
(12) United States Patent
USOO6675324B2

(10) Patent No.: US 6,675,324 B2
Marisetty et al. (45) Date of Patent: Jan. 6, 2004

(54) RENDEZVOUS OF PROCESSORS WITH OS 5,884,019 A 3/1999 Inaho 714/13
COORDINATION 5,892,898 A * 4/1999 Fujii et al. 714/57

5,919.266 A * 7/1999 Sudet al. 714/13

(75) Inventors: Suresh Marisetty, San Jose, CA (US); 9. A : 38 East ch - - - - - - - - 2.
2 - as CS C a - - -

is Area, MSGS) 6,173,386 B1 * 1/2001 Key et al............... ... 714/38
s yyar, Uup s 6,199,179 B1 * 3/2001 Kauffman et al. 71.4/26

6,308,285 B1 10/2001 Bowers 71.4/10
(73) ASSignee: es Corporation, Santa Clara, CA 6,360,333 B1 3/2002 Jansen et al. 71.4/25

- OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Microsoft Press Computer Dictionary, Third Edition, 1997.*
U.S.C. 154(b) by 0 days.

* cited by examiner
(21) Appl. No.: 09/405,972

1-1. Primary Examiner Robert BeauSoliel
(22) Filed: Sep. 27, 1999 ASSistant Examiner Michael Maskulinski
(65) Prior Publication Data (74) Attorney, Agent, or Firm-Schwegman, Lundberg,

Woessner & Kluth, PA.
US 2003/0051190 A1 Mar. 13, 2003

(57) ABSTRACT
(51) Int. Cl." ... G06F 11/00
(52) U.S. Cl. 714/30; 714/9; 714/10; A System comprises a non volatile memory and a plurality

714/11; 714/12; 714/31 of processors. The non volatile memory Stores an error
(58) Field of Search 714/30, 9, 10, handling routine. Each processor of the plurality of proces

714/11, 12, 31, 26, 29, 13 Sors accesses the error handling routine on detecting an error
and, on certain errors, Signals the remaining processors to

(56) References Cited enter a rendezvous State. In the rendezvous State, a Single

5,522,029 A *

processor takes over and performs error handling.
U.S. PATENT DOCUMENTS

5/1996 Hatfield 714/12

SART

18 Claims, 5 Drawing Sheets

DETECT ERROR -- 3O1

CORRECABLE
BY

PROCESSOR

SELECT MONARCH

ENER RENDEZVOUS STATE

CORRECT ERROR

RESUME NORMAL OP

CORRECT BY
PROCESSOR

- 504

-- 305

-- 306

ZF, Ex. 10151

U.S. Patent Jan. 6, 2004 Sheet 1 of 5 US 6,675,324 B2

1 O3

TRANSFERS TO OS
ENTRY POINTS

SAL PROCEDURE
CALLS

INSTRUCTION
EXECUTION

PAL PROCEDURE
CALLS

ACCESS TO INTERRUPTS,
FLATFORM PAL Epure TRAPS,
RESOURCES FAULTS

I/O READS
& WRITES TRANSFERS TO SAL

ENTRY POINTS
1 O1

PROCESSORS BLOCK

104

NON-CRITICAL CRITICAL
HW EVENTS HW EVENTS
-l 105

PLATFORM BLOCK

FIG. 1

2

US 6,675,324 B2 Sheet 2 of 5 Jan. 6, 2004 U.S. Patent

2O3

FIG. 2

3

U.S. Patent Jan. 6, 2004 Sheet 3 of 5 US 6,675,324 B2

DETECT ERROR 3O1

CORRESTABLE NYES coRRECI. By
PROCESSOR PROCESSOR

p

SELECT MONARCH

ENTER RENDEZVOUS STATE O4

CORRECT ERROR O5

O6 RESUME NORMAL OP 3.

FIG. 3

3

J.

4

U.S. Patent Jan. 6, 2004 Sheet 4 of 5 US 6,675,324 B2

413
-

2O1 CORRECT 2O2
ERROR

409

RENDEZVOUS
ERROR REQUEST

N
RENDEZVOUS

INTERRUPT
41 O

REPORT STATUS 07
CORRECT

SLAVE
PROCESSORS

WAKEUP

2O4 2O3

FIG. 4.

5

US 6,675,324 B2 Sheet 5 of 5 Jan. 6, 2004 U.S. Patent

US 6,675,324 B2Sheet 5 of 5Jan. 6, 2004U.S. Patent

(Noes(1)08¢0gJOIASGJOIASGAYOWANWa3HdlaadWaaHdldsdSMLVIOA—-NON

5

09S

 ANOWENkt591907WILSASW3LSASossOrsoes
0zs

YOSSIOONdceeYOSSIOONd.AG‘Old
00s

(U)OLS(L)OLS

Page 6 of 13

6

US 6,675,324 B2
1

RENDEZVOUS OF PROCESSORS WITH OS
COORDINATION

FIELD OF THE INVENTION

This invention relates generally to processor Systems, and
more particularly to error handling in processor Systems.

BACKGROUND

Computer Systems may have a number of layers of
Software, and there may be Several processors in one System
that are linked together by these layers. Further, a computer
System may be made of a number of other computer Systems
linked together over a network, or a computer System may
be one processor with a number of layers.

Thus, computer Systems utilize layering of Software.
Generally, a layer of software will be responsible for han
dling a limited Set of events or provide a certain level of
abstraction. A layer of Software is a set of instructions that
are executed on a processor. A layer may control the
hardware components of a System and provide higher level
functionality to another layer, and a layer may handle
networking functions at the lowest level. An example of
Such a layer is firmware. Firmware can be designed to
interface with a certain type of processor.

Layers are arranged hierarchically in computer Systems
with one layer on top of another. Lower level layers are
layers, Such as firmware, that provide lower levels of
abstraction. Higher level layers are layers, Such as operating
systems that provide higher level of abstraction. For
example, a lower level layer may have to Signal the read
head on a hard drive and specify which platter to read data
from to access data, whereas a higher level of Software may
just Send a command to read a file to a lower level layer to
acceSS data.

Firmware is one type of lower layer in processor Systems.
Firmware refers to processor routines that are Stored in
non-volatile memory Structures Such as read only memories
(ROMs), flash memories, and the like. These memory struc
tures preserve the code Stored in them even when power is
shut off. One of the principle uses of firmware is to provide
the routines that control a computer System when it is
powered up from a shut down State, before volatile memory
Structures have been tested and configured. The process by
which a computer is brought to its operating State from a
powered down or powered off state is referred to as boot
Strapping. Firmware routines may also be used to reinitialize
or reconfigure the computer System following various hard
ware event and to handle certain platform events like System
interrupts.

Firmware is typically written in assembly language. This
is a low level computer language that provides direct acceSS
to processor hardware and is closely tied to the processor
architecture. The processor architecture is reflected in the
rest of the platform, in part because of the assembly level
firmware that is used to initialize, configure, and Service
platform level resources. For example, platform resources
may transfer data through specified registers and/or memory
locations defined by the Instruction Set Architecture (ISA),
and platform level interrupts may be handled by referring to
Specified processor registers. Thus, initialization and con
figuration of platform level resources are tied to the ISA of
the underlying processor.

Operating Systems (OS) are another layer of Software.
Operating Systems are a higher layer than firmware. Oper

15

25

35

40

45

50

55

60

65

2
ating Systems interact with firmware to provide an environ
ment in which applications can be run. Some examples of
operating systems are DOS, Microsoft Windows, Microsoft
Windows NT and Unix. By utilizing firmware, OS can be
designed to run on many different processing Systems with
out re-writing the OS for each variation in platforms. AS an
example, Microsoft Windows NT can run on single proces
Sor Systems and Some dual processor Systems without
recompiling or rewriting the OS. Operating Systems can be
designed to run on a variety of architectures. An Intel
Architecture 64 bit operating system (IA-64 OS) is an
operating System written using IA-64 code that runs all
IA-64 applications (both IA-64 and IA-32 code). Two fla
vors of IA-64 OS are possible: one is a 32-bit IA-64 OS that
uses 32 bits for its pointer variables and 64-bit IA-64 OS that
uses 64 bits for its pointer variables. Such OS as have been
described, allow applications to be written without regard
for the underlying architecture.
By using layers of Software, upper layerS Such as the OS

and user applications in a multiprocessor System can interact
with lower layerS Such as firmware as if the System is a
Single processor System. Layering permits Software to be
developed for a System without regard to the hardware
making up the System, including the number of processors
in that System.

In computer Systems, different layers are responsible for
detecting and handling different errors. Some layerS may
detect the error and tell a higher or lower layer of the error.
Other layers may detect the error and handle the error.

In Single processor Systems, all layers are executing on the
Same processor. If an error occurs, that processor handles the
error by executing the appropriate error handling hardware
or routines. The error handling components or routines are
part of the firmware or operating System.

In multiprocessor Systems, SublayerS or components of
the firmware and operating System are executing on different
processors. If an error is encountered by one processor, the
other processors may continue executing without knowledge
of the error. The error may be Such that continued execution
by the other processors propagates the error and causes
further damage Such as corrupted data. In a multiprocessor
System, an error is more difficult to handle because the layers
may not be able to communicate effectively. Furthermore,
each processor may be executing Separate firmware or
firmware Sublayers. Thus, an error in one processor may be
detected by the firmware it is executing and the rest of the
processors continue operating without knowledge of the
error. This may cause the error to propagate and cause
further errors in the System Such as corrupting data.

Multiprocessor systems may have to reboot or shutdown
for errors because of a lack of proper error handling. These
errors may be handled in Single processor based Systems
without Shutting down.

For the reasons Stated above, and for other reasons Stated
below which will become apparent to those skilled in the art
upon reading and understanding the present Specification,
there is a need in the art for a microprocessor System which
allows the use of multiple processors and appropriately
handles System hardware and Software errors.

SUMMARY

The present invention provides Systems and methods for
error handling on multiprocessor Systems.

In accordance with the present invention, a System com
prises a non volatile memory and a plurality of processors.
The non Volatile memory Stores an error handling routine.

7

US 6,675,324 B2
3

Each processor of the plurality of processors accesses the
error handling routine on detecting an error and Signals the
remaining processors of the plurality of processors to enter
a rendezvous State on certain errors.

A method comprises detecting an error. A rendezvous
State is entered for correcting the error. The error is corrected
and normal operation is resumed.

Other embodiments of systems and methods for error
handling are disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates is a multiprocessor system for error
handling according to one embodiment of the present inven
tion;

FIG. 2 illustrates a System for error handling according to
one embodiment of the present invention;

FIG. 3 illustrates a method for handling errors according
to one embodiment of the present invention;

FIG. 4 illustrates a block diagram representing how
different components of the System are engaged to handle
errors, and

FIG. 5 illustrates a computer system suitable for imple
menting the present invention.

DETAILED DESCRIPTION

The following discussion Sets forth numerous specific
details to provide a thorough understanding of the invention.
However, those of ordinary skill in the art, having benefit of
this disclosure, will appreciate that the invention may be
practiced without these specific details. In addition, various
well known methods, procedures, components, and circuits
have not been described in detail in order to focus attention
on the features of the present invention.

Multiprocessor Systems are being used with increasing
frequency. Multiprocessor Systems provide Systems that are
more powerful than uniprocessor Systems without requiring
increases in operating frequency. These Systems are often
targeted to high end Systems and Servers. A variety of
hardware System and Software System errors can occur in
multiprocessor Systems. The hardware and Software System
errors can be handled by utilizing three different software
layers. These layers are the processor abstraction layer
(PAL), System abstraction layer (SAL) and the operating
system (OS).
When certain errors are detected in a multiprocessor

System, a Single processor takes control of the System while
other processors enter a rendezvous State. The Single pro
ceSSor performs error handling and then releases the other
processors from the rendezvous State.

FIG. 1 illustrates a multiprocessor system for error han
dling. The system includes a PAL 101, SAL 102, OS 103, a
plurality of processors 104, and platform hardware 105. The
PAL 101 and SAL 102 can together be known as firmware
because the code for these layer may reside on a non-volatile
memory in the System Such as flash read only memory
(ROM). In the following discussion, we refer to PAL, SAL,
and OS with the understanding that they represent PAL,
SAL, or OS code executed by a processor.

The PAL 101 is the lowest level of the rendezvous layers
and the firmware layers. PAL 101 is processor firmware that
abstracts processor implementation differences. The PAL
101 also provides a large Set of procedures for accessing
processor hardware. PAL 101 can encapsulate processor
model specific hardware. PAL 101 can provide a consistent

15

25

35

40

45

50

55

60

65

4
interface to access processor resources acroSS different pro
ceSSor implementations. Platform hardware events may trig
ger a processor to execute certain PAL 101 error handling
routines. A processor executing routines of PAL 101 can
access platform hardware 105 events which include events
from hardware Such as disk drives, memory, Video cards and
sound cards. The PAL 101 starts the handling of the error for
processing and hands off that processing to upper firmware
(SAL 102) and OS 103 layers. When certain errors occur, the
processor implements a PAL routine to handle the error. If
the PAL routine can not fully handle the error, the processor
implements a SAL 102 routine or a OS 103 routine. Even
where the processor may correct or handle the error using
the PAL 101 routine, it may make error information avail
able to other layers. The PAL can create an error log
regarding its error handling and provide the error log to other
layers. PAL 101 contains code or routines for error handling.
The SAL 102 includes routines that can access PAL 101

routines. SAL 102 can be a platform Specific component
provided by vendors. SAL 102 is the firmware layer that
isolates the OS 103 and other higher level software from
implementation differences in the platform. SAL 102 can be
used to abstract System implementation differences in IA-64
platforms and may include the basic IA-32 BIOS and
additional IA-64 routines to support the IA-64 platform.
SAL 102 can create an error log and may request PAL 101
to sent its error log to SAL 102. SAL 102 contains code or
routines for error handling.
The OS may access routines in the SAL and routines in

the PAL. The OS 103 is coupled to SAL 102. The OS 103
may depend on SAL 102 to interact with PAL to get
information about errors that occur. Or, the OS can make
PAL procedure calls and SAL procedure calls. The OS 103
contains code or routines for error handling by a single
processor.

For those errors that require handling by a single
processor, the monarch processor is Selected and the other
processors enter an idle State. Once an error has been
handled by the monarch processor, the other processors are
awakened by the monarch processor executing SAL 102 or
OS 103 routines.

For one embodiment, errors are divided into four catego
ries ranging from least Severe to most Sever. These four
categories cover all errors that might be encountered in a
multiprocessor System.
The first category of errors are errors that can be corrected

by the processor or the platform hardware 105 that encoun
tered the error. This is the least severe error. The processor
can correct this error and continue executing its current
process. The current proceSS continues without interruption
and is unaware of the error condition. Continuable platform
related errors which are errors that do not require Shutting
down the rest of the processors can also be detected and
corrected by the platform hardware. An example of this type
of error is a single bit ECC (error correcting code) error in
the processor cache that is corrected by platform chipset
hardware. These types of errors may be corrected without
entering the rendezvous State.
The Second category of errors are errors correctable using

routines in PAL 101, SAL 102, and OS 103. Routines in
these layers can be used to correct the error and the current
processes executing can continue. The firmware or OS
corrects the error and resumes execution of the offending
process. The proceSS may be interrupted but continues once
the error has been corrected without being aware of the error.
An example of this type of error is a parity error in the

8

US 6,675,324 B2
S

processor instruction cache. In this case, firmware will
invalidate the entire instruction cache, access another copy
of the instruction, and resume execution of the interrupted
process. This type of error can be signaled to a processor by
the platform via a double bit ECC error on the system bus.
This type of error is generally corrected by entering the
rendezvous State.

The third category of errors are errors that cannot be
completely corrected by either the processors or firmware
(PAL and SAL) and the offending process needs to be
terminated to achieve error containment. These errors are
handled by the OS. An example of this type of error is a
parity error in the first level data cache. Then this error is
detected, the processor cannot prevent the register file from
being updated with the bad data. In this case, the firmware
will flush the entire first level data cache and the offending
proceSS is terminated by the OS if it is a non-critical user or
kernel process. A platform can also signal this type of error
through a bus error Signal assertion. This type of error is
generally corrected by entering the rendezvous State.

The fourth category of errors are errors that can not be
corrected by the processors 104, platform hardware 105,
PAL 101, SAL 102, and OS 103. For these errors, the system
will need a reboot and execution can not continue. An
example of this type of error is a parity error on any acceSS
to a dirty line in a processor cache. These errors may
necessitate entering the rendezvous State but are not cor
rectable and require a reboot.
When an error is detected and the detecting processor can

not handle the error through hardware means or through an
error handling routine in the PAL 101, the detecting proces
Sor accesses and executes an error handling routine in the
SAL 102. The SAL error handling routine causes the system
to enter a rendezvous State. The SAL error handling routine
Selects a single processor also known as a monarch proces
Sor to handle the error and the other processors become idle
or enter Spin loops.

The monarch processor is one of the plurality of proces
SorS 104. The monarch processor can simply be Selected as
the processor that detected the error. Or, the detecting
processor can execute a SAL 102 routine to Select a pro
ceSSor to be the monarch processor based on certain criteria.
The criteria could be which processor is unaffected by the
error or which one can most efficiently correct the error.
Lastly, the monarch processor could pre-designated by
design or on System startup.

The monarch processor executes an error handling routine
to correct the error. The error handling routine may be in
firmware, firmware layers such as SAL and PAL, or the OS.
Once the error has been handled or corrected by the monarch
processor, the System exits the rendezvous State and all
processors resume normal operation.

By the plurality of processors 104 utilizing these layers,
SAL, PAL, and OS, to handle system errors, the system can
operate in a reliable, available and Serviceable manner.
Errors can be handled before they are encountered by or
propagated to other processors. These three layerS may have
components, modules or Software layers within them.
Further, the PAL, SAL, and OS layers may have separate
logical Software components for each processor in a System.
These components can be utilized to work cooperatively to
accomplish error handling in the rendezvous State.

There can be other layers of Software executing in a
system besides the firmware and OS 103 layers. These other
layerS may be running at a highest privilege level. Thus, it
is necessary for one of the layers to initiate coordination and

15

25

35

40

45

50

55

60

65

6
the bringing of all the processors in the System to a spin-loop
or idle condition. The PAL and SAL firmware layers are
closer to the processor and are the layers to coordinate
bringing all processors to the rendezvous State. By being
closer to the processor they are lower order Software that
manipulate processor or platform resources directly.

Each of the PAL 101, SAL 102, and OS 103 layers can
have a functional module which is responsible for coordi
nating the rendezvous process. These functional modules are
executed on the monarch processor during the rendezvous
process. The functional module for PAL 101 is a processor
error handler. The functional module for SAL 102 is a
platform error handler. The functional module for OS 103 is
a machine check handler. The coordination and Signaling
between the three layers can be done with the help of system
interrupts or other appropriate Signaling mechanisms which
are registered and negotiated by the rendezvous layers. The
layers can use a signaling mechanism for communicating the
initiation of a rendezvous process and use a Second Set of
Signaling mechanisms for marking the end of this rendez
Vous process. Examples of a signaling mechanisms include
interrupts or a Semaphore flags in memory.
The error handling routine in PAL 101 initiates a rendez

Vous process by Signaling or accessing SAL 102. The
detecting processor uses a routine in SAL to Select a
monarch processor and to bring all non monarch processors
to a rendezvous state. SAL 102 can inform the OS 103 layer
of the request for rendezvous state. The OS 103 can then
inform SAL 102 that it is ready to enter rendezvous state and
tells SAL 102 to enter the rendezvous state. As stated above,
the layerS may inform each other by using interrupts. Once
the System has entered the rendezvous State, a monarch
processor takes control of handling the error. The monarch
processor may handle the error on its own or it may
implement a routine from the PAL 101, SAL, or OS layer to
handle the error. Once the error has been corrected, the OS
is informed that the error has been corrected. The OS can
inform all processors to get out of rendezvous state. The OS
may inform the processors to get out of rendezvous State by
using an interrupt. At that point, the System resumes normal
operation.

FIG. 2 shows a System for error handling according to an
embodiment of the present invention. This System includes
a plurality of processors 204, a PAL (processor abstraction
layer) 201, a SAL (system abstraction layer) 202, and an OS
(operating System) 203 layer. The plurality of processors
may be any type of processor or microprocessor. Each
processor has a corresponding PAL Sublayer 205 and SAL
Sublayer 206 that are executed or running on that processor.
Each processor also has an OS sublayer 207 executed or
running on that processor. One of the plurality of processors
operates as a monarch processor and the others can operate
as Slave processors during error handling. The monarch
processor may be initially assigned by the System or may be
chosen each time it is desired that the System enter a
rendezvous State. In the following discussion, we refer to
PAL, SAL sublayers with the understanding that they rep
resent PAL or SAL code executed by a particular processor.
As stated, the PAL 201 layer has a separate PAL sublayer

205 for each processor, and PAL Sublayer 205 is connected
to each processor. The PAL sublayers 205 can include a
rendezvous component So that when the System enters the
rendezvous State, the corresponding processor can execute
that component to enter a rendezvous State by entering into
a spin loop or idle state. The PAL Sublayer 205 for the
monarch processor, however, does not enter an idle State and
is executed by the monarch processor to provide error

9

US 6,675,324 B2
7

handling. The PAL sublayer 205 on the monarch processor
may be called a processor error handler.

The SAL 202 has a separate Sublayer for each processor.
The SAL sublayer 206 is connected to each PAL Sublayer
and each can access routines or procedures in each other.
The SAL sublayers 206 can include a rendezvous compo
nent So that when the System enters the rendezvous State, the
corresponding processor executes the rendezvous compo
nent to enter a rendezvous State by entering into an idle loop.
The SAL sublayer for the monarch processor does not enter
the rendezvous state. The SAL sublayer for the monarch
processor provides error handling and is also called a
platform error handler.

The OS 103 layer has a separate OS sublayer 207 for each
processor. The OS sublayer 207 is connected to a SAL
Sublayer 206 and each can access routines or procedures in
each other.

Each processor has a corresponding PAL sublayer 205,
SAL sublayer 206 and an OS sublayer 207. Together, the
PAL sublayer 205, SAL sublayer 206 and OS sublayer 207
on the monarch processor are executed by the monarch
processor and handle the error.

The OS sublayer 207 executing on the monarch processor
may also be called a machine check handler.

After an error has been detected by a processor, the
processor executes the PAL sublayer 205, and determines
the Severity of the error and depending on the Severity, may
request the System enter a rendezvous State. The PAL
sublayer 205 signals the SAL sublayer 206 a request to enter
the rendezvous state. The SAL sublayer 206 informs the OS
sublayer 207 of the request. The SAL sublayer 207 signals
other SAL sublayers to enter the rendezvous state. These
other SAL SublayerS Signal corresponding PAL Sublayers
which in turn Signal the corresponding processors. Once the
System has entered the rendezvous State, the PAL Sublayer
205, SAL sublayer 206, and OS sublayer 207 executing on
the monarch processor handle the error. Once the error is
handled, the PAL sublayer 205, SAL sublayer 206, and OS
Sublayer 207 executing on the monarch processor wake up
the other SublayerS and processors.

Referring to FIG. 3, a method for handling errors is
illustrated. An error is detected at 301. The error may be
detected by a processor or other platform hardware. A
determination is made as to whether the error is correctable
by the processor 302. If the error is correctable by the
processor, the processor may correct the error on its own i.e.
using processor hardware or it may access an error handling
routine in PAL 307. If the error is severe or not correctable
by the processor, the processor requests that the System enter
a rendezvous state 302.

There are Several types of errors that may occur. One type
of error that may occur is a processor correctable error Such
as a Single bit error in the processor cache that is corrected
by processor hardware. Generally, processor correctable
errors are not Severe errors and do not necessitate entering
the rendezvous State. Another type of error is one that is
correctable by firmware layerS Such as a parity error in the
processor instruction cache. In this case, the PAL or SAL can
invalidate the entire instruction cache to correct the error.
Another type of error is one correctable by the OS. An
example of this is a parity error in a data cache which causes
faulty data. The OS can correct this error by terminating the
process creating the faulty data. The last type of error is one
that cannot be corrected by the processor, the PAL, the SAL
or the OS. The system can be rebooted to correct the error.
A Single processor of the plurality of processors is

Selected as a monarch processor to handle the error in the

15

25

35

40

45

50

55

60

65

8
rendezvous state 303. The monarch processor may be
Selected as the processor that detected the error or by Some
Selection criteria. In alternate embodiments, the monarch
processor is designated and thus there is no need to Select a
monarch processor.
The system enters the rendezvous state at 304. While in

the rendezvous State, all processors in the System except the
monarch processor enter an idle State. The idle State may
Simply comprise executing a Spin loop with the processor.
The processors may notify the PAL, the SAL and the OS
layers when they have entered into the idle state. When all
processors except the monarch processor have entered into
the idle State, the System is in a rendezvous State.
The error is corrected at 305. The error may be corrected

by the monarch processor using routines from the PAL, SAL
or OS layer. Once the error is corrected, the System can
resume normal operation at 304. This can be accomplished
by Sending a Signal or interrupt to the processors to “wake
up' from their idle State and resume normal operation. If the
error is not corrected, the System may have to be restarted.

Referring to FIG. 4, a block diagram representing how
different components of the System are engaged to handle
errors. In the following discussion, we refer to PAL, SAL,
and OS with the understanding that they represent PAL,
SAL, or OS code executed by a particular processor. An
error is detected by a processor and an error Signal 405 is
provided to PAL 201. A processor or hardware component in
the System may detect the error. The processor attempts to
correct the error by utilizing platform hardware and acceSS
ing PAL 201 routines.
The PAL sends a rendezvous request 406 to SAL 202 if

the processor failed to correct or handle the error. The
rendezvous request can be a Signal or interrupt requesting
that the system enter the rendezvous state. The SAL sends an
interrupt signal 407 to slave processors 204. The slave
processors are all the processors in the System except the
monarch processor. Generally, all processors except the
monarch processor are Slave processors. The Slave proces
SorS enter an idle State.
The slave processors report their status to the SAL 408.

The status should be that the slave processors have entered
idle State. If one or more of the Slave processors fail to enter
idle States, they may try again or force the System to
shutdown. If the Slave processors have entered idle States,
the System has entered the rendezvous State. Once the
system is in the rendezvous state, SAL informs the PAL that
the System has entered rendezvous State via Signal 412.
While in the rendezvous state, SAL, PAL, and OS are
executed by the monarch processor.
The PAL can attempt to correct the error and inform the

SAL of its success or failure using signal 409. Alternately,
the PAL may request the monarch processor correct the
error. If the PAL Successfully corrects the error, PAL or SAL
can inform the OS that the error has been corrected. If PAL
fails to correct the error, SAL may attempt to correct the
error and provide a correct signal 410 to inform OS of
Success or failure. If the SAL fails to correct the error, the OS
can attempt to correct the error. If the OS is unable to correct
the error, the system can be shutdown. If the error has been
Successfully corrected, the OS can Send a “wake up' signal
411 to the Slave processors. All the processors can then
continue performing the tasks they were performing before
entering the rendezvous State.

FIG. 5 is a block diagram of one embodiment of a
computer system 500 that is suitable for implementing the
present invention. The disclosed embodiment of computer

10

US 6,675,324 B2

system 500 includes a plurality of processors 510 that are
coupled to system logic 530 through a processor bus 520. A
system memory 540 is coupled to system logic 120 through
bus 550. A non-volatile memory 570 and one or more
peripheral devices 580(I)-580(j) (collectively, devices 180)
are coupled to system logic 530 through peripheral bus 560.
Peripheral bus 560 represents, for example, one or more
peripheral component interconnect (PCI) buses, industry
standard architecture (ISA) buses, extended ISA (EISA)
buses, and comparable peripheral buses. Non-volatile
memory 570 may be a static memory device such as a read
only memory (ROM) or flash memory. Peripheral devices
580 include, for example, a keyboard, mouse or other
pointing devices, mass Storage devices Such as hard drives
and digital video discs (DVD), a display, and the like. These
devices, together with system logic 530 define the comput
ing platform for system 500.

For the disclosed embodiment of system 500, processors
510 may execute code or routines stored in system memory
540. The code for the operating system (OS) is in the system
memory 540. The processor also executes code from the
non-volatile memory 570. The firmware including PAL and
SAL can be located in the non-volatile memory.

The various embodiments described above and other
variations permit better error handling in multiprocessor
Systems. These embodiments can extend to networked SyS
tems or distributed Systems. Error handling on a multipro
ceSSor System can be performed Similar to error handling on
Single processor Systems. By handling System errors better,
other Software can be developed with leSS regard for poS
Sible errors. Errors propagated from other errors can be
reduced in number because errors can be handled before
encountered by other processors. Software developers can
focus more on features and new developments for their
products with the resources Saved by better error handling in
the System. Computer users can notice improved perfor
mances in Systems, leSS System shutdowns and reboots, leSS
data loSS from unexpected shutdowns and time Saved by
having a computer System that is more Stable.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose may be Substituted for the Specific
embodiments shown. This application is intended to cover
any adaptations or variations of the present invention.
Therefor, it is manifestly intended that this invention be
limited only by the following claims and equivalents
thereof.
What is claimed is:
1. A method comprising:
detecting an error;
Sending a rendezvous request from a processor abstraction

layer to a System abstraction layer;
Sending an interrupt signal from the System abstraction

layer to Slave processors,
Sending a report Status from, the Slave processors to the

System abstraction layer;
Sending a report Status from the System abstraction layer

to the processor abstraction layer;
upon rendezvous Status, attempting to correct the error by

the processor abstraction layer and informing the SyS
tem abstraction layer of Success or failure in correcting
the error;

upon Success by the processor abstraction layer, inform
ing operating System of the correction;

1O

15

25

35

40

45

50

55

60

65

10
upon failure by the processor abstraction layer, attempting

to correct the error by the System abstraction layer and
informing the operating System of Success or failure;

upon Success by the System abstraction layer, Sending a
wake up signal from the operating System to the Slave
processors,

upon failure by the System abstraction layer, attempting to
correct the earn by the operating System;

upon Success by the operating System, Sending a wake up
Signal from the operating System to the slave proces
Sors, and

upon failure by the operating System, initiating System
reboot.

2. The method of claim 1, further comprising determining
a Severity of the error and only Sending a rendezvous request
upon the error being Severe.

3. The method of claim 1, further comprising:
Selecting a monarch processor to Send the wake up signal

from the operating System to the Slave processors.
4. The method of claim 1, wherein a monarch processor

is Selected after detecting the error.
5. The method of claim 1, wherein a processor that

detected the error is Selected to be a monarch processor.
6. The method of claim 1, wherein the rendezvous status

comprises:
executing a Spin loop by at least one of the Slave proces

SO.

7. The method of claim 1, further comprising:
notifying the System abstraction layer that the rendezvous

Status has been entered by at least one of the Slave
processors.

8. The method of claim 1, further comprising:
executing the processor abstraction layer on a monarch

processor.
9. The method of claim 1, further comprising:
correcting the error using a monarch processor.
10. An article comprising a machine-accessible medium

having associated data, wherein the data, when accessed,
results in a machine performing:

detecting an error,
Sending a rendezvous request from a processor abstraction

layer to a System abstraction layer;
Sending an interrupt Signal from the System abstraction

layer to Slave processors,
Sending a report Status from the Slave processors to the

System abstraction layer;
Sending a report Status from the System abstraction layer

to the processor abstraction layer;
upon rendezvous Status, attempting to correct the error by

the processor abstraction layer and informing the Sys
tem abstraction layer of Success or failure in correcting
the error,

upon Success by the processor abstraction layer, inform
ing operating System of the correction;

upon failure by the processor abstraction layer, attempting
to correct the error by the System abstraction layer and
informing the operating System of Success or failure;

upon Success by the System abstraction layer, Sending a
wake up signal from the operating System to the Slave
processors,

upon failure by the System abstraction layer, attempting to
correct the error by the operating System;

upon Success by the operating System, Sending a wake up
Signal from the operating System to the slave proces
Sors, and

11

US 6,675,324 B2
11

upon failure by the operating System, initiating a System
reboot.

11. The article of claim 10, wherein the data, when
accessed, results in the machine performing:

Selecting a monarch processor using a Selection criteria.
12. The article of claim 10, wherein the data, when

accessed, results in the machine performing:
determining a monarch processor prior to detecting the
CO.

13. The article of claim 10, wherein the data, when
accessed, results in the machine performing:

detecting the error with a hardware component.
14. The article of claim 10, wherein the data, when

accessed, results in the machine performing:
forcing a System shutdown if at least one of the Slave

processorS fails to enter the rendezvous Status.
15. The article of claim 10, wherein the data, when

accessed, results in the machine performing:

1O

15

12
notifying the processor abstraction layer that the rendez

Vous Status has been entered by at least one of the Slave
processors.

16. The article of claim 10, wherein the data, when
accessed, results in the machine performing:

notifying the operating System that the rendezvous Status
has been entered by at least one of the Slave processors.

17. The article of claim 10, wherein the data, when
accessed, results in the machine performing:

determining a Severity of the error.
18. The article of claim 17, wherein the severity of the

error is selected from a group including processor
correctable errors, firmware layer-correctable errors, oper
ating System-correctable errors, and uncorrectable errors.

12

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,675,324 B2 Page 1 of 1
DATED : January 6, 2004
INVENTOR(S) : Marisetty et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 9
Line 57, after “from' delete 99

9

Column 10
Line 8, delete “earn' and insert -- error --, therefor.
Line 12, after “initiating” insert -- a--.
Lines 27-28, delete “processor” and insert -- processors --, therefor.
Line 54, delete", and insert --, --, therefor.

Signed and Sealed this

Twenty-seventh Day of July, 2004

WDJ
JON W. DUDAS

Acting Director of the United States Patent and Trademark Office

13

