
US 2003OO746O1A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0074601 A1

Schultz et al. (43) Pub. Date: Apr. 17, 2003

(54) METHOD OF CORRECTING A MACHINE (22) Filed: Sep. 28, 2001
CHECKERROR

Publication Classification
(76) Inventors: Len Schultz, San Jose, CA (US); Nhon

Toai Quach, San Jose, CA (US); Dean (51) Int. Cl. ... G06F 11/00
Mulla, Saratoga, CA (US); Jim Hays, (52) U.S. Cl. .. 714/15
San Jose, CO (US); John Wai Cheong
Fu, Saratoga, CA (US) (57) ABSTRACT

Correspondence Address: Processor implementation-specific instructions Save a pro
BLAKELY SOKOLOFFTAYLOR & ZAFMAN ceSSor State in a System memory and attempt to correct the
12400 WILSHIRE BOULEVARD, SEVENTH error. Control is then transferred to processor-independent
FLOOR instructions. Control is returned to the processor implemen
LOS ANGELES, CA 90025 (US) tation-specific instructions which then return to an inter

rupted context of the processor by restoring the processor
(21) Appl. No.: 09/966,386 State.

11O 1.
Operating System Software

OS Machite
Check

Services
(Transient)

Platform Platforn Platform Platforn
Rutine f PM
Servi Reset Erior t

Ces Handler Handler Hander Hander
(Procedures)

u - - - - - - Reset Event 1O4.

Processor w Processor Processor Processor Processor
Runtime Reset Error i PM
Services Handler Hander Hander lander

(Procedures)

Reset 200 Machine gara E. 1O
Power Or Check Evert Eyet

Platform/Processor Hardware

ZF, Ex. 10161

Patent Application Publication Apr. 17, 2003 Sheet 1 of 12 US 2003/0074601 A1

11O

Operating System Software

Transfers to OS EF B Entrypoints OS Boot Procedure
for Hardware Calls
Events N Extensible Firmware

-b- interface (EFI)

Selection M
SA Procedure -->

Calls A
instruction

Platform/System Abstraction Layer Execution
(SAL) interrupts,

Traps and
Faults

Acess to PAL Procedure A
Platform Calis --

Resources
\,

Transfers to SAL
Entrypoints

Processor Abstraction Layer 1OO

Processor (Hardware)

----- Performance Critical
N Hardware Events,

Non-performance Critical e.g. interrupts
Hardware Events, e.g. V
Reset, Machine Checks Y-- 1O2

FIG. I.

Platform (Hardware)

2

Patent Application Publication Apr. 17, 2003 Sheet 2 of 12 US 2003/0074601 A1

11O

Operating System Software
OS Machine

OS Loader Check
Handler

OS it
Handier

21O

Ru?tine OS
Services Boot

Services
O6

as an in a on -

Boot
Services

(Transient)
m - m me w mu

Platforn
Ruintime
Services

(Procedures)

Platfor Platforn Platforn Platform
Reset Error init PM
Handler Hander Handler Hander

Processor Processor Processor Processor
Reset Error rit PM
Handler Handler Handler Handler

Reset f 200 Machine initialization 1O1
Power On Check Event

Platform/Processor Hardware

Processor
Runtime
Services

(Procedures)

FIG. 2

3

Patent Application Publication Apr. 17, 2003 Sheet 3 of 12

PLATFORM
PROCESSOR
HARDWARE

PROCESSOR
ERROR

HANDLER

PLATFORM
ERROR

HANDLER

OPERATING
SYSTEM
MACHINE
CHECK

HANDLER

1O1
2OO

2O4.
PAERROR
HANDLER

2O6

SALERROR
HANDLER

ERROR
CORRECTED?

SYSTEM HALT
OR REBOOT

OS ERROR
HANDLER
PRESENT2

CORRECTABLE
BY OS

CORRECT
ERROR

SET CONTEXT

FIG. 3

25

PAL CORRECTED
ERROR RESUME

US 2003/0074601 A1

4

Patent Application Publication Apr. 17, 2003 Sheet 4 of 12 US 2003/0074601 A1

f* == */
/* Definitions - These are provided to attempt to make the pseudo */
/* code easier to read and are not meant to be real */
/* definitions that can be used. */
A * == */

f* Processor State Parameter is located in PSP=r18 at hand off from */
/* SAL to the OS MCA handler. */

/* Processor State Parameter bit field definitions */
define TLB Error = ProcessorStatParameter (60)

/* SAL Record Header Error Log Definitions */

define
define

idefine
#define
idefine
it define
it define

/* SAL Section Header Error Log Definitions */

idefine
idefine
#define
#define

/* SAL Processor Error Record Definitions */

idefine

Record ID Offset = 0
Err Severity Offset = 10
Recoverable = O
Fatal = 1
Corrected = 2
Record Length Offset = 12
Record Header Length = 24

GUID Offset = 0
Section Length Offset = 20
Processor GUID = E429 FAF1-3CB7-11D4–BCA7008 oc'73 ca&B1
Section Header Length = 24

Valdiation Bit Structure
Proc Error Map Valid = bit O
Cache Check Valid = bits 7:4)
TLB Check Valid = bits (11:8)
Bus Check Valid = bits 15:12)
Reg File Check Valid = bits 19:16)
MS Check Valid = bits 23:20)

define
define
define
idefine

idefine
define

idefine

Error Validation Bit Length = 8
Check Info Valid Bit = bit O
Target Address Valid Bit = bit 3
Precise IP Valid Bit = bit 4

Check Info Offset = 0
Target Address Offset = 24
Precise IP Offset = 32

/* Cache Check Info Bit definitions */

define
define

Precise PrivLevel = bits 57 : 56
PrecisePrivLevel Valid = bits 58

FIG. 4A

5

Patent Application Publication Apr. 17, 2003 Sheet 5 of 12 US 2003/0074601 A1

A * =========================BEGIN====================================== */
/* OS Machine Check Tinitialization */
/* ==k/
OS MCA Initialization ()

/* this code is executed once by OS during boot Register OS MCA */
/* Interrupt parameters by calling SAL MC SETPARAMS */

Install OS Rendez Interrupt Handler
Tnstall OS Rendez WakeUp Interrupt Handler /* ISR clean up wrapper */
Register Rendez Interrupt Type&Vector;
Register WakeUpInterrupt Type&Vector;
Register Corrected PlatformErrorInterrupt Vector;
Initialize CMC Vector Masking;

/* Register OS MCA Entry Point parameters by calling SAL SET VECTORS */

Register OS MCA Entry Point;
Register OS INIT Entry Point;

/* ===========================END====================================== */

W* =========================BEGIN==========================s=========== */
/* OS Machine Check Rendez Interrupt Handler */
/* == */
OS Rendez Interrupt Handler ()
{

/* go to spinloop */
Mask. All Interrupts;
Call SAL MC RENDEZ () ;

f* clean-up after wakeup from exit */
Enable All Interrupts;

A * return from interruption */
return;

/* ===========================END====================================== */

/* =========================BEGIN======================================k/
/* OS Corrected Error Interrupt Handler (processor and platform) */
A* == */
OS Corrected Error Interrupt Handler ()

/* handler for corrected machine check intr. */
/* get error log */
if (Processor Corrected Error)

Sal Get State Info (processor) ;
else

Sal Get State Info (platform);

FIG. 4B

6

Patent Application Publication Apr. 17, 2003 Sheet 6 of 12 US 2003/0074601 A1

/* If saving of the error record is to disk or the OS event log, k/
/* then this is core OS functionality. */

/* save log of MCA *
Save Error Log () ;

A * now we can clear the errors */
if (Processor Corrected Error)

Call Sal Clear State Info (processor) ;
else

Call Sal Clear State Info (platform);

/* return from interruption */
return;

A * ===========================END====================================== */

/* ==========================BEGIN===================================== */
/* OS Core Machine Check Handler * /
/* == */
OS MCA Handler ()

A * handler for uncorrected machine check event */
Save Processor State ();

if (ErrorType =Processor TLB)
SwitchToVirtual Mode () ;

else
Stay InPhysical Mode () ;

/* Assuming that the OS can call SAL in physical mode to get info */
SAL GET STATE INFO (MCA);

A * check for error */
if (ErrorType==processor)

if (ErrorType=processor TLB)
// cannot do much;
// reset the system and get the error record at reboot
SystemReset () or Return.To SAL (failure) ;

else
ErrorCorrected Status=Os ProcessorMica () ;

If (ErrorType==Platform)
ErrorCorrected Status =OsPlatformMca () ;

f* If the error is not corrected, OS may want to reboot the machine */
/* and can do it by returning to SAL with a failure return result. */

If (ErrorCorrected Status==failure)
branch=ReturnToSAL CHECK

/* Errors are corrected, so try to wake up processors which are */
/* in Rendezvous. */

FIG. 4C

7

Patent Application Publication Apr. 17, 2003. Sheet 7 of 12 US 2003/0074601 A1

/* completed error handling */
If (ErrorCorrected Status = success &&. In Rendezvous () ==true)

WakeUpApplicationProcessors FromRendezvous () ;

/* If saving of the error record is to disk or the OS event log, k /
/* then this is core OS functionality. */

/* as a last thing */
Save Error Log ();

/* This is a very important step, as this clears the error record */
A* and also indicates the end of machine check handling by the OS. k
/* SAL uses this to clear any state information it may have related */
/* to which processors are in the MCA and any State of earlier */
/* rendezvous. */

Call Sal Clear State Info (MCA) ;

ReturnTOSAL: :
/* return from interruption */
SwitchToPhysical Mode () ;
Restore Processor State () ;

f* return to SAL CHECK, SAL would do a reset if OS fails to correct k/
return (ErrorCorrected Status)

/* ===========================END====================================== k /

/* =========================BEGIN====================================== k /
f* Os Platform Machine Check Handler */
/* == k /
OS PlatformMica ()

ErrorCorrected=True;

/* check if the error is corrected by PAL or SAL */
If (ErrorRecord. Severity==not corrected)

/* call sub-routine to try and correct the Platform MCA */
ErrorCorrected=Correctable Platform MCA (platform error type);

Return (ErrorCorrected Status) ;

/* ===========================END====================================== */

f*=========================BEGIN====================================== */
A * OS Processor Machine Check Handler 'k/
/* == */
OsProcessorMica ()

ErrorCorrected=True;

/* check if the error is corrected by Firmware k/
If (ErrorRecord. Severity==not corrected)

ErrorCorrected Status=TryProcessorierrorCorrection ();

Return (ErrorCorrected Status) ;

A * ==========================END======================================= k

FIG. 4D

8

Patent Application Publication Apr. 17, 2003 Sheet 8 of 12 US 2003/0074601 A1

/* =========================BEGIN====================================== */
/* Try Individual Processor Error Correction */
/ sesssssss== /

f k Now the OS has the data logs. Start parsing the log retrieved from */
/* SAL. The sub-routine Read OS Error Log will read data from the error */
/* log copied from SAL. An offset is passed to identify the data being */
/* read and the base pointer is assumed to be known by the */
/* Read OS Error Log sub-routine just to simplify the pseudo-code. */

Try Processor ErrorCorrection ()
{

A * extract appropriate fields from the record header */
Record ID = Read OS Error Log (Record ID Offset) ;
Severity = Read OS Error Log (Err Severity Offset);

A* It is unlikely that the OS can write to persistant storage in */
/* physical mode. If it is possible, the OS should do so. If it is not, */
/* the SAL firmware should still have a copy of the error log stored */
A * to NVRAM that will be persistant across resets. */

if (Severity == Fatal)
SystemReset () or return (failure) ;

if (Severity == Corrected)
return (Error Corrected Status=True);

/* These errors may be recoverable by the OS depending on the OS k/
/* capability and the information logged by the processor. Call the */
/* sub-routine, OS MCA Recovery Code and on return set up a min-state */
/* save area to return to a context of choice. The pal mc resume done */
A* through SAT, allows the OS to turn on address translations and enable *
/* machine check aborts to be able to handle nested MCAs. */

if (Severity == Recoverable)

ErrorCorrected Status=OS MCA Recovery () ;
Set Up A Min State For OS MCA Recovery (my minstate) ;

return (ErrorCorrected Status) ;

} /* End of TryProcessorErrorCorrection Handler */
/* ===========================END====================================== */

/* =========================BEGIN====================================== */
/* OS MCA Recovery Code */
/* ==k/

W* At this point the OS is running with address translations enabled. */
/* This is needed otherwise the OS would not be able to access all of */
/* its data structures needed to analyze if the error is recoverable */
A* or not. There is a chance another MCA may come during recovery due */
/* to this fact, but running in physical mode for the OS is difficult */
/* to do. */

OS MCA Recovery ()

/* Set up by default that the errors are not corrected */
Corrected ErrorStatus = CorrectedCacherr = Corrected TlbFrr =
Corrected BusBrr = Corrected RegFile:Err = Corrected UarchErr = 0;

FIG. 4E

9

Patent Application Publication Apr. 17, 2003 Sheet 9 of 12

A * Start parsing the error log *
RecordLength = Read OS Error Log (Record Length Offset) ;
Section Header Offset = OS Error Log Pointer + Record Header Length;

A * Find the processor error log data */
Processor Error Log Found = 0;

/* traverse the error record structure to find processor section */
while (Processor Error Log Found == 0)

SectionGUID = Read OS Error Log (Section Header Offset +
GUID Offset) ;
SectionLength = Read OS Error Log (Section Header Offset +

Section Length Offs
et) ;

if (SectionGUID == Processor GUID)
Processor Error Log Found = 1;

Section Body Pointer = Section Header Offset +
Section Header Length;
Section Header Offset = Section Header Offset + SectionLength;

if (Section Header offset >= Record Length)
Internal Error (); /* Expecting a processor log */

Start parsing the processor error log. Section Body Pointer was set */
up to point to the first offset of the processor error log in the */
while loop above. Check the valid bits to see which part of the */
structure has valid info. The Read OS Error Log sub-routine is */
assumed to know the initial pointer and just an offset is passed. */
This was done to allow the pseudo-code to be more readable. */

Proc Valid Bits = Read OS Error Log (Section Body Pointer) ;
Section Body Pointer = Section Body Pointer + Validation Bit Length;

/* Read the Processor Error Map if the valid bit is set. */
if (Proc Valid Bits (Proc. Error Map Valid) == 1)

Proc Error Map = Read OS Error Log (Section Body Pointer) ;

A * Extract how many errors are valid in the error log and determine
which type */

Cache Check Errs = Proc Valid Bits (Cache Check Valid);
TLB Check Errs = Proc Valid Bits ETLB Check Valid);
Bus Check Errs = Proc Valid Bits (Bus Check Valid);
Reg File Errs = Proc Valid Bits (Reg File Check Valid);
Uarch Errs = Proc Valid Bits (MS Check Valid);

/* These sub-routines will return an indication of if the error can be
corrected by killing the affected processes. */

if (Cache Check Errs t = 0)
{

/* Check to see if one or multiple cache errors occured */
if (Cache Check Errs == 1)

CorrectedCacherr =
Handle Single Cache Error (Section Body Pointer);

else
CorrectedCacherr =

Handie Multiple Cache Errors (Section Body Pointer) ;

FIG. 4F

US 2003/0074601 A1

10

Patent Application Publication Apr. 17, 2003. Sheet 10 of 12 US 2003/0074601 A1

if (TLB Check Errs 1 = 0)

A * Check to see if one or multiple TLB errors occured */
if (TLB Check Errs == 1)
CorrectedTlbErr = Handle Single TLB Error (Section Body Pointer) ;
else
CorrectedlbFrr =
Handle Multiple TLB Errors (Section Body Pointer) ;

if (Bus Check Errs = 0)

fk Check to see if one or multiple Bus errors occured */
if (Bus Check Errs == 1)

Corrected Bus Brr =
Handle Single Bus Error (Section Body Pointer) ;

else
CorrectedBusFrr =

Handle Multiple Bus Errors (Section Body Pointer) ;
}

if (Reg File Errs I = 0)

/* Check to see if one or multiple Register file errors occured */
if (Reg File Errs == 1)

Corrected RegFileErr =
Handle Single Reg Filie Error (Section Body Pointer) ;

else
Corrected RegFile:Err =

Handle Multiple Reg File Errors (Section Body Pointe

if (Uarch Errs = 0)

/* Check to see if one or multiple uarch file errors occured */
if (Uarch Errs == 1)

Corrected Uarch Err =
Handle Single Uarch Error (Section Body Pointer) ;

else
Corrected Uarch Err =

Handle Multiple Uarch Errors (Section Body Pointer);

CorrectedErrorStatus = CorrectedCacheErr Corrected TlbErr
Corrected BusErr Corrected RegFile:Err
Corrected Uarch Err;

return (CorrecteError Status) ;
/* end OS MCA Recovery Code */

/* ===========================END====================================== */

FIG. 4G

11

Patent Application Publication Apr. 17, 2003 Sheet 11 of 12 US 2003/0074601 A1

/* =========================BEGIN====================================== */
/* Single Cache Error Recovery Code */
/* == */
Handle Single Cache Error

/* Initialize variables to a known value */
Cache Check Info = Target. Address Length = Precise IP Info = -1;
Cache Check Valid Bits = Read OS Error Log (Section Body Pointer);
Section Body Pointer = Section Body Pointer
+Error Validation Bit Length;

if (Check Info Valid Bit == 1)
Cache Check Info = Read OS Error Log (Section Body Pointer +

Check Info Offset) ;

if (Target Address Valid Bit == 1)
Target Address Info = Read OS Error Log (Section Body Pointer +

Target Address Offset) ;

if (Precise IP Valid Bit == 1)
Precise IP Info = Read OS Error Log (Section Body Pointer +

Precise IP Offset);

/* Determine if the Target Address was captured by the processor or */
/* not. If it was, determine if it points to global memory, shared */
A * memory or if it is private. If it points to a global memory */
/* structure, then a system reboot is necessary. If it is shared */
/* or private it may be recoverable. */

// if no target physical address is captured, then we have to reboot
if (Target Physical Addres Tarld=Not Valid)

SystemReset () or return (failure) ;

// target physical address is captured, check with OS if this is
global address page

if (OSIsTargetAddress Global (Tarld))
SystemReset () or return (failure) f/ in global page, it is bad news

/* Now we know that the target address does not point to shared */
/* memory. Check to see if a precise instruction pointer was captured.

/* If it was then check to see if it is a user or kernal IP. If we */
/* have the precise IP map to the processes and kill it, else we have

/* to kill processes based on target address. */

// so far so good, TardLD is in local page: Do we have precise IP?
if (Precise IP==true)

// yes, precise IP is captured, so take this branch
if (OSIsIpIn Kernel Space (IP))

// IP in kernel space
KerneliSpaceTpFlag=1;
if (Os TisProcess Critical (IP, 0) ==true)

SystemReset () ;
else

FIG. 4H

12

Patent Application Publication Apr. 17, 2003 Sheet 12 of 12

// kill all non-critical OS processes at IP
OsKillAll Processes (IP, 0) ;
return (success);

else
{

// IP is in user space
UserSpaceIpFlag=1;
f / kill all shared user processes
OsKilliallProcesses (IP, 0);
return (success);

}
}
else

/* We do not have precise IP, so try to map the Target physical */
f* address to a processes. If the target address points to shared */
/* data, then all sharing processes need to be killed. If the */
/* target address points to a private page (global has been checked */
f* above) then just kill the offending process. */

// Try and map Target Physical Address to a process data area
if (PrevilledgeLevel==Valid) // check if previlledge level is valid

// ipl=Instruction Priviledge level
if (ipl==user level) // at user level
{

A / this is user priveledge level
OsKillAllProcesses (0, Tar Id);
return (rv) ;

else A / kernel level

/* If the OS has a way to determine if the IP is in a critical part */
/* of the kernal this can determine if the kernal process can be */
/* killed or not. If the OS always puts critical kernal code in a k/
/* certain IP range, this could be a way it could determine. */

f / this is kernel priviledge level
if (Osts ProcessCritical {0, Tarid))

// OS critical process error, all bets are off. . .
SystemReset () or return (failure) ;

// good, can kill all non-critical processes using Tardid
OsKillAll Processes (0, Tarld) ;
return (success) ;

else

f / sorry, don't have privilege level information, all bets
are off. . .

SystemReset () or return (failure);

return (succcess);

US 2003/0074601 A1

13

US 2003/0074601 A1

METHOD OF CORRECTING AMACHINE CHECK
ERROR

BACKGROUND OF THE INVENTION

0001 Computer systems include a central processing unit
(CPU) that provides the processor and the hardware neces
Sary to Support the operation of the processor. The processor
typically executes a Special program called an operating
System. The operating System provides an interface that is
used by user application programs that are executed on the
computer System. The operating System provides a consis
tent interface for the user programs and hides the Specific
configuration details of the computer System from the user
program.

0002 Computer systems do not always operate without
error. System error detection, containment, and recovery are
critical elements of a highly reliable and fault tolerant
computing environment. While error detection is mostly
accomplished through hardware mechanisms, System Soft
ware plays a role in containment and recovery. In prior art
computer Systems the operating System Software typically
attempts to handle errors that are detected in the operation of
the computer System. Typically, an error will generate an
interrupt which is a hardware jump to a predefined instruc
tion address called an interrupt vector. The Software at the
interrupt vector uses processor mechanisms to Store the State
of the processor at the time the interrupt was generated So
that execution may be later resumed at the point where the
executing program was interrupted. The interrupt mecha
nism is not exclusive to error handling. Interrupts are also
used to allow higher priority programs to interrupt the
execution of lower priority programs. A typical use for
interrupts is to allow the processing of data transferS as
needed. The degree to which this error handling is effective
in maintaining System integrity depends upon coordination
and cooperation between the system CPUs, platform hard
ware fabric, and the System Software.

0003. The operating system may not be able to correct or
even handle Some errors that generate interrupts. For
example, the operating System may not have access to all the
information needed to correct the error or the error may
prevent execution of the operating System Software. These
problems are aggravated by the increasing Speed, size, and
complexity of computer Systems.

BRIEF DESCRIPTION OF THE DRAWINGS

0004 FIG. 1 is a block diagram of a central processing
unit (CPU) that includes the present invention.
0005 FIG. 2 is a block diagram showing the program
instruction components in the CPU of FIG. 1.

0006 FIG. 3 is a flow chart of error handling and
correction with the present invention.

0007 FIG. 4A-I is a pseudo code listing of operating
System Software that uses the present invention to recover
from a processor cache memory error.

Apr. 17, 2003

DETAILED DESCRIPTION OF THE
INVENTION

0008 FIG. 1 is a block diagram of a central processing
unit (CPU) that includes the present invention. The CPU
includes a processor 100 which includes hardware devices
for fetching and executing instructions. The processor 100
may include one or more processor units that can process
instructions in parallel. The processor 100 is coupled to
platform hardware 102 that provides hardware support for
the processor 100. The platform hardware 102 may include
memory hubs and controllers to connect the processor 100
to various forms of memory, Such as random acceSS memory
(RAM), read-only memory (ROM), or cache memory. The
platform hardware 102 may further include peripheral hubs
and controllers to connect the processor 100 to peripheral
devices, Such as input devices, display devices, output
device, or mass Storage devices.
0009. The present invention defines a new model for the
interface between operating Systems and platform firmware.
The interface consists of data tables that contain platform
related information, plus boot and runtime Service calls that
are available to the operating System and its loader. Together,
these provide a Standard environment for booting an oper
ating System and running pre-boot applications.

0010) The CPU of the present invention further includes
program instructions Stored in various memories that are
executed by the processor 100 to support the operation of the
CPU. Portions of these instructions are stored in non-volatile
memory, such as ROM, and are termed firmware. Other
portions of these instructions are Stored in Volatile memory,
such as RAM, and are termed software. Firmware is always
present in the CPU. Software must be loaded into volatile
memory after power is applied to the CPU before the
Software instructions can be executed by the processor 100.
In general, program instructions are Stored on a machine
readable medium. The machine-readable medium may be
the Source of instructions read by a processor or an inter
mediate medium that is used to transfer instructions to
another machine-readable medium. Thus, a machine-read
able medium includes any mechanism that provides (i.e.,
Stores and/or transmits) information in a form readable by a
machine (e.g., a computer). For example, a machine-read
able medium includes but is not limited to read only memory
(ROM); random access memory (RAM); magnetic disk
Storage media, optical Storage media; flash memory devices,
electrical, optical, acoustical or other form of propagated
Signals (e.g., carrier waves, infrared signals, digital signals,
etc.). Thus, Some or all of the present invention may be a
machine-readable medium that includes instructions. Pref
erably, the firmware will be placed in a non-cacheable,
non-volatile memory to provide a high level of immunity to
COS.

0011. The model for the interface between operating
Systems and platform firmware includes at least a processor
abstraction layer (PAL) firmware component 104 and a
system abstraction layer (SAL) firmware component 106.
The model may also include an extensible firmware inter
face (EFI) component 108. PAL 104, SAL 106, and EFI 108
together may provide System initialization and boot,
Machine Check Abort (MCA) handling, Platform Manage
ment Interrupt (PMI) handling, and other processor and
System functions which would vary between implementa

14

US 2003/0074601 A1

tions of the CPU. FIG. 2 shows the interaction between the
processor and platform hardware 101 and the various func
tional firmware blocks.

0012 PAL 104 encapsulates processor implementation
Specific features and is part of the processor architecture.
PAL 104 operates independently of the number of processor
units that comprise the processor 100. PAL 104 provides a
consistent Software interface to access processor 100
resources acroSS different processor implementations. SAL
106 is the platform-specific firmware component that iso
lates operating Systems and other higher level Software from
implementation differences in the platform hardware 102.
EFI 108 is the platform binding specification layer that
provides a legacy free Application Programming Interface
(API) to the operating System loader. Operating System
Software 110 is the application interface layer that provides
a CPU independent interface for user level application
Software that is executed by the CPU.
0013 Placing processor implementation-specific instruc
tions in PAL 104 and platform-specific instructions in SAL
106 allows the PAL and SAL to perform their functions with
full awareness of the implementation details of the processor
and the platform respectively. The interface between PAL
and SAL and between SAL and the operating System is
defined to be independent of the processor and the platform.
Thus, the operating System contains only instructions that
are processor and platform independent. SAL contains only
processor-independent instructions. The term “processor
implementation-specific instructions” is used to mean a unit
of one or more instructions that depend on the Specific
architecture or implementation of the processor to function
correctly. The term “processor-independent instructions” is
used to mean a unit of one or more instructions that function
correctly regardless of the Specific architecture or imple
mentation of the processor.

0.014. The present invention provides a machine check
architecture for error handling that is effective in maintain
ing System integrity by enabling coordination and coopera
tion between the processor 100, platform hardware 102, and
the operating system software 110. The degree to which this
error handling is effective in maintaining System integrity
depends upon coordination and cooperation between the
system CPUs, platform hardware fabric, and the system
Software. The machine check architecture provides error
handling features for high reliability, availability, and Ser
Viceability. Error containment is the highest priority, fol
lowed by error correction without program interruption, and
the recording of error information. When the platform or
processor hardware 101 generates a machine check 200,
control is passed to a processor error handler 204 in the PAL
104. In turn, control is passed to the platform error handler
206 in the SAL 106. Control may in turn be passed to the OS
machine check handler 210 in the operating System Software
110. If the error is corrected, control will be returned to the
interrupted processor context. Otherwise, the System will be
halted or rebooted.

0.015 The machine check architecture error handling
model consists of different Software components that work
in close cooperation to handle different error conditions.
PAL, SAL, and the operating System have error handling
components, which are tightly coupled through a well
defined interface. System errors may be handled by any of

Apr. 17, 2003

the following components: Processor Hardware; Platform
Hardware; Processor Firmware (PAL); System Firmware
(SAL); Operating System.
0016 Hardware Error Handling: When the processor or
platform hardware corrects an error, a notification of the
corrected event may be signaled through a Corrected
Machine Check Interrupt (CMCI) for processor-corrected
errors or a Corrected Platform Error Interrupt (CPEI) for
platform-corrected errors. The operating System may disable
this automatic interrupt notification and periodically poll the
firmware to collect corrected error events.

0017 Firmware Error Handling: FIG. 3 illustrates the
machine check error handling flow. When the processor or
platform hardware 101 detects an error that is not correct
able directly by hardware, a Machine Check Abort (MCA)
event 200 is triggered. The MCA event will pass control to
processor error handler 204 in the PAL firmware 104. The
PAL error handler 302 and SAL error handler 304 will
correct any errors to the greatest extent possible. If the errors
are corrected by PAL and SAL firmware 306, the SAL
firmware returns control to the PAL firmware 308 to return
control to the interrupted context of the hardware 310. In this
case, the corrected errors require no operating System inter
vention for error handling.
0018) If an error is not correctable by firmware 306, SAL
attempts to pass control to the operating System. If an
operating System error handler is present 312, SAL passes
control to the OS machine check handler 210 in the oper
ating System 110. If an OS error handler is not present 312,
SAL halts or reboots the system 314.
0019 Operating System Error Handling: If the error is
not correctable by the OS 316, the OS may return control to
SAL to halt or reboot the system 314. If the error is
correctable by the OS 316, the OS the operating system will
correct the errors 318, set context 320, and will pass control
to the firmware 308 to return control to the interrupted
context of the hardware 310.

0020 If a legacy operating System, one that is not cog
nizant of the machine check architecture, is running on the
processor, then the machine check is translated into a legacy
operating System error to emulate the error architecture
expected by the legacy operating System.

0021 Errors detected are classified according to the error
type and Severity. The error events are classified as Machine
Check Aborts or Corrected Error Events.

0022 Machine Check Abort Events: MCAS are used to
Signal an error condition detected by either the processor or
the platform. MCAS are asynchronous events and have
higher priority than processor interrupts, faults, and traps.
These types of errors if not corrected by firmware will pass
control to the operating System for further handling. If the
error condition is not correctable it may cause a System halt
or reboot.

0023 Corrected Error Events: A hardware or firmware
corrected error condition Surfaces as a corrected event
through an interrupt or operating System polling. The two
types of corrected events are processor-corrected errors
known as Corrected Machine Checks (CMC) and Corrected
Platform Errors (CPE). Hardware-corrected errors are cor
rected by the processor or platform hardware, and the

15

US 2003/0074601 A1

hardware automatically triggers the appropriate interrupt for
notification. Firmware-corrected errors first Surface as MCA
events that get transformed into a Corrected Event when the
firmware performs the correction. The firmware that cor
rected the error will Signal the corresponding corrected error
event notification to the operating System. Alternatively the
System may be set up to have the operating System poll for
these events and no event notification is Sent by firmware in
this case.

0024. A global MCA is an error condition that is broad
cast acroSS the entire System and affects all the processor
units in the System, whereas a local MCA is an error
condition that affects only the error-detecting processor unit.
However, an error's Scope is not visible to the operating
System through any hand-off State information.

0025 Global MCA: Global MCA results in a system
wide broadcast of an error condition. During a global MCA
event, all the processor units in the System will be notified
of an MCA. During a global MCA, all the processor units in
the system will enter their respective MCA handlers and
Start processing the global error event. The System firmware
and operating System layers will coordinate the handling of
the error among the processors. Global MCAS may be
Signaled via bus signals.

0026. Local MCA: The scope of a local MCA is limited
to the processor unit that encountered the internal error or a
platform error. This local MCA will not be broadcast to other
processor units in the System. At any time, more than one
processor unit in the system may experience a local MCA
and handle it without notifying other processor units in the
System. In certain cases, the firmware may rendezvous other
processor units in the System for coordinating the error
handling.

0.027 Processor errors are classified into five different
categories of increasing Severity and Scope as shown fol
lows: Corrected with CMCI/CPEI (Hardware Corrected);
Corrected with Local MCA (Firmware Corrected); Recov
erable with Local MCA; Recoverable with Global MCA;
and Fatal with Global MCA.

0028 Corrected with CMCI/CPEI (Hardware Cor
rected): All errors of this type are either corrected by the
processor or platform hardware and have no impact on the
currently executing process. Firmware does not handle this
type of event. The operating System is notified of this event
through a Signaling mechanism for error record retrieval
(CMCI/CPEI). An operating system can configure the sys
tem to disable the notification of the corrected error events,
in which case it polls for these events through a SAL routine.
Examples of this type of error are a correctable Single bit
ECC error in the processor cache or a correctable Single bit
ECC error on the front side bus.

0029) Corrected with Local MCA (Firmware Corrected):
This type of error is not corrected by the processor or
platform hardware and must be corrected by firmware. On
detecting Such an error, the processor Signals a local MCA,
forcing control transfer to the firmware. Processor-detected
errors of this type are corrected by PAL, whereas platform
detected errors of this type are corrected by SAL. The
firmware handlers correct the error and resume the execution
of the interrupted context. When the error is corrected by the
firmware layers, the corrected event is notified to the oper

Apr. 17, 2003

ating system as a CMC or CPE event if the operating system
(OS) enabled these events, otherwise the OS will poll for
this information. An example of this type of error is an error
that occurs in a data Structure containing unmodified data.
The firmware invalidates the affected lines in the structure
and returns execution to the interrupted process.
0030) Recoverable with Local MCA: Recoverable errors
of the local MCA type cannot be completely corrected by
either the hardware or firmware. This type of error requires
operating System analysis of the error. The control and
handling of this error is left to the operating System. Recov
ery is not always possible, depending on the capability of the
operating System and the error record information provided
to it by the firmware. When an error is not recoverable, the
System may be rebooted to return it to a Safe State.
0031 Recoverable errors have the following characteris
tics: the error is contained (i.e., it has not been saved in
persistent storage); critical System State is intact; the physi
cal address that caused the error and the instruction pointer
of the offending instruction are captured (the captured
instruction pointer may or may not be precise based on the
method through which the operating System may localize the
instruction pointer on an MCA and the capability of the
processor); and, the process and the System are restartable.
An example of a recoverable error with local MCA is an
error that returns incorrect data to a processor register. If the
operating System can identify the offending proceSS from the
error information logged, it can terminate the process that
needed to consume this data to recover. A platform may also
Signal a recoverable error detected by the platform compo
nents through an appropriate Signaling mechanism.
0032 Recoverable with Global MCA: These type of
errors are similar to recoverable errors with local MCA
except these errors are broadcast to the entire System via a
Signaling mechanism. On detecting a global error event
condition, each of the processors enters its local MCA
handler to perform error handling with a Subsequent hand
off to the operating System. The eventual control and han
dling of this error are left to the operating System. To make
a recoverable error global, platforms may have a mechanism
to broadcast the local error events across the System. An
example of a global error condition is a platform error
condition asserting an error Signal pin on all processors,
assuming that the chipset has the ability to route and drive
error Signals to all the processors.

0033) Fatal with Global MCA: This type of error cannot
be corrected by the processor, platform, firmware, or oper
ating System. The System must be rebooted. This type of
error is broadcast to the System via a global event notifica
tion mechanism. On detecting a global error event condition,
all the processors enter their MCA handlers. An error reset
destroys the State of outstanding memory and bus transac
tions. After an error reset, the first buS transaction must be
the fetch to the MCA handler. These error conditions require
all processors to perform an error reset. An example of a
fatal error condition is processor time-out expiration. This
occurs when the processor has not retired any instructions
after a certain time period. Such an error will cause a System
reboot when enabled. A platform can also signal this error
type through an error Signal.

0034. The machine check architecture requires PAL,
SAL, and the operating System to share the responsibility of

16

US 2003/0074601 A1

machine check handling. Machine check events initially go
to PAL for handling. PAL has the following responsibilities
when receiving a machine check:

0035 using processor implementation-specific fea
tures to Save the processor State in a System memory
registered by SAL;

0036) attempting to contain the error by requesting a
rendezvous for all the processors in the System if
neceSSary,

0037 attempting to correct the error using processor
implementation-specific features,

0038 handing off control to SAL for further pro
cessing and logging,

0039 providing processor error record information
upon SAL request; and,

0040 returning to the interrupted context by restor
ing the State of the processor.

0041 SAL has the following responsibilities during a
machine check:

0042 attempting to rendezvous other processors in
the system if requested to by PAL;

0043 rocessing MCA handling after hand-off from p 9. 9.
PAL;

0044) getting processor error record information
from PAL for logging;

0045 issuing a PAL clear record request to clear the
record and to enable further error logging;

0046 initiating processor rendezvous on its own
accord, if the error Situation warrants one;

0047 retrieving platform state for the MCA and
retains it until the operating System handles it;

0048 attempting to correct platform errors; if the
error is not corrected, rendezvousing all the proces
Sors if the operating System Sets the "always rendez
vous” flag through SAL routine;

0049 handing off control to operating system MCA
handler for uncorrected errors; if the operating Sys
tem MCA handler is absent or corrupted, then reset
ting the System; and,

0050 returning to the interrupted context through a
PAL machine check resume routine.

0051. The operating system depends on SAL to interact
with PAL to get information about machine check errors for
further handling. The responsibilities of operating System
machine check handler may be categorized into initialization
and run-time responsibilities. The operating System has the
following initialization responsibilities:

0052 if there are multiple processor units, register
ing Spinloop/Rendezvous and Wakeup Request
Interrupt Vector;

0053 registering an operating system MCA handler
entry point,

0054 initializing the CMC vector register to enable
CMC interrupts on the processor and hook a handler

Apr. 17, 2003

(not required if the operating System chooses to poll
for corrected processor errors);

0055) initializing the Corrected Platform Error Inter
rupt (CPEI) vectors in the input/output hardware (not
required if the operating System chooses to poll for
corrected platform errors); and,

0056 enabling/disabling maskable interrupts on the
Slave processors.

0057 The operating system has the following run-time
responsibilities:

0.058 polling for CMC or CPE using a SAL request
if the polling option is chosen;

0059) if multiple processors enter MCA at the same
time, electing a monarch processor to coordinate
error handling,

0060 retrieving error records from SAL;
0061 recovering from error if possible;
0062) identifying the end of all machine check han
dling and Wake-Up all slave processors from Spin
loop;

0063 clearing the SAL state information including
the error records, and,

0064 resuming the interrupted context or branch to
a new context by modifying the processor State.

0065 Error Records: The errors records captured on a
System are associated with error events. Error records return
error information to the operating System. Corresponding to
each event are processor and platform error records. Error
records are important for error tracking and recovery. The
SAL firmware (in conjunction with PAL) can maintain the
error record information of all errors in a non-volatile local
memory area. All corrected processor and platform errors
events (CMC and CPE) have associated error records. Hence
the error records are classified into:

0.066 MCA Records; and
0067 CMC or CPE Records.

0068 The error record may be a linked list structure that
consists of multiple Sections for each System component. An
exemplary format of an error record for an event includes a
record header block followed by one or more sections. Each
Section includes a Section header block and a Section body
block. Each of the Section has an associated globally unique
ID (GUID) to identify the section type as being processor,
platform bus, or other System-specific type. Error records
may be retained acroSS System reboots during fatal error
conditions.

0069 MCA record: Each MCA event in the system can
have no more than one MCA error record per processor and
one error record for the entire physical platform at any given
point in time. While the software is handling the current
MCA and further MCAS are held pending, no new MCA
records are built. Error records for subsequent MCA events
will be built and made available after the operating System
completes the following Sequence:

0070) 1. Retrieve the previous record.
0.071) 2. Complete the MCA handling.

17

US 2003/0074601 A1

0072 3. Initiate an explicit call to the SAL to clear
the MCA records.

0073 4. Unmask MCA interrupt detection on the
processor.

0.074. During an MCA event, the error record returned by
SAL through SAL GET STATE INFO may contain valid
Sections for processor and/or platform errors. The different
Sections that are returned by SAL during this event depends
on the event type and the SAL implementation.
0075 CMC and CPE records: Each processor or the
physical platform could have multiple valid corrected
machine check or corrected platform error records. The
maximum number of these records present in a System
depends on the SAL implementation and the Storage Space
available on the System. SAL may use an implementation
Specific error record replacement algorithm for overflow
Situations. The operating System may need to make an
explicit call to the SAL procedure SAL
CLEAR STATE INFO to clear the CMC and CPE

records.

0.076. During a corrected error event, SAL returns error
records consisting of appropriate error Sections for the event
type, namely a processor Section for CMC and a platform
section for CPE. In some situations, when platform errors
are reported through Synchronous MCA Signaling by the
platform (2xECC or HF), SAL may correct the error and
report it as a CPE. In this case, the error record for the event
will consist of both processor and platform sections. The
part of processor error Section that is relevant for this case
of CPE-transformed platform MCA is the virtual instruction
pointer captured by the processor.

0077. Multiple Errors: All the MCAS detected within a
window before the processor masks machine check detec
tion hardware (PSR.mc) may be lumped together as a single
MCA condition, locally visible on that processor only.
Multiple MCA events within a detection window on a
particular processor may be reported as:

0078 1. A single error, if the same error is detected
multiple times in the same structure (cache, TLB or
bus structural units).

0079 2. A single error with an overflow indicator, if
multiple unique errors are detected in the same
structure. In this case the first detected error will be
reported. The record-first-error policy only applies to
recording resources that are shared among the errors.

0080) 3. Multiple unique errors in different struc
tureS.

0081 Nested MCA: A nested MCA is an MCA that
occurs after the MCA detection window is closed. All further
MCAS occurring after the detection window are held pend
ing and may be unrecoverable. The machine check archi
tecture allows for multiple nested MCAS to occur on each
processor, but only one MCA may be handled at a time. Note
that errorS detected and corrected by hardware trigger the
optional corrected machine check interrupt (CMCI) event
and are not considered to be MCAS or nested MCAS.

0082 Multiple Processor System: Error handling may
depend on the number of processors in a System. In a
multiple processor environment, because of the possibility

Apr. 17, 2003

of a global MCA error or simultaneous local MCAS on
multiple processors, firmware and OS MCA handlers must
perform Synchronization during error handling. The firm
ware may perform a rendezvous of the processors based on
the error encountered or may be configured by the OS to
always rendezvous with the SAL MC SET PARAMS pro
cedure. Likewise, the operating System may perform its own
rendezvous of the processors based on the error encountered
if it is not already done by the firmware.
0083) Expected MCA Usage Model: In addition to the
error handling model described above, the MCA architecture
provides an MC Expected (MCE) configuration option for
platform/Software testing purpose. When this option is Set,
the PAL machine check handler will deviate from its normal
handling and will not attempt to perform error recovery (HW
error recovery action is not affected), but hands off control
to SAL directly. This MCE option is enabled or disabled
through the PAL MC EXPECTED procedure. The machine
check architecture does not restrict the usage of the MCE
option, but it is intended to be used for Software diagnostics
only.
0084. Processor Error Handling: On detecting an internal
error, the processor asserts a machine check. Platform errors
that are uncorrected may also be directed to the processor to
pass control to machine check architecture Software. Error
record information for the event is temporarily captured and
maintained by the processor or platform components.
0085 Processor Errors: Machine check errors are
reported using five different structures. At any point in time,
a processor may encounter an MCA or CMC event due to
errorS reported in one or more of the following Structures:

0.086 1. Processor Cache Check
0.087 2. Processor TLB Check
0088. 3. System Bus Check
0089 4. Processor Register File Check
0090) 5. Processor Microarchitectural Check

0091 Processor Cache Check: A processor architecture
implementation may have Several levels of on-chip cache.
An implementation organizes a level of cache as Separate
instruction and data caches or as a unified cache. To make
the error information independent of the processor's cache
implementation, a processor may report error information in
a generic fashion for recovery and logging. PAL MC ER
ROR INFO may return the following information when a
cache error occurs:

0092] 1. Instruction or data/unified cache failure
identification.

0093 2. Data or tag failure identification.
0094) 3. Type of operation that caused the failure.
0.095 4. The cache way and level of failed location.
0096) 5. Index of the failed cache line.
0097 6. Physical address that generated the machine
check.

0.098 Processor TLB Check: Processor architecture
implementations may have Several levels of on-chip trans
lation look-aside buffers (TLBs). An implementation may

18

US 2003/0074601 A1

choose to have separate instruction and data TLBS or a
unified TLB. PAL MC ERROR INFO may return the fol
lowing information when a TLB error occurs:

0099) 1. Translation register or in the translation
cache error identification.

0100 2. Indication of whether the error occurred in
an instruction or data/unified TLB structure.

0101 3. Type of operation that caused the TLB
MCA

0102) 4. Level of the TLB where the error was
encountered

0103) 5. Slot number of the TR that experienced the
MCA

0104 6. Physical address that generated the machine
check

0105 System Bus Check: Processor architecture imple
mentations may report a bus machine check for System bus
transaction errors or System buS agents reporting a global
bus error. PAL MC ERROR INFO may return the follow
ing information when a bus error occurs:

0106 1. Size of the transaction that caused the
machine check

0107 2. Indication of whether this machine check
was due to an internal processor error or due to an
external bus notification

0108) 3. The type of bus transaction that generated
the machine check

0109 4. Identification of the requester and
responder of the buS transaction that generated the
machine check.

0110 Processor Register File Check: Processor imple
mentations may have large register files, which may be
protected to detect errors. Errors encountered on protected
register files may be returned in the register file check.
PAL MC ERROR INFO may return the following infor
mation when a register error occurs:

0111 1. Register File ID and register number for the
failure

0112 2. Operation that generated the register file
CO

0113 Processor Microarchitecture Check: Processor
implementations may have many internal arrays and struc
tures that may not be architecturally defined yet may still be
designed to detect errors. Any errors detected in architec
turally undefined Structures may be reported using the
microarchitecture check. These error conditions may not be
recoverable by operating System Software but may be logged
for serviceability. PAL MC ERROR INFO may return the
following information when a microarchitecture error
OCCUS

0114 1. Structure ID, array ID, way and level where
the error occurred.

0115 2. Operation that triggered the error
0116 Processor Error Correlation: SAL may call
PAL MC ERROR INFO multiple times to retrieve all of

Apr. 17, 2003

the information associated with a machine check event. SAL
calls PAL MC ERROR INFO to get the error severity
through the Processor State Parameter (PSP) and error map
information through Processor Error Map (PEM). Subse
quent calls may be made to obtain detailed error informa
tion. The PSP and PEM values returned by the PAL may
have a global Summary of the error, which enable SAL to
identify and make Subsequent PAL calls to get detailed error
information for each Structure. SAL may return processor
error information for the processor on which the SAL GET
STAT INFO call is made. To get the error information for

all processors, multiple SAL calls may be made to each
processor.

0117 Processor CMC Signaling: Corrected machine
check events on a processor may be Signaled using two
different control paths:

0118 1. Hardware Corrected Processor Error.

0119 2. Firmware Corrected Processor Error

0.120. A machine check error corrected either by proces
Sor hardware or firmware may translate into a CMC condi
tion with eventual notification to the operating System. The
notification of the CMC condition to the operating system
may only be necessary for recording the error information.
The operating System may use this information to generate
statistics. For the processor hardware or firmware to deliver
the CMC interrupt to the operating system, the CMC inter
rupt must be enabled on each of the processors with CMC
vector initialization.

0121 On a processor-corrected error, a CMC event can
be transferred to the operating system by two different
methods. The operating System may either initialize the
processor to generate an interrupt (CMCI) for automatic
signaling of a CMC, or it may periodically poll the CMC
condition through SAL GET STATE INFO. The operating
System can choose any low priority interrupt vector for this
purpose by programming the processor's CMCV register.

0122) Processor MCA Signaling: A machine check abort
condition may be due to a processor error condition or an
externally generated asynchronous platform BINITH/
BERRif signal or a synchronous Hard Error bus response, or
Forced 2xECC error on the front side bus (data poisoning).
The processor detecting MCA or a platform chipset com
ponent may drive the BINITH signal pin. The platform may
drive BERR# to the processor. An MCA due to BERR#
assertion may have no effect on the processor State, So it may
be possible to resume execution of the interrupted context if
the error is contained and corrected. However, an MCA due
to BINITH assertion may reset all outstanding transactions in
the processor memory/bus queues, causing the processor to
lose State information. This may prevent the System from
recovering. A processor can assert different Signal pins to
communicate an error condition to the external platform
components. When an MCA is localized to a processor, no
external Signalling will be visible in the platform.

0123 Error Masking: System software may disable
MCAS or corrected machine check interrupts by masking
these conditions through the processor configuration regis
ters. These capabilities are highlighted in Table A.

19

US 2003/0074601 A1

TABLE A

Processor Machine Check Event Masking

Processor
Register Field Event Description

PSR.mc MCA Mask or unmask machine check
aborts on the processor. However,
delivery of MCA caused by BINIT#
is not affected.

Processor Status
Register (PSR)

0124 CMC Interrupt CMCV.m CMCI Mask or deliver
the CMC interrupt. Vector Register
0.125. In general, it is not necessary for either SAL or the
operating System to manipulate the PSR.mc bit. On taking
an MCA, another MCA may be automatically masked by the
processor HW and unmasked when SAL or the operating
system returns to the interrupted context through PAL M
C RESUME. The operating system may need explicit
enabling or disabling of MCA Signaling to handle Special
Situations. A good example of this is when the operating
System wants to bring the System to a rendezvous State when
multiple MCAS are detected. The operating system or SAL
could enable Subsequent MCAS after the error record for the
current MCA is dumped out to a nonvolatile Storage area.
0.126 Error Severity Escalation: To simplify error han
dling or to give certain errors a different priority level,
System Software may escalate errors to a higher Severity
level. PAL firmware may permit SAL or the operating
system to escalate errors. When this feature is enabled and
Supported, the escalated event Signal may be driven out on
the processor bus, for example on the BINITH pin, and may
be received by all platform components that are wired to
these signals. Table B shows different possible events that
may be elevated in Severity.

TABLE B

Machine Check Event Escalation

Processor Detected
Machine Check Event Available Escalation Option

Corrected Machine
Check Events

May be promoted to an MCA condition. When
this option is chosen, the processor signals a
MCA on all CMC conditions. A promoted MCA
behaves identically to a local MCA in that it can
be further promoted to a BERR+ or BINIT#
condition.
May be promoted to a BERR+ or BINIT# error
condition. When this option is chosen, the
processor treats all MCA errors as BERR# or
BINIT# error conditions.
May be promoted to BINIT# error condition.
When this option is chosen for the detecting
processor, the processor treats all BERR# errors
as BINIT# error condition.

All MCA Events

Only BERRH Event

0127. A particular processor architecture implementation
may not support all of these capabilities. PAL PROC GET
FEATURES may report the existence of processor capa

bilities. The PAL PROC SET FEATURES may allow the
manipulation of the Supported features.
0128 Platform Error Handling: Detecting and reporting
platform errors are platform specific. Platform hardware

Apr. 17, 2003

may record error information and return it to the firmware
and operating System layers, which may have platform
Specific error handling capabilities.
0129. Platform Errors: MCA-enabled platforms may
report Several different error types, depending upon the
platform design. The platform errors can be classified into
three categories:

0130) 1. Memory errors

0131) 2. I/O bus errors
0132) 3. Platform specific

0.133 Each of the error types may be associated with a
unique GUID for identification. When these platform errors
are channeled through the processor MCA resources
(BERR, BINIT, 2xECC, and HF on the system bus), the
processor error record may indicate all platform errors as
external bus errors to the system software. The platform
firmware is responsible for further querying the platform
hardware to identify the source of the error and build an
appropriate platform error record.
0.134 Since SAL is the platform-specific component of
the firmware, it should have enough knowledge of the
platform fabric to retrieve any error information from the
chipset and possibly correct Some errors with a hand-off to
the operating system. The OS MCA, discussed below under
“Error Record Management,” in conjunction with SAL can
effectively handle platform-detected errors. At any point in
time, a platform could encounter an MCA/CPE event due to
following types of errors:

0135 1. Memory Errors

0136 2. I/O Bus Errors
0137 3. Platform Specific Errors

0.138 Memory Errors: Errors detected on the external
memory subsystem, such as local DRAM 1xECC, or
2xECC errors, may be reported as platform memory errors.
The errorS detected on any platform level cache may also fall
into this category.
0139 I/O Bus Errors: Errors on I/O buses, such as a
peripheral component interconnect (PCI) bus, may be
reported as platform bus errors. Bus errors on component
interconnect buses, Such as the address and data memory
controller buses and associated datapath components, may
also be reported as platform bus errors.
0140 Platform Error Correlation: The operating system
may call SAL GET STATE INFO multiple times to
retrieve all of the information associated with a machine
check event. The processor error record may provide the
severity of error, which may be coupled with the platform
error Section returned by SAL. The processor-logged bus
error information may have an external bus error flag, which
gets Set for errorS detected and reported by the platform.
0141 Platform-corrected Error Signaling: If OS polling
is not used, corrected platform error events may be signaled
using two different control paths:

0.142 1. Hardware-corrected platform errors

0.143 2. Firmware-corrected platform errors

20

US 2003/0074601 A1

014.4 For hardware corrected platform errors the event
notification may be sent to the operating System by asserting
the interrupt line associated with the corrected platform
interrupt vector. For firmware corrected platform errors the
firmware may Send an inter-processor interrupt with the
corrected platform error Vector number to a processor. The
processor may signal a platform MCA condition through the
assertion of external MCA signaling mechanism (BERR#,
2xECC & HF). If the SAL firmware corrects errors signaled
in this way, a corrected platform error event will be signaled
to the operating System if this type of Signaling is enabled.
0145 Scope: The scope of platform errors depends upon
the platform and firmware implementations. Depending
upon the platform topology, a single physical platform may
consist of multiple processor nodes. A processor node is
defined in this context to be a section of the platform that
contains a set of processors connected by a bus with its own
error event generation and notification. When SAL GET
STATE INFO is called for MCA or Corrected Errors for

the platform, SAL returns the error record for the processor
node associated with the processor on which the call is
made.

0146 SAL may specify the number of processor nodes in
a platform by the number of entries for Corrected Platform
Error interrupts in the ACPI table with a designated proces
Sor having a processor ID and EID. SAL may also indicate
in the ACPI table which processors must be polled for
platforms configured to not generate an interrupt on cor
rected errors. Returning error information on a processor
node basis helps to efficiently manage platform resources for
error event notification and error record building when the
System has a large number of processors and platform
resources. The operating System may need to call SAL
GET STATE INFO on each designated processor of a

node to collate the error information for the entire physical
platform. If the operating System uses a polling option for
the platform corrected error event, it may call SAL GET
STATE INFO with argument type of CPE on each of the

processor nodes to collate the error information for the entire
platform.

0147 Platform MCA Signaling: Depending on the sever
ity of an error, a platform may signal an error to the
processor either Synchronously or asynchronously. Errors
are synchronously reported through 2xECC or HF, while
BERRif or BINITH are used for asynchronous error report
Ing.

0148 BERRif Pin Assertion: Since the processors do not
reset their internal State, platform errors that are signaled this
way may be recoverable. BERRif errors are global events
when a platform design connects all the processor BERRif
pins together in a System.

0149 BINITH Pin Assertion: Since the processors reset
part of their internal State, platform errorS Signaled this way
are not recoverable. BINITH signaling causes a global MCA
event (refer to Section 4.4.1 for further details).
0150. Forcing 2xECC Data Error: Platforms may only
use this method on a transaction that requires data return to
the processors. On receiving a 2xECC error indicator, for
cacheable data, the processor poisons and Stores the data in
the internal caches. A 2xECC error response is local to the
receiving processor.

Apr. 17, 2003

0151 Hard Fail Response Error: The Hard Fail response
is Supported by the System bus protocol. On receiving Such
an error, the processor treats it in the same manner as a
2xECC data error. A Hard Error response is local to the
receiving processor.
0152 Global Signal Routing: Processor architecture
implementations may use a multi-layer Strategy for error
containment at the instruction, process, node, and System
levels. PAL firmware performs instruction level error con
tainment. ProceSS level error containment relies upon the
operating System to terminate the process. At the node and
System levels, error containment relies on PAL, SAL, and
the operating system with the use of the BERRif and BINITH
pins to achieve error containment. The Success of this error
containment Strategy depends upon cooperation between
these firmware layerS and the operating System. This Section
suggests a usage model of the BERRif and BINITH pins.
0153 Broadcast of BERR# and BINITH across processor
nodes may be used based on the needed platform topology
and functionality. Irrespective of the nature of the Signal
routing, the impact of these platform Signal routing choice
shall be abstracted from the operating System. An example
is that if a platform does not route BERRif signal across
processor nodes, SAL must perform a SAL rendezvous of
the processors on the neighboring processor nodes.
0154) The BERR# pin may be used as a way for the
platform to signal a recoverable platform MCA. The MCA
component of SAL can specify the error recoverability for
platform-asserted BERRif by reporting the appropriate error
Severity in the error record as being fatal or recoverable. If
any platform components lost State information due to the
assertion of the BERRif pin, then SAL must report the error
as fatal.

0155 The processor may drive the BERRif pin to notify
other processors that there is an unrecoverable error and to
get the other processors to Stop their currently executing
programs in order to reduce the chance of one of these
processor Seeing the same error, which would cause the
processor to assert BINITit. This increases the chance of
allowing the firmware and operating System to get a good
error log Stored before having to re-boot the System. For
very large multi-node Systems, platforms may not want to tie
the BERRif pins together acroSS processor nodes, but can
achieve a similar global even notification by using the
rendezvous mechanism to coordinate error handling.
0156 The BINITH pin may be used for system level error
containment. The processor may assert this pin for fatal
errors that may cause loSS of error containment. This pin
may be tied together in a multi-node system. BINITH
assertion may be a global MCA event. To be consistent with
the machine check architecture, it is preferred that the
platform hardware generate a BERRii or 2xECC or HF for
recoverable errors and a BINITH for fatal errors. Since
BERRif assertion allows the MCA handlers to make forward
progreSS, Some platforms may choose to report fatal errors
through this means rather than raising BINITif.
O157) Error Masking: In addition to the processor error
masking capabilities, the platform hardware may also pro
vide an implementation-specific way of masking the plat
form BERRif and BINITH signaling to the processor. The
masking of error Signals on the processor is in addition to the
platform masking capabilities.

21

US 2003/0074601 A1

0158 Error Severity Escalation: Platform errors that are
Visible to the processor may be escalated on a per processor
basis by Setting the processor configuration bits as shown in
Table B. The chipset may also have capabilities to escalate
all platform errors to BERRif errors (potentially recoverable)
or BINITH errors (non-recoverable).
0159) Error Record Management: The management of
the error records (MCA, CMC, and CPE) depends upon the
SAL implementation. Records may have two different
StateS:

0160) 1. Consumed

0161) 2. Not Consumed

0162 Consumed error records have been read by the
operating System and cleared using SAL
CLEAR STATE INFO. An operating system typically

clears a record after it has been written to the operating
System event log on the disk. In case of System reboot
without an operating System's explicit clear (not consumed),
the unconsumed records would still be available acroSS
System reboots for the operating System. SAL firmware may
maintain consumed/unconsumed State flags for each of the
error record in the NVM for their management. SAL may
choose to implement “Consumed” and “Not Consumed”
error records, however it is not architecturally required. A
platform implementation with NVM support could keep all
operating system-consumed error records in the NVM for
utility Software. So, if this implementation approach is
taken, all error records can be made available to field Service
perSonnel through the utility Software.

0163. In response to different error events, SAL may
build and maintain error records to provide them to the
operating System. In response to the error events, the oper
ating System is expected to retrieve error records from SAL
for further processing. Each of the error records that the
operating System processes falls into two main categories
based on the event:

0164 1. Corrected Error Event

0165 2. Machine Check Abort Event
0166 Corrected Error Event Record: In response to a
CMC/CPE condition, SAL may build and maintain an error
record for operating System retrieval. An operating System
might choose different CMC/CPE event notification types
during operating System boot by configuring the firmware
through SAL MC SET PARAMS. In response to the
CMC/CPE event (CMCI or CPEI), the error record man
agement by the firmware could follow the following
Sequence:

0167 1. The operating system calls back SAL (inter
rupts enabled) and gets the corrected event error
record. The SAL may write the error record to NVM
and mark the error record as “Not Consumed” by the
operating System.

0168 2. The operating system clears corrected event
error record (as an indication of the end of event
handling) by clearing SAL CLEAR STATE INFO.
The firmware could do the following:

0169. a. SAL clears the error record from memory

Apr. 17, 2003

0170 b. SALsaves the error record to NVM if not
already done

0171 c. SAL marks the error record as in NVM as
“Consumed by the operating System

0172 d. SAL may perform garbage collection on
NVM error records during the SAL
CLEAR STATE INFO call. The NVM garbage

collection latency would not have any perfor
mance impact on the operating System since this
call is made with interrupts enabled.

0173) MCA Event Error Record: In response to an MCA
condition, SAL builds and maintains the error record for
operating system retrieval. During the OS MCA handling or
at a Subsequent point, the operating System would get the
error record for the current MCA from the firmware. The
error record management by firmware could follow the
following Sequence:

0174) 1. SAL MCA hands off to OS MCA after the
following:

0175 a. SAL builds the error records.
0176 b. SAL writes the error record to NVM
0177) c. SAL marks the error record in NVM as
“Not Consumed” by the operating system.

0178 2. After OS MCA hand-off, operating system
calls back SAL and gets the MCA error record.

0179 3. The operating system clears MCA error
record (as an indication of the end of MCA handling)
through SAL CLEAR STATE INFO. SAL would
then do the following:

0180 a.
memory.

0181 b. SAL marks the error record in NVM as
“Consumed by the operating System.

SAL clears the error record from

0182 Error Records Across Reboots: Unrecoverable
error events may appear to the operating System as MCA
conditions. In Some cases, the operating System might not be
able to write error records into its non-volatile Storage. The
error record remains unconsumed. In these situations, the
operating System could reboot the System clearing the error
record in the firmware memory. To take this situation into
account, the firmware may have to maintain the error records
acroSS System reboots. The following is a typical Sequence
for the operating System to obtain the error record acroSS
reboots:

0183 1. On reboot, the operating system requests
for Not Consumed MCA/Corrected Event error
records by calling SAL GET STATE INFO. SAL
will do the following:

0184 SAL will provide the error record if it exists
in memory or, Since the operating System has not
cleared the error record yet, in the NVM.

0185. 2. The operating system clears the error record
through SAL CLEAR STATE INFO. SAL marks
the error record in NVM as “Consumed” by the
operating System.

22

US 2003/0074601 A1

0186 If the OS fails to clear the log before another MCA
Surfaces, SAL may choose to overwrite the unconsumed
NVM log, if there is not space for another record. The SAL
implementation may additionally escalate the error Severity
when the error information is Subsequently provided to the
OS.

0187 Multiple Error Records: It is possible for the plat
form to have multiple error records Stored in the System
NVM that are not yet consumed by the operating system.
SAL chooses how to store the errors records in the NVM and
in what order to return them. Here are Some guidelines for
typical implementations:

0188 Corrected Error Records: Since the records pertain
to corrected errors and the operating System uses them for
logging purposes, the SAL GET STATE INFO could
return them in a first-in-first-out (FIFO). In any event, the
error records are retrieved and cleared by the operating
System one at a time.
0189 MCA Error Records: An MCA record returned
during an MCA hand-off to the operating System should
always return the current record, because the operating
System may use it for recovery. If multiple unconsumed
MCA records are present in the NVM that do not pertain to
the current MCA event, they may be used by the operating
System for logging and hence the order in which the SAL
GET STATE INFO returns them can be in the order it

chooses.

0190. OS Error Recovery: Machine checks are handled
first by PAL, then by SAL, and finally by the operating
System. Firmware error handling may occur with Virtual-to
physical address translation disabled. Firmware error han
dling should be independent of the System environment,
guaranteeing a base level of capabilities for a platform.
Platforms may provide error handling in SAL to provide
uniform capabilities acroSS different operating Systems.
Operating Systems may provide additional error handling
capabilities.
0191) OS Error Handling Policy: The errors reported to
the operating may have one of the following Severity levels
as defined above:

0192) 1. Continuable
0193 2. Recoverable
0194 3. Non-recoverable/Fatal

0.195 Handling Corrected Errors: Corrected errors are
the Simplest to handle. Since the error has already been
corrected, the operating System only needs to respond to the
event and record the error in persistent Storage for error
failure analysis. Errors may be analyzed to generate Statistics
and provide early component failure warnings.
0196) Handling Recoverable Errors: Recoverable errors
are MCA events that leave the processor or platform state
corrupted. For recoverable errors the operating System may
take one of the following courses of action for error recov
ery:

0197) 1. Terminate the offending thread and the
affected threads. The offending thread is the thread
that issues the offending instruction. Related pro
ceSSes may also need to be terminated. Error recov
ery by thread termination may not always be possible

Apr. 17, 2003

because of thread dependencies. When this is not
possible, the operating System must reset the entire
System to contain errors, Since the offending thread
should not be allowed to continue.

0198 2. If the operating system can fix the error, the
thread can be restarted from the offending point
onwards. An example of this is an error on device
driver-initiated operations. If the error is due to a
driver-initiated operation, the driver may be able to
recover by retrying or restarting the operation.

0199. In both cases, the operating system needs to iden
tify the errant thread and the affected threads from the
information provided by PAL and SAL in the platform error
logs.

0200 Handling Fatal Errors: In the case of non-recover
able errors, the processor or platform has lost critical State
information and the only recourse may be to reboot the
machine. It may be possible for the operating System to
record the error in persistent Storage before the reboot, if the
operating System can Still access the Storage device to record
the error. To record the fatal error details, the firmware must
be capable of Storing the error records acroSS operating
System boots in a platform Specific non-volatile Storage area
like NVRAM.

0201 Identifying the Errant and Affected Threads:
Recoverable errors may corrupt the architectural State and
require that the errant thread and affected threads be termi
nated for error containment and recovery. Data poisoning is
an important class of recoverable errors. For this reason, it
is desirable that the operating System provide the thread
termination capability.
0202) The difference between the offending state and the
affected State is important to note. The former refers to the
offending thread's State when issuing the offending opera
tion that causes the error when executed. The latter refers to
the affected thread's state when the MCA is signaled and
taken. In general, the offending State and the affected State
are the Same. But Since there is a delay between the time the
offending operation is issued and the time it is executed, it
is possible that the offending State and the affected State are
different. This case may occur when the offending thread
issues the offending operation and then proceeds to make a
System call. In this case, the offending State may indicate a
user State and the affected kernel State. Conversely, a thread
may issue the offending operation while in the kernel State
with the MCA taken after execution is returned to the user
State.

0203 Preferably the processor architecture implementa
tion will guarantee that MCAS will surface on a context
Switch, Such as by Signaling MCAS when the context Switch
code Saves and restores the register context of a thread. This
may limit the error States to the following cases:

0204 Both the offending and the affected States
belong to user States.

0205 Both the offending and the affected States
belong to privileged States.

0206. The offending state belongs to a user state and
the affected State belongs to a privileged State.

0207. The offending state belongs to a privileged
State and the affected State belongs to a user State.

23

US 2003/0074601 A1

0208 For errors that require operating system interven
tion for thread or process termination, the affected thread is
always the thread that is executed after the offending thread.
For thread termination, the processor platform may provide
the following information:

0209 1. The physical data address of the offending
operation. This should point to the data address of
the offending memory operation.

0210 2. The affected State including the instruction
pointer.

0211 Operating system recovery from errors through
thread termination requires the following Support:

0212 1. The operating system should implement a
data Structure to determine whether a page belongs to
a global, shared, or private page using the offending
physical address provided by the hardware. Since
there is a delay between the time a memory operation
is issued and the time the MCA is taken, it is possible
that another thread has changed the mapping of this
table, rendering it useless. Therefore, the PAL code
should have the capability to provides both the PA
and the VA of the offending operations. The operat
ing System should compare this mapping with those
in its own mapping table.

0213 2. Further, the operating system should pin
point the offending thread and the affected threads
when pages are global and Shared. In the case of a
private page, only the offending thread, and possibly
its parent proceSS, owning the page may need to be
terminated.

0214) 3. Finally, the operating system should be able
to determine if the affected thread is in a critical
section. This may be determined from the interrupted
instruction pointer, the privilege level, and the pri
ority contained in the processor architecture Task
Priority Register. How the operating System deter
mines if the affected thread is in a critical Section
depends on the OS policy and architecture.

0215 Table C shows the operating system action that
must be taken to terminate a process or processes for error
recovery.

TABLE C

Needed Operating System Action for Processes Termination

Property Affected
of Thread in
Offending Offending Critical

Case IP PA Section Operating System Action

1 X Not Known x No error recovery is
possible since the
offending physical address
is unknown

2 x X Critical No error recovery is
possible since the affected
process is in a critical
section

3 Precise X X The operating system may
terminate the offending
thread based on the
offending IP if the IP is
synchronous.

11
Apr. 17, 2003

TABLE C-continued

Needed Operating System Action for Processes Termination

Property Affected
of Thread in
Offending Offending Critical

Case IP PA Section Operating System Action

4. Unknown Global Non- The operating system must
critical terminate all the threads

that may use this page.
Since this page is shared
by all the processes, the
entire system may have to
be reboot.

5 Unknown Shared Non- The operating system must
critical terminate all the threads

sharing the page.
6 Unknown Private Non- The operating system must

terminate the thread
Owning the private page

critical

x = Don't care.

0216 While certain exemplary embodiments have been
described and shown in the accompanying drawings, it is to
be understood that such embodiments are merely illustrative
of and not restrictive on the broad invention, and that this
invention not be limited to the Specific constructions and
arrangements shown and described, since various other
modifications may occur to those ordinarily skilled in the art.

What is claimed is:
1. A method comprising:
using processor implementation-specific instructions to

Save a processor State in a System memory when a
machine check error is generated by a processor,

attempting to correct the error using processor implemen
tation-specific instructions,

transferring control to processor-independent instruc
tions,

receiving control from processor-independent instruc
tions, and

returning to an interrupted context of the processor by
restoring the processor State.

2. The method of claim 1, further comprising providing
processor error record information obtained using processor
implementation-specific instructions.

3. The method of claim 1, further comprising attempting
to contain the error if a Second processor is coupled to the
processor by requesting a rendezvous between the processor
and the Second processor.

4. The method of claim 1, wherein receiving control from
processor-independent instructions indicates that the error
has been corrected.

5. The method of claim 1, further comprising obtaining an
address of a location to Save the processor State in the System
memory provided by platform-specific instructions.

6. The method of claim 1, wherein attempting to correct
the error using processor implementation-specific instruc
tions is not done if an expected machine check indicator is
Set.

24

US 2003/0074601 A1

7. A machine-readable medium that provides instructions
that, if executed by a processor, will cause the processor to
perform operations comprising:

using processor implementation-specific instructions to
Save the processor State in a System memory when a
machine check error is generated by the processor,

attempting to correct the error using processor implemen
tation-specific instructions,

transferring control to processor-independent instruc
tions,

receiving control from processor-independent instruc
tions, and

returning to an interrupted context of the processor by
restoring the processor State.

8. The machine-readable medium of claim 7, wherein the
operations further comprise using processor implementa
tion-specific instructions to provide processor error record
information requested by processor-independent instruc
tions.

9. The machine-readable medium of claim 7, wherein the
operations further comprise attempting to contain the error
if a Second processor is coupled to the processor by request
ing a rendezvous between the processor and the Second
processor.

10. The machine-readable medium of claim 7, wherein
receiving control from processor-independent instructions
indicates that the error has been corrected.

11. The machine-readable medium of claim 7, wherein the
operations further comprise obtaining an address of a loca
tion to Save the processor State in the System memory
provided by platform-specific instructions.

12. The machine-readable medium of claim 7, wherein
attempting to correct the error using processor implemen
tation-specific instructions is not done if an expected
machine check indicator is Set.

13. The machine-readable medium of claim 7, wherein
the instructions provided by the machine-readable medium
are not cacheable by the processor.

14. A central processing unit (CPU) comprising:
a proceSSOr,

a first machine-readable medium coupled to the processor,
the first machine-readable medium including processor
implementation-specific instructions that, if executed
by the processor, will cause the processor to perform
operations including
Saving the processor State in a System memory and

attempting to correct the error when a machine check
error is generated by the processor, and

Apr. 17, 2003

receiving control and returning to the interrupted con
text of the processor by restoring the State of the
processor when the error is determined to have been
corrected;

a Second machine-readable medium coupled to the pro
ceSSor, the Second machine-readable medium including
only processor implementation-independent instruc
tions that, if executed by the processor, will cause the
processor to perform operations including

receiving control from the first machine-readable
medium;

determining if the error has been corrected;

transferring control to the first machine-readable
medium if the error has been corrected.

15. The central processing unit (CPU) of claim 14,
wherein the operations performed by the instructions pro
vided by the second machine-readable medium further
include requesting processor error record information from
the first machine-readable medium.

16. The central processing unit (CPU) of claim 14,
wherein the operations performed by the instructions pro
vided by the first machine-readable medium further include
attempting to contain the error if a Second processor is
coupled to the processor by requesting a rendezvous
between the processor and the Second processor.

17. The central processing unit (CPU) of claim 14,
wherein the operations performed by the instructions pro
vided by the second machine-readable medium further
include providing an address of a location to Save the
processor State in the System memory to the first machine
readable medium.

18. The central processing unit (CPU) of claim 14,
wherein attempting to correct the error is not done if an
expected machine check indicator is Set.

19. The central processing unit (CPU) of claim 14,
wherein the instructions provided by the first and second
machine-readable media are not cacheable by the processor.

20. The central processing unit (CPU) of claim 14,
wherein the operations performed by the instructions pro
vided by the second machine-readable medium further
include if the error is uncorrected, passing control to an
operating System error handler if present, otherwise, per
forming one of a halt and a reboot of the CPU.

25

