07 A2

O 01/800

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Burcau

(43) International Publication Date
25 October 2001 (25.10.2001)

(10) International Publication Number

WO 01/80007 A2

(51) International Patent Classification’: GO6F 11/14,
11/00, 15/177
(21) International Application Number: PCT/US01/11990

(22) International Filing Date: 12 April 2001 (12.04.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
09/550,004 14 April 2000 (14.04.2000) US
09/549,733 14 April 2000 (14.04.2000) US

(71) Applicant (for all designated States except US): STRA-
TUS TECHNOLOGIES INTERNATIONAL, S.A.R.L.
[CH/CH]; Zugerstrasse 76, CH-6340 Baar (CH).

(72) Inventor; and

(75) Inventor/Applicant (for US only): SUFFIN, Charles, A.
[US/US]; 47 Pine Arden Drive, West Boylston, MA 01583
(US).

(74) Agent: LANZA, John, D.; Testa, Hurwitz & Thibeault,
L.L.P, High Street Tower, 125 High Street, Boston, MA
02110 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,

HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,

LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,

MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,

TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, 87, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ,MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS ADN APPARATUS FOR ROBUST OPERATION OF A COMPUTER SYSTEM HAVING REDUNDANT

COMPONENTS

(57) Abstract: Methods and apparatus for robust operation of a fault-tolerant computer system with redundant components. A
method for deterministically booting a computer system having redundant components includes the step of selecting hardware and
software components. The selected components are booted in a manner consistent with traditional computer systems. If the boot
fails, a different set of components is selected and an attempt is made to boot those components traditionally. In one embodiment,
the hardware and software components are a processor and an input/output controller. A corresponding apparatus is also discussed.
An apparatus for recovering from the failure of a fault-tolerant system includes a plurality of processors, at least one input-output
controller in communication with the processors, and a control module in communication with each of those elements. The control
module detects a non-responsive processor, halts execution of the processors, selects a processor from the plurality of halted pro-
cessors, restarts the failed processor, restarts the plurality of halted processors, and copies processor state from the selected halted
processor to the failed processor. A corresponding method is also disclosed.

Page 1 of 32

ZF, Ex. 1020

10

15

20

WO 01/80007 PCT/US01/11990

METHODS AND APPARATUS FOR ROBUST OPERATION OF A
COMPUTER SYSTEM HAVING REDUNDANT COMPONENTS

Field of the Invention

The present invention relates to methods and apparatus for robust operation of a fault-
tolerant computer, including initialization and recovery from operational failures. In particular,
the present invention relates to methods and apparatus for recovering from an operational failure
that preserves at least some of the operational state of the computer system, and methods and

apparatus for deterministic reinitialization.

Background of the Invention

Information systems are evolving to become the delivery mechanism that drives corporate
revenues. In industries ranging from financial services to on-line shopping, the computer has
become the business. Accordingly, protection of computer-based data is becoming of paramount

importance to a corporation’s financial well-being,

Fault-tolerant systems offer superior reliability characteristics through the use of
redundant components and data paths that ensure uninterrupted delivery of service. Even so,
such systems may still fail due to hardware or software errors. In many cases, it is desirable to
analyze the operational state of a computer in order to determine why a particular failure
occurred. This is often difficult to accomplish since, in many cases, the only way to restore the
computer system to operational status is to reset the system. The boot cycle typically destroys the

operational status of the computer system, which is generally stored in volatile memory.

Moreover, a simple system reset may fail to identify intermittent hardware problems. For

example, since a redundant, fault-tolerant system may include multiple CPUs, a single

Page 2 of 32

10

15

20

WO 01/80007 PCT/US01/11990

2
misbehaving central processing unit may sometimes boot properly, masking a system error and
causing the error to be irreproducible. In these cases, the system cannot be examined to

determine the cause of the failure.

Summary of the Invention

The present invention is directed to methods and apparatus for robust operation of a fault-
tolerant computer system with redundant components. It provides methods and apparatus for
booting a computer system with redundant hardware and/or software components in a
deterministic fashion. Individual hardware and/or software components are selected and a boot
process is performed using those selected components. Booting in this manner allows
application programs written for traditional machine to be used without modiﬁcatién. Further,
modifications to boot software are rendered minimal or non-existent using this scheme.
Moreover, booting individual processor-I/O controller pairs allows system faults to be isolated
and detected in a deterministic fashion. The present invention also provides a user-configurable
mechanism for instructing a computer system to take increasingly severe steps in order to return
a computer system to operational status without destroying the data stored in processor registers
or computer memory. The methods and apparatus disclosed are particularly useful for fault-

tolerant computer systems using standard operating systems.

In one aspect, the present invention relates to a method for deterministically booting a
fault-tolerant computer having a plurality of processors and one or more input-output controllers.
A first processor/input-output controller pair is chosen and an attempt is made to boot the chosen

pair. In the event that the attempt to boot the chosen pair fails, a new boot pair is selected.

In another aspect, the present invention relates to a method for deterministically booting a

fault-tolerant computer having a plurality of processor boards and one or more input-output

Page 3 of 32

10

15

20

WO 01/80007 PCT/US01/11990

3
controller boards. A first processor/input-output controller board pair is chosen and an attempt is
made to boot the chosen board pair. In the event that the attempt to boot the chosen board pair

fails, a new boot pair is selected.

In still another aspect, the present invention relates to an apparatus for deterministically
booting a fault-tolerant system. The apparatus includes a plurality of processors, at least one
input-output controller in communication with the processors, a memory element storing a list of
processor/controller pairs, and a control module in communication with each element. The
control module retrieves a first processor/controller pair identifier from the memory element and
attempts to boot the processor/controller pair identified. In the event that the boot attempt fails, a
second identifier is retrieved from the memory element and an attempt is made to boot the

second boot pair identified.

In yet another aspect, the present invention relates to an apparatus for deterministically
booting a fault-tolerant system composed of individual hardware or software objects. A set of
hardware and/or software components is selected and a boot process is performed using this set

of components. In the event that the boot fails, a new boot set is selected.

In another aspect, the present invention relates to a method for recovering from a failure
ofa fault-toleraﬁt system that includes the plurality of processors and one or more input-output
controllers. A non-responsive processor is identified. One of the processors is selected from the
plurality of processors and its execution is halted. The non-responsive processor is then restarted
as are the other processors in the plurality. Processor state from the selected processor is copied

to the non-responsive processor.

In still another aspect, the present invention relates to an apparatus for recovering from

the failure of a processor in a fault-tolerant system. The apparatus includes a plurality of

Page 4 of 32

10

15

20

WO 01/80007 PCT/US01/11990

4
processors, at least one input-output controller in communication with the processors, and a
control module in communication with each of these elements. The control module detects that a
processor is non-responsive, halts execution of the other processors in the plurality, selects a
processor, restarts the failed processor, restarts the rest of the processors, and copies processor

state from the halted processor to the failed processor.

Brief Description of the Drawings

The invention is pointed out with particularity in the appended claims. The advantages of
the invention described above, as well as further advantages of the invention, may be better
understood by reference to the following description taken in conjunction with the accompanying

drawings, in which:
FIG. 1 is a block diagram of an embodiment of a traditional computer system;

FIG. 2 is a block diagram of an embodiment of a redundant, fault-tolerant computer

system,

FIG. 3 is a block diagram showing an embodiment of auxiliary connections between

service management logic units, processors, and I/O controllers in the system of FIG. 2;

FIGs. 4 and 4A are block diagrams depicting an embodiment of the steps to be taken

during initialization of a fault-tolerant computer system; and

FIGs. 5 and 5A are screen shots depicting exemplary embodiments of user interfaces for

controlling the booting process.

Detailed Description of the Invention

Referring now to FIG. 1, a typical computer 14 as known in the prior art includes a

central processor 20, a main memory unit 22 for storing programs and/or data, an input/output

Page 5 of 32

10

15

20

WO 01/80007 PCT/US01/11990

5
(I/0) controller 24, a display device 26, and a data bus 42 coupling these components to allow
communication between these units. The memory 22 may include random access memory
(RAM) and read only memory (ROM) chips. The computer 14 typically also has one or more
input devices 30 such as a keyboard 32 (e.g., an alphanumeric keyboard and/or a musical

keyboard), a mouse 34, and, in some embodiments, a joystick 12.

The computer 14 typically also has a hard disk drive 36 and a floppy disk drive 38 for
receiving floppy disks such as 3.5-inch disks. Other devices 40 also can be part of the computer
14 including output devices (e.g., printer or plotter) and/or optical disk drives for receiving and
reading digital data on a CD-ROM. In the disclosed embodiment, one or more computer
programs define the operational capabilities of the system 10. These programs can be loaded
onto the hard drive 36 and/or into the memory 22 of the computer 14 via the floppy drive 38.
Applications may be caused to run by double clicking a related icon displayed on the display
device 26 using the mouse 34. In general, the controlling software program(s) and all of the data
utilized by the program(s) are stored on one or more of the computer’s storage mediums such as

the hard drive 36, CD-ROM 40, etc.

System bus 42 allows data to be transferred between the various units in the computer 14.
For example, processor 20 may retrieve program data from memory 22 over system bus 42.
Various system busses 42 are standard in computer systems 14, such as the Video Electronics
Standards Association Local Bus (VESA Local Bus), the industry standard architecture ISA bus
(ISA), the Extended Industry Standard Architecture bus (EISA), the Micro Channel Architecture
bus (MCA) and the Peripheral Component Interconnect bus (PCI). In some systems 14 multiple
busses may be used to provide access to different units of the system. For example, a system 14
may use a PCI to connect a processor 20 to peripheral devices 30, 36, 38 and concurrently

connect the processor 20 to main memory 22 using an MCA bus.

Page 6 of 32

10

15

20

WO 01/80007 PCT/US01/11990

6

It is immediately apparent from FIG. 1 that such a traditional computer system 14 is
highly sensitive to any single point of failure. For example, if main memory unit 22 fails to
operate for any reason, the computer 14 as a whole will cease to function. Similarly, should
system bus 42 fail, the system 14 as a whole will fail. A redundant, fauli-tolerant system
achieves an extremely high level of availability by using redundant components and data paths to
insure uninterrupted operation. A redundant, fault-tolerant system may be provided with any
number of redundant units. Configurations include dual redundant systems, which include
duplicates of certain hardware units found in FIG. 1, and triply redundant configurations, which
include three of each unit shown in FIG. 1. In either case, redundant central processing ;mits 20
and main memory units 22 run in “lock step,” that is, each processor runs identical copies of the
operating system and application programs. The data stored in replicated memory 22 and

registers provided by the replicated processors 20 should be identical at all times.

Referring now to FIG. 2, one embodiment of a redundant, fault-tolerant system 14” is
shown that includes three processors 20, 20°, 20” (generally 20) and at least two input output
controllers 24, 24’ (generally 24). As shown in FIG. 2, system 14’ may include more than two
input output controllers (24” and 24°” shown in phantom view) to allow the system 14’ to control
more I/O devices. In the embodiment shown in FIG. 2, four redundant system busses 42, 42°,
42 and 42°” (generally 42) are used to interconnect each processor 20 and I/O controllers 24. In
one embodiment, processors 20 are selected from the “x86” family of processors manufactured
by Intel Corporation of Santé Clara, California. The x86 family of proces:sors includes the 80286
processor, the 80386 processor, the 80486 processor, and the Pentium, Pentium II, Pentium IIT,
and Xeon processors. In another embodiment processors are selected from the “680x0” family of
processors manufactured by Motorola Corporation of Schaumburg, Illinois. The 680x0 famﬂy of

processors includes the 68000, 68020, 68030, and 68040 processors. Other processor families

Page 7 of 32

10

15

20

WO 01/80007 PCT/US01/11990

7
include the Power PC line of processors manufactured by the Motorola Corporation, the Alpha
line of processors manufactured by Compaq Corporation of Houston, Texas, and the Crusoe line

of processors manufactured by Transmeta Corporation of Santa Clara, California.

Each processor 20 may include logic that implements fault-tolerant support. For
embodiments in which CPU 20 is a single chip, the fault-tolerant logic may be included on the
chip itself. In other embodiments, the CPU 20 is a processor board that includes a processor,
associated memory, and fault-tolerant logic. In these embodiments, the fault-tolerant logic can’
be implemented as a separate set of logic on processor board 20. For example, the fault-tolerant
logic may be iorovided as an application specific integrated circuit (ASIC), a field programmable
gate array (FPGA), an electrically erasable programmable read-only memory (EEPROM), a
programmable read-only memory (PROM), a programmable logic device (PLD), or a read-only
memory device (ROM). The fault-tolerant logic compares the results of each operation
performed by the separate processors 20 to the results of the same operation performed on one of

the other processors 20. If a discrepancy is determined then a failure has occurred.

Each input-output controller may also include fault-tolerant logic that monitors
transactions on the system busses 42 to aid in determining a processor failure. As shown in FIG.
2, the I/O controller boards 24 also provide support for the display 26, input devices 30 and mass
storage such as floppy drives 38, hard drives, and CD-ROM devices. The embodiment shown in
FIG. 2 includes a front panel 52 that provides an interface to these input and output devices. In
these embodiments, the front panel may serve as an adapter between the I/O controllers 24 and,
for example, a universal serial bus (USB) used by keyboard and mouse input devic;as, or a video

connector (EGA, VGA, or SVGA) used for connecting displays to the system 14°.

Page 8 of 32

10

15

20

WO 01/80007 PCT/US01/11990

8
Each I/O controller 24 includes service management logic which performs various system
)

management functions, such as: monitoring the operational status of the system; performing on-
line diagnostics of the system; and providing an interface for remotely viewing system operation
(including a processor boot sequence). In some embodiments, the service management logic
includes a modem providing a serial line connection to a service network. In other embodiments,
the service management logic includes a connection for communicating with other customer
equipment, such as an Ethernet connection of other local area network connection. In some
embodiments, the service management logic is provided as a separate board that is in
communication with I/O controller 24. In one particularly preferred embodiment, a service
management board including all service management logic connects to I/O controller 24 via a

PCI slot. The service management logic (referred to hereafter as SML) may be provided with a

power supply separate from the remainder of the system 14°.

Referring now to FIG. 3, a block diagram shows the connection between SML units 50,
50’ (generally 50) and the I/O controllers 24, 24’ and processors 20, 20°, 20” of the system 14°.
As shown by FIG. 3, each SML 50 is connected to each of the other units by redundant auxiliary
busses 60, 60’ in addition to redundant busses 42. Auxiliary busses 60, 60’ may be any bus that
allows the SMLs 50 to control and query the processors 20 and I/O conirollers 24. The SMLs
can communicate with the other units using a variety of connections including twisted pair,
broadband connections, or wireless connections. Connections can be established using a variety
of lower layer communication protocols sucil as TCP/IP, IPX, SPX, Ethernet, RS-232, direct
asynchronous connections, or I*C. In general, any message-oriented protocol may be used, and a

check-summed, packet-oriented protocol is preferred.

Page 9 of 32

10

15

20

WO 01/80007 PCT/US01/11990

9
Referring now to FIG. 4, the steps to be taken to boot a redundant, fault-tolerant system
are shown. In brief overview, the boot process begins by powering on the SMLs (step 402),
initializing and communicating with other SMLs in the system (steps 404, 406 and 408), and

determining whether or not the system requires booting (step 410).

In greater detail, and as noted abdve, SMLs 50 are provided with power separate from the
power provided to the system 14°. Power is supplied to the SMLs (step 402) before any other
units in the system 14°. For embodiments in which the SMIL is a portion of an I/O controller
board 24, power may be supplied to the entire I/O controller board 24 but only routed to the SML
portion of the controller board 24. For embodiments in which the SML is provided as a separate
board, then only the SML is supplied with power. In either case, whether and when power is

supplied to the other units in the system is under the direct control of the SML.

A SML uses auxiliary busses 60, 60° to determine if other SMLs exist in the system (step
404). If so, the SMLs exchange messages over the auxiliary busses 60, 60” in order to determine
which SML will function as the primary SML for the system 14 (step 406). The determination
of which SML will function as the primary SML may include many factors, including: whether
or not a service management logic unit has been previously inserted in the system to be powered
up; and whether another SML has already been powered up and is operational. In other

embodiments, the identity of the primary SML may be “hardwired.”

If an SML 50 determines that no other SML exists in the system 14°, or if an SML 50 has
determined that it will function as the primary SML 50 for a system 14 with multiple SMLs, the
SML identifies with which I/O controller 24 it is associated (step 408). The SML 50 uses this
information during the boot process to determine if another SML 50 should act as the primary

SML 50 during the boot process. For example, if the I/O controller with which the SML 50 is

Page 10 of 32

10

15

20

WO 01/80007 PCT/US01/11990

10
associated is not selected for booting, then the SML 50 associated with the booting I/O controller
must act as the primary SML 50 for the boot attempt. In other words, BIOS heartbeat and other
boot status messages will be directed to the SML 50 on the booting I/O controller, even if that

SML 50 is not the primary SML 50.

Once an SML determines that it is the primary SML for a system 14°, it determines
whether or not to boot the system 14°. SMLs 50 can exchange messages to negotiate which SML
50 is the primary SML 50. If an SML 50 is already functioning in the system as primary, then a
peer SML 50 becomes secondary. If neither SML 50 has yet been identified as the primary SML
50, the SMLs 50 negotiate to determine which SML 50 is the primary SML 50. In one
embodiment the SMLs 50 negotiate to determine which SML 50 is the primary SML 50. In one

embodiment, the SMLs 50 negotiate using the following rules:

1. If one SML 50 is “alien” to the system then the SML 50 which is not alien
becomes primary. “Alien” means that the SML 50 was not resident in the computer

system the last time it was used.

2. If one SML 50 was primary more recently than the other, it becomes the

primary again (and the other becomes secondary).

3. As a default, the SML 50 in I/O board slot 0 becomes the primary SML 50.

The SML 50 in I/O board slot 1 becomes secondary.

A service management logic unit, in this embodiment, will not boot the system if it was explicitly
shut down by an administrator (for example, if the administrator used a “power off” command to

shut down the system). Whether or not a system has been explicitly shut down by an

Page 11 of 32

10

15

20

WO 01/80007 PCT/US01/11990

11

administrator may be stored in non-volatile memory (not shown in the drawings) that the SML

50 may query.

If a SML 50 determines that it should not boot the system 14’, it transitions to a state in
which it monitors the system (step 412). This state is described in greater detail below. For
example, an SML 50 may query a non-volatile memory element and discover that the system 14’
was properly and explicitly shut down by an administrator. In this case, the SML 50 will not

attempt to boot the system 14°. Otherwise, the system moves to the boot process described in

FIG. 4A.

The boot process shown in FIG. 4A may be commenced by an initializing SML 50.
Alternatively, the boot process may be directly invoked by a system administrator by, for
example, a “boot” command. FIG. 5A is a screen shot showing an exemplary embodiment for
providing such commands to the system administrator by the primary SML 50. In this
embodiment, system administration commands are grouped as a set of “tabs” and displayed to
the administrator. The administrator selects the tab containing the desired operations. FIG. 5A
depicts an embodiment in which a “System Control” tab 54 provides four controls for a system:
a “Power On” command 56 (depicted in gray to indicate the system is currently running; an
explicit “Power Off”” command 58; a “Reset” command 60; and a “System Interrupt” command
62. System information 64, as well as information concerning the primary SML 66, is provided
to the administrator. In the embodiment shown in FIG. 5A, the administration commands are
provided using a browser-based user interface. Although FIG. 5A depicts an embodiment using
NETSCAPE NAVIGATOR, manufactured by Netscape Communications of Mountain View,
California, any browser may be used, including MICROSOFT INTERNET EXPLORER,

manufactured by Microsoft Corporation of Redmond, Washington. A third way for the boot

Page 12 of 32

10

15

20

WO 01/80007 PCT/US01/11990

12
process shown in FIG. 4A to be invoked is by an SML following a system failure. This

mechanism is discussed in greater detail below.

The boot process begins by determining a “boot list” (step 450) FIG. 4A. A boot list is a
list of component systems allowing the system to boot. For example, boot components may
include processors, I/O controllers, BIOS, and other software (both application and system). In
one particular embodiment, a boot list an ordered list of processor-I/O controller pairs. In some
embodiments, the boot list includes “heartbeat” values associated with each boot pair. Heartbeat
values are used by an SML 50 during system operation to determine if a processor 20 is
functioning properly. Heartbeats are described in greater detail below. The boot list may be
stored in a data structure that associates processor identification values with I/O controller
values. For embodiments in which heartbeat values are also stored, the data structure includes an
additional field to associate heartbeat timer values with each boot pair. The data structure may
be stored on each SML 50 in a system 14°. In preferred embodiments, the data structure is stored
in a non-volatile, erasable memory element, such as an EEPROM, that is accessible using
auxiliary busses 60, 60°. In the event that the stored data structure is inconsistent (for example
the data structure may include corrupted data values), or if the SML 50 is unable to retrieve data
from the memory element (for example, if no memory element exists or if both auxiliary busses

60, 60 are not functioning), the SML 50 may use a hard-coded default list.

FIG. 5B depicts a screen shot of an exemplary user interface allowing a system
administrator to modify the default boot list. As shown in connection with FIG. 5A, the user
interface is browser based and provides information to the administrator regarding the system 14°
and SML 50 currently active. Once the graphical user interface shown in Fig. 5B is used to

create a boot list, it is saved to the non-volatile memory element.

Page 13 of 32

10

15

20

WO 01/80007 PCT/US01/11990

13
In one embodiment, once a boot list is determined, whether by retrieving a list from a
memory element or by using a default list, the SML 50 determines available processors 20 and
I/O controllers 24 (step 452). The SML 50 may transmit a message over auxiliary busses 60, 60°
to determine this information. Processors 20 and I/O controller 24 respond to the message
transmitted by the SML 50. The SML 50 concludes that a processor 20 or I/O controller does not
exist if no response to the message is received on either bus 60, 60°. This information is used by

the SML 50 to skip pairs in the boot list if they reference units not present in the system 14°,

Once all system units are discovered by the SML 50, the SML 50 provides system clocks
to the processors 20 and the I/O controllers 24 (step 452). In other embodiments system clocks

are not under the control of the SML 50 and, in these embodiments, step 452 may be skipped.

Using auxiliary busses 60, 60°, the SML 50 asserts a reset signal associated with each
processor 20 and /O controller 24 (step 456). Tﬁe SML 50 takes any other steps necessary at
this point to prepare all system units for booting. For example, some units may need to have
power applied or, for example, certain other signals may need to be asserted to prepare the unit

for booting.

The SML releases reset from the processor 20 and the I/O controller 24 identified in the
boot list as the first boot pair while holding reset active for all other system units (step 458).
This allows the selected boot pair to boot in a manner consistent with a traditional computer.
The SML 50 monitors the boot process of the selected boot pair to determine if the boot process
is successful (step 460). In one embodiment, the SML 50 monitors the progress of the boot
process by receiving heartbeat signals from the booting process-I/O controller pair. In one
embodiment, heartbeats are transmitted over system busses 40. Failure to receive a heartbeat

signal within a predetermined time period indicates that the boot process has failed. If the boot

Page 14 of 32

10

15

20

WO 01/80007 PCT/US01/11990

14
process is not successful, the SML 50 selects a new boot pair from the boot list (step 462) and
attempts to boot that processor-I/O controller pair. In some embodiments, the Basic Input-
Output System (BIOS) may, during the boot attempt, determine that it cannot achieve a proper
boot of the operating system , even though the processor has booted and is providing heartbeat
signals to the SML 50. In this case, the BIOS issues an explicit “reboot” command to the SML

50 and the SML 50 selects a new boot pair from the boot list.

If the SML 50 cycles through every pair identified in the boot pair list and none of the
pairs is successful, the SML 50 indicates that the system 14’ was unable to boot. In some
embodiments the SML 50 removes all power from the processors 20 and the I/O controllers 24

after determining the system 14’ is unable to boot.

If the boot process is successful, the BIOS transmits a message to the SML indicating that
the operating system has booted properly. In this case, the SML transitions to a monitoring state
(step 464). In some embodiments, after successfully booting the first processor-I/O pair the SML

50 boots each other processor 20 in the system 14°.

Once the booting process is complete, or if the SML 50 determines that the system 14’
should not be booted, the SML 50 enters a monitoring state (steps 412 or 464). In this state the
SML 50 monitors heartbeat signals from each of the processors 20 to determine operation status
of the system 14°. A failure to receive a heartbeat signal from a processor 20 during a
predetermined period indicates that a failure has occurred. In this event, the SML 50 consults a
non-volatile memory element to determine what actions, if any to take. The memory element
may be the same memory element discussed above that stores the boot list, or a separate memory
element may be provided that is accessible via the auxiliary busses 60, 60°. In one embodiment,

the memory element stores a value that indicates one of seven actions for the SML 50 to take

Page 15 of 32

10

15

20

WO 01/80007 PCT/US01/11990

15
upon heartbeat failure: (1) no action; (2) normal interrupt; (3) non-maskable interrupt; (4) stop
processor from executing; (5) system reboot; or (6) deterministic boot. Each of these options is

discussed in detail below.

A memory value indicating that the SML 50 should take no action on a heartbeat failure
disables all recovery mechanisms. In some embodiments, the SML 50 logs the failure but

otherwise does nothing.

A memory value indicating “normal interrupt” restricts recovery attempts by the SML 50
to issuing normal interrupts to the processor 20 or processors 20 that have ceased to transmit a
heartbeat. In this embodiment, the SML 50 issues an interrupt to a target processor 20 via the
auxiliary busses 60, 60°. If the processor’s operating system is able to process the interrupt, it
responds by restarting heartbeat transmission. In some embodiments, the operating system
ensures that lockstep processing is resumed. In other embodiments, the SML 50 issues interrupts
to the processor or processors such that the processors resume lockstep operation. For example,
interrupts may be issued to processors simultaneously which should avoid breaking lockstep. In
some embodiments the operating system halts execution of all programs and allows a system
administrator to debug system settings. If the operating system does not ?espond to the interrupt,
then recovery fails. In some embodiments, the SML 50 simply logs this failure. In other

embodiments, the SML 50 alerts an administrator that the system 14” will not respond.

A memory value indicating “non-maskable interrupts” restricts recovery attempts by the
SML 50 to issuing normal and non-maskable interrupfts to the processor 20 or processors 20 that
have ceased to transmit a heartbeat. In this embodiment, should the system 14’ refuse to respond
to a normal interrupt, the SML 50 issues a non-maskable interrupt to a target processor 20 via the

I/O controller 24. If multiple processors 20 are hung, non-maskable interrupts are issued to all

Page 16 of 32

10

15

20

WO 01/80007 PCT/US01/11990

16
processors 20 in lockstep to avoid breaking processor lockstep. If the processor’s operating
system is able to process the non-maskable interrupt, it responds by restarting heartbeat
transmission. In this case, the SML 50 must revoke the previously issued normal interrupt. In
some embodiments the operating system halts execution of all programs and allows a system
administrator to debug system settings. If the operating system does not respond to the non-
maskable interrupt, then recovery fails. In some embodiments, the SML 50 simply logs this
failure. In other embodiments, the SML 50 alerts an administrator that the system 14” will not

respond.

A memory value indicating that processor execution should be suspended allows the
SML 50, in the event that a non-maskable interrupt fails to restore system operation, to select a
processor 20 and suspend execution of all applications and the operating system by that
processor 20. Processor and memory state of the suspended processor is not destroyed. If
heartbeat signals resume from the other processors once the selected processor 20 is suspended,
recovery has been successful. The state of the suspended processor 20 may be dumped for
analysis, the state of the suspended processor may be replaced with state from one of the
operational processors 20, or both. If this step fails to restore the system 14’ to operational
status, the SML 50 may dump the state of the suspended processor 20 for analysis by a system
administrator, log the failure, alert an administrator to the failure, or any combination of these |

actions.

A memory value indicating “system reboot” allows the SML 50 to attempt to reboot the
system in the event that suspended a selected processor 20 does not succeed. The reboot process
is similar to the reboot process described in connection with FIGs. 4 and 4A, except that the

suspended processor 20 is skipped during reboot of the boot pairs listed in the boot list. To avoid

Page 17 of 32

10

15

WO 01/80007 PCT/US01/11990

17

repetitive heartbeat failure, the SML 50 maintains an index to identify the last processor-I/O boot
pair in the boot list that last rebooted successfully. During the reboot process, this index is
incremented to ensure that a different pair is selected as the starting pair each time. If successful,
the state of the suspended processor 20 may be dumped for analysis, the state of the suspended
processor 20 may be replaced with the state of one of the operational processors, or both. As
above, if this mechanism doesn’t succeed in restoring the system 14’ to operational status, the
SML 50 may dump the state of the suspended processor 20 for analysis by a system
administrator, log the failure, alert an administrator to the failure, or any combination of these
actions. A memory value indicating “deterministic boot” allow the SML 50 to abandon the state
of the suspended board and perform a full deterministic reboot, as described in connection with
FIGs. 4 and 4A.

Having described certain embodiments of the invention, it will now become apparent to
one of skill in the art that other embodiments incorporating the concepts of the invention may be
used. Therefore, the invention should not be limited to certain embodiments, but rather should

be limited only by the spirit and scope of the following claims.

Page 18 of 32

WO 01/80007 PCT/US01/11990

18
CLAIMS
What is claimed is:
1. In a fault-tolerant system including at lest one processor and input-output controller, a
method for deterministically booting the system, the method comprising the steps of:
(2) choosing a first processor/input-output controller pair comprising a first processor
and a first input/output module; and |

(b) booting said first processor/module pair.

2. The method of claim 1 further comprising the step of

©) booting each of other processors.

3. The method of claim 1 wherein step (a) comprises the step of choosing a first
processor/module pair by accessing a predefined list of potential processor/module pairs stored in

a memory element.

4, The method of claim 1 wherein step (b) comprises executing a basic input/output system .

to boot the first processor.

5. The method of claim 1 further comprising the steps of:

(c) detecting that the first processor/module pair failed to boot;

(@) selecting a second processor/module pair comprising a second processor and the first
input-output controller; and

(e) booting the second processor/module pair.

6. In a fault-tolerant system including at least one processor board and input-output
controller board, a method for deterministically booting the system, the method comprising the

steps of:

Page 19 of 32

WO 01/80007 PCT/US01/11990
19
(a) choosing a first processor board/input-output controller board pair comprising a
first processor board and a first input-output controller board; and

(b) booting said first processor board/module board pair.

7. The method of claim 6 further comprising the step of

() booting each of other processor boards in the plurality of processor boards.

8. The method of claim 6 wherein step (a) comprises the step of choosing a first processor
board/module board pair by accessing a predefined list of potential processor board/module

board pairs stored in a memory element.

9. The method of claim 6 wherein step (b) comprises executing a basic input/output system

to boot the first processor board.

10. The method of claim 6 further comprising the steps of:

(c) detecting that the first processor board/module board pair failed to boot;

(d) selecting a second processor board/module board pair comprising a second processor
board and the first input-output controller board; and

(e) booting the second processor board/module board pair.

11. Anapparatus for deterministically booting a fault-tolerant system comprising:
at least one processor;
at least one input-output controller in communication with at least one processor;
a memory element storing a list of processor/module pairs; and
a control module in communication with the memory element, the at least one input-

output controller, and at least one processor,

Page 20 of 32

WO 01/80007 PCT/US01/11990
20
wherein the control module retrieves a first processor/input-output pair identifier from the

memory element and boots an identified first processor/module pair.

12. The apparatus of claim 11 wherein the control module detects that the first

processor/module pair failed to boot.

13. The apparatus of claim 12 wherein the control module retrieves a second processor/input-
output pair identifier from the memory element and boots an identified second processor/module

pair.

14. The apparatus of claim 11 wherein the control module boots the first processor/module

pair by initiating execution of a basic input/output system associated with the first processor.

15. The apparatus of claim 11 wherein the memory element comprises a non-volatile memory

element,

16. Inacomputer comprising at least one hardware component and at least one software
component, a method for deterministically booting the system, the method comprising the steps
of:
(a) choosing a first boot group comprising:
a first hardware component; and
| a first software component; and

(b) booting said first boot group.

17. The method of claim 16 further comprising the steps of:
(c) booting each of the remaining hardware components; and

(d) booting each of the remaining software components.

Page 21 of 32

WO 01/80007 PCT/US01/11990

21
1 18. The method of claim 16, wherein step (a) comprises the choosing of a first boot group

2. from a predetermined list of combinations of hardware components and software components.

1 19. The method of claim 16, wherein the first boot group comprises a processor, an input-

2 output module, and a basic input-output system (BIOS).

1 20. The method of claim 16 further comprising the steps of’

2 (©) detecting that the first boot group failed to boot; and

3 (d) selecting a second boot group comprising:

4 a second hardware component; and

5 a second software component; and

6 (e) booting the second boot group.

1 21. Inafault-tolerant system including a plurality of processors and one or more input-output
2 controllers, a method for recovering from a failure of any of the processors, the method

3 comprising:

4 (a) identifying a non-responsive processor;

5 (b) selecting a processor from the plurality of processors;

6 (©) halting execution of the selected processor;

7 (d) restarting the non-responsive processor;

8 (e) restarting the other processors in the plurality of processors; and

9 ® copying processor state from the selected processor to the non-responsive

10 processor.

1 22, The method of claim 21 wherein step (a) comprises the steps of:
2 (a-a) monitoring a heartbeat signal from a processor; and

3 (a-b) identifying the processor as non-responsive based on the heartbeat signal.

Page 22 of 32

WO 01/80007 PCT/US01/11990
22
23. The method of claim 21 wherein step (f) comprises:
(f-a) comparing between the processor state of the non-responsive processor and the
selected halted processor to identify processor state differences; and

(f-b) copying a subset of the processor state of the selected halted processor to the non-
responsive processor in order to make the state of the non-responsive processor identical to the state of

the selected halted processor.
24. The method of claim 21 wherein step (d) comprises rebooting the non-responsive

processor.

25. The method of claim 21 further comprising the steps of:
(2) choosing a first processor/input-output controller pair comprising a first processor
and a first input-output controller; and

(h) booting said first processor/module pair.

26. The method of claim 25 further comprising the step of booting each of the other

processors in the plurality of processors.

27. The method of claim 25 wherein step (g) comprises choosing a first processor/input-
output controller pair by accessing a predefined list stored in a memory element of potential

processor/module pairs.

28. The method of 25 wherein step (h) comprises executing a basic input/output system to

boot the first processor.

29. The method of claim 25 further comprising the steps of:

1) detecting that the first processor/module pair failed to boot;

Page 23 of 32

WO 01/80007 PCT/US01/11990

23
) selecting a second processor/module pair comprising a second processor and the
first input-output controller; and

(k) booting the second processor/module pair.

30. An apparatus for recovering from the failure of a processor in a fault-tolerant system
comprising:

a plurality of processors;

at least one input-output controller in communication with the plurality of processors;

a control module in communication with the at least one input-output controller and the
plurality of processors,

wherein the control module detects that a processor is non-responsive, halts execution of the

other processors in the plurality, selects a processor from the plurality of halted processors,
restarts the failed processor, restarts the plurality of halted processors, and copies processor state
from the selected halted processor to the failed processor.
31. The apparatus of claim 30 wherein the control module copies a subset of the state of the

selected halted processor to the non-responsive processor.

32. The apparatus of claim 30 wherein the control module monitors a heartbeat signal

transmitted from a processor.

33. The apparatus of claim 30 wherein the control module reboots the non-responsive

Processor.

34. The apparatus of claim 30 further comprising a memory element storing a list of

processor/module pairs.

Page 24 of 32

WO 01/80007 PCT/US01/11990
24
35. The apparatus of claim 34 wherein the control module retrieves a first processor/input-

output controller pair identifier from the memory element and boots the identified first

processor/module pair.

36. The apparatus of claim 35 wherein the control module detects that the first
processor/module pair failed to boot, retrieves a second processor/module pair identifier from the

memory element, and boots the identified second processor/module pair.

Page 25 of 32

(92 371n¥) LITHS ALNLILSENS

PRIOR ART

) PROGRAMS 2 o y
PROCESSOR MEMORY | | coNTROLLER
42
26 30 36 38 40
INPUT HARD FLOPPY PRINTER,
DISPLAY DEVICE(S) DRIVE DRVE | [PLOTTER, ETC.
T g T
.7y . | PROGRAMS || PROGRAMS
AR R
KEYBOARD || JovsTICK MOUSE
32 M2 N34 FIG. 1

Page 26 of 32

L/t

L0008/T0 OM

06611/10S1/1LDd

WO 01/80007 PCT/US01/11990

217
14"
20 20' 20"
/ / /
CPU @ CPU 1 CPU 2
42"
2] L O
Vg U \l N j
24
e V24' lle
CTRL@ | 2¢'| CTRL 1
4T T
b | l -
24" 24" |
I o | |)0
| CTRL 2 :/ ™ CTRL3 |
I__ o l_ -
52
26 1
J DISPLAY
CD-ROM
2 FRONT
JINPUT PANEL
DEVICES
38\ FLOPPY
DRV
FIG. 2

SUBSTITUTE SHEET (RULE 26)

Page 27 of 32

(92 31nY) L33HS ILNLILSENS

(}0
50 24 20 20' 20" 24' 50'
\ / / / . / /
SML 1 /0 1 CPU 1 CPU 2 CPU 3 /0 2 SML 2
7
60'

FIG. 3

Page 28 of 32

L/

L0008/T0 OM

06611/10S1/1LDd

WO 01/80007 PCT/US01/11990

47

SML B
POWERON [402

404

DOES

PEER SML S ES

EXIST? 14
COMMUNICATE
WITH PEER

| DENTFY |

408 SLOT

412
{
MONITOR SYS

FIG. 4

SUBSTITUTE SHEET (RULE 26)

Page 29 of 32

WO 01/80007 PCT/US01/11990

517

DETERMINE 450

BOOT LIST
T
DISCOVER
UNITS 452
!
TURNON | 4s4
SYSTEM CLOCKS

v
RESETAND SHUT | 4=

DOWN ALL UNITS
Y
START —458 46

BOOTPAIR | |«

SELECT NEW
460 BOOT PAIR
NO T
SUCCESS?

MONITOR — 464

FIG. 4A

SUBSTITUTE SHEET (RULE 26)

Page 30 of 32

(92 371nY) L33HS ILNllLSaNS

(J System Management GUI - Netscape

LTI

File Edit View Go Window Help

‘ Back ||Forward} Reload

Print

Stop

| Location] file: /I IGROUP/Catbert/Misc/SysMgmtGui/SysMgmtGuiApplet.htm

subzero.sw.status.com

54

LCD
l’;OST: 18

(Host:

subzero.sw.status.com
Windows NT 4.0 Patch 1.0
BIOS Revision 4.0

4 Pentium Il 800MHz Processors

(| SMM:

IP Address: 192.168.1.2
Primary SMM

VxWorks 5.3

VGABIOS Stratus 8.0

L] 32 MB RAM

Logo | Remote Console

Telnet Session

User Accounts

SMM Communication Information | System Boot Configuration | SMM IDPROM

Welcome | Host Information | System Control

SMM Control & State Information

System Interrupt

Power On||Power Off

N)
5 58

=
62

Page 31 of 32

FIG. 5A

L/9

L0008/T0 OM

06611/10S1/1LDd

(92 31nY) L33HS ILNliLSaNS

] System Management GUI - Netscape

File Edit View Go Window Help

Back Forward Reload Home Search Guide Print Security Stop N
Bookmarks Go to: {www [+]
Internet Lookup New & Cool
subzero.sw.stratus.com 4
LCD Logos | Remote Console | Telnet Session | User Accounts
POST: 18 SMM Communication Information { System Boot Configuration | SMM IDPROM
Welcome |Host Information | System Control |SMM Control & State Information
— System Boot Settings
-| Host: Normal (Fault Resilient Boot) ~
subzero.sw.stralus.com Board Pair Failure Interval N
\é\fggoggvgm-g gatch 1.0 Heartbeat Period Default Custom Default Custom
4 Pentium I 800MHz Processors (CPU1101 1=} ® O [Bw___J]® O
[CPU2I01 [#][1000_]® O B]1® O
SMM: ~][io0 1® O B 1® O
IP Address: 192.168.1.2 CPULIRI~][00_J© O @w___1® O
Primary SMM CPI2I~I[M000_1® O [0 1® O
VxWorks 5.3 . [CPU3102 [+][1000__1® O [3000 ® O
VGA BIOS Stratus 8.0 , .
39 MB RAM ® Override Manual Boot Options
Bypass Bad Hardware
[CPUTL02I=] | Initiate Crisis Recovery —
Default (None of the Above)
Accept Settings Retum to Factory Default Settings =
AppletSysMgmtGuiApplet started
FIG. 5B

Page 32 of 32

L0008/T0 OM

06611/10S1/1LDd

	Bibliography
	Abstract
	Description
	Claims
	Drawings

