
(19) United States
US 2003O1261.42A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0126142 A1
Tu et al. (43) Pub. Date: Jul. 3, 2003

(54) MECHANISM HANDLING RACE
CONDITIONS IN FRC-ENABLED
PROCESSORS

(76) Inventors: Steven J. Tu, Phoenix, AZ (US);
Alexander J. Honcharik, Chandler, AZ
(US); Hang T. Nguyen, Tempe, AZ
(US); Sujat Jamil, Chandler, AZ (US);
Quinn W. Merrell, Fort Collins, CO
(US)

Correspondence Address:
Leo V. Nowakoski
BLAKELY SOKOLOFF, TAYLOR & ZAFMAN
LLP
Seventh Floor
12400 Wilshire Boulevard
Los Angeles, CA 90025-1026 (US)

(21) Appl. No.: 10/039,587

13
FR C CHECKER

O SHARED
RESOURCE (S)

so
st Module

(22) Filed: Dec. 31, 2001

Publication Classification

(51) Int. Cl." ... G06F 7700
(52) U.S. Cl. .. 707/100

(57) ABSTRACT

An processor includes first and Second execution cores that
operate in an FRC mode, an FRC check unit to compare
results from the first and Second execution cores, and an
error check unit to detect recoverable errors in the first and
second cores. The FRC check unit temporarily stores results
from the first or Second core, and a timer is activated if a
mismatch is detected. If the error detector detects a recov
erable error before the timer interval expires, a recovery
routine is activated. If the timer interval expires first, a reset
routine is activated.

124 by

s
Eco WYME

- - - -- 104

ZF, Ex. 10171

Patent Application Publication Jul. 3, 2003 Sheet 1 of 8 US 2003/0126142 A1

120(b)

123(b)

40
RdR Teco R. 130

FR C CHECKER

TO SHARED
RESOURCE (S)

160
RESET MODULE

Fig. 1

2

Patent Application Publication Jul. 3, 2003. Sheet 2 of 8 US 2003/0126142 A1

90
220(a) 220(b)

224(a) 228(a) 224(b) 228(b)

U
Hull- -

230 240
FRC CHECKER ERRORDETECOR

250
RECOVERY MODULE

COMPARE/BUFFER UNIT
234

260
RESET MODULE

Fig. 2

TO SHARED
RESOURCE(S)

3

Patent Application Publication Jul. 3, 2003 Sheet 3 of 8

3) C

US 2003/0126142 A1

--1

324(a) , - 324(b) -
DATA 8 NO-ERR

DATA 7 NO-ERR

DATA 6 ERR DATA 6 NO ERR

A STALL

DATA 4 - No-ERR DATA 4 NO-ERR
320(a) 320(b)

380(1) -

380(2) || Data 2
38O(3)

384 334 388

TIMER
338

Fig. 3A

340
ERRORDETECTOR

350
RECOVERY UNIT

360
RESET UNIT

4

Patent Application Publication Jul. 3, 2003 Sheet 4 of 8 US 2003/0126142 A1

3i (2 -1

r - t s
No-ERR

DATA 8 STALL NO-ERR

DATA 7 DATA 4 NO-ERR

320(a) 320(b)

340

38O(1)

380(2)
DATA 4 REJECT 350
384 334 388

DATA3A 3 360

—

Fig. 3B

5

Patent Application Publication Jul. 3, 2003 Sheet 5 of 8 US 2003/0126142 A1

ld 10
-

424(a) 428(a) 424(b) 428(b)-

No-ERR
No-ERR
ERR

420(a) 420(b)

-

f ERRORDETECTOR
480(1)

480(2)
480(3) 450

RECOVERY UNIT
484 486 488

434

436 438 RESE UNIT

Fig. 4A

6

Patent Application Publication Jul. 3, 2003 Sheet 6 of 8 US 2003/0126142 A1

440
ERROR DETECTOR

480(1)

48O(2)
480(3) 450

RECOVERY UNIT

460
436 RESE UNIT

Fig. 4B

7

US 2003/0126142 A1 Jul. 3, 2003 Sheet 7 of 8 Patent Application Publication

§

8

Patent Application Publication

NON-VOATILEMEMORY
690

692 694

Jul. 3, 2003 Sheet 8 of 8 US 2003/0126142 A1

600

MAIN MEMORY
680

CHIPST
670

PERPHERA 694
DEVICES

698

SNOOPLOCK
680 L3 HE FSB

660

ERRORCHECKER
DETECTOR

630(a)
XOR
688

BUS CLUSER
628(a)

EXECUTION
RESOURCES

624(a)

Fig. 6

ERRORCHECKER INT C
DETECTOR 678(b)

630(b)

INT C
BUS CLUSER 674(b)

628(b)

670(b)

EXECUTON
RESOURCES

624(b)

610

9

US 2003/O126142 A1

MECHANISM HANDLING RACE CONDITIONS IN
FRC-ENABLED PROCESSORS

BACKGROUND OF THE INVENTION

0001) 1. Technical Field
0002 The present invention relates to microprocessors
and, in particular, to mechanisms for handling errors in
FRC-enabled processors.
0003 2. Background Art
0004 Servers and other high-end computer system are
designed to provide high levels of reliability and availability.
Soft errors pose a major challenge to both of these proper
ties. Soft errors result from bit-flipping collisions between
high-energy particles, e.g. alpha particles, and charge Storing
nodes. They are prevalent in Storage arrays, Such as caches,
TLBS, and the like, which include large numbers of charge
Storing nodes. Rates of occurrence of Soft errors (Soft error
rates or SERS) will only increase as device geometry
decreases and device densities increase.

0005 Highly reliable systems include safeguards to
detect and manage Soft errors, before they lead to Silent, e.g.
undetected, data corruption (SDC). However, to the extent
error detection/handling mechanisms take a System away
from its normal operations, the System's availability is
reduced.

0006. One well-known mechanism for detecting soft
errors is functional redundancy checking (FRC). An FRC
enabled processor includes replicated instruction execution
cores on which the same instruction code is run. Depending
on the particular embodiment, each replicated execution
core may include one or more caches, register files and
Supporting resources in addition to the basic execution units
(integer, floating point, load store, etc.). FRC-hardware
compares results generated by each core, and if a discrep
ancy is detected, the FRCSystem jumps to an error-handling
routine. Since FRC errors indicate only that the execution
cores disagree on a result, the error handling routine typi
cally unwinds execution to the last know point of reliable
data and resets the processor. This reset mechanism is
relatively time consuming.

0007 The point(s) at which results from different execu
tion cores are compared represent the FRC-boundary for the
system. Errors that are not detected at the FRC boundary can
lead to SDC, but even managing detected FRC errors can
create its own problems. AS noted above, time spent by the
System handling FRC-errors takes the System away from its
normal operation, reducing System availability.
0008 FRC is only one mechanism for handling soft
errors, and for random logic, it is the primary mechanism.
Array Structures present a different picture. Array Structures
typically include parity and/or ECC hardware to detect soft
errors. ECC hardware can even correct Single bit errors on
the fly. Further, unlike FRC errors, which only indicate that
one of the execution cores generated an error, parity/ECC
errors are clearly tied to one of the execution cores by the
logic that detects them.
0009 If a parity/ECC error in an execution core is
detected before the corrupted data reaches the FRC bound
ary, the execution core that has the good, i.e. uncorrupted,
data can be identified and used to recover from the error. If

Jul. 3, 2003

the corrupted data reaches the FRC boundary before the
underlying parity/ECC error is detected, an FRC error will
be generated, and the system will be unavailable while the
FRC error is addressed. There is thus a race between the
logic that processes the corrupted data towards the FRC
boundary and the logic that detects its corrupted State. This
race can have a significant impact on System availability, due
to the longer latency of the reset mechanism triggered by an
FRC-error (data mismatch) relative to the recovery mecha
nism triggered by an underlying parity/ECC error.

0010. The present invention address these and other
problems associated with error handling in FRC-enabled
processors.

BRIEF DESCRIPTION OF THE DRAWINGS

0011. The present invention may be understood with
reference to the following drawings, in which like elements
are indicated by like numbers. These drawings are provided
to illustrate Selected embodiments of the present invention
and are not intended to limit the Scope of the invention.
0012 FIG. 1 is a block diagram of an FRC-enabled
processor that includes dual execution cores and FRC
detection and handling logic.

0013 FIG. 2 is a block diagram of one embodiment of an
FRC-enabled processor that implements an error-detection
and handling System in accordance with the present inven
tion.

0014 FIGS. 3A and 3B are block diagrams representing
the states of one embodiment of the FRC-checker of FIG.2
at two different times.

0015 FIGS. 4A and 4B are block diagrams representing
the states of another embodiment of FRC-checker of FIG.2
at two different times.

0016 FIG. 5 is a flowchart representing one embodiment
of a method 500 for handling race conditions in FRC
enabled Systems in accordance with the present invention.

0017 FIG. 6 is a block diagram of one embodiment of a
computer System that implements an error handling System
in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

0018. The following discussion sets forth numerous spe
cific details to provide a thorough understanding of the
invention. However, those of ordinary skill in the art, having
the benefit of this disclosure, will appreciate that the inven
tion may be practiced without these specific details. In
addition, various well-known methods, procedures, compo
nents, and circuits have not been described in detail in order
to focus attention on the features of the present invention.
0019 FIG. 1 is a block diagram representing an FRC
enabled processor 110. Processor 110 includes first and
Second execution cores 120(a), 120(b) (generically, execu
tion core 120), an FRC checker 130, an error detector 140,
a recovery unit 150, and reset unit 160. A portion of the
FRC-boundary is indicated by dashed line 104. For purposes
of illustration, recovery unit 150 and reset unit 170 are
shown as part of processor 110, but portions of these units

10

US 2003/O126142 A1

may be implemented as firmware or Software modules that
are located off of the processor die.
0020 Each execution core 120 includes a data pipeline
124 and an error pipeline 128 that feed into FRC checker
130 and error detector 140, respectively. Data pipeline 124
represents the logic that operates on various types of data as
it moves through processor 110 toward FRC checker 130.
The data represented by data pipeline 124 may include result
operands, Status flags, addresses, instructions and the like
that are generated and Staged through processor 110 during
code execution. Error pipeline 128 represents the logic that
operates on various types of data to detect errors in the data
and provide appropriate error Signals to error detector 140.
For example, the error Signals may be one or more bits
(flags) representing the parity or ECC status of data retrieved
from various storage arrays (not shown) of processor 110.
Soft errors in these arrays may appear as parity or ECC error
flags when the corrupted data is accessed.
0021. If an error reaches error detector 140 from either
core 120, recovery unit 160 is activated to implement a
recovery routine. Recovery can be effected with relatively
low latency by hardware, Software, firmware or Some com
bination of these. For example, there is an extremely Small
probability that the same data is corrupted in both execution
cores 120, which leaves an uncorrupted copy of the data
available to restore data integrity to processor 110. However,
an FRC error will be triggered if the corrupted and uncor
rupted data is allowed to reach FRC checker 130 before
recovery unit 160 is activated. Since FRC errors are not
recoverable, reset module 170 will unwind the machine state
of processor 110 and reset it, if FRC checker 130 signals an
FRC error before the underlying parity/ECC error is
detected.

0022 Not all FRC-errors are traceable to underlying
parity/ECC or other correctible soft errors. For those that
are, it is faster for error detector 140 to address the under
lying soft error than for FRC-checker to address the FRC
error that results when the corrupted data reaches FRC
boundary 104. As noted above, the reset process has a
Significantly longer latency than the recovery process, and it
is to be avoided if the error can be corrected by recovery unit
150. For this reason, FRC checker 130 is temporarily
disabled if error detector 140 detects an error in either error
pipeline 128.
0023 Data pipelines 120 operate in lock step during
normal FRC mode, but data pipeline 124 and error pipeline
128 may operate relatively independently. For example,
ECC hardware is relatively complex and consequently,
relatively slow, especially for 2-bit errors. A flag Signaling
such an error may reach error detector 140 before, after, at
the same time as the data with which it is associated reaches
FRC checker 130. This flexibility is generally beneficial. For
example, it allows data to be used speculatively before its
error Status is determined. Since Soft errors are relatively
rare, and error pipeline 124 is generally as fast as data
pipeline 128, this flexibility is net positive. As long as the
error flag arrives at error detector 140 in time to disable FRC
checker 130 before it receives the corrupted data, the rela
tively low latency recover routine is engaged.

0024. As noted above, races between data pipeline 124
and error pipeline 128 can reduce System availability in
certain cases if not addressed. If an error flag indicating a

Jul. 3, 2003

Soft error reaches detector 140 too late to disable FRC
checker 130 from processing the associated data, a recov
erable error becomes an FRC error, and the longer latency
reset routine is engaged. The longer latency reset routine
reduces the availability of system 100 for normal operation.

0025 FIG. 2 is a block diagram of one embodiment of an
FRC-enabled processor 210 that handles race conditions
effectively. Processor 210 includes first and second execu
tion cores 220(a), 220(b) (generically, execution core 220),
an FRC checker 230, an error detector 240, a recovery unit
250, and reset unit 260. An FRC-boundary for processor 210
is indicated by dashed line 204. As noted above, portions of
recovery unit 250 and reset unit 260 may be implemented as
firmware or Software modules that are located off of the
processor die.

0026. Each execution core 220 includes a data pipeline
224 and an error pipeline 228 that feeds into FRC checker
230 and error detector 140, respectively. Execution cores
220(a), 220(b) and their components operate in substantially
the same manner as described above for execution cores
120(a), 120(b).
0027) Error detector 240 monitors error pipelines 228(a),
228(b). If a signal or flag indicates an error in one of
execution cores 220, error detector 240 disables FRC
checker 230 and activates recovery unit 250. As discussed
below in greater detail, FRC checker 240 provides buffering
that allows error detector 230 to activate recovery unit 250,
even if it detects the error after FRC checker 230 detects a
mismatch between the corresponding corrupted and uncor
rupted data. Provided the error is detected within a count
down interval initiated by an FRC mismatch, the FRC
mismatch is ascribed to the error, and processor 210 acti
vates a recovery routine through recovery unit 250 rather
than a slower reset routine through reset unit 260.

0028 Towards this end, the disclosed embodiment of
FRC checker 230 includes a compare/buffer unit 234, a
queue 236 and a timer unit 238. Compare/buffer unit 234
receives data from execution cores 220(a), 220(b), compares
the data, and temporarily Stores data from at least one
execution core 220 along with a status flag to indicate if the
comparison yielded a match. If the data matches, the Status
flag is set to indicate the match, and the data is buffered to
queue 236 for continued processing by resources outside
FRC boundary 204. As discussed below, hold times for data
in compare/buffer unit 234 depend on the number of entries
it provides, which may depend on the countdown interval
Selected.

0029. If the data does not match, the status flag is set to
indicate the mismatch and timer unit 238 is triggered to
begin a countdown interval. Compare/buffer unit 234 may
continue to receive, compare and Store data from execution
cores 220(a), 220(b) during the countdown interval. Simi
larly, error detector 240 may continue to monitor error
pipelines 228(a), 228(b). If error detector 240 receives an
error flag before the timeout interval expires, it disables FRC
checker 230 from receiving additional data from execution
cores 220(a), 220(b) and triggers recovery unit 250 to
implement the recovery routine for the entry tagged as a
mismatch in compare/buffer unit 234.

0030 Operation of FRC checker 230 and execution cores
220 during the countdown interval that follows an FRC

11

US 2003/O126142 A1

mismatch may vary with different embodiments of the
invention. For example, the Stall behavior of execution cores
230 and the source of uncorrupted data may differ depending
on whether results from one or both execution cores 220 are
stored by compare/buffer 234.
0031 FIGS. 3A and 3B are block diagrams of one
embodiment of a processor 310 in accordance with the
present invention at two different times. Contents of data
pipeline 324 and error pipeline 328 are labeled to indicate
the relative times at which they are processed through
execution core 320. The labeled data blocks are not neces
sarily valid or fully developed until they exit pipeline 324.
For purposes of the following discussion, execution core
320(a) operates as the master and execution core 320(b)
operates as the slave, when processor 310 is in FRC mode.
0032) The disclosed embodiment of compare/buffer 334
includes a buffer, a comparator 370 and buffer entries
380(1)-380(3) (generically, buffer entries 380). Comparator
370 compares data from execution cores 320(a) and 320(b)
and generates a match Status Signal according to the com
parison. Comparator 370 also triggers a Stall Signal to one of
execution cores 320 if the Status Signal indicates a mismatch.
Each buffer entry 380 includes a data field 384 to store the
data from master execution core 320(a) and a status field 388
to store the status determined by comparator 370.
0033) For the instant reflected in FIG. 3A, data 0 has
been accepted and forwarded to queue 338 for further
processing. Here, “accepted' means that the data OblockS
provided by master and slave execution cores 320(a),
320(b), respectively, matched, and no FRC error is indicated
by comparator 370. Data 1 through data 3 are accepted
and currently stored in buffer entries 380(1)-380(3), await
ing transfer to queue 338. Data 4 through data 8 are
currently propagating through data pipelines 224(a), 224(b)
of master and slave execution cores, 220(a), 220(b), respec
tively. An error associated with data 4 in data pipeline
324(a) (indicated by dashed line) is propagating through
error pipeline 328(a) approximately two clock cycles behind
data 4. For example, the error may represent a 2-bit Soft
error detected by ECC hardware. The detection hardware for
2-bit ECC errors is relatively complex, and may contribute
to the delay indicated between data 4 and its error flag.
0034 FIG. 3B shows processor 310 at a later instant in
which data 3 from execution core 320(a) has been for
warded to queue 336, data 4-data 6 have been transferred
to buffer 380 and their match status determined. In particu
lar, comparator 370 has signaled a mismatch (reject) for
data 4, which was corrupted by a Soft error, and its uncor
rupted counterpart from execution core 320(b). Comparator
370 has also triggered the Stall Signal to slave eXecution core
320(b) and triggered timer unit 338 to begin the countdown
interval. For the disclosed embodiment, Stalling one of data
pipelines 324 ensures that an uncorrupted copy of the data
is preserved for recovery unit 360, in either the stalled
pipeline or compare/buffer unit 334.

0035. During the countdown interval, the disclosed
embodiment of FRC checker 330 continues to receive data
from master execution core 320(a). For the illustrated
example, data 5 and data 6 have been by Stored during
this interval with rejected Status, Since corresponding ele
ments from stalled slave execution core 320(b) are unavail
able for comparison.

Jul. 3, 2003

0036) During the countdown interval, error detector 340
also continues to track flags from error pipelines 328. If the
error flag associated with data 4 reaches error detector 340
before timer unit 338 signals the end of the countdown
interval, error detector 340 disables FRC checker 330 and
activates recovery unit 360. If timer unit 338 detects the end
of the countdown interval before error detector 340 detects
the error flag, reset unit 370 is activated.
0037 FIGS. 4A and 4B are block diagrams of another
embodiment of a processor 410 in accordance with the
present invention at two different times. For processor 410,
the disclosed embodiment of compare/buffer 434 includes a
comparator 470 and buffer entries 480(1)-480(3) (generi
cally, buffer entries 480). Comparator 470 compares data
from execution cores 420(a) and 420(b) and generates a
match Status Signal according to the comparison. Each buffer
entry 480 includes data fields 384 and 388 to store data from
execution cores 420(a) and 420(b), respectively, and a status
field 486 to store the status determined by comparator 470.
0038. For system 400, data blocks from both pipelines
are transferred to FRC checker 430. Consequently, no stall
Signal is needed to preserve uncorrupted data in one of
execution cores 420 following detection of an FRC mis
match by comparator 470. The uncorrupted data may be
provided from the appropriate entry of buffer 480.
0039 Timer unit 438 initiates a countdown interval in
response an FRC mismatch detected by comparator 470.
FRC checker 430 and error detector 440 continue to process
data and flags, respectively, during the countdown interval.
If an error reaches error detector 440 before the countdown
interval expires, error detector 440 disables FRC checker
430 and activates recovery unit 460. If the countdown
interval expires first, FRC checker 430 activates reset unit
470 to reset system 400.
0040 FIG. 5 is a flowchart representing one embodiment
of a method 500 in accordance with the present invention for
handling race conditions. Method 500 reflects the interac
tions between concurrent non-recoverable (FRC) error
checking 504 and recoverable (non-FRC) error checking
508 processes.
0041 Recoverable error checking process 508 monitors
580 flags/signals from an FRC-enabled processor. The
monitored flags may be generated by parity checking hard
ware, ECC hardware or other units capable of detecting
recoverable errors attributable to, e.g. soft errors within the
FRC boundary of the processor. The flags may be provided
to an error checker through pathways having various laten
cies. If an error flag is detected 590, a signal is asserted 554
to the FRC checker and a recovery algorithm is activated
558. The signal asserted to the FRC checker prevents it from
triggering a non-recoverable error.
0042. Non-recoverable error checking process 504 oper
ates concurrently with recoverable error checking process
508. Data from the redundant cores of an FRC-enabled
processor is tracked 510 and compared 520. If the data
matches 520, no FRC-error is indicated and process 504
continues monitoring. If a mismatch is detected 520, a
potential FRC-error is indicated.
0043. To determine whether the potential FRC-error is an
artifact of a race condition, a countdown interval is activated
530 and data tracking continues 540. If a recoverable (e.g.

12

US 2003/O126142 A1

non-FRC) error is detected 550 during the countdown inter
val, proceSS 504 relinquishes control to the recovery algo
rithm (558). If the countdown interval expires 560 before a
non-FRC error is signaled, a reset algorithm is executed 570.
If the countdown interval has not yet expired 560, process
504 continues monitoring 540 data until the countdown
interval expires (560) or a non-FRC error is indicated 550.
0044 FIG. 6 is a block diagram representing one
embodiment of a computer system 600 in which the present
invention is implemented. The disclosed embodiment of
system 600 includes a processor 610, chipset 670, main
memory 680, non-volatile memory 690 and peripheral
device(s) 694. Chipset 670 manages communications among
processor 610, main memory 680, non-volatile memory 690
and peripheral devices 694.
0.045 Processor 610 includes first and second execution
cores 620(a) and 620(b), respectively (generically, execu
tion cores 620). Each execution core includes execution
resources 624 and a bus cluster 628. Execution resources
624 may include, for example, one or more integer, floating
point, load/store, and branch execution units, as well register
files and cache?s) to Supply them with data (e.g. instructions,
operands, addresses). Bus cluster 628 represents logic for
managing transactions to a cache 640 that is shared by
execution cores 620(a) and 620(b), as well as to a front side
bus 660, for those transactions that miss in shared cache 640.
0046 Error check units 630(a), 630(b) (generically, error
check units 630) compare results from execution cores 620
before they are transferred to shared resources like cache
640 and FSB 660. They thus form part of the FRC boundary
of processor 610. Each error check unit 630 includes an FRC
checker 230 and error detector 240 (FIG. 2) to provide FRC
and non-FRC error checking/detection, respectively, for
execution cores 620. Error check units 630 may also include
portions of recovery unit 240 and reset unit 260 (FIG. 2).
For one embodiment of system 600, a recovery routine 692
and a reset routine 694 may be stored in non-volatile
memory 690 and images of these routines may be loaded in
main memory 680 for execution. For this embodiment,
recovery unit 240 and reset unit 260 may include pointers to
recovery routine 692 and reset routine 694, respectively (or
their images in main memory 680).
0047. The disclosed embodiment of system 600 also
includes interrupt controllers 670(a) and 670(b) (generically,
interrupt controller(s) 670) to process interrupts for execu
tion cores 620(a) and 620(b), respectively. Each interrupt
controller 670 is shown having first and second components
674 and 678, respectively, to accommodate the different
clock domains in which interrupt controller 670 may oper
ate. For example, FSB 660 typically operates at a different
frequency than processor 610. Consequently, components of
processor 610 that interact directly with FSB 660 typically
operate in its clock domain, which is indicated as area 664
on processor 610.

0.048. The disclosed embodiment of interrupt controller
670 also includes an FRC-boundary-like component in the
form of XOR 672. XOR 672 signals an FRC error if it
detects a mismatch between outgoing Signals, e.g. interrupt
responses, of components 674(a) and 674(b) from execution
cores 620(a) and 620(b). Errors attributable to interrupt
controllers 670 may still arise, however, from Soft errors in
components 678(a), 678(b) in FSB clock domain 664. These

Jul. 3, 2003

error may be detected by the discrepancies they introduce
between the Subsequent operations of execution cores
620(a) and 620(b).
0049. For the disclosed embodiment of system 600, a
common Snoop block 662 processes Snoop transactions to
and from execution cores 620(a) and 620(b). XOR 666
provides FRC-checking on Snoop responses from execution
cores 620(a), 620(b) and signals an error if a mismatch is
detected.

0050. There has thus been disclosed a mechanism for
handling race conditions between recoverable and non
recoverable errors in an FRC-enabled processor. An FRC
checker includes a buffer to temporarily Store data repre
Senting results from redundant execution cores along with
Status bits to indicate if the results matched. An error
detector monitors error hardware to determine if any of the
results may have been Subject to a recoverable error, Such as
a parity or ECC error. If the FRC checker detects a mis
match, a potential FRC error is indicated, and a timer is
activated to provide the error detector with additional time
to identify a recoverable error from which the FRC error
originated. If a recoverable error is detected before the
countdown interval expires, a recovery mechanism is trig
gered. If the interval expires before a recoverable error is
detected, a reset mechanism is triggered. For either recovery
or reset mechanisms, the FRC-enabled processor may
Switch temporarily into a non-FRC mode to allow one core
to execute the reset/recovery code.
0051. The disclosed embodiments have been provided to
illustrate various features of the present invention. Persons
skilled in the art of processor design, having the benefit of
this disclosure, will recognize variations and modifications
of the disclosed embodiments, which none the less fall
within the Spirit and Scope of the appended claims.

We claim:
1. An apparatus comprising:

first and Second execution cores to operate in an FRC
mode,

an FRC check unit to compare results from the first and
Second execution cores and to Store at least one result
and a status to indicate if the results match;

an error check unit to assert a signal to the FRC checker
if a recoverable error is detected in the first or second
execution cores, and

a timer to trigger an FRC recovery routine if the Status
indicates the results do not match and the error check
unit does not assert the Signal within a specified inter
val.

2. The apparatus of claim 1, wherein the FRC checker
Stores a result from the master execution core and discards
the result from the Slave eXecution core.

3. The apparatus of claim 2, wherein the FRC checker
Stalls the Slave eXecution core if the Status indicates the
results do not match and triggers a countdown to the
Specified interval.

4. The apparatus of claim 4, wherein the Specified interval
represents a time for a recoverable error to be Signaled to the
error detector.

13

US 2003/O126142 A1

5. The apparatus of claim 1, wherein the FRC check unit
includes a multiple entry buffer to Store results and Status
indicators for multiple.

6. The apparatus of claim 2, wherein a number of entries
for the buffer is selected to determined by a largest number
of clock cycle to propagate an error Signal to the error
detector.

7. The apparatus of claim 1, wherein the FRC check unit
includes a buffer to store results from the first and second
execution cores and their Status.

8. The apparatus of claim 7, wherein the recovery routine
reads an uncorrupted result from an appropriate entry of the
buffer if the recoverable error is detected within the specified
interval.

9. An System comprising:
first and Second execution cores to operate in an FRC

mode,
an FRC checker to compare results from the first and

Second execution cores and to trigger a countdown
interval if the results do not match; and

an error detector to monitor error Signals during the
countdown interval and to disable the FRC checker if
a recoverable error is detected before the countdown
interval expires.

10. The system of claim 9, wherein the FRC checker
includes a buffer to temporarily Store results from at least
one of the first and Second execution cores.

11. The system of claim 9, wherein the FRC checker stalls
one of the first and Second execution cores if the results do
not match.

12. The System of claim 9, further comprising a recovery
unit to recover uncorrupted results from the first or Second
execution core, responsive to the error detector detecting a
recoverable error.

13. The System of claim 12, further comprising a reset unit
to reset the System, responsive to the FRC checker indicating
an FRC error.

Jul. 3, 2003

14. The system of claim 13, wherein the FRC checker
indicates an FRC error if results from the first and second
execution pipelines do not match and the FRC checker is not
disabled before the countdown interval expires.

15. The system of claim 13, further comprising a memory
device in which a recovery routine and a reset routine are
Stored.

16. The system of claim 15, wherein the recovery unit and
the reset unit include pointers to the recovery routine and the
reset routine, respectively.

17. A method comprising:

comparing results from a first and Second execution core
to detect an FRC error;

if the results do not match, Setting a first flag and initiating
a countdown interval;

monitoring an error Signal for a recoverable error; and
initiating a recovery routine if the error Signal is asserted

before the countdown interval expires.
18. The method of claim 17, further comprising:

Storing a result from at least one of the first and Second
execution cores, and

initiating a transaction to a shared resource if the first flag
is not Set.

19. The method of claim 18, further comprising initiating
a reset routine if the error Signal is not asserted before the
countdown interval expires.

20. The method of claim 17, further comprising:

Stalling one of the first and Second execution cores if the
first flag is Set, and

continuing to monitor the error Signal from the Stalled
execution core.

14

