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Ultra Low Power Digital Signal Processing

Anantha P. Chandrakasan
Massachusetts Institute of Technology, Cambridge, MA

ABSTRACT

The explosive growth of portable wireless devices
has elevated power consumption to be one of the most
critical design parameters. This paper presents several
techniques to implement DSP functions with the lowest
possible power consumption. Since power is con-
sumed only when capacitance is being switched,
power can be reduced by minimizing this capacitance
through operation reduction, choice of data represen-
tation, exploitation of spatial and temporal signal corre-
lations, re-synchronization to minimize glitching, and
logic, circuit and physical design. Aggressive voltage
scaling to 1V and below through circuit and architec-
ture optimization is the key to low-power design. A sys-
tems approach to low-power design can result in
orders of magnitude power reduction.

1. Introduction

The weight and size of batteries, which are major
factors in portable systems, are primarily determined
by the power dissipation of electronic circuits. Until
recently, there has not been a major focus on a design
methodology of digital circuits which directly addresses
power reduction, with the focus rather on ever faster
clock rates and logic speeds. The emphasis of this
work is on minimizing the power consumption in DSP
applications, which have two important attributes that
make then different from general purpose computa-
tion: throughput constrained computing and correlation
in the data being processed.

The throughput constraint implies that once the
required sample rate is met by the hardware, there is
no advantage in making the computation faster (unlike
general purpose computation where is goal is to com-
pute as fast as possible). This enables a variety of volt-
age scaling techniques that lower power while
maintaining a constant throughput [1]. The second
attribute of signal processing systems that can be
exploited for low-power is the correlation present in the
data being processed. Unlike general purpose compu-
tation, the data being processed in many signal pro-
cessing applications can exhibit high temporal
correlation. An important goal of low-power architec-
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ture selection is to preserve naturally occurring signal
correlations and minimize switching activity.

The focus of this paper is on CMOS circuits and it
is well known that power is primarily dissipated in
charging and discharging parasitic capacitors and is
given by g1 ® C @ Vz% e fox » where C; is the load
capacitance, Vg is the power supply voltage, fyy is the
clock frequency, and «ay_,1 is the node transition activ-
ity factor (or the fraction of time the node makes a
power consuming transition inside a clock period). For
example, Figure 1 shows the activity factor, o_., for a
simple 2-input NOR gate as a function of the input sig-
nal probabilities, p, and py,.

O 9.1 = Po P1 = (1-(1-py) (1-py)) (1-py) (1-py) (EQ1)

The strong influence of signal statistics on power
implies that the data statistics must be carefully con-
sidered during power optimization. Signal statistics
should be considered at all levels of the design includ-
ing the selection of data representation, resource allo-
cation, operation sequencing, logic structuring, and
place and route.

0
1
Figure 1: Dependence of power on signal statistics.

2. Optimizing Data Representation

Two’s complement is typically chosen to represent
numbers in signal processing applications since arith-
metic operations are easy to perform. One of the prob-
lems with two’s complement representation is sign-
extension, which causes the msb sign-bits to toggle
when a signal changes sign (for example, going from

9th International Conference on VLSI Design — January 1996




1.0 o Ty
Two’s Complement p=-0.99
o8 B = log, (30) L p=-0.75
2 | p=-0.50
8 06f  p=-0.25
& e
§ 04f  p=0.25
8 L p=0.50
§ 0.2} p——w——% p=0.75
l—
e ey p=0.99
0054468 10 12 14
Bit Number

Transition Probability

Sign Magnitude : p=-0.99
081 B = log, (30) : p=-0.75
: p=-0.50
i | . p=-0.25
i | i,
0.4 ' p=0.25
! =0.50
0.2f E p=0.75
: =0.99
0.0 p

0o 2 4

658110
Bit Number

Figure 2: Reducing switching activity by optimizing number representation.

-1 to 0 will result in all of the bits toggling). This is
especially significant when the dynamic range of the
signals being processed is much smaller than the peak
value for the bit-width used since a lot of the msb bits
will perform sign-extension. Even when a signal spans
the entire bit-width, scaling operations can reduce the
dynamic range.

An approach to minimizing the switching activity in
the msbs is to use a sign-magnitude representation, in
which only one bit is allocated for the sign and the rest
to the magnitude [1]. In this case, only one of the msb
bits will toggle when the signal switches sign, as
opposed to the two’s complement representation
where due to sign-extension several of the bits will
switch. To illustrate this, consider Gaussian data
applied to a 16-bit data-bus, which has a mean of 0
and a 30 = 2'1 (the upper breakpoint which represents
the dynamic range of the signal lies at log,(30) = 11
bits in this case). Figure 2a shows the transition proba-
bilities (both the 0->1 and 1->0) vs. bit position number
for two’s complement representation as a function of
the first order correlation coefficient. A p=0 indicates
that the data is uncorrelated and therefore the transi-
tion probability for the msb’s is 1/2 (i.e., there is a 50%
chance the output is going to transition between posi-
tive and negative). A large positive correlation coeffi-
cient implies that the signal changes very slowly and
therefore switches sign very infrequently. Similarly, a
negative correlation coefficient with a large magnitude
implies that the signal changes sign frequently. In two’s
complement representation, bits 11 to 15 are used for
sign-extension. If a sign-magnitude representation is
used (Figure 2b), the higher order bits will have a low
transition activity and bit 15 (the sign bit) will have the
same activity as the two’s complement case.

The reduction in the number of transitions for sign-
magnitude over two’s complement is a function of both
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the dynamic range of the signal and the signal correla-
tion coefficient. Figure 3 shows the ratio of the number
of transitions required in the two’s complement repre-
sentation to that required in the sign-magnitude repre-
sentation as a function of the signal correlation and
normalized dynamic range. The normalized dynamic
range of a signal is defined as 3 * ¢ / Peak Amplitude
and the number of transitions is the sum of the transi-
tions for all the bits per clock cycle (i.e., number of
transitions = ¥, oy, 0 <i <15). The biggest advantage
for using sign-magnitude is when the dynamic range is
small and the signal has a large negative correlation.
Sign-magnitude is clearly useful for driving large bus-
ses, where the overhead for converting back to two'’s
complement is quite insignificant compared to the
reduction in capacitance switched in the large busses.
The scheme presented here is only one example of
coding data for reducing power. There are several
other schemes which can be used such as log repre-
sentation, gray-coding [2], conditional inversion coding
[3], etc.
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Figure 3: Activity reduction using sign-magnitude.
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Figure 4: Number Representation trade-off in arithmetic computation: accumulator example.

While sign-magnitude has some advantages in
terms of the number of transitions on busses, addition/
subtraction operations are difficult to implement. How-
ever, in several applications, that require multiple addi-
tions inside a sample period (e.g., Multiply Accumulate
Units or DSP filters), an architecture optimization can
be used that trades silicon area for lower switching
activity without altering the throughput. To illustrate this
consider a CDMA radio correlator example in which
the correlation length is 1024; the samples, whose val-
ues ranges from -7 to +7, are accumulated.at 64Mhz.

On the left side of Figure 4, is a conventional archi-
tecture for an accumulator that uses two's complement
representation. The accumulated result is transferred
to an accumulator register at 64Khz. In this architec-
ture the msb-bit, bit 3, is tied to bits 4-13 of the adder
input for sign-extension and therefore the adder has
high switching activity in the msb-bits (due to glitching)
when the input changes sign frequently.

Another approach is to use a sign-magnitude rep-
resentation (right side of Figure 4). Here two accumu-
lator datapaths are used, one that sums all positive
numbers and one that sums all negative numbers. The
latched sign-bit (from the input register) is used to gen-
erate gated clocks that enables the positive datapath
latch or the negative datapath latch (this ensures that
this scheme does not increase effective clock load). At
the end of 1024 cycles, the positive and negative accu-
mulated values are transferred to separate registers. A
subtract operation is then performed at the low-fre-
quency and therefore is quite negligible in terms of
capacitance overhead. In fact, the higher order bits (3-
13) only need an incrementer (as opposed to a full-

adder in the two’s complement case), reducing the
number of gates that are switched in the accumulator.
The sign-magnitude implementation, however,
requires control circuitry (overhead capacitance) to
generate the timing signals for the various latches in
the implementation.

By keeping the computation for positive data and
negative data separate, the power is not very sensitive
to rapid fluctuations in the input data. Table 1 shows
the power numbers for various input patterns. Again,
the biggest advantage is when the sign toggles fre-
quently. For the case when the input changes very
slowly, the sign-magnitude implementation consumes
more power (15%) due to the capacitance switched by
the control overhead circuitry. For the radio example,
data coming in to the accumulator tends to be random.

Table 1. Number representation trade-off for arithmetic.

Two’s Sign
Input Pattern Complement Magnitude
(1024 cycles) Power, 3V Power, 3V
Constant (IN=7) 1.97 mW 2.25 mW
Ramp (-7,-6,...7,-7) 2.13 mW 2.43 mW
Random 342 mW 2.51 mW
Min -> Max -> Min 5.28 mW 2.46 mW
(-7, +7,-7,47,...)

3. Time-sharing of Resources

One strategy for implementing signal processing

algorithms is the direct mapping approach, where
there is a one to one correspondence between the
operations on the signal flow graph and operators in
the final implementation. Such an architecture style is
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conceptually simple and requires a small or no control-
ler. Often, however, due to area constraints or if very
high-throughput is not the goal (e.g., speech filtering),
time-multiplexed architectures are utilized in which
multiple operations on a signal flowgraph can be
mapped onto the same functional hardware unit. Given
that there is a choice between time-multiplexed and
fully-parallel architectures, as is the case in low to
medium throughput applications, an important ques-
tion which arises is what architecture will result in the
lowest switching activity. To first order, it would seem
that the degree of time-multiplexing would not affect
the capacitance switched by the logic elements or
interconnect. For example, if a data flowgraph has five
additions to be performed inside the sample period, it
would seem that there is no difference between an
implementation in which one physical adder performs
all five additions or an implementation in which there
are five adders each performing one addition per sam-
ple period. It would seem that the capacitance
switched should only be proportional to the number of
times the additions were performed but this is not the
case since resource sharing can destroy signal corre-
lations and increase switching activity. To demonstrate
this trade-off, consider two examples of resource shar-
ing: sharing busses and sharing execution units.

First consider two implementations of two 8-bit
counters clocked every cycle one with bus sharing and
one without. In the parallel implementation, the two
counters are driving two separate busses running at
frequency f while the time-multiplexed implementation
has a single shared bus running at twice the fre-
quency. For the parallel case, the activity is easy to
compute. The number of transitions for each bus =
=1+1/2+1/4+ ... + 1/ 128 = 2 since the Isb of the
counter switches every cycle, the 2nd Isb switches
every other cycle, etc. Therefore, the total number of
transitions per cycle is approximately 4 for the parallel
implementation.

Figure 5 shows the plot of the average number of
transitions for the time-shared case as a function of the
skew between the counter outputs. The figure also
shows the number of transitions for the non-time-
shared implementation, which is independent of the
counter skew. As seen from this figure, except for one
value of the counter skew (when the skew is = 0), the
parallel implementation has the lower switching activ-
. ity. This example illustrates that time-sharing can mod-
. ify the signal characteristics and cause an increase in
. the switching activity.
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Figure 5: Time-sharing can increase activity.

The second example is a simple second order FIR
filter which will demonstrate that time-multiplexing of
execution units can increase the switched capaci-
tance. The FIR filter is described as follows:

Y=apeX+a,eX@1 +a,eX@2=A+B+C (EQ2)

where @ represents the delay operatorand A= ag ¢ X,
B=a; e X@1 and C= a, e X@2. Also let O1 = A + B.
The value of the coefficients are: ag = 0.15625, a =
0.015625, and a, = -0.046875.

One possible implementation might be to have two
physical adders, one performing A + B = O1 and the
other performing O1 + C. An alternate implementation
might be to have a single time-multiplexed adder per-

AP A
+ e 0 IN1
BEP{IN2 + i o
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Figure 6: Activity trade-off for time-multiplexed
hardware: adder example.
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forming both additions. So, in cycle 1, A + B is per-
formed, and in cycle 2, O1 + C is performed. The
topologies for the two cases are shown in Figure 6. In
the first implementation, the adders can be chained
and therefore the effective critical path can be reduced
(chaining two ripple carry adders of N bits has a delay
= (N + 1) » Delay of one bit); it is clear that this will
result in extra glitching activity but since the objective
here is to isolate and illustrate the activity modification
only due to time-multiplexing, the first implementation
is assumed to be registered. The transition activities
(obtained using IRSIM assuming speech input data)
for the two adders for the parallel implementation and
the average transition activity per addition for the time-
multiplexed implementation are shown in Figure 6.

The results once again indicate that time-multi-
plexing can increase the overall switching activity. The
basic idea is that in the fully-parallel implementation,
the inputs to the adders change only once every sam-
ple period and the source of inputs to the adders are
fixed (for example, /N1 of adder1 always comes from
the output of the multiplier ag * X). Therefore, if the
input changes very slowly (i.e., the input data is very
correlated), the activity on the adders become very
low. However, in the time multiplexed implementation,
the inputs to the adder change twice during the sample
period and more importantly arrive from different
sources. For example, during the first cycle, IN2 of the
time-multiplexed adder is set to B and during the sec-
ond cycle, IN2 of the time-multiplexed adder is set to
C. Thus, even if the input is constant (which implies
that the sign of X, X@1 and X@2 are the same) or
slowly varying, the sign of B and C will be different
since the sign of the coefficients a; and a, are differ-
ent. This will result in the input to adder switching more
often and will therefore result in higher switching activ-
ity. That is, even if the input to the filter does not
change, the adder can still be switching. For this
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example, the time multiplexed adder switched 50%
extra capacitance per addition compared to the paral-
lel case (even without including the input changes to
adders or the multiplexor overhead).

4. Optimizing Ordering of Operation

The switching activity can be reduced by optimiz-
ing the ordering of operations in a design. To illustrate
this, consider the problem of multiplying a signal with a
constant coefficient and assume that the multiplication
is decomposed into IN + IN >>7 + IN>>8. Figure 7
shows the results of two alternate implementations for
the two required additions. In the first implementation,
IN and IN >>7 are added first and the sum (SUM1) is
then added to IN >>8. In this case, the SUM1 transition
characteristics is very similar to that of the input IN
since the amplitude of IN >>7 is much smaller than IN
and the 2 inputs have identical sign-bits. Similarly
SUM2 is very similar to SUM1 since SUM1 is much
larger in magnitude than IN >>8. In the second imple-
mentation, the two small number IN>>7 and IN>>8 are
added first and the output SUM1 is then added to IN.
In this case, the output of the first adder has a small
amplitude and therefore lower switching activity. The
second implementation switches 30% less capaci-
tance than the first implementation for this data.

5. Voltage Scaling-

Since the dominant component of power con-
sumption for a properly designed CMOS circuit is pro-
portional to the square of the supply voltage, operating
circuits at the lowest voltage is the key to minimizing
the energy consumed per operation. However, the
individual circuit elements run slower at lower supply
voltages and this must be compensated for through
appropriate architectural design. One important class
of applications are those which have no advantage in
exceeding a bounded computation rate, as found in
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real-time signal processing. For such applications, we
have previously presented an architecture driven volt-
age scaling approach in which parallel and pipelined
architectures can be used to compensate for
increased delays at reduced voltages [4][5]. As the
amount of parallelism increases, the amount of over-
head circuitry also increases and results in an optimum
level of parallelism for low-power. The optimum volt-
age corresponding to this level of parallelism was
found to be close to 1.5V (= 2V;) using a standard
technology with high threshold devices (Vp=0.7V and
Vrp=-0.9V).

Reducing the threshold voltage of the device
allows the supply voltage to be scaled down (and
therefore lower switching power) beyond the architec-
tural optimum without loss in performance. For exam-
Ple, a circuit running at a supply voltage of 1.5V with
V=1V will have approximately the same performance
as the circuit running at a supply voltage of 0.9V and a
V1=0.5V. Figure 8 shows a plot of normalized delay vs.
threshold voltage for various supply voltages.

Since significant power improvements can be
gained through the use of low-threshold MOS devices,
the question of how low the thresholds can be reduced
must be addressed. Figure 9 shows a plot of energy
vs. threshold voltage for a fixed throughput for a 16-bit
datapath ripple carry adder (which essentially repre-
sents the power to perform the operation). Here, the
power supply voltage is allowed to vary to keep the
throughput fixed. For a fixed throughput (e.g., that is
obtained at a 20Mhz clock rate), the supply voltage
and therefore the switching component of power can
be reduced while reducing the threshold voltage. How-
ever, at some point, the threshold voltage and supply
reduction is offset by an increase in the leakage cur-
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rents, resulting in an optimal threshold voltage for a
given level of logic complexity. That is, the optimum
threshold voltage must compromise between improve-
ment of current drive at low supply voltage operation
and control of the sub-threshold leakage. Circuits have
been designed with power supply voltages as low as
200mV using reduced threshold devices [6].
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