
(19) United States 
US 2003O1261.42A1 

(12) Patent Application Publication (10) Pub. No.: US 2003/0126142 A1 
Tu et al. (43) Pub. Date: Jul. 3, 2003 

(54) MECHANISM HANDLING RACE 
CONDITIONS IN FRC-ENABLED 
PROCESSORS 

(76) Inventors: Steven J. Tu, Phoenix, AZ (US); 
Alexander J. Honcharik, Chandler, AZ 
(US); Hang T. Nguyen, Tempe, AZ 
(US); Sujat Jamil, Chandler, AZ (US); 
Quinn W. Merrell, Fort Collins, CO 
(US) 

Correspondence Address: 
Leo V. Nowakoski 
BLAKELY SOKOLOFF, TAYLOR & ZAFMAN 
LLP 
Seventh Floor 
12400 Wilshire Boulevard 
Los Angeles, CA 90025-1026 (US) 

(21) Appl. No.: 10/039,587 

13 
FR C CHECKER 

O SHARED 
RESOURCE (S) 

so 
st Module 

(22) Filed: Dec. 31, 2001 

Publication Classification 

(51) Int. Cl." ....................................................... G06F 7700 
(52) U.S. Cl. .............................................................. 707/100 

(57) ABSTRACT 

An processor includes first and Second execution cores that 
operate in an FRC mode, an FRC check unit to compare 
results from the first and Second execution cores, and an 
error check unit to detect recoverable errors in the first and 
second cores. The FRC check unit temporarily stores results 
from the first or Second core, and a timer is activated if a 
mismatch is detected. If the error detector detects a recov 
erable error before the timer interval expires, a recovery 
routine is activated. If the timer interval expires first, a reset 
routine is activated. 
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MECHANISM HANDLING RACE CONDITIONS IN 
FRC-ENABLED PROCESSORS 

BACKGROUND OF THE INVENTION 

0001) 1. Technical Field 
0002 The present invention relates to microprocessors 
and, in particular, to mechanisms for handling errors in 
FRC-enabled processors. 
0003 2. Background Art 
0004 Servers and other high-end computer system are 
designed to provide high levels of reliability and availability. 
Soft errors pose a major challenge to both of these proper 
ties. Soft errors result from bit-flipping collisions between 
high-energy particles, e.g. alpha particles, and charge Storing 
nodes. They are prevalent in Storage arrays, Such as caches, 
TLBS, and the like, which include large numbers of charge 
Storing nodes. Rates of occurrence of Soft errors (Soft error 
rates or SERS) will only increase as device geometry 
decreases and device densities increase. 

0005 Highly reliable systems include safeguards to 
detect and manage Soft errors, before they lead to Silent, e.g. 
undetected, data corruption (SDC). However, to the extent 
error detection/handling mechanisms take a System away 
from its normal operations, the System's availability is 
reduced. 

0006. One well-known mechanism for detecting soft 
errors is functional redundancy checking (FRC). An FRC 
enabled processor includes replicated instruction execution 
cores on which the same instruction code is run. Depending 
on the particular embodiment, each replicated execution 
core may include one or more caches, register files and 
Supporting resources in addition to the basic execution units 
(integer, floating point, load store, etc.). FRC-hardware 
compares results generated by each core, and if a discrep 
ancy is detected, the FRCSystem jumps to an error-handling 
routine. Since FRC errors indicate only that the execution 
cores disagree on a result, the error handling routine typi 
cally unwinds execution to the last know point of reliable 
data and resets the processor. This reset mechanism is 
relatively time consuming. 

0007 The point(s) at which results from different execu 
tion cores are compared represent the FRC-boundary for the 
system. Errors that are not detected at the FRC boundary can 
lead to SDC, but even managing detected FRC errors can 
create its own problems. AS noted above, time spent by the 
System handling FRC-errors takes the System away from its 
normal operation, reducing System availability. 
0008 FRC is only one mechanism for handling soft 
errors, and for random logic, it is the primary mechanism. 
Array Structures present a different picture. Array Structures 
typically include parity and/or ECC hardware to detect soft 
errors. ECC hardware can even correct Single bit errors on 
the fly. Further, unlike FRC errors, which only indicate that 
one of the execution cores generated an error, parity/ECC 
errors are clearly tied to one of the execution cores by the 
logic that detects them. 
0009 If a parity/ECC error in an execution core is 
detected before the corrupted data reaches the FRC bound 
ary, the execution core that has the good, i.e. uncorrupted, 
data can be identified and used to recover from the error. If 
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the corrupted data reaches the FRC boundary before the 
underlying parity/ECC error is detected, an FRC error will 
be generated, and the system will be unavailable while the 
FRC error is addressed. There is thus a race between the 
logic that processes the corrupted data towards the FRC 
boundary and the logic that detects its corrupted State. This 
race can have a significant impact on System availability, due 
to the longer latency of the reset mechanism triggered by an 
FRC-error (data mismatch) relative to the recovery mecha 
nism triggered by an underlying parity/ECC error. 

0010. The present invention address these and other 
problems associated with error handling in FRC-enabled 
processors. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0011. The present invention may be understood with 
reference to the following drawings, in which like elements 
are indicated by like numbers. These drawings are provided 
to illustrate Selected embodiments of the present invention 
and are not intended to limit the Scope of the invention. 
0012 FIG. 1 is a block diagram of an FRC-enabled 
processor that includes dual execution cores and FRC 
detection and handling logic. 

0013 FIG. 2 is a block diagram of one embodiment of an 
FRC-enabled processor that implements an error-detection 
and handling System in accordance with the present inven 
tion. 

0014 FIGS. 3A and 3B are block diagrams representing 
the states of one embodiment of the FRC-checker of FIG.2 
at two different times. 

0015 FIGS. 4A and 4B are block diagrams representing 
the states of another embodiment of FRC-checker of FIG.2 
at two different times. 

0016 FIG. 5 is a flowchart representing one embodiment 
of a method 500 for handling race conditions in FRC 
enabled Systems in accordance with the present invention. 

0017 FIG. 6 is a block diagram of one embodiment of a 
computer System that implements an error handling System 
in accordance with the present invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

0018. The following discussion sets forth numerous spe 
cific details to provide a thorough understanding of the 
invention. However, those of ordinary skill in the art, having 
the benefit of this disclosure, will appreciate that the inven 
tion may be practiced without these specific details. In 
addition, various well-known methods, procedures, compo 
nents, and circuits have not been described in detail in order 
to focus attention on the features of the present invention. 
0019 FIG. 1 is a block diagram representing an FRC 
enabled processor 110. Processor 110 includes first and 
Second execution cores 120(a), 120(b) (generically, execu 
tion core 120), an FRC checker 130, an error detector 140, 
a recovery unit 150, and reset unit 160. A portion of the 
FRC-boundary is indicated by dashed line 104. For purposes 
of illustration, recovery unit 150 and reset unit 170 are 
shown as part of processor 110, but portions of these units 
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may be implemented as firmware or Software modules that 
are located off of the processor die. 
0020 Each execution core 120 includes a data pipeline 
124 and an error pipeline 128 that feed into FRC checker 
130 and error detector 140, respectively. Data pipeline 124 
represents the logic that operates on various types of data as 
it moves through processor 110 toward FRC checker 130. 
The data represented by data pipeline 124 may include result 
operands, Status flags, addresses, instructions and the like 
that are generated and Staged through processor 110 during 
code execution. Error pipeline 128 represents the logic that 
operates on various types of data to detect errors in the data 
and provide appropriate error Signals to error detector 140. 
For example, the error Signals may be one or more bits 
(flags) representing the parity or ECC status of data retrieved 
from various storage arrays (not shown) of processor 110. 
Soft errors in these arrays may appear as parity or ECC error 
flags when the corrupted data is accessed. 
0021. If an error reaches error detector 140 from either 
core 120, recovery unit 160 is activated to implement a 
recovery routine. Recovery can be effected with relatively 
low latency by hardware, Software, firmware or Some com 
bination of these. For example, there is an extremely Small 
probability that the same data is corrupted in both execution 
cores 120, which leaves an uncorrupted copy of the data 
available to restore data integrity to processor 110. However, 
an FRC error will be triggered if the corrupted and uncor 
rupted data is allowed to reach FRC checker 130 before 
recovery unit 160 is activated. Since FRC errors are not 
recoverable, reset module 170 will unwind the machine state 
of processor 110 and reset it, if FRC checker 130 signals an 
FRC error before the underlying parity/ECC error is 
detected. 

0022 Not all FRC-errors are traceable to underlying 
parity/ECC or other correctible soft errors. For those that 
are, it is faster for error detector 140 to address the under 
lying soft error than for FRC-checker to address the FRC 
error that results when the corrupted data reaches FRC 
boundary 104. As noted above, the reset process has a 
Significantly longer latency than the recovery process, and it 
is to be avoided if the error can be corrected by recovery unit 
150. For this reason, FRC checker 130 is temporarily 
disabled if error detector 140 detects an error in either error 
pipeline 128. 
0023 Data pipelines 120 operate in lock step during 
normal FRC mode, but data pipeline 124 and error pipeline 
128 may operate relatively independently. For example, 
ECC hardware is relatively complex and consequently, 
relatively slow, especially for 2-bit errors. A flag Signaling 
such an error may reach error detector 140 before, after, at 
the same time as the data with which it is associated reaches 
FRC checker 130. This flexibility is generally beneficial. For 
example, it allows data to be used speculatively before its 
error Status is determined. Since Soft errors are relatively 
rare, and error pipeline 124 is generally as fast as data 
pipeline 128, this flexibility is net positive. As long as the 
error flag arrives at error detector 140 in time to disable FRC 
checker 130 before it receives the corrupted data, the rela 
tively low latency recover routine is engaged. 

0024. As noted above, races between data pipeline 124 
and error pipeline 128 can reduce System availability in 
certain cases if not addressed. If an error flag indicating a 
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Soft error reaches detector 140 too late to disable FRC 
checker 130 from processing the associated data, a recov 
erable error becomes an FRC error, and the longer latency 
reset routine is engaged. The longer latency reset routine 
reduces the availability of system 100 for normal operation. 

0025 FIG. 2 is a block diagram of one embodiment of an 
FRC-enabled processor 210 that handles race conditions 
effectively. Processor 210 includes first and second execu 
tion cores 220(a), 220(b) (generically, execution core 220), 
an FRC checker 230, an error detector 240, a recovery unit 
250, and reset unit 260. An FRC-boundary for processor 210 
is indicated by dashed line 204. As noted above, portions of 
recovery unit 250 and reset unit 260 may be implemented as 
firmware or Software modules that are located off of the 
processor die. 

0026. Each execution core 220 includes a data pipeline 
224 and an error pipeline 228 that feeds into FRC checker 
230 and error detector 140, respectively. Execution cores 
220(a), 220(b) and their components operate in substantially 
the same manner as described above for execution cores 
120(a), 120(b). 
0027) Error detector 240 monitors error pipelines 228(a), 
228(b). If a signal or flag indicates an error in one of 
execution cores 220, error detector 240 disables FRC 
checker 230 and activates recovery unit 250. As discussed 
below in greater detail, FRC checker 240 provides buffering 
that allows error detector 230 to activate recovery unit 250, 
even if it detects the error after FRC checker 230 detects a 
mismatch between the corresponding corrupted and uncor 
rupted data. Provided the error is detected within a count 
down interval initiated by an FRC mismatch, the FRC 
mismatch is ascribed to the error, and processor 210 acti 
vates a recovery routine through recovery unit 250 rather 
than a slower reset routine through reset unit 260. 

0028 Towards this end, the disclosed embodiment of 
FRC checker 230 includes a compare/buffer unit 234, a 
queue 236 and a timer unit 238. Compare/buffer unit 234 
receives data from execution cores 220(a), 220(b), compares 
the data, and temporarily Stores data from at least one 
execution core 220 along with a status flag to indicate if the 
comparison yielded a match. If the data matches, the Status 
flag is set to indicate the match, and the data is buffered to 
queue 236 for continued processing by resources outside 
FRC boundary 204. As discussed below, hold times for data 
in compare/buffer unit 234 depend on the number of entries 
it provides, which may depend on the countdown interval 
Selected. 

0029. If the data does not match, the status flag is set to 
indicate the mismatch and timer unit 238 is triggered to 
begin a countdown interval. Compare/buffer unit 234 may 
continue to receive, compare and Store data from execution 
cores 220(a), 220(b) during the countdown interval. Simi 
larly, error detector 240 may continue to monitor error 
pipelines 228(a), 228(b). If error detector 240 receives an 
error flag before the timeout interval expires, it disables FRC 
checker 230 from receiving additional data from execution 
cores 220(a), 220(b) and triggers recovery unit 250 to 
implement the recovery routine for the entry tagged as a 
mismatch in compare/buffer unit 234. 

0030 Operation of FRC checker 230 and execution cores 
220 during the countdown interval that follows an FRC 
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mismatch may vary with different embodiments of the 
invention. For example, the Stall behavior of execution cores 
230 and the source of uncorrupted data may differ depending 
on whether results from one or both execution cores 220 are 
stored by compare/buffer 234. 
0031 FIGS. 3A and 3B are block diagrams of one 
embodiment of a processor 310 in accordance with the 
present invention at two different times. Contents of data 
pipeline 324 and error pipeline 328 are labeled to indicate 
the relative times at which they are processed through 
execution core 320. The labeled data blocks are not neces 
sarily valid or fully developed until they exit pipeline 324. 
For purposes of the following discussion, execution core 
320(a) operates as the master and execution core 320(b) 
operates as the slave, when processor 310 is in FRC mode. 
0032) The disclosed embodiment of compare/buffer 334 
includes a buffer, a comparator 370 and buffer entries 
380(1)-380(3) (generically, buffer entries 380). Comparator 
370 compares data from execution cores 320(a) and 320(b) 
and generates a match Status Signal according to the com 
parison. Comparator 370 also triggers a Stall Signal to one of 
execution cores 320 if the Status Signal indicates a mismatch. 
Each buffer entry 380 includes a data field 384 to store the 
data from master execution core 320(a) and a status field 388 
to store the status determined by comparator 370. 
0033) For the instant reflected in FIG. 3A, data 0 has 
been accepted and forwarded to queue 338 for further 
processing. Here, “accepted' means that the data OblockS 
provided by master and slave execution cores 320(a), 
320(b), respectively, matched, and no FRC error is indicated 
by comparator 370. Data 1 through data 3 are accepted 
and currently stored in buffer entries 380(1)-380(3), await 
ing transfer to queue 338. Data 4 through data 8 are 
currently propagating through data pipelines 224(a), 224(b) 
of master and slave execution cores, 220(a), 220(b), respec 
tively. An error associated with data 4 in data pipeline 
324(a) (indicated by dashed line) is propagating through 
error pipeline 328(a) approximately two clock cycles behind 
data 4. For example, the error may represent a 2-bit Soft 
error detected by ECC hardware. The detection hardware for 
2-bit ECC errors is relatively complex, and may contribute 
to the delay indicated between data 4 and its error flag. 
0034 FIG. 3B shows processor 310 at a later instant in 
which data 3 from execution core 320(a) has been for 
warded to queue 336, data 4-data 6 have been transferred 
to buffer 380 and their match status determined. In particu 
lar, comparator 370 has signaled a mismatch (reject) for 
data 4, which was corrupted by a Soft error, and its uncor 
rupted counterpart from execution core 320(b). Comparator 
370 has also triggered the Stall Signal to slave eXecution core 
320(b) and triggered timer unit 338 to begin the countdown 
interval. For the disclosed embodiment, Stalling one of data 
pipelines 324 ensures that an uncorrupted copy of the data 
is preserved for recovery unit 360, in either the stalled 
pipeline or compare/buffer unit 334. 

0035. During the countdown interval, the disclosed 
embodiment of FRC checker 330 continues to receive data 
from master execution core 320(a). For the illustrated 
example, data 5 and data 6 have been by Stored during 
this interval with rejected Status, Since corresponding ele 
ments from stalled slave execution core 320(b) are unavail 
able for comparison. 
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0036) During the countdown interval, error detector 340 
also continues to track flags from error pipelines 328. If the 
error flag associated with data 4 reaches error detector 340 
before timer unit 338 signals the end of the countdown 
interval, error detector 340 disables FRC checker 330 and 
activates recovery unit 360. If timer unit 338 detects the end 
of the countdown interval before error detector 340 detects 
the error flag, reset unit 370 is activated. 
0037 FIGS. 4A and 4B are block diagrams of another 
embodiment of a processor 410 in accordance with the 
present invention at two different times. For processor 410, 
the disclosed embodiment of compare/buffer 434 includes a 
comparator 470 and buffer entries 480(1)-480(3) (generi 
cally, buffer entries 480). Comparator 470 compares data 
from execution cores 420(a) and 420(b) and generates a 
match Status Signal according to the comparison. Each buffer 
entry 480 includes data fields 384 and 388 to store data from 
execution cores 420(a) and 420(b), respectively, and a status 
field 486 to store the status determined by comparator 470. 
0038. For system 400, data blocks from both pipelines 
are transferred to FRC checker 430. Consequently, no stall 
Signal is needed to preserve uncorrupted data in one of 
execution cores 420 following detection of an FRC mis 
match by comparator 470. The uncorrupted data may be 
provided from the appropriate entry of buffer 480. 
0039 Timer unit 438 initiates a countdown interval in 
response an FRC mismatch detected by comparator 470. 
FRC checker 430 and error detector 440 continue to process 
data and flags, respectively, during the countdown interval. 
If an error reaches error detector 440 before the countdown 
interval expires, error detector 440 disables FRC checker 
430 and activates recovery unit 460. If the countdown 
interval expires first, FRC checker 430 activates reset unit 
470 to reset system 400. 
0040 FIG. 5 is a flowchart representing one embodiment 
of a method 500 in accordance with the present invention for 
handling race conditions. Method 500 reflects the interac 
tions between concurrent non-recoverable (FRC) error 
checking 504 and recoverable (non-FRC) error checking 
508 processes. 
0041 Recoverable error checking process 508 monitors 
580 flags/signals from an FRC-enabled processor. The 
monitored flags may be generated by parity checking hard 
ware, ECC hardware or other units capable of detecting 
recoverable errors attributable to, e.g. soft errors within the 
FRC boundary of the processor. The flags may be provided 
to an error checker through pathways having various laten 
cies. If an error flag is detected 590, a signal is asserted 554 
to the FRC checker and a recovery algorithm is activated 
558. The signal asserted to the FRC checker prevents it from 
triggering a non-recoverable error. 
0042. Non-recoverable error checking process 504 oper 
ates concurrently with recoverable error checking process 
508. Data from the redundant cores of an FRC-enabled 
processor is tracked 510 and compared 520. If the data 
matches 520, no FRC-error is indicated and process 504 
continues monitoring. If a mismatch is detected 520, a 
potential FRC-error is indicated. 
0043. To determine whether the potential FRC-error is an 
artifact of a race condition, a countdown interval is activated 
530 and data tracking continues 540. If a recoverable (e.g. 
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non-FRC) error is detected 550 during the countdown inter 
val, proceSS 504 relinquishes control to the recovery algo 
rithm (558). If the countdown interval expires 560 before a 
non-FRC error is signaled, a reset algorithm is executed 570. 
If the countdown interval has not yet expired 560, process 
504 continues monitoring 540 data until the countdown 
interval expires (560) or a non-FRC error is indicated 550. 
0044 FIG. 6 is a block diagram representing one 
embodiment of a computer system 600 in which the present 
invention is implemented. The disclosed embodiment of 
system 600 includes a processor 610, chipset 670, main 
memory 680, non-volatile memory 690 and peripheral 
device(s) 694. Chipset 670 manages communications among 
processor 610, main memory 680, non-volatile memory 690 
and peripheral devices 694. 
0.045 Processor 610 includes first and second execution 
cores 620(a) and 620(b), respectively (generically, execu 
tion cores 620). Each execution core includes execution 
resources 624 and a bus cluster 628. Execution resources 
624 may include, for example, one or more integer, floating 
point, load/store, and branch execution units, as well register 
files and cache?s) to Supply them with data (e.g. instructions, 
operands, addresses). Bus cluster 628 represents logic for 
managing transactions to a cache 640 that is shared by 
execution cores 620(a) and 620(b), as well as to a front side 
bus 660, for those transactions that miss in shared cache 640. 
0046 Error check units 630(a), 630(b) (generically, error 
check units 630) compare results from execution cores 620 
before they are transferred to shared resources like cache 
640 and FSB 660. They thus form part of the FRC boundary 
of processor 610. Each error check unit 630 includes an FRC 
checker 230 and error detector 240 (FIG. 2) to provide FRC 
and non-FRC error checking/detection, respectively, for 
execution cores 620. Error check units 630 may also include 
portions of recovery unit 240 and reset unit 260 (FIG. 2). 
For one embodiment of system 600, a recovery routine 692 
and a reset routine 694 may be stored in non-volatile 
memory 690 and images of these routines may be loaded in 
main memory 680 for execution. For this embodiment, 
recovery unit 240 and reset unit 260 may include pointers to 
recovery routine 692 and reset routine 694, respectively (or 
their images in main memory 680). 
0047. The disclosed embodiment of system 600 also 
includes interrupt controllers 670(a) and 670(b) (generically, 
interrupt controller(s) 670) to process interrupts for execu 
tion cores 620(a) and 620(b), respectively. Each interrupt 
controller 670 is shown having first and second components 
674 and 678, respectively, to accommodate the different 
clock domains in which interrupt controller 670 may oper 
ate. For example, FSB 660 typically operates at a different 
frequency than processor 610. Consequently, components of 
processor 610 that interact directly with FSB 660 typically 
operate in its clock domain, which is indicated as area 664 
on processor 610. 

0.048. The disclosed embodiment of interrupt controller 
670 also includes an FRC-boundary-like component in the 
form of XOR 672. XOR 672 signals an FRC error if it 
detects a mismatch between outgoing Signals, e.g. interrupt 
responses, of components 674(a) and 674(b) from execution 
cores 620(a) and 620(b). Errors attributable to interrupt 
controllers 670 may still arise, however, from Soft errors in 
components 678(a), 678(b) in FSB clock domain 664. These 
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error may be detected by the discrepancies they introduce 
between the Subsequent operations of execution cores 
620(a) and 620(b). 
0049. For the disclosed embodiment of system 600, a 
common Snoop block 662 processes Snoop transactions to 
and from execution cores 620(a) and 620(b). XOR 666 
provides FRC-checking on Snoop responses from execution 
cores 620(a), 620(b) and signals an error if a mismatch is 
detected. 

0050. There has thus been disclosed a mechanism for 
handling race conditions between recoverable and non 
recoverable errors in an FRC-enabled processor. An FRC 
checker includes a buffer to temporarily Store data repre 
Senting results from redundant execution cores along with 
Status bits to indicate if the results matched. An error 
detector monitors error hardware to determine if any of the 
results may have been Subject to a recoverable error, Such as 
a parity or ECC error. If the FRC checker detects a mis 
match, a potential FRC error is indicated, and a timer is 
activated to provide the error detector with additional time 
to identify a recoverable error from which the FRC error 
originated. If a recoverable error is detected before the 
countdown interval expires, a recovery mechanism is trig 
gered. If the interval expires before a recoverable error is 
detected, a reset mechanism is triggered. For either recovery 
or reset mechanisms, the FRC-enabled processor may 
Switch temporarily into a non-FRC mode to allow one core 
to execute the reset/recovery code. 
0051. The disclosed embodiments have been provided to 
illustrate various features of the present invention. Persons 
skilled in the art of processor design, having the benefit of 
this disclosure, will recognize variations and modifications 
of the disclosed embodiments, which none the less fall 
within the Spirit and Scope of the appended claims. 

We claim: 
1. An apparatus comprising: 

first and Second execution cores to operate in an FRC 
mode, 

an FRC check unit to compare results from the first and 
Second execution cores and to Store at least one result 
and a status to indicate if the results match; 

an error check unit to assert a signal to the FRC checker 
if a recoverable error is detected in the first or second 
execution cores, and 

a timer to trigger an FRC recovery routine if the Status 
indicates the results do not match and the error check 
unit does not assert the Signal within a specified inter 
val. 

2. The apparatus of claim 1, wherein the FRC checker 
Stores a result from the master execution core and discards 
the result from the Slave eXecution core. 

3. The apparatus of claim 2, wherein the FRC checker 
Stalls the Slave eXecution core if the Status indicates the 
results do not match and triggers a countdown to the 
Specified interval. 

4. The apparatus of claim 4, wherein the Specified interval 
represents a time for a recoverable error to be Signaled to the 
error detector. 
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5. The apparatus of claim 1, wherein the FRC check unit 
includes a multiple entry buffer to Store results and Status 
indicators for multiple. 

6. The apparatus of claim 2, wherein a number of entries 
for the buffer is selected to determined by a largest number 
of clock cycle to propagate an error Signal to the error 
detector. 

7. The apparatus of claim 1, wherein the FRC check unit 
includes a buffer to store results from the first and second 
execution cores and their Status. 

8. The apparatus of claim 7, wherein the recovery routine 
reads an uncorrupted result from an appropriate entry of the 
buffer if the recoverable error is detected within the specified 
interval. 

9. An System comprising: 
first and Second execution cores to operate in an FRC 

mode, 
an FRC checker to compare results from the first and 

Second execution cores and to trigger a countdown 
interval if the results do not match; and 

an error detector to monitor error Signals during the 
countdown interval and to disable the FRC checker if 
a recoverable error is detected before the countdown 
interval expires. 

10. The system of claim 9, wherein the FRC checker 
includes a buffer to temporarily Store results from at least 
one of the first and Second execution cores. 

11. The system of claim 9, wherein the FRC checker stalls 
one of the first and Second execution cores if the results do 
not match. 

12. The System of claim 9, further comprising a recovery 
unit to recover uncorrupted results from the first or Second 
execution core, responsive to the error detector detecting a 
recoverable error. 

13. The System of claim 12, further comprising a reset unit 
to reset the System, responsive to the FRC checker indicating 
an FRC error. 
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14. The system of claim 13, wherein the FRC checker 
indicates an FRC error if results from the first and second 
execution pipelines do not match and the FRC checker is not 
disabled before the countdown interval expires. 

15. The system of claim 13, further comprising a memory 
device in which a recovery routine and a reset routine are 
Stored. 

16. The system of claim 15, wherein the recovery unit and 
the reset unit include pointers to the recovery routine and the 
reset routine, respectively. 

17. A method comprising: 

comparing results from a first and Second execution core 
to detect an FRC error; 

if the results do not match, Setting a first flag and initiating 
a countdown interval; 

monitoring an error Signal for a recoverable error; and 
initiating a recovery routine if the error Signal is asserted 

before the countdown interval expires. 
18. The method of claim 17, further comprising: 

Storing a result from at least one of the first and Second 
execution cores, and 

initiating a transaction to a shared resource if the first flag 
is not Set. 

19. The method of claim 18, further comprising initiating 
a reset routine if the error Signal is not asserted before the 
countdown interval expires. 

20. The method of claim 17, further comprising: 

Stalling one of the first and Second execution cores if the 
first flag is Set, and 

continuing to monitor the error Signal from the Stalled 
execution core. 
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