding off step
comprises:

placing Said spare processor in a low-power, Standby State
during System boot utilizing advanced configuration
and power interface (ACPI) of the BIOS; and

Subsequently handing off control of said MP from said
BIOS to the OS.

5. The method of claim 1, wherein said holding off step
comprises:

placing Said spare processor in an S3 State during System
boot utilizing advanced configuration and power inter
face (ACPI) of the BIOS; and

Subsequently handing off control of said MP from said
BIOS to the OS.

6. The method of claim 1, wherein said holding off step
further comprises:

bringing Said spare processor online during BIOS boot
and then placing the Spare processor into a Spin lock.

7. The method of claim 1, further comprising generating
a message Signaling Said processor failure to a System
administrator.

8. The method of claim 1, wherein said dynamically
activating Step comprises completing a driver-OS-SMI
handshake operation.

9. The method of claim 1, further comprising:
activating a System management interrupt (SMI) when

Said failing processor is determined to be failing,
wherein said SMI messages said OS to hold off allo
cation of Said processing load to Said failing processor.

10. The method of claim 9, further comprising:
Saving a System State of each processor to memory;

activating an SMI handler to temporarily take control of
Said System from Said OS while Said spare processor is
being activated;

Swapping out the failing processor for the Spare processor,
updating System configuration parameters, including bus

controller, memory and OS parameters, to reflect
Switch over to Said spare processor from Said failing
processor, and

restoring control to Said OS once Said spare processor has
been activated.

11. The method of claim 9, further comprising enabling
OS updates to an active processor lists, wherein said OS
begins allocating threads previously running on Said failed
processor to Said spare processor.

10

US 2005/0172164 A1

12. A multiprocessor data processing System (MP) con
figured according to IA-32 architecture, comprising:

a plurality of processors having at least two main oper
ating processors and a Spare processor,

a memory coupled to Said plurality of processors,

an operating System (OS) that controls work allocation to
each of Said plurality of processors,

a basic input output System (BIOS) that Supports System
management interrupt (SMI);

means for holding-off the spare processor during a POST
(power on Self test), wherein said spare processor is not
allocated any processing load by the operating System
(OS) following a power-on self test (POST); and

means, when one of the operating processors is deter
mined to be failing, for dynamically activating Said
spare processor to replace the failing operating proces
Sor, wherein the processing load of the failing processor
is automatically Sent to the Spare processor for process
ing.

13. The MP of claim 12, further comprising:
a processor register linked to Said BIOS, which indicates
which processors among Said operating processors and
Said spare processors are currently available to Said OS
for allocating load; and

means for Setting a bit within Said register corresponding
to each of Said operating processors to an active State
during said initial POST, wherein said active state
indicates to Said OS that the corresponding operating
processor is available for allocating processing load,
wherein further a bit of Said Spare processor is set to an
inactive State.

14. The MP of claim 13, wherein said means for dynami
cally activating comprises:
means for re-setting a bit corresponding to the failing

processor to an inactive State; and
means for Setting the bit corresponding to Said spare

processor to an active State.
15. The MP of claim 12, wherein said means for holding

off comprises:
means for placing Said spare processor in a low-power,

Standby State during System boot utilizing advanced
configuration and power interface (ACPI) of the BIOS;
and

means for subsequently handing off control of said MP
from Said BIOS to the OS.

16. The MP of claim 12, wherein said means for holding
off comprises:

Aug. 4, 2005

means for placing Said spare processor in an S3 State
during System boot utilizing advanced configuration
and power interface (ACPI) of the BIOS; and

means for subsequently handing off control of said MP
from Said BIOS to the OS.

17. The MP of claim 12, wherein said means for holding
off further comprises BIOS means for bringing said spare
processor online and then placing the Spare processor into a
Spin lock.

18. The MP of claim 11, further comprising generating a
message Signaling Said processor failure to a System admin
istrator.

19. The MP of claim 12, wherein said means for dynami
cally activating comprises means for completing a driver
OS-SMI handshake operation.

20. The MP of claim 1, further comprising:
means for activating a System management interrupt

(SMI) when said failing processor is determined to be
failing, wherein said SMI messages said OS to hold off
allocation of Said processing load to Said failing pro
CCSSO.

21. The MP of claim 20, further comprising:
means for Saving a System State of each processor to
memory;

means for activating an SMI handler to temporarily take
control of said system from said OS while said spare
processor is being activated;

means for Swapping out the failing processor for the Spare
proceSSOr,

means for updating System configuration parameters,
including bus controller, memory and OS parameters,
to reflect Switch over to Said spare processor from Said
failing processor, and

means for restoring control to Said OS once Said spare
processor has been activated.

22. The MP of claim 21, further comprising means for
enabling OS updates to an active processor lists, wherein
Said OS begins allocating threads previously running on Said
failed processor to Said spare processor.

23. The MP of claim 12, wherein further:
Said plurality of processors are configured with Said at

least two main processors on a first processing board
and Said Spare processor on a Second processing board,
wherein Said Second processing board is a processing
board among a plurality of processing boards contain
ing a processor within the MP that is most difficult to
CCCSS.

11

