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42 INTRODUCTORY SIGNAL PROCESSING

y@)=Ke ' -2e"+2, t>0

as shown in Fig. 1.20 for K = 0 (the zero-state response) and 1 volt.

For ¢ >0, the transient response is y,(f) = Ke™ —2e™, the steady-state response is y{t) =2,
the zero-input response is y,(t) = Ke™ , and the zero-state response is y,,(t) =—2e™ +2. The forceq
response is a constant, and, since s, is a negative number, we have

lim y() = 1) =2

for any initial condition.

volts

Fig. 1.20. Response of RC circuit in Example 1.14.

If the transient response quickly decays to zero, then for ¢ large enough it becomes negligible
compared to the forced (steady-state) response.

1-3.2 Frequency Response

When we consider the frequency response of a system it is implied that the input is a sinusoidal
function or a linear combination of many sinusoidal functions with different frequencies, i.e.

N
x(t)= X A;cos(w;t+9;)
i=1
even as N — oo, where A, is the zero-to-peak amplitude, o, is the real frequency, and 6; is the phase
angle of each sinusoid. As we shall soon see, the forced response of an LTI system is also a linear

combination of sinusoids with the same frequencies as those of the input, but with different
amplitudes and phase angles, i.e.

740= X Bioos(®,1+4,)

Given x(¢), we want to determine YA#). If the natural response decays to zero, then, for ¢ large
enough, the complete response becomes y(r) = y/(t), and the only unknowns are B; and ¢;.

10



RESPONSE OF LTI SYSTEMS TO COMPLEX EXPONENTIAL FUNCTIONS 43

Consider again the RC circuit given in Fig. 1.18, and suppose that RC = 1. Let us find the
forced response to x(t) = A cos@?, where A is the zero-to-peak amplitude of x(¢) and ® is the
- frequency of x(¢) , which we will not specify at this time. The governing differential equation is eq.
- 1.8. We are only interested in the steady-state response. Since s, is negative, then, for every initial
condition, the natural response decays to zero, and therefore, we can avoid the effort of finding the
natural response.

, We will find the forced response in two different ways, i.e., (1) by writing x(¢) as in eq. 1.5
and (2) by writing x(¢) asineq. 1.7.

» By eq. 1.5, the excitation can be decomposed into the sum of two complex conjugate expo-
_nential functions so that x(¢) is given by

A e A ja
x(t)-ze +2e

We can think of x(¢) as the series connection of two voltage sources as shown in Fig. 1.21, where
A A
x1(t)=’53m‘, x—1(t)=53 e

The subscript notation is used to distinguish the exponential function with s = j from the one with
§=—j.

/\/\/\— +

+ R
xl(t)

- [—— y(t)
5

x_l(t)

Fig. 1.21. RC circuit with a sinusoidal excitation.

. By the superposition principle, we can find the forced response to x,(r) and x_,(¢) separately,
and then sum the two responses to obtain the forced response to x(¢) . For x,(r), we write

s A
xl(t) =Xle i , X1 =

27 sl=jm

and therefore, the forced response y;(f) to x,(¢) is given by
YO=H() o X e’ =Y, e™

Substituting s = s, into H(s) results in

H(jo) = 1 = ! —— = 1 p"jm_‘(“’)
1+jo 11@e/™"® \1+0?

and we have

11



44 INTRODUCTORY SIGNAL PROCESSING

1
1+

IHGo)| = , ZH(jo)=—tan™(0)

Or, to identify the real and imaginary parts of H (j®), we use
1 1-jo_l-jo

HUOD):1+ja)1—joo—1+o)2
and then
1 -
Re(H(jw)=——7, Im(H(w)=—7
e(H(jo) P H(Gw) o

H (jw) is a complex function of the real variable ®. Finally, y,(t) is given by

w0 = Lo e
' 1+’ 2
For x_,(t), we write

. A .
X O=X4e™, X,=%, =0

and therefore, the forced response y_,(7) to x_,(¢) is given by
Ya®)=HE) oy X 7 =Y e
Substituting s =s_; into H(s) results in
1 1 1
=0 Vitae™® Vit

Or, multiplying the numerator and denominator of H(~jm) by the complex conjugate of the
denominator results in

H(-jo)= iu©) = (o)

1 1+jo_1+jo_ .

H(-jo)= - H'G
O = o Tre 1re U@

Finally, y_(¢) is given by

L @A e
y—l(t)‘me 23 =y

Summing y,(z) and y_,(¢) yields the forced response yAt) = y,(r) + y.4(t) t0 x(t). For r large
enough, y(¢) is given by

YO =3O+y,®, >0

12



RESPONSE OF LTI SYSTEMS TO COMPLEX EXPONENTIAL FUNCTIONS 45

and then with Euler’s identity we get

1
YO ot

Notice thats._, = s, ,and therefore H (s_,) = H (s;) . Then, we found that  (s;) = H (s,), whichresulted
in y,()=y; ). Thus, it is not necessary to find y,(r). After finding y,(¢), we know that
Y @)= 3@+ 3 @)

In terms of the transfer function magnitude and angle, the steady-state response to
x(t) = A cos(wr) is given by

y(&) =1 H(jw)| A cos(wt + LH(jw))

The RC circuit performs a useful type of signal processing activity. This can be seen by
considering the zero-to-peak amplitude of the response as compared to the zero-to-peak amplitude
of the excitation (input signal), and

A cos(ar — tan (@), t»0

amplitude of y(¢)
amplitude of x(z)

A plot of | H(jw)|| versus o reveals how the system modifies the input amplitude to obtain the

output amplitude for different frequencies of the input. Such a plot shows the magnitude frequency

;esponse of an LTI system, and for this RC circuit, the magnitude frequency response is given in
ig. 1.22a.

=|H(w)l

Hate) 1

1 2 3
freguency - rad./sec.

Fig. 1.22a. Magnitude frequency response of the RC circuit.

b Notice further that the phase angle difference between the output and the input is determined
Y the angle of the wansfer function, which is shown in Fig. 1.22b.

" Figures 1.22 completely describe the frequency response of this system. The concept of a
lrlequency response can be applied to any dynamic system, and for a linear and time invariant System
the frequency response can be readily obtained.

If x(z) consists of two sinusoids such as x(¢) = cos ®,f +€0s Wyt , where ®, € @, then the
Steady-state response y () will also consist of two sinusoids y,(z) and v,(¢) at the two frequencies
@, and @, , respectively. However, the amplitude of y,(r) will be greater then the amplitude of y,(¢)

13



46 INTRODUCTORY SIGNAL PROCESSING

so that y(£) = y,(¢). The RC circuit attenuates high frequency input signals. This behavior is referreg
toas low-péss (LP)filtering. The R and C values determine the specific low-pass filter characterisgg
of this circuit.

(B (jw)

radians

Fig. 1.22b. Phase angle frequency response of the RC circuit.

LP filters are commonly used for signal processing, and more elaborate circuits can be
designed to approximate an ideal LP filter characteristic as shown in Fig. 1.23, where , is called
the cut-off frequency or bandwidth (BW) of the filter. If the goal of processing the signal x(¢) ig
to produce another signal y(z) that is predominantly the part of x(¢) with frequency 0=, , then
we would design a circuit that approximates the ideal LP filter characteristic given in Fig. 1.23 such
that ®, <®, <, and lim y, (#) = 0. The resulting circuit will filter out the part of x (¢) with frequency

£ —yeo

W=0),.
lHow |

e w

Fig. 1.23, Ideal LP filter magnitude frequency response.

Ahi-fi amplifier with a treble control uses a low-pass filter. When we adjust the treble control,
we are changing component values within the filter to vary the bandwidth @, of the LP filter. As

the bandwidth of the filteris reduced, the high frequency components of a music signal are attenuated.
We will discuss filtering concepts more extensively in later chapters.

Example 1.15. Find the forced response of the RC circuit shown in Fig. 1.18 to the input
x(t) = sint +cos(10r + 1/4), which is given in Fig. 1.24a.

For convenience, let RC=1 so that H(s)=1/(s +1). For the sine term we write
sin(t) = cos(z — n/2). By the superposition principle, the steady-state response to x(#) is given by

YO =|HGDI cost —=m/2+ LH 1)+ | HG10)|| cos(10t + /4 + £H (j10))

Notice that subscript notation is not used here, because, for t large enough, this is the complete
response. Evaluating the magnitudes and angles yields

14



RESPONSE OF LTI SYSTEMS TO COMPLEX EXPONENTIAL FUNCTIONS 47

1 1
1) = —=cos(t —3n/4 t=
which is shown in Fig. 1.24b.

cos(10r + /4 — tan™(10))
()

M i i M
| W\J\N? WW\NV WW\N

Fig. 1.24a. Sinusoidal input.

y{t)

PN
: .

-2

Fig. 1.24b. Steady-state output.

Although the input sinusoids have the same amplitude, the circuithas significantly attenuated

the input sinusoid with frequency ® = 10rad/sec. By changing the R and/or C values we can control

fhe extent to which the component of x(¢) with frequency @ = 10 is attenuated. This filter is not an
ideal LP filter, and the part of the input with frequency @ = 1 s also slightly attenuated.

.

An alternative to the preceding analysis is based on eq. 1.7. Consider the following equation

dw
o HrO=v0 (1.20)

WithRC =1 , this is the same equation as eq. 1.8. Now suppose that
v(r)=4 /™

The input signal x(¢) is related to v (¢) by

Re(v(t))= A cosar = x(z)

Whereif 3
l_ehere if, in general, we write v(r) = V ¢* , then V = A and s = j@. By our previous results, the forced
Sponse has the form

15



48 INTRODUCTORY SIGNAL PROCESSING

wit)=W e’
where W is given by
1—-jo
= V= jW)A =
W=HG), ooV =H(OA =175

With W, wt) becomes

i) =LA Gos@) + sin)

After multiplication, the real part of w/(t) can be obtained, and we get

A
1+w?

Re(wAt) = (cos(wt) + wsin(wt))

By a trigonometric identity (See Appendix A.)

A V1 + @?cos(wr —tan™ (@)

1+’

Re(w/(1) =

and then it becomes apparent that the forced response to Re(v(¢)) is given by
Re(wd1)=y(r)
The above procedure is a simpler method for finding y(z) than the method based on eq. 1.5,

However, for obtaining the response of a linear system to almost arbitrary input signals, we will {!

see in Chapters Two and Four that the method based on eq. 1.5 can be more conveniently extended,

The rationale for the method based on eq. 1.7 stems from writing v(z) and w/r) as
V(@) = vp(2) +jv(r)
WAE) = wi(t) + jwi(t)

where vp(¢) and we(z) are the real parts of v(r) and w/(t), respectively, and v,(¢) and w(t) are the
imaginary parts of v(¢) and wi{¢), respectively. Substituting v(z) and w{z) into eq. 1.20 yields

d , . ,
E(WR +jw)+ (g + jw) =vp +jvy

After equating real and imaginary parts, we have

dWR
——+wp=v
dr R R
dW1+
W =Y
dar 1 I

16




RESPONSE OF LTI SYSTEMS TO COMPLEX EXPONENTIAL FUNCTIONS 49

_ and the real and imaginary parts of w/{¢) separately are the forced response of the system to the real
and imaginary parts of v(f).

Letus apply the conceptof alinear operator to eq. 1.11, which isrepeated here for convenience,
e
b,

7[+ V(&) =x(t), RC=1

i Here, we assume that the system is initially at rest, so that y(¢) = y,,(¢). This is a linear system.
Operating on both sides of the equation with some linear operator L yields

&, _
L(}T* yu(t)) =L{(@)

~ Since L is a linear operator, then we have

L[%}‘L(yu(t)) =L(x(1)

Now, suppose we define L to be a time invariant differential operator, i.e.

4t 4ac
L(‘)=ci~&f—;2+-'-+cl—[;(}+co(-)

for some nonnegative integer i , where ¢, ¢y, '+, ¢; are arbitrary constants. Then L and the linear
oOperation differentiation can be reversed, and we get

d
5 LOLON+LOL ) =LED)

Therefore, if ¥..(t) is the zero-state response 10 x(t), then L(y,(t)) is the zero-state response 10

igx (). Furthermore, if YAt} is the forced response to x(t), then L(yA1)) is the forced response to
x(1)).

Example 1.16. We just found the response y/) of the circuit in Fig. 1.18 to x(t) = A cos(wr). Let

25 find the forced response of this circuit to z(1) = A sin(wt). But,yx(t) and z(r) can be related through
1 appropriate linear operator, which in this case is

1d
Lx@)=-—2Z -
3)] P x@)=z()
Therefore, the forced response to z(z) is given by L(yA1)), which is

1
Lo =2 (3,() =

A sin{ot — tan” ()
V14w

The reader should obtain this same result based on writing z(t) as z(¢) = Im(4 e’*).
\

17



50 INTRODUCTORY SIGNAL PROCESSING

Example 1.17. Toillustrate another kind of frequency selective behavior, consider the circuit given
in Fig. 1.25, where the voltage v(¢) is the input and the loop current i(r) is the desired response,

Fig. 1.25. A series RLC circuit.

By KVL and the v — i relationships for the components we have forz > 0"
;1
Ri(?) +Lgi+—f i(dt+vc(0)—v(@)=0 (1.21)
d CJy

Differentiating once yields
db _di 1 dv
L—+R—+—i(t)=— 1.2
dr? dt * C i) dt 122)

Using R=6Q,L=1H, C =1/25F, the homogeneous equation yields the characteristic
equation given by

s2+65,+25=0

and the natural frequencies are s; = -3 + j4 and 5, = =3 — j4. These are complex natural frequencies
with negative real parts, and the natural response i, () is an exponentially decaying sinusoid given
by

i () =Le e+ e¥e™ =2 L] e ™ cos(@t+ 1), L=|I]¢ A

sothat lim i, (r) = 0.1, can be found by applying initial conditions at t = 0" to the complete response

t oo

i(r). Here, we are only concerned with the frequency response of this circuit, and since lim i, (1) =0,

e

then the steady-state response is i{r).

If v(¢) = A cos(wr + 0), then we must find the forced response tov(t) =V e™ +(V "), where
s=jwand V= % /%, For the purpose of investigating the frequency response of this circuit, we
need only find the forced response i/(t) to v(r) . Denote the response to Ve* byle™ ,wherel =H(s)V,
and therefore i) =Ie™ + (I ey .

18



RESPONSE OF LTI SYSTEMS TO COMPLEX EXPONENTIAL FUNCTIONS 51

Substituting fe* and Ve* into eq. 1.23 results in

L32[+Rsl+-é:l=sV

LsI +RI +—1—I =V (1.23)
Cs .

 and, for H(s), we get
1

Hs)= =

1 s PGs)
1 R 1
Ls+R+5 Ls+is+p 206)

. where P(s) is the numerator polynomial of H(s) and Q{s) is the denominator polynomial of #(s}.

" Before continuing with this example, let us consider again the v —i relationships for the
components when either the voltage or current is an excitation that is acomplex exponential function.

For an inductor the v —i relationship is given by
~ diy

v (@)=L—
W) =L—

Hi(ry=1e”, then v (t)=V,e" = Lsl e, and V, =Lsl; .
For a resistor we have

V() = Rig(#)

If ip(t) = Ipe™ , then vg(t) = Vae™ =RIze*, and Vp =Rl
And, for a capacitor the v — i relationship is given by
. av,

e®)=C—=

ve(t) =V, e™, then ic(t) = Ipe™ = CsVe”, and Ve = o lc .

" The relationships between the complex amplitudes of the voltage and the complex amplitudes
Of the current for an inductor, resistor, and capacitor, i.e.

VL = LS]L

Vi =RI,
1

Vo=—7f

¢Tcs’c

19



52 INTRODUCTORY SIGNAL PROCESSING

are called Ohm’s law. By Ohm’s law we can relate the complex voltage amplitudes and the compley
current amplitudes of the components through the quantities Ls , R , and 1/Cs , which are called the
impedance of an inductor, resistor, and capacitor, respectively.

If we are only interested in the forced response, then we can omit writing time domaiy
equations such as eq. 1.21, skip the steps from eq. 1.21 to eq. 1.23, and immediately apply Kvy,
in terms of complex amplitudes and impedances to obtain frequency domain equations such as eq_
1.23, where Ls/ is the complex amplitude of the voltage across the inductor, R/ is the complex
amplitude of the voltage across the resistor, and I/Cs is the complex amplitude of the voltage acrogg
the capacitor. By KVL, the sum of these complex voltage amplitudes equals the complex amplitude
of the input (See eq. 1.23.).

Now, with s = j, write H (j®) ih polar form, i.e.
H(jo)=|H(o) ¢
Since I = HGw)V , ift) is given by
iy=IH| ef‘”%ef"ef““ +H]| e‘j‘H%e'jee"j“"
After combining exponential terms and using Euler’s identity we get
i{lt)y=1H(Gw)| A cos(wt +86+ LH(jw))
With the component values of the RLC circuit we have
o]
(25 - o)’ + 360%)

and the magnitude frequency response of the circuit is shown in Fig. 1.26.

IHGo) =

172

flaGe |

w=5 w>3s w
Fig. 1.26. Magnitude frequency response for Example 1.17.

If v{2) consists of the sum of sinusoids at many different frequencies, then i{¢) also consists
of a sum of sinusoids at these frequencies. However, from Fig. 1.26 we see that input sinusoids
with frequencies significantly below and above @ = 5 rad/sec are attenuated. This circuit exhibits
the frequency selective behavior of a band-pass (BP) filter. A more elaborate circuit is necessary

20



RESPONSE OF LTI SYSTEMS TO COMPLEX EXPONENTIAL FUNCTIONS 53

to approximate the ideal BP characteristic shown in Fig. 1.27, where ®, and @, are called the lower
and upper cut-off frequencies, respectively, and (w,— @,) is called the bandwidth (BW) of the
BP filter.

B 5w }f

wl ug w

Fig. 1.27. Ideal BP filter.

By varying component values, such as the capacitor value, the range of frequencies of input
sinusoidal functions that are passed by this circuit can be changed as shown in Fig. 1.26. This is
the basis of the kind of signal processing activity that first occurs in a TV or radio receiver. The
intent is to allow the remainder of the receiver to process only one of the many incoming signals.
Tuning in a particular transmitting station can be done by adjusting component values in a band-pass
filter circuit until the frequency response of the filier peaks about the frequencies of signals
transmitted by a desired station.

For any linear and time invariant system with transfer function H(s), if the lim y,(t) =0,

then the steady-state response to the input
x(t) = A cos{wr +6)

is given by

| YO=]H(w) A cos(or +6+LH(jw))

) The.complex function H (j w) of the real variable o determines how an LTI system processes
an mnput sinusoidal function to produce an output sinusoidal function.

E."ample 1.18. Let us write KCL equations in terms of forced response amplitudes for the circuit
8lven in Fig. 1.28, and determine its frequency response.

Again, we assume that the input is given by v(£) =Ve" + (Ve*) . Consequently, the forced
Tesponses for the node voltages v, and v, are v,(f) = V,e™ + (Ve and vy(t) = Vye™ + (Voe " Now,
Instead of writing time domain equations similar t© eq. 1.21, we will write equations, which are

g?llllel‘.i frequency domain equations, similar to eq. 1.23. Applying KCL by summing the complex
Plitudes of carrents leaving nodes (1) and (2) results in

Vi-v Vi-V,
ROVt :

=0

2
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V-V, V,
2 2o

and we have two coupled linear algebraic equations instead of two coupled time domain differentiy
equations. Rearranging these two equations in two unknowns results in

1 1 1 1
(Cs +—~+—-)V1 —V,==V
R,

g ’\/R\/‘
1
+ C C :
vt} i c 1| i
1(t) ._’_ 2(8) L

Fig. 1.28. A two loop RLC circuit.

If v,(r) is the desired output, then by Cramer’s rule (See Appendix D.) we can solve forV,
to obtain ’
Ls +R, _Py(s)

= V= 14
RALC s>+ (L +RRC)s +R,+R, 0O(5)

1

which also identifies the transfer function H,(s) from V to V,. With the transfer function we can
write the differential equation that relates v,(¢) and v(z) . Furthermore
_ Ls _P 2(8)

RLCs*+(L+RRC)s +R,+R, Q)

v

which identifies the transfer function H,(s) from V to V,.

The characteristic equation for the natural frequencies can be identified from the denominator
of either H,(s) or H,(s). Remember, regardless of which quantity we choose to find, the natural
frequencies will be the same.

Now assume that v(z) = A cos(wr +8) so that V =%ej° and s = jw. Then, with H,(s) we can

find the forced response v,(r) to v(t), and with H,(s) we can find the forced response v,(t) to v(z).

If v,(¢) is the desired output, then a plot of | H;(jw)|| versus o will reveal the frequency selective
behavior of this circuit.
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- We have been analyzing linear and time invariant systems, which, for a single input x(¢) and
single output y(¢), can be represented in the frequency domain as shown in Fig. 1.29, where X is
. the complex amplitude of the input and Y is the complex amplitude of the output.

System
X —8! described by [—® Y = H(s)X
His)

Fig. 1.29. Frequency domain representation of an LTI system.

1-3.3 Complete Response of an n'™ Order System

In the analysis of the circuit given in Fig. 1.18 we introduced various salient terms and pro-
cedures that are involved in the analysis of any LTI system. Before we consider an n™ order system,
let us repeat this analysis procedure, but without the intermediate details.

Example 1.19. Find the complete solution of the differential equation given by
d*y dy dx
2—=+10==+12y(r) =3—+ 12x(t
ds* dt ) dr ®

(1.24)

fort > 0. The input x(¢) is assumed to have the form x(@t)=X e fort>0andx(r) =0 forz <0.To
solve for y (1), we need two conditions on y(¢), and suppose they are y (0")=1and y(0")=0. Since

x(1) has only a finite discontinuity at # =0, then y(¢) is continuous at £ = 0. In Section 1-4 we will
consider issues regarding the continuity of the solution of a linear differential equation. Now, let
us proceed as before. The complete response has the form as in eq. 1.9.

From the homogeneous equation, the characteristic equation is

253+ 105, + 12 =2(s, +2) (5, +3) =0
This second order polynomial equation in s, has two roots, which are s, =~2 and s,=~3. These
are the natural frequencies of this system. Each natural frequency generates an exponential function
that satisfies the homogeneous equation. Therefore, y.(1), as given by

Y=Y e +Y,e™
also satisfies the homogeneous equation. Try it. The constants ¥, and Y, will be found by applying
the conditions given for the complete solution.

To find the forced response y,(t) =Y, ¢, we need the transfer function H(s), which is

Hy=_35+12 3 s+4 _P6)

252+ 10s+12 25°+55+6 Q@)
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CHAPTER TEN

DIGITAL FILTER DESIGN

Basically, a discrete time system or digital signal processor executes an algorithm that operates
on an input number sequence to produce an output number sequence. We have already seen through
several examples that a discrete time system can exhibit frequency selective behavior, and conse-
quently the term digital filter is also used when we refer to a discrete time system. In the previous
chapter the Z-transform was presented, and we found that it is a useful tool for the analysis of LTI
(linear and time invariant) discrete time systems. And, we developed several ways by which a
discrete time system can be described and realized. In this chapter we shall be concerned with the
design or synthesis of LTI digital filters to achieve a prescribed frequency response. Then, in the
next chapter, we will consider the application of some commercially available special purpose
microprocessors for implementing a digital filter,

SECTION 10-1 Digital Filter Properties

To design a digital filter, we must provide a specification of the desired performance of the
filter. Filter specifications must be consistent with design procedures. Therefore, we must satisfy
some particular discrete time system properties as we impose filter performance requirements.
Before we develop some digital filter design procedures, let us review some LTI discrete time
system properties to see how they affect a design specification.

10-1.1 Review

A single input u(k) and single output y(k) LTI digital filter can be described by a scalar
difference equation, i.e.

Yk +n)+a,_, yk+(n—1)+-+8yy (k)= bk +m)+ b, u(k +(n— 1)+ +byu(k)

This is an n"™ order difference equation. We assume that u(k) =0 for k < 0. Since the filter is time
invariant (shift invariant), we can write

y(k)=b,ulk—(n —m))+b,,,_1u(k—(n—m+1))+---+b1u(k—(n—l))—i—bou(k—n)

—a,  yk=1)——ay(k—(n—1)—a,yk—n)

or

y®)= b, _ulk= (@ =m)=i)= 3 a, k=) | (10.1a)
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fork=0,1---. Torun eq. 10.1a requires the initial conditions, y(~i),i = 1,2, -+, n . If the filter is
to be causal, then the present output y (k) cannot depend on future inputs, and therefore, from the
term u(k — (n —m)), we require that (n —m) >0, orn = m.

We saw in the previous chapter that there are innumerable other ways, which preserve the

input-output relationship, for describing a digital filter, Through a definition of # state variables, a
causal filter can always be represented with

x(k +1) = Ax(k) +Bu(k) _ (10.1b)
y(k)=Cx(k)+Du(k) . (10.1¢)

where X is an n component state vector, To run eq. 10.1b requires the initial condition x(0). We
can run either description given in egs. 10.1 to obtain the response y(k) to an input u(k), for
k=0,1,:-.

A digital filter is also described by its unit pulse response k(k), and for a causal system,
h(k)=0for k <0. The response to an input u(k), k=0,1,---, can be found with the convolution
operation, and we have

Y= 5, ik ~Du()= £ hulk—) (10.20)

By taking the Z-transform of eq. 10.1a and assuming zero initial conditions, the transfer
function of the filter is given by

5 bzt
HE)=—= 70 (103a)
45 0 0()
ﬁ (z-z) )
H(z)=Hy~—— (10.3b)
5131(2 -pi) )

If the filter is to be causal, i.e., m <n, then H(z) must be a proper function. Assuming that H (z)
is irreducible, the poles of H(z) are the roots of the characteristic equation, i.e., Q(z)=0 or
|zl —A| =0, which are called the natural frequencies of the filter, If the filter is to be stable, then
all the poles p; of H (z) must be inside the unitcircle, ie., || p;| <1,i=1,2,---,n . However, without
some other specification, the zeros z; can be anywhere in the z-plane.

With the convolution property we have that ¥ (z) = H(z)U (z), and H (z) = Z(h(k)) . Therefore,
y(k) in eq. 10.2a can also be found with

y(k)=Z"H@)U(z)) (10.2b)
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From an input-output viewpoint we can represent a digital filter as shown in Fig. 10.1. Itis
~ important to remember that eqs. 10.2 yield the complete response under zero initial conditions.

ulk) ———p nik} —— 3k

! I

LI p— T R

Fig. 10.1. Time and frequency domain representations for a digital filter.

Ifany ;,i=0,1,-:+,(n—1), in eq. 10.1a, is not zero, then there is feedback in the filter,

i.e., the present output depends on past outputs. Such a filter is said to be a recursive filter, and
any finite duration input will cause an infinite duration response. This is an IIR filter.

Example 10.1. Let us consider the relationship between the behavior of the unit pulse response and
the pole locations of a filter with h(k) given by

h(k) =" cos(kT +y)u_,(k)

If |y] <1, then k(k) is an exponentially decreasing sinusoid. The transfer function H (z) is given
by
cos{y)z® — yeos(a,T — )z
_ 22 = 2ycos(@eT)z + ¥
and the difference equation relating y (k) and u (k) is given by
y(k)=bu(k)+buk —1)—a,y(k—1)—ayk—-2)

Zhk)=H(z)=

where b, = cos(y), b, = —ycos(w,T — V), a, = —2ycos(,T), and @, = v*. This is a recursive filter.

The poles of H(z) are p; = 'ye‘"im“T and p,= Te_jm"r. Notice that the magnitudes of the poles

determine the exponential decay rate of h(k). Therefore, the closer the poles are to the unit circle,
the longer it will take for the filter response to reach steady-state conditions. Furthermore, the an gles
of the poles determine the frequencies of the natural response. For example, if f, = 8 samples/sec,
and the poles are given by

D= 'Yeﬁm

then o,T = /6 so that w, = 47n/3 rad/sec.

Ifthea;, fori=0,+ -, (n—1),in eq. 10.1a are zero, then H (z) becomes

L)

b;z s

H(z)=

=3 by (10.42)
i=0

0
zu
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so that

y&)=b utk—(n—m)+b,_uk=(n—m+ 1)+ +bulk —(n - 1)) +byulk—n)
and we have a nonrecursive filter, which is also called a transversal or tapped delay line filter,
The response of a nonrecursive filter depends only on the input, and therefore the response to 3

finite duration input also has a finite duration. This is an FIR filter. If it is a causal filter, then the
response depends only on the present and past inputs.

The unit pulse response of a nonrecursive filter is given by

h(k)=Z"Y(H(z)) = ig]ubiu(,(k ~(-i)= z b, =)

= b - (103)
i=0
where, if m <n, then we set b,,,, =0, -, b, =0. Therefore, h(k)=b,_,,k=0,1,---,n. Since
the n poles of a nonrecursive filter are all at z =0, a nonrecursive (FIR) filter is unconditionally
stable. And, H(z) is simply given by
H@)= 3 hk)z™ (10.4b)
k=0 2

which has the structure shown in Fig. 10.2.

ulk) ——q delay '——4 delay |_—____

ol [

Fig. 10.2. A causal FIR filter.

Since the unit pulse response ki (k) of eq. 10.1a is a real time function, then the coefficients
in the polynomials P(z) and Q(z) are also real, and therefore we have

« PEY PE .
HE)=—2=""-p 10.6)
O e (
The steady-state response y (kT to u (kT) = A cos(wkT + 8)u_,(kT) of a stable LTI digital filter

is given by y(kT") = M (w)A cos(wkT + 8+ ¢(w)), where
M(w) =] H(")| (10.7a)

()= ZH (™) (10.7b)
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Therefore, the amplitude and phase angle of the response depend on the frequency of the input and
the nature of the digital filter.

Writing H(¢/®") in polar form results in

H(e'™) = M (w)e’™™ (10.8a)
and by eq. 10.6 we get

H(e7"y=H"('")

M (—w)e™* = M (@)e 7 (10.8b)

Therefore, M (—w) = M (w), and M () is an even function, and ¢(—w) =—¢(w), and ¢(w) is an odd
function. Furthermore, by Euler’s identity we can write

H (&™) = M (w) cos p(w) + jM (@) sin () _ (10.9)
and the real (imaginary) part of A (¢’*T is also an even (odd) function. Consequently, to achieve
real coefficients in the design of a digital filter as described in egs. 10.1, we must choose H (z) such

that the magnitude (and real part) of H (e’*") is an even function, and such that the phase angle (and
imaginary part) of H(e’") is an odd function.

We have already shown that H (¢/°") is a periodic function of @, with period @, , the sampling
frequency. This means that if (k) and the response to any real input are to be real, then M (w) (and
the real part of H(e/*") ) must be an even periodic function, and ¢(®) (and the imaginary part of
H(e’®") ) must be an odd periodic function.

10-1.2 Pole or Zero Reflection

Itis possible to replace any pole or zero of H(z) ineq. 10.3b by its reciprocal without changing
the shape of M (w). By egs. 10.8 we have
M*(@)=H(e" H (") =H@)H@E™)|,_ jur (10.10)
Notice that if (z — p,) is a factor in the denominator of H(z) in eq. 10.3b, then (z" —p,) is a factor
in the denominator of H(z™), and z = 1/p, is a pole of H(z™*). Similarly, z = 1/z, is zero of H(z™).
With eq. 10.3b, M (w) is given by
e -z
M(@)=|H,| =— (10.11)
51;11" e’T—pil

Consider any factors due to a complex conjugate pole pair, and we have
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e —pl 1 -pll = @ —p) 1 1@ -p) 1 =le? =pill | ¢ —p|l

Jf @l | - 1 T | i wr L jor 1
= p, _.__e.r e -jal ” i_[ el } -’“’T“= i 2}1 e’ __;” P ___.
np (p.- ] Pi\ 3. Il 2:l 5 ,-

Eq. 10.12 shows that the shape of the magnitude frequency Tesponse is not changed if in H(z), any
real poles (or zeros) or any complex conjugate pair of poles (or zeros) are replaced by their recip-

rocals. The resulting magnitude frequency response is only scaled by a constant. This means that
if in the design of a digital filter H (z), we obtain an.unstable filter because p; and p; are outside the
unit circle, then if we are only concerned with achieving a desired M(w) shape, the factors
(z—p)z— p;) can be replaced with (z — 1/p)(z - 1/p;). The resulting H (z) will be stable, since

1/p; and 1/p; are inside the unit circle.

10-1.3 Frequency Response Specifications

Example 10.2. Let us investigate the frequency response of the filter given in Example 10.1 with

y=-1/2, Wy=41w3,and T=1/8, 50 that
1

e

(2 —1e™) @~ ™)

hi)=y" sin[% k]u,,(k)

H(z)=

H(e’®T) is periodic, and here, the period is ©, =

2;“= 16w rad/sec.

Assume the input is u(kT)= cos(@kT + 8)u_y (k). With [¥] <1, the complete response will
consist of a transient term similar to k(k) plus 2 sinusoidal term. For some 0<y=7,<1 and

0<y=Y, <1, where Y, >Y., M (@) is shown in Fig. 10.3.

y Hlw)
1 Ry
iTh>Ya
Oey =y <1
a

-2r D b\ g7 \ 16 "
w [2
i
o we T g

Fig. 10.3. Band-pass filter magnitude frequency response.
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By eq. 10.11 we see that M () should peak at or in the vicinity of @ = w,. This is because
the factor ||’ — p,| in the denominator of M () takes on its minimum value as © — @,. This
M (w) does peak at w=*a,.

Since H(e’*Ty= H(e""*™"") for any integer r =+1,42, ---, the amplitude and phase angle
of the steady-state response for @ = @, and © = ®, = o, + , will be the same. For example, suppose
o, =27 (f, = 1 Hz), so that @, = 187 (f, = f, + f,= 9 Hz). The input for ®, and for w, is shown in
Fig. 10.4.

Fig. 10.4. Input for £, =1 Hz and f, =9 Hz.

Notice that at the sample time points 7 = kT, the same number sequence u(kT') occurs, and
the filter cannot distinguish between inputs at these two frequencies. To uniquely determine the
frequency of the output, we must limit the input frequency range to 0 S w < /2.

Forthis H(z) , M (w) is small for low frequencies and high frequencies (up to «,/2 ). Therefore,
this H(z) exhibits the characteristic of a band-pass (BP) filter. If the input consists of a sum of
equal amplitude sampled sinusoids with frequencies in the range 0 < @ < /2, then the steady-state
response will also consist of a linear combination of sinusoids at these frequencies. However, the
response sinusoids with frequencies significantly above and below @ = @, will have small ampli-
tudes (the input sinusoids are attenuated) compared to sinusoids with frequencies in the vicinity of
0= y.

Tobe more specific about the nature of a BP filter, we refer to the frequencyrange ; £ @ < @,,
where M*(w) = éM:e,k as the pass-band of the filter, and (e, — ®,) as the bandwidth (BW) of the

filter, i.e., BW = 0, — @, where , and , are called the lower and upper, respectively, cut-off
frequencies. Therefore, at the cut-off frequencies we have

M@=
101o —(m;”—im—%) =10log . =-3dB
Mpea 2
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Since this M (@) peaks at @ = @, , the cut-off frequencies are found with M Ho)=M o) = iM z(ml,) .
Notice that @ = @, is not necessarily the arithmetic average (3, + @,)/2 of ®, and w,. If an input
with unity amplitude has the frequency w = @y, then the amplitude of the steady-state response ig
M (), and the average power of the sinusoidal steady-state response is given by %M *(evp). If the
input frequency is @=uay, then the average power of the steady-state response is given by

1

%M o) = -GM 2(u)‘,)). Therefore, © =, and 0= w, are also referred to as the half power points,

2

A sketch of the characteristic of a BP filter is shown in Fig. 10.5a. In specifying the desired
characteristics of a band-pass filter, which is to be designed, ©, and @, are usually given.

Miw)

Mlu ) $==== oo
o N
o M) (V2

1} gy u, uy ms.l'2

Fig, 10.5a."A BP filter magnitude characteristic,

Furthermore, we must also specify some frequencies o = @, < @, @ = W, > @), and the extent
to which M () is to decrease as @ is decreased from @, to @, and increased from @, to @,. Our
design goal is to determine an H(z) such that M(w) meets the bandwidth requirement, and
M(w) < M(w;)for0 < 0 < @, and M () < M(o,) fora, <0 <w,/2. The frequency ranges0 < o < @,
and o, < @ £ /2 are called stop-bands, while the ranges , < @ < @, and @, < ® < @, are called
transition-bands. Once o, , ®,, ;, M(w,), @,, and M (w,) are given, we must determine an H (z)
such that M () remains within the cross-hatched area shown in Fig, 10.5a.

An ideal BP filter magnitude characteristic Mgp(®) is given by

0, 0se<o,
Mg@)=11, o <o<o, (10.13a)
0, o,<w<w/2

and since M (w) must also be an even periodic function, then the Mgp(w) shown in Fig, 10.5b results,

If the input to an ideal BP filter consists of a linear combination of sinusoids with frequencies
in the range 0 <@ < ®,/2, then the steady-state response will only consist of sinusoids with fre-
quencies within the pass-band of the filter, and their amplitudes are the same as the corresponding
input amplitudes. Those input sinusoids with frequencies within the stop-bands are perfectly
attenuated. If M () is not a constant within the pass-band, then the input wave shape corresponding
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to sinusoids with frequencies within the pass-band is not preserved in the output. This is called
magnitude distortion. As we shall see, it is possible to design an H(z) with an M () that comes
as close to Myp(m) as we desire.

Mpp ()

1 .

T y P o)

1 4y 2 Us Vg oty Mg Mg

Fig. 10.5b. An ideal BP filter magnitude characteristic.

Withany H (z) that has been designed to achieve desired specifications on M (®), the resulting
phaseshift ¢(w) determines how the filter modifies the phase angles of input sinusoids to obtain the

phase angles of the output sinusoids. Suppose the filter in Fig. 10.1 is an ideal BP filter, and that
the input consists of

u(kT) = cos(®, T )u_, (k) + cos(w,kT )u_, (k)

where ®, and , are within the pass-band of the filter. If in the steady-state response, the input

wave shape is to be preserved, then the filter should do no more than delay the input by some delay
time T, so that

r YT) = u(kT - T,) = cos(, (kT — T,)) + cos(w, (kT —T,))

1

; = cos(w kT — m,T,) + cos(w, kT — 0,T,)

1 Here, we have that Myp(,) = Mpp(®,) = 1, and to equally delay each sinusoidal input, it is necessary
) that ¢(e,) =—®,T; and ¢(c,) = —,T; . For an ideal BP filter we require that

dpp(@) =-T,m (10.13b)

for —~,/2 < ® < ®,/2, which is a linear function of ®. Since () must also be an odd periodic
function, then the ¢yp(®) shown in Fig. 10.5¢ results. Notice that for a causal filter the slope of
1) () cannot be positive.
typlud
[S.

ng e =
tly

g Fig. 10.5¢c. An ideal BP filter phaseshift characteristic.
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If ¢(w) is not a linear function of ®, then the input wave shape is not prcServed in the output,
This is called phase distorfion.

A commonly used alternative to describe the phaseshift characteristic of a filter is the group
delay t(w), which is defined by

T(w) = —;;) o(w) (10.14)

and for an ideal BP filter we have the constant () = T, secs. Since H(z) is a ratio of polynomials

in z, we generally do not expect that () will be a linear function of ®, which, as we shall see in
the next section, only occurs under special circumstances. Instead, a design specification should
require that 7(®) remain within some range over the pass-band of the filter as shown by the
cross-hatched area in Fig, 10.5d.

Tlw)

Tmax - === -
e BZE \

/

it Y2 ]
Fig. 10.5d. A BP filter group delay characteristic.

In general, we are not free to independently use any function form for M (®) and ¢(w), which
are related through H(z). Furthermore, H(z) =P (z)/Q(z) should be the transfer function of a real,
causal, and stable digital filter, where we would like that n, which is the order of the filter, be as
small as filter specifications allow. Therefore, a filter specification is usually given in terms of
bounds as shown in Figs. 10.5a and 10.5d. Even then, it may not be easy (or possible) to find an
acceptable H (z), which meets both of the bound conditions shown in Figs. 10.5a and 10.5d, if these
conditions are too stringent. Usually, H(z) is determined based only on conditions imposed on
M (w), and then the resulting §(e) is evaluated to see if any phase distortion or delay is acceptable
within the context of the intended application. '

Example 10.3, For H(z) given in Example 10.2, M *w), d(w) and t(w) are given, respectively, by

M @)= 720032((001' -V)
(1+72 = 2ycos((0— wo)T)) (1 +v* - 2ycos((@+ o))
o(0) =—aT —tan™ ysin((@—- @) ) _ysin((@+ay)T)
- 1—yeos((®— w)T) ) 1 —ycos((®+ wy)T)
W) =T|1- Y —yeos((@-w)T) v —ycos((®+ wy)T)
1472 =2ycos((@—wp)T) 1+ —2ycos((@+ wp)T)
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§(—w) =—(w). For y=0.95, these functions are plotted in Fig. 10.6, where the more conventional

‘ and one period is defined for —8n < @ < 8w. The reader should verify these expressions. Notice that

| dB value of M*(®) is shown.

3 Mg (w)

M
"2 R [

Fig. 10.6a. Magnitude response.

3 #lw)

“p

Fig. 10.6b. Phase response.

T {w)

e

Fig. 10.6¢c. Group delay response,

In Fig. 10.6a we see that the gain M () is down 3 dB from the peak value at @, = 3.75 and
@, = 4.55 rad/sec, so that the bandwidth is BW = 0.8 rad/sec. If this is the desired pass-band, and it
is sufficient that the gain is down 10 dB from the peak value at w,=2.7 and ®,= 5.3, then the
difference equation given in Example 10.1 can be used to realize this band-pass filter. On the other
hand, we may want the gain to be down more than 10 dB at @, and ®, or some other values for @,

and @y, which are closer to @, and @,, respectively. We shall develop design techniques to achieve

such goals.
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L ] group delay

Y 8y

Fig. 10.6d. Equalized group delay.

Now, let us see how this BP filter responds to the input u(kT") = sin(@kT u_,(k), which is
shown in Fig. 10.7a for @ = . For @ =ay, w,, and o,, the outputs are shown in Figs. 10.7b, c,
and d, respectively.

Fig. 10.7a. Input with ® = w,.
This filter was realized with the algorithm described in Fig. 9.25, and a subroutine, which
executes this algorithm, is given in Fig. 10.8.
From the outputs, which are shown in Fig. 10.7, we see that after steady-state conditions have
been reached, the filter has significantly attenuated the input for the frequencies @'= w, and = o, .
Notice that the input with frequency = @, has been phase shifted by ¢(ey) =—1.6 rad. (See Fig.

10.6b.), or delayed by t(c,) = 2.4 secs. (See Fig. 10.6¢c.). From Fig. 10.6¢c we see that the group

delay is not a constant within the pass-band, but instead varies over the range 1.1 secs. to 2.4 $ecs.
An improved group delay is shown in Fig. 10.6d, which will be explained in a short while.

35




DIGITAL FILTER PROPERTIES 569

4 y&T)

Fig. 10.7d. Output with 0= w,.

DIMENSION C(48 ,Y0(512),YI(512), TIME(512
DATA PI!3 141 ,5926:“ ‘N33’2 7} ) ( L 218
GAMM

Wo=4. ‘PI:‘3

T=.125
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PSI=-PI/2.
B2-COS(PS))

Ba=bGA MA*COS(WO*T-PSI)
BO=

A1=-2 *GAMMA®COS(W0'T)
AD=GAMMA**2

CYUTAO
F 5)=-A1
=1
NY=6*1
DO 1 M=1,NY

1 Y(M)=0.

W=Wo
N=512
DO 2 K=1,N
TIME(Iﬂ: K-1)*T
AD=SIN(W*TIME(K))
YO(K)=AD
CALL FILTER(I,C,Y,AD,DA)
YI(K)=DA

CALL PLOT("~--—FILTER-INPUT-' N,
1 Y0, TIME,"-SECS.-

CALL PLOT(~~——FILTER-OUTPUT--—N,
1 Yl TIME,--SECS.-)

STOP

END
SUBROUTINE FILTER(I,C,Y,AD,DA)

c EXECUTES THE FILTER ALGORITHM GIVEN IN FIG. 9.258
DIMENSION C(1),Y(1)
Y(3)=AD

INDEX=0
DO 1 ISECT=1,|
INDEX=INDEXs1
SUM=0.
DO 2 M=1,5
SUM=SUM+C(INDEX)*Y(INDEX)
2 INDEX=INDEX+1
Y(INDEX)=SUM
IF(ISECT.EQ.) GO TO 3
Y(INDEX+I|§:);Y(|‘NDEX)
DA=Y(INDEX)
DO 4 M=2,INDEX
4 Y(M-1)=Y(M)
RETURN
END

[ 4

Fig. 10.8. Main program and subroutine for running a cascade structure filter.

A design specification may require that within the pass-band of the filter, T(t) should not
deviate by more than, for example, £10% from some constant value. Since in general, there is no
direct design procedure that can simultaneously achieve arbitrary specifications on both M () and
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(w), we first determine an H (z) that satisfies the requirement for M (w). Let us denote the resulting
H(z) by Hy(z). We then can cascade H,(z) with an all-pass filter Hyo(z) that consists of a product
of terms each having the form
(1-pz)(1-p’z) _1-(@+p)z+|pl**
z-p)e-p) 2’-@+pz+lpl?
for complex poles, or (1 — pz)/(z — p) for real poles. Therefore, the zeros of Hg(z) are the reciprocals
of the poles of Hyqy(z), and by eq. 10.12, Mgo(®) = 1. Let us denote the overall transfer function by
H,(z), and we have

Hy(z) = H,(z)Hpq(z)

(10.15a)

M?_([D) = Ml(m)MEQ(m) - Ml(m}
() = ,(@) + Ppo(z)
Tp(@) = Ty(@) + To()

Since an all-pass filter does not alter the magnitude response of H,(z), it is commonly used
for phase equalization, which means that the poles of Hgy(z) must be positioned such that for a
given ¢,(m) (or T,(®) ), 9(w) (or T,(w) ) satisfies the specifications imposed on ¢(w) (or T(®)). Hep(z)
must also be a stable filter, and if in eq. 10.15a we write p = cte’®, then au< 1.

If Hyq(z) were to consist of just one term as given in eq. 10.15a, then Tg,(w) is given by

o’ —acos@T —B) __ o’—acos(@T +f) J (10.15b)

Tro(®) = 2T[1 "1+ 02— 2acos(@l — B) 1+o0?—20cos(@T +pB)

which, like 1(w) given in Example 10.3, peaks at @ ==2f/T . The extent of the peak is determined
by ot. If an equalizer for 7;(w) shown in Fig. 10.6c¢ is needed, then it is likely that at least two terms
as given in eq. 10.15a are required in Hiy(z). For one term, the group delay should peak near @,
and for the other term, the group delay should peak near @, . This is illustrated in Fig. 10.6d, where

we have simply used guess and try valuesforp = p, = alejﬁ‘ andp =p,= aze'm’. Laterin thischapter
we shall develop a method for finding suitable values for p, and p,, or the poles of any other phase
equalizer we may want to try.

At this point, the reader should realize that LTI filter design is mainly an approximation
problem, where a causal (for real-time operation), real, and stable discrete time system, which meets
prescribed filtering behavior, must be determined. This becomes even more apparent if we consider
the time domain behavior of an ideal BP filter. For —@,/2 < ® < /2, egs. 10.13 become

—jaT,

Hﬁp(ejmr): e , —W,<O<—w, 0,<0<, (10.16)
0, Wwl2<n<-0,,-0,<0<0;,0,<0<n,/2
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By eq. 9.16, the unit pulse response hgp(k) is given by

hgll) = 2" (Hp(2)) = ﬁ; f Holo)* "z

where the path I" must be within the annulus of convergence of Z (hgp(k)). Since the filter must be
stable, the annulus of convergence includes the unitcircle, which we will use asthe path ™. Therefore,
along the path T, let z = ¢" for —n < T < 7, and hgp(k) becomes

@ /2

1 . . . .
hBP(k )= E J:m & H BP(e JMT)G el I{ITE Jﬂd w
= I.(f . ¢ o Tag kT g J' = o Ol inkT 4 m]
21\ Jo, o,

T gi(kT—Td)m - ei(kT—Td)m
hpel®) =~ ——— |l | o= |:
2\ JkT =Ty ) ™ \j*T -T,)

_ T sin(@,(kT—T,)) o,T sin(@,kT ~T.))
T @(T-T) =w aKT-T)

For the cut-off frequencies of Example 10.3, the unit pulse response of an ideal BP filter is
shown in Fig. 10.9, with T, =0.

(10.17)

h(k})

Fig. 10.9. Unit pulse response of an ideal BP filter.

From eq. 10.17 or Fig. 10.9 we see that hg,(k) # 0 for k <0, and therefore an ideal filter can
only be achieved with a noncausal system, regardless of the value of T, . However, SUpPpOSE we use
a large enough positive value for T, which would shift, for example, the #g;(k) shown in Fig. 10.9
to the right, and then define h(k)=hup(k)u(k), which is causal. With this h(k),
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H(z)=Z(h(k)) = Hyp(z) as Ty — oo. For T, = 1287 , | H(e/*T)| is shown inFig. 10.10, which was
obtained by taking the DFT of A(k) fork =0, 1, ---, (N — 1), where N = 512, which is large enough
for a negligible leakage error, was used.

1edoTy
1.07

w

Fig. 10.10. Approximation for an ideal BP ﬁlt_er magnitude response.

Although we can come close to the ideal BP filter characteristic by increasing T, we cannot

exactly achieve it. Nevertheless, the (k) values could be used as the weights for the FIR filter
structure given in Fig. 10.2.

1k My plwd
1
' ' »
w
= w g wo— wa wo o+ ow
c . kS 5 © 8 ©
& MLl
- 41 —
\ ' ! >
"}
w
==t w b w w_Fw
z [ d T 5
& Mpglud
1
A! + + | +
—ug g vy oy vy T x w,

Uy Uy Uy

Fig. 10.11. Ideal characteristic for LP, HP, and BS filters.
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There are several other common types of filters. These are the low-pass (LP), high-pass (HP),
and band-stop (BS) filters, the ideal magnitude characteristics of which are shown in Fig. 10.11

For Hip(z) and Hyp(z), @, is referred to as the cut-off frequency, and the bandwidth is ,
and (/2 - ,), respectively. For Hys(z), @, and @, are the lower and upper, respectively, cut-off
frequencies, and the frequency range @, to w, is referred 1o as the stop-band. The ideal phaseshif;
characteristic for each of these filters is the same as that shown in eq. 10.13b.

At:hieving an ideal filter characteristic is a typical digital (or analog) filter design goal,
However, there are other design goals that we may want to achieve. We have already considered
one example, which was to design a digital filter to perform phase equalization. Similarly, suppose
some system has an undesirable magnitude frequency response M, (). Then, we would consider
the design of a cascaded filter Hyq(z) that performs magnitude equalization, such that the overa]|
magnitude response M,(w) = M, (0)Myy(0) meets required specifications.

10-1.4 Transient Response Specifications

Sofar, all of our discussion concerning digital filters has focused on the steady-state sinusoidal
response. In some applications, we must also be concerned about the transient response, which

Example 10.4. Let us use a specific filter to illustrate the relationship between bandwidth and
transient response duration, In Fig. 10.7b we see that we must wait a while before we can discemn
how the filter has processed the input. Suppose we want a more frequency selective filter. This can
beaccomplished by moving the poles closerto the unit circle. Fory=0.975, the magnitude frequency
response is shown in Fig. 10.12a, and we have obtained a filter with a smaller bandwidth than with
¥=0.95.

L]

Fig, 10.12a. Magnitude response with y=0.975.

From the response to sin(wekT)u_, (k) shown in Fig. 10.12b we see that we must wait even
longer to discern the steady-state response,
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y(kT)

=18.5

Fig. 10.12b. Qutput with © = @,.

A better indication of a filter’s transient behavior can be obtained from a unit step response,
which is commonly used for such purposes, and it is shown in Fig. 10.13.

¥ (k)

.5 F

40 B8O 120 160
Fig. 10.13. Unit step response of the BP filter.

An indicator of transient behavior is the rise time ¢, , which is commonly defined as the time
ittakes forthe response in its initial rise to go from 10% to 90% of the peak value. Another commonly
used parameter is the settling time ¢, , which is the time required for the response to reach and then
remain within a range +5% about the steady-state value. Since the transient response depends on
initial conditions, the parameters ¢, and ¢, are obtained under zero initial conditions, and thereby the

transient behavior of different filters can be compared. In this example we see that as the BW of
the filter is made smaller, the settling time is increased. Also of concemn is the amount the response
in its initial rise overshoots the steady-state value.

We have seen in previous examples that there are numerous trade-offs to consider between
transient and steady-state filter performance. Generally, the settling time is inversely proportional
to the bandwidth. This can be established for a particular case by considering the unit pulse response
h(k) of a filter with transfer function H(z) = Z(h(k)). If the input is a unit step, i.e., u(k) =u_,(k),

then the response is ¥ (z) = H(z)/(1 —z"), and therefore we have
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yk)=h&)+y(k-1) (10.18)

The unit step response, which is the solution of eq. 10.18, can be found by running thig
equation. If & (k) is causal, then we starteq. 10.18 atk =0, with y(-1) = 0, and if A(k)is not causa],

asineq. 10.17, then we must start eq. 10.18 at k = —oo, with y(—oc) =0, Through eq. 10.18, we can

kT=t,h(k)=0for k> k,, and for k > k,, eq. 10.18 becomes yE)=yk-1),ie, steady-state
conditions have been reached. :

Let us determine the settling time of an ideal LP filter, In €q. 10.17 set & =0, so that the Bp
filter becomes an LP filter with BW = ®, = 03,. The LP filter unit pulse response is given by

_ 0.Tsin(o,(T - T,)
= W)

. which is zero or crosses zero at the time points determined by 0.(kT —T)=im,i=+1 P S
Suppose we use the zero crossing points of A, (k) closest to kT = T, to specify the duration of hyo(k).
Fori=—1wegethT =—2+T,, and fori =+1 we get kT =—+T,. The length of this time interval

is 2/e, , and we see that the duration of h;,(k) or the settling time is inversely proportional to the

bandwidth. For any other duration, and even for any other filter, only the proportionality constant
will change. Thus, as we decrease the bandwidth of a filter, the transient response will last longer,

10-1.5 Digital Filter Advantages and Disadvantages

In the design of a digital filter, we want to achieve ideal filtering characteristics as given in
egs. 10.13 and Fig. 10.11 »and good transient performance, i.e., little overshoot and minimum settlin g
time. However, these are opposing requirements, Instead, a digital filter design is usually based on
an M () specification, These same issues and subsequent compromises arise in the design of analog

(continuous time) filters, However, digital filters have some practical advantages over analog filters,
such as:

(a)  digital filters can be perfectly duplicated, without the concern about maintaining component
value tolerances as with analog filters;

(b) they are programmable, so that the same hardware can be used to realize different filtering
characteristics;

(c) they can be fabricated in small packages with low power consumption through the use of
integrated circuit (IC) technology;

(d) digital filters are less susceptible to environmental influences, because filter parameters are
numbers stored in digital hardware memory and filter operation is determined by the activity
of digital hardware;

(e) they can achieve any desired accuracy of operation.
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A limiting factor on the applicatior. of digital filters is the speed at which digital hardware
can execute the arithmetic of a discrete time system. To run a digital filter in real-time, data
acquisition and all of the arithmetic must be executed within the time duration of one sample time

increment T. Real-time processing is illustrated in Fig. 10.14.

|

Initialize memory with
coefficients and initial
conditions

Initislize timer
and sample the input

Start A/D converter

Conversion complete?

Compute the present output and
submit it to a D/A converter

E Has (T=-1) sec.

elapsed?

Fig. 10.14. Real-time processing flowchart.
There are many trade-offs to consider. For data acquisition, we must decide on the number

of bits necessary in A/D conversion based on an acceptable

signal to quantization error (noise) ratio.

This along with A/D converter cost constraints will determine A/D conversion time. Then, the

number of binary digits used to represent coe

fficients, the time it takes to perform multiply, add,

and store operations for a required precision, the order of the filter,

and the realization (structure)

that is used all determine the minimum possible value T (For example, see Fig. 9.25.) for T. Con-
sequently, the bandwidth of a signal that can be processed in real-time by a digital filter must be
less than 1/(2t) Hz. On the other hand, if T « T, then the same digital hardware can be used to process
up to L analog signals, if Lt <T . This can be accomplished with either a digital multiplexer or an
analog multiplexer as shown in Fig. 10.15. In fact, by using different sets of filter coefficients,
which are all stored in computer memory, each signal can be processed by a different filter with
the same hardware.

' If¢>T, then real-time processing is not possible. However, off-line processing may still be
possible. This is accomplished by first acquiring and storing a sequence of input signal samples,
and then the sequence of recorded samples can be processed by a filter algorithm that is not nec-
essarily a causal filter. For off-line processing, the signal bandwidth is only limited by the time
required to perform an A/D conversion and to store a sample value.

Now that we have described some time and frequency domain attributes of a digital filter,
we are ready to develop some design techniques.
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19 (8} —p——n

control and status signals

o

5/H AlD computer —i

uz(t) —_—— T

uL(:) — i —

analog multiplexer

control and status signals

!

F
y
u(e) 8/H A/D
u, (€] S/H AfD fiptead L
wultiplexer
| computer [—
] | i
™ | '
) l
uL(t) S/H | 4D

Fig. 10.15. Time division multiplexed data acquisition,
SECTION 10-2 Finite Impulse Response Filter Design

In the design of a causal finite impulse response (FIR) filter we want to obtain a discrete time
system with a transfer function given by

H@) =f§}h(£)z*‘ (10.19)

where [ is a finite integer. The filter is described by the I coefficients, h(i),i =0, -, (I - 1). The
unit pulse response has a finite duration, i.e., h(k)=0fork <Qandk=>1.

If the unit pulse response Ayg(k)=Z “(Hx(2)) of a stable and recursive digital filter, which
has a transfer function Hy(z) as given in eq. 10.3a, is known, then, through the convolution sum-
mation, the filter can be approximated with a nonrecursive form. Since hp(k) = Dask — oo, select
an I such that Ag(k) =0, for k >7 . Then, €q. 10.2a becomes
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YO = 2 hunliyuk—i)

Or, in eq. 10.19 use

h(k) = hg(kw (k) (10.20)
where w(k)is a window function such that w(k) =0 for k <0 and k 27 . Thus, we obtain H(z) of
eq. 10.19, and depending on [ and the window function w(k) that is used we can achieve

H(@*") = Hy(e™)

Issues concerned with the choice for I and w (k) are discussed in Chapter Five. Witheq. 10.20,

even arecursive filier can be implemented with a nonrecursive structure as given in Fig. 10.2. Some
recursive filter design methods will be given in Section 10-3.

We will now develop two design methods to directly obtain an H(z) as given in eq. 10. 19
that approximates a desired frequency response My(®) and $,(w).

10-2.1 Fourier Series Method

This design method is based on the property that H (¢°") = M (@)e’¥ is a periodic function
of @ with period @, , where M (®) is an even function and ¢(w) is an odd function. Let us specify a
desired frequency response H,(e’*") that satisfies these properties. Therefore, H (e
as a Fourier series as given by

) can be written

. - ige
Hye’)= T he ™ (10.21)
where the Fourier series coefficients 4; are determined with
@2

b= [ HEe " do | (10.22)
W Jw2

=,

While we may only be accustomed to writing a Fourier series representation for areal periodic
time function, we can obtain a Fourier series for this complex periodic function of the real variable
o. Essentially, the only requirement is that the Fourier series coefficients exist.

Using Euler’s identity and noting that 21/, =T, results in

h;= mi J' ‘ M (@) (cos §,(w) + j sin §,(@)) (cos(iT®) + j sin(Tw))dw (10.23)
s o/ 0,12
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Since ¢,(w) is an odd function, we have that cos((y(—w)) = cos(—4(e)) = cos(by(w)) and fol

sin(h(—0)) = sin(—,(®)) = —sin(py(®)), and therefore, cos(@,(w)) is an even function, while
sin(¢y(@)) is an odd function. And, since M) is an even function, eq. 10.23 reduces to

1 w,/2
b= - J M (o) (cos 0 () cos(iT @) — sin ¢,(®) sin(iTw))d @ (10.24a)
p o/ —0,f2
1 w,(2 v
B j M (o) cos(iTw+ ¢ (w))dw (10.24n)
iy v —w0, /2
which shows that the b, are real numbers. Furthermore, if we specify areal Hy (™M), ie., b4(@) =0, B

then sindy(®) =0, and by eq. 10.24a, h; = h_;, so that &, is an even function of i. And, if we specify
an imaginary Hy(e’"), i.e., 04(@) = /2, for 0 < < 0, /2 and ¢4(w) = F/2, for —, /2 < @ < 0, then
cos §,(w) =0, and by eq. 10.24a, b, =—h_;, so that k; is an odd function of i. In any case, the h;, as
determined with eq. 10.22 (10.24b), are real, and the integration range can be any interval of duration
,

'

DI - < B

Now, let us consider eq. 10.21. To obtain an FIR filter for which / is finite we must truncate
the series in eq. 10.21, and instead of H,(¢’®") we have

-

A= 3 he ™= li@e™ ao2s) | . |

==K

where i, = h; and as the limit K — oo, H (/") — H,(e’*"). However, if H,(¢’*") has any disconti-

nuities, then H (e’®") will exhibit Gibbs’ oscillation about any points of discontinuity. From our
experience with Fourier series representations of real, finite, and periedic time functions we do
expect that i; — 0 as { — o (See Problem 2.18.), and for some summation limit K, h; =0 for
|i| >K . Ina short while, we will illustrate this with an example. :

Now, let eq. 10.25 come from the frequency response of a discrete time system with a transfer
function given by '
K ;
H{z) = : EK ﬁiz_‘ (1{".26}

This noncausal system can be changed to a causal system by delaying the unit pulse response by
K sample time increments. The causal system transfer function is ™A (z), or

*A(z)= ix Rz P = zzx I (10.27)
== i=0

Comparing egs. 10.19 and 10.27 completes the Fourier series FIR filter design method.
Setting J — 1 = 2K, and using

hG)=h;_x=h;_g (10.28)
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fori=0,1,,2K ,results in

H@=7"A() = 3 by (10299)
2K
| LOEPW UGS (10.29b)
M(@)=] &7 M(w)=M (@) , (10.302)
| () =—KTw+§(®) (10.30b)

By choosing K large enough, M (@) = M,(®), and §(0) =—KTm o O 4(0).

Now, we can point out a very useful result. Recall that in the design of a filter, as described

- ineq. 10.16 and Fig. 10.11, we wish to achieve alinear phaseshift characteristic. A linear phaseshift
| characteristic can be exactly achieved, if we initially specify that ¢o(w) = 0. Then, b; = h_;, ¢(0) =0,
and ¢(w) is exactly given by (@) =—KT®. And, in eq. 10.29b we see that the unit pulse response

is symmetrical about the point k =K =’—_55, ie,h(k)=h(I—1-k),fork=0,1,:-,(—-3)2,s0

that h(©) = (I~ 1), k(1) = h(T ~2), -, k(552 = h('3), and h(55*) = hy has no matching point. In

fact, only with an FIR filter, where the unit pulse response is symmetrical about the point k :’—;1,

can a linear phaseshift characteristic (—KT ) be exactly achieved.

Example 10.5. Suppose a signal u(t) is bandlimited to 1000 Hz, and we want to low-pass filter it
with an FIR filter for which BW = f, = 500 Hz. Let £, = 2000 Hz. For a linear phaseshift charac-

teristic, set §4(®) = 0, and the desired frequency response becomes H (") = M (w), which is shown
in Fig. 10.16.
4y a (ej o0
| 1
| . »
~27(500) 2n(500) 22 (2000) =

Fig. 10.16. Ideal LP filter characteristic.
By eq. 10.22 we get
| h_=i m,mgﬂ-mdm=ii(eﬁrmﬁ_e-ﬁmﬁ]_lM

T w, jiT T2 (inf2)

Setting i =0 before taking the integral, we get iy =3. The FIR filter transfer function is given by
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_ % Lsin((i—K)m2) 4
B&= 25~ omn

and for K =20 (I = 41), the unit pulse response is shown in Fig. 10.17.

_— P hik)

Fig. 10.17, LP filter unit pulse response,
Notice the symmetry about k = K = % =20. Since ¢4(2) = 0, the linear phaseshift of H (¢/*")

occurs because of the z™* term in eq. 10.29a. Therefore, let us plot & (¢/°"), which is real, and it is
shown in Fig. 10.18.

I:I (ej Il'T)

|
Fig. 10.18. FIR LP filter approximation,

Of course, M (w) =M (w). However, because of Gibbs’ oscillation, A (e’®") is not always
positive. When A (e’*") is negative, the phaseshift of H (/") changes from ¢(w)=—KTw to

¢(w) =—-KTw— 1, which, strictly speaking, is not a linear phaseshift characteristic. Since this occurs
for frequencies within the stop-band, it may not be a practical issue.
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We can improve how well M (w) approximates M,(c) by increasing K. However, this wounld
~ only concentrate the oscillation about the discontinuity of M (), and it would not diminish the peak
amplitude of the oscillation. By simply truncating the Fourier series given in eq. 10.21 we have
actually achieved H(e’*") = +M ()e 7™, In a short while, we will consider a remedy for Gibbs’
oscillation.

Gibbs’ oscillation occurs because M,(w) has discontinuities. This can be avoided by initially
specifying an M,(w) with narrow transition bands instead of discontinuities.

When a specified H,(e’*") is imaginary, we have already shown that &; = —_, , which requires
that hy=0. Then, h(k)=—h({I —1—k), for k=0,1, ---, (/ =3)2, and it is said that h(k) is anti-
symmetrical about the point k = (f — 1)/2, where h(?) =hy=0.

Recall that the imaginary part of any H (¢’*") must be an odd periodic function of @. Therefore,
if we specify an imaginary Hy(e’*"), then it must be zero at the frequencies @ =0 and @ =+, /2.

Example 10.6. Let us obtain an FIR filter that approximates the transfer function H,(e’*") = jo for
—-,/2 < < w,/2. This is the transfer function of a differentiator for input signals bandlimited to
w,/2,

By eq. 10.22 we have

and for K =20 and T = 1/8, the unit pulse response is shown in Fig. 10.19a.

Notice the antisymmetry about k = ’—;—1 =20. For this Hy(e’"), ¢4(@) = /2 for 0< w < @, /2
and ¢4(w)=-w2 for ~0,/2<®<0, and A(¢’*") is imaginary, so that &(w)=—KT o+ ().
A(e’*T)/j is shown in Fig. 10.19b, and Gibbs’ oscillation has occurred.

Let us view truncating the Fourier series given in eq. 10.21 to obtain eq. 10.25 as the result

of using h;=w(i)h, where w() is a rectangular  window function wy(i)=1 for
i=-K,-K+1,-,K—1,K. We will now consider using window functions other than wy(i) to
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diminish Gibbs’ oscillation in & (e’®T). Recall that we already used various window functions in

Chapters Three and Five to reduce leakage error in approximating the spectrum of a time function
with the DFT.

-8 i

Fig. 10.19a. Antisymmetrical FIR filter unit pulse response.

BT 5

28.5

25,13 ¥
Fig. 10.19b. FIR filter differentiator approximation,
Hy(e’*") and H (¢’*") are both periodic functions. In €q. 4.42a we obtained the Fourier series
coefficients of the result of a circular convolution of two periodic functions. Since A, = w (i YA , then '

by eq. 4.42a, H(e’*") can be expressed as the result of a circular convolution of two periodic
functions, i.e.

AT =miW(ef“'T)®Hd(ef”) (1031)
i
———————————————
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where

: K i
W)= 3 wiie™™
==K
which is a real function, and with eq. 10.31 we get
1 02 g .

Ay =— . 2w (e > ke ™40 (10.32a)
s o J2 = m=—= i

= ix hw(i)e™™ ' (10.32b)

Eq. 1Q.32a can also be obtained by using the frequency convolution property in Table 9.2 with
L= e’ defining the integration path I".

From the term w (i )e 77 in eq. 10.32b we see that Gibbs’ oscillation, which is due to the high
frequency components in H (¢/“T), can be diminished if we use a w(i), which also determines the
amplitudes of the frequency components of H (¢/°"), that decreases as | i| — K. As long as w(i) is
an even function, the symmetry or antisymmetry property of k; is preserved in % , and therefore we
can achieve a linear phaseshift FIR filter with any symmetrical w(i). Ideally, we would like w(i)
to be a function for which W (e’®") is an impulse train, because then by eq. 10.31, H (¢’") = Hy(e™").
But, this is only possible if w(i) = 1 and K — eo. Since K must be finite, we prefer a w(i) for which

the main lobe of W(e’®") is as narrow as possible with side lobe amplitudes that are as small as
possible.

Example 10.7. Let us try using the Hann window (See Fig. 5.22.), which is given by

wali) = :1—2[1 + cos[;(; ItD

fori=—K ,-K +1,+:+,K . This was obtained by shifting w,(¢) in Fig. 5.22 to the left .by T,/2=KT.
Truncating the Fourier series for the LP filter given in Example 10.5 with the Hann window results
in k(i) =wy(i —K)h;_g,fori=0,1,-+,2K, and, for K =20, H(e’™) is shown in Fig. 10.20.

Gibbs’ oscillation has been reduced, but compared to Fig. 10.18, the transition band has been
widened. However, we can improve the frequency response by increasing K.

The specified H,(e’®") for the LP filter is not negative for any @, and H(¢’*") can take on
negative values if W(e/“") becomes negative. To achieve an exact linear phaseshift, even in the

stop-band, W (e’°T) must be nonnegative for all ®. This is possible with the Bartlett window, which
is given by (See Fig. 5.22.)
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for i =—K,-K +1,--+,0,1,---,K. Since Wy(e’*") is nonnegative for all @ (See Problem 5.5.),
H(e’®"), which is shown in Fig. 10.21 for K =20, will not be negative for any @, and §(w) =—KT @
for all @ in the range /2 < W< /2.

ATy

w

Fig. 10.20. FIR LP filter with the Hann window.

1;(ejm'l'}

Fig. 10.21. FIR LP filter with the Bartlett window.

However, with the Bartlett window we must use alarger K to achieve the stop-band attenuation
as obtained with the Hann window. Of course, we can try other window functions to achieve goals
such as small transition bandwidth, large stop-band attenuation, linear phaseshift, and little mag-
nitude distortion. Needless to say, there are many trade-offs to consider.

Using the Hann window to truncate the Fourier series for the differentiator approximation of
Example 10.6 results in H (¢’°")/j shown in Fig. 10.22. By reducing Gibbs’ oscillation we have
increased the frequency range for which this H(z) is a useful differentiator approximation.
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#eedTy 7

Fig. 10.22. FIR filter differentiator with the Hann window.
10-2.2 FIR Filter Symmetry Property

Without regard to how A (k) is obtained, let us develop some properties of an FIR filter with
transfer function H(z), as given in eq. 10.19, that are due to symmetry properties of A (k).

Assume that [ in eq. 10.19 is an odd integer and that 2 (k) is symmetrical about k = (F — 1)/2,
1

hk)=h(I -1-k), k=0,1,---,(I-3)2

where k(!_Tl) has no matching point. Expanding eq. 10.19 results in
-3
z . Ty = =i y
H(z)=X h(i)z"‘+k[—-—2 Jz Pt ? h(i)z” (10.33)
i=0 L i
I=T

Changing the summation index of the second summation from i to [ =7 —1—1 yields

-3

I-1 e
2 h@ =% h{I—1=1)z71
i1 =0

By the symmetry condition, h(k)=h({I — 1 -k), eq. 10.33 becomes

J 1]2"%+ iuk(i)(z"" ) (10.34)

H(2) =k[—;—

Thus, the filter is described by only (f + 1)/2 coefficients.
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Example 10.8. If /=7, then by the symmetry condition we have A(0)=h(6), k(1) =h(5),
h(2)=h(4), and h(3) can have any value. This filter can be realized with the structure shown in
Fig. 10.23. This almost halves the required number of multiplications required by the structure
shown in Fig. 10.2.

ulk) delay . delay delay ° ¥ (k)

I h(2)

I h(1)

b2 h{0)

delay —‘ delay F—J‘—{ delay H

Fig. 10.23. A symmetrical FIR filter.

i-1

Removing z * from each term in eq. 10.34 results in
-1 13
=z 2|, (=1} & B
H(z)=z7 * MT)*.Z:@ % m[z . z]] (10.35a)

and using z = ¢’*" for the frequency response yields

=0, e[ ) ansen

Denote the term in brackets by H (¢/°™), so that

I s
HE™=e" 7 A, M@)=|A@E))|
Since H @) is real, we have that

- -
~—2—1-Tm, H>0, -02<w0<w,/2

ZH(™) = -f’—;—lrm—n, a<o, O<o<w,/2 (10.372)

—LE—ITmHt, A<0, -0,2<0<0
Thus, if 7 is an odd integer and h(k) is symmeirical about k = 1;_1’ then H (z) has a linear phaseshift

characteristic.
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If k(k) is antisymmetrical about k = (f — 1)/2, so that
hk)=—h(I—1-k), k=0,1,---,(I—3)2

which requires that h[%] =0, then the term (z™ +2¢~""?) in eq. 10.34 becomes (z™ —z7¢~1-),
and the transfer function can be written as

as[d2
H(z)=2 * [1 ; [i_t g .]] : (10.35b)
th{‘) zz7-z 'z
Here, the FIR filter is described by only (I — 1)/2 coefficients. The frequency response is given by
2 —'j—_l?‘m = L
H(e™My=je * [i 2h (i)sin[[‘]r——2 4 —i}rmﬂ (10.36b)
i=0

Notice that by eq. 10.36b we have H (¢’") = 0 for @ =0 and w, /2. Denote the term in brackets by
H(e’™"), so that

HEy=je" 7 “BE™), M@)=|HE"]

Since H (¢/°") is real, we get

—I—;—ITU;Hg, A>0, O<o<w,/2
ZH (@ = s (10.37b)
—TTm—g, H<0, O<o<w,/2

Thus, if (k) is antisymmetrical, then the FIR filter has a constant group delay.

The Fourier series method for the design of FIR filters is one way to obtain a symmetrical or
antisymmetrical (k) such that H(z) approximates a desired frequency response, and egs. 10.36
and 10.37 can be used to evaluate the resulting frequency response. This is illustrated in Examples
10.5 and 10.6. '

The poles and zeros of H (z) are found from

¥ hO)z' ' +h1)2' 24 +h( —-1) _P(2)
P 0@

The (I — 1) poles are all located at z =0, and they do not affect the magnitude frequency response.
The (I — 1) zeros are the roots of P(z)=0. If h(k) is symmetrical, then the form for H(z) given in
eq. 10.35a can be used to find the zeros of H(z). Notice that if in the summation of eq. 10.35a we
replace z by 1/z , then we get the same summation back. Therefore, if z = z is a zero of H(z), then
z = 1/z; is also a zero of H(z). If h(k) is antisymmetrical, then by eq. 10.35b z; and 1/z; are zeros of
H(z).

H(z)
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If a symmetrical or antisymmetrical FIR filter H(z) has a complex conjugate pair of zeros z,
and z; not on the unit circle, then it must also have the zeros 1/z; and 1/z; . If z; is a zero on the unit
circle, but not z; = +1, then only z; and z" are necessary zeros, since 1/z; = z; . If H(z) has a real zero
z;, where z; # %1, then 1/z; must also be a zero of H(z). Finally, if A (z) has a zero at z; =%1, then
1/z; is also a zero of H(z), and H(z) can have any number of zeros at z; =+1. In any case, since J
is an odd integer, H(z) has an even number of poles and zeros.

Now, Iét us consider the case for which J in eq. 10.19 is an even integer. Expanding H (z)
results in

H(@z)= Eﬂh(f)z*' +E:k(i}z""

Changing the summation index of the second summation from i to [ =f —1 —i results in

) i %_1 P
z}h(f)zﬂ =‘Z h(iI—1 —I}z"( g
il =0

2

If h(k) is symmetrical about t =T , 5o that
I
hE)=hU-1-K), k=0,1,-,7-1

then H(z) is given by
]
o

A SRSPIOE. e o L _'% 2—1 12 -1
HE)= 3 ()G +2707 ) =2 [Eﬂh{z)[z zj]

*zi 4z

Notice that this #(k) is symmetrical about the time point midway between G— I)T and %T, and
this filter is described by only //2 coefficients. Using z = ¢/*" for the frequency response yields

M@t T e (L (10.38a)
i e I;ozk(ljoos — —iffe -—oa

Denote the term in brackets by A (¢/*"), and we again get the linear phaseshift characteristic of eq.
10.37a.

If h(k) is antisymmetrical about ¢ :‘LTIT , 50 that

h(k)=-h({ - 1-k), k:{)’l’...’%_l
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then H (z) can be written as
Iy

7 : ; i ’i-l
Hz)= T hG) @ =27 =2 [ h(;)(ﬁzﬁ-_z—%z,]]

=

which is also described by I/2 coefficients. And, the frequency response is given by

H(E ) =j e-j%m l:%a 2h(i) sin[({—;—i - ;‘]Tmﬂ . (10.38b)

Notice that by eq. 10.38b we have H (/") = 0 for =0 and +w, /2. Denote the term in brackets by
F(e’®), and we again get the phaseshift characteristic of eq. 10.37b.

If I is even, then H(z) has an odd number of zeros, the locations of which must satisfy the
same requirements as for the case / odd.

10-2.3 Frequency Sampling Method

A very simple way to filter a real signal u(¢) is to obtain N' samples for a duration of To=NT
secs., compute U (n/T,) = DFT(u(kT)), multiply U(n/T,) by a desired frequency response char-
acteristic H,(n/T,) to obtain Y (n/T;), and then take the inverse DFT of ¥ (n/T) to obtain y(kT). If
y(kT) is to be real, then H(n/T,) must satisfy the property

1 ‘ 1
Hd(nE]=Hd[(N - ?‘l)'ﬁ]

which means that M (n/T,) and ¢,(n/T,) must be even and odd, respectively, periodic functions with
period w, . Here, Hy(n/T,) is obtained by sampling a desired continuous frequency response char-
acteristic H,(e’") at the frequencies

m=m,=3;-’1, n=0,1,,(N—-1) (10.39)
! o

To obtain an FIR filter as given in eq. 10.19, we note that with A(i)= DFT Y (H(r/Ty)),
i=0,1,--,(N — 1), where = N, we will get an H(z) for which H (¢/*") = H,(e’*") at the frequencies
w=a,,forn=0,1,--, (N — 1). Since DFT(h(i)) = Hy(n/T,), we will at least match H,(e’*") at the
points @ = , . Thus, by using the uniformly spaced frequencies @, given in eq. 10.39, we can use
the inverse DFT operation to find the ki (i). This FIR filter design procedure is called the frequency
sampling method.

Let us consider an alternative to eq. 10.19 for implementing this FIR filter. Now, H(z) is
given by
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H(z)= E:h{:‘)z"'

N-1f { w_1 n _,-%‘,,,- E
“Ew Iz
N-

__lN'I n 1 4 ;":,—Rn‘- 10
, H(z)aﬁngul-[ i; ‘_}:_E'(z e’y - (10.

(10,

-
A -1 J®
ASEI( jEE )‘-L l = (Z le N }N 1 - ZLN
. z-le o _-_______;__ T
e I

1-z7% 1-g'¥ 3t
s0 that H(z) becomes

1-z%nN-1 n 1
Hf)=—-— 75 |2 = =H,(2)H,(z) (104
N n=0 Tn 1 He!}"‘z_l

where H,(z) = (1 -z » and H,(z) consists of the summat;
nonrecursive structure ag shown in Fi

on terms. We can realize &/ (z) with
Structure as shown in Fig. 10.24,

g 10.2, which is based on eq. 10.40, or with a Técursi
which is based on eq. 10.42,

ufk)

Fig.

10.24. Recursive realization of an FIR filter.
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Here we have realized a nonrecursive filter with a cascade connection of H,(z) and H,(z). In
fact, any FIR filter can be approximated with such a recursive form by using Hyn/Ty)=DFT(h(i))
in eq. 10.42. Notice that the N poles of H,(z) at z =¢’”™" cancel with the N zeros of H,(z), and
therefore the (VW — 1) zeros of H(z) are (N — 1) zeros of H,(z), and the (V¥ — 1) poles of H (z) are
(N —1)poles of H,(z)at z =0,

Generally; eq. 10.40 is preferred over eq. 10.42, because H (z)ineq. 10.40 is unconditionally
stable, while, in an implemented version of eq. 10.42, the pole-zero cancellations may not occur
due to coefficient multiplier realization errors. Moreover, since the summation term poles in eq.
10.42 are on the unit circle, care must be taken to avoid implementing an unstable filter. However,
to implement the filter, eq. 10.42 can require much less arithmetic than does eq. 10.40.

To avoid complex arithmetic, corresponding complex conjugate terms in eq. 10.42 can be
combined. For example, referring to Fig. 10.24, we have that HyN — I)/T, 0 =H(UT,) and
s JaN 1N _ 2N (e j:!mfh’)‘.

If N is an even integer, then eq. 10.42 can be rewritten as

1- 1

il . N1) 1 kK ]
He)="— [Hd(O, s +Hd[ : To} —t+ I H@ (10.43a)

where K =¥~ 1, and, with Hy((N - n)Ty) = Hy(n/To) = My(n/Toe "™, the H,(z) are given by

g

H(0) must be real, and since ¢(n/T,) must be an odd pericdic function, ¢¢[%r;1;] wf]).,

If N is an odd integer, then eq. 10.42 can be rewritten as

[Hdm) L

1-z"

1—z7¥

He)= 3 H.(z)] | (10.430)

where K = (N —-1)/2.

If our design goal is to achieve an ideal filter characteristic as given in eq. 10.13 or Fig. 10.11,
then M (n/T,) = 1 or 0, and many of the H,(z) inegs. 10.43 will be zero. Consequently, the arithmetic
requirements of running the filter based on eqs. 10.43 can be considerably less than those incurred
by using eq. 10.40.

Now, we will obtain conditions to achieve a linear phaseshift characteristic. The possibilities
are that A(k) is symmetrical and N is an even or odd integer.

If h(k) is symmetrical about ¢ =%T. then, for N an odd or an even integer, we found by
egs. 10.36a (N odd) and 10.38a (¥ even) that
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q’( g.f"“'-" i —ETG)
2
Now we know how to specify ¢,(e/®") to obtain a real symmetrical unit pulse response FIR
filter by the frequency sampling method, i.e.

1 N-1 N-1_2n N-1
i . = oLl . = -, K 10.
q;d{nToJ 5 Tw, 5 TNTn T 0,1, : (10.452)
1
¢{(N—n)?)=—¢d(nﬂ'n), n=1,2,K (10.45h)
where K is given by
Hel, o
K = (10.46)
N
E—], N even

With ¢,4(n/T,) of egs. 10.45, the H,(z), forn=1,::-,K , in eq. 10.44 become

n ) cog(5n)(1—27)

H (z)=2M
@ T“J 1-2 cos(% n)z"l 8

(10.47)

Finally, regarding M,(n/T,), we know that it must be an even periodic function. However, if
N is even and (k) is to be symmetrical, which is required for a linear phaseshift, then H(e/*) as
in eq. 10.38a yields H (em""r) =0. For N even, we must specify that H{%i) =0, and thereby the
second term in brackets in eq. 10.43a is eliminated. '

Example 10.9. Let us obtain an LP filter, as specified in Example 10.5, by the frequency sampling
method. First, let us tty N =8, so that K =3, and we can specify

1, n=0,1,7

Md[%f,]= 05, n=2,6 (10.48a)
0, n=3,4,5
—%ﬂn, n=0,1,2,3

%(% ,J= 0, n=4 (10.48b)
%R(S—n), n=35,6,7
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The inverse DFT of Hy(n/T,) as specified by egs. 10.48 yields k (k) as shown in Fig. 10.25a. Notice
that (k) is symmetrical about t=$T. A plot of the amplitude frequency response (using eq.
10.38a) is shown in Fig. 10.25b.

h(kT)

| Caal®

Fig. 10.25a. FIR LP filter unit pulse response for N =8.

Amplitude response

Fig. 10.25b. Amplitude response for N =8.

Now, let us ty N =9, so that K =4, and we can specify

n) 1, n=0,1,2,7,8
{911) {0, n=3,4,5,6 (e
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n __98-11:" > RB= 0! 19 2) 39 4 \"-..
of2-1: o

§n(9-n), n=5,6,7,8

./'

A plot of the amplitude frequency response (using eq. 10.36a) is shown in Fig. 10.26a.

Amplitude response

Fig. 10.26a. Amplitude response for V =9,

Notice that for N even (Fig. 10.25b) or odd (Fig. 10.26a) the amplitude response is oscillatory
about points of discontinuity in the desired frequency response H,(¢’*"). The extent of these
oscillations can be reduced by introducing a transition band. For example, if we change eq. 10.493
10 My(n =2)=My(n =7)=0.75 and Myn =3)=Mn=6)=025 » then we obtain the amplitude
frequency response shown in Fig. 10.26b, which has a wider transition band than the response
shown in Fig. 10.26a. By guess and try we can arrive at a transition band, which diminishes the
oscillations of H (e/*7), :

Typically, N is chosen larger than the values used in Example 10.9, If N is a power of two,
then a radix two FFT algorithm can be used to determine the h(i) in eq. 10.40.

Ifh(k) is antisymmetrical about ¢ = ?T, then, for N an odd or an even integer, we found
by eqs. 10.36b (W odd) and 10.38b (N even) that ¢(e/*T) = —?Tm +; for 0<w<®,/2. Thus,

with the results of Section 10-2.2 we can determine how to specify an H,(e/°") at the frequencies
given by eq. 10.39 to realize this FIR filter with a nonrecursive form or a recursive form. The details
of this are left for the reader to develop (See Problems 10.25 and 10.26.).

Now we can realize an FIR filter either by eq. 10.40 or eqgs. 10.43. If the recursive form is
used, then it would be better to move the poles of H,(z) slightly inward from the unit circle, The

resulting filter will be stable, and the discrepancy between the frequency response of the realized
filter and a specification such as egs. 10.48 or egs. 10.49 in Example 10.9 will be small.
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Amplitude respense

1.0

0751

0.2

B

w /2"

Fig. 10.26b. Amplitude response for N =9 with a transition band.
SECTION 10-3 Infinite Impulse Response Filter Design

Mostly, infinite impulse response (IIR) or recursive digital filter design techniques involve
transforming an analog filter transfer function G (s) into a digital filter transfer function A (z). This
approach is used because there are an abundance of methods for finding a satisfactory G (s) given
a specification such as in Fig. 10.5a. The transformation procedure must yield a digital filter for

which the frequency response is a good approximation of the frequency response of the corre-
sponding analog filter.

10-3.1 Backward Difference Approximation

A simple discretization method (analog to digital filter transformation procedure) is to use a
backward difference approximation for differentiation.

Example 10.10. Let us obtain a digital filter based on the analog filter

1 .
Gileymee e & 10.50
®) sE+V2s+1 ( )

Notice that G(j0) =1, and that | G (j1)|| > = 1/2. This is an LP filter with BW = 1 rad/sec. The input
u(r) to output y(¢) relationship is given by

2
%+J§%+ y (@) =u(t) (10.51)

Approximating the derivative operation with a backward difference formula yields

Y&T)—y((k—1T)

J(t=kT)= -

(10.52)
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YUT)—y((k = 1)T) _ y(kT)—2y((k — 1)T) + y((k —2)T)
T T°

Y@ =kT)=

At t=kT, we can substitute eqs. 10.52 and 10.53 into eq. 10.51 to obiaiﬁ\g difference equation,
from which H(z) can be determined. Or, from a frequency domain viewpoint we see that by eq.
10.52, the derivative operation s is replaced by (1—z~')/T . Similarly, by eq. 10.53 the second

derivative opération s° is replaced by (1 -2z +z 2)/T?=((1-z")/T). In general, we have
H(zy=G(s) (10.54)

s={1-z"yT

for any G(s), which is a rational function of s with real coefficients. For G (s) in eq. 10.50, the
backward difference approximation yields

1 T%*?

[1-_]"+\/§(g)+ | (+TV24T)22 - @+ T2z +1

H(z)= (10.55)

T T

There are some basic issues to consider in employing this or any other discretization method.
The resulting H (z) must be a rational function of z with real coefficients, have its poles inside the
unit circle, and to obtain a causal digital filter, H (z) must be a proper function. In addition to these

basic requirements, we must determine whether or not H (z) exhibits the characteristics of the desired
digital filter.

To obtain the frequency response of the digital filter, we evaluate H (e’*") as @ varies over
the range 0 < < wy, where o, = ®,/2 is the folding frequency. Or, we can use

H*)=G(5) (10.56)

=(1 -7y T
From eq. 10.56 we see that H (¢’") takes on the values of G(s) as s varies along a path defined by

1—e7 " 1—coswT _sinwT
— +J
T T T

in the s-plane, which is shown in Fig. 10.27a. Since this path is close to the s-plane imaginary axis
only for small @, H (¢’*") can approximate the analog filter frequency response only for small @.

We are using the symbol @ for the frequency of the digital filter input. To distinguish this
frequency from points along the s-plane imaginary axis, we shall use s = j to refer to the s-plane
imaginary axis. Consequently, the symbol € will be used for the frequency of the analog filter input.

Since H(e’"") = G (jQ) only for small @, the backward difference transformation is only useful for
transforming LP analog filters.

By eq. 10.54, the poles of H(z) can be found through
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1 1
T 15T (1-Re(s)T) - jIm(s)T

and if G(s) is stable, i.e., Re(p;) for every pole s = p; of G(s) is negative, then by eq. 10.57 the
resulting poles of H (z) will be inside the unit circle. Eq. 10.57 maps the s-plane onto the z-plane
as shown in Fig. 10.27b, and we see that-eq. 10.54 always results in a stable H(z) given a stable
G(s). :

(10.57)

Im(s)

s—plane

M=
Hlra o

Fig. 10.27a. The s-plane frequency response path.

a8 // / unit circle & Im(z)

s=-plane

// .- o/ﬁ

[+

Fig. 10.27b. Backward difference approximation s-plane to z-plane mapping.
10-3.2 Forward Difference Approximation

Let us try a forward difference approximation for differentiation, i.e.

y(k+1)T)—y(kT)

J(t =kT) = =

(10.58)

z—1

1%

e
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¥ =kr) =2+ 1)? —Y(T) _ y((k +2)T) - 2y((k + 1)T) + y(kT)

T2
2 L= 1 2
; _,[ - ]
and, in general, H (7) is obtained with
H@) =GO,y (10.60)

Example 10.10 (continued). For G(s) given in eq. 10.50, the forward difference approximation
yields

1 i
(Ff +V25i+1 2-@-TBy +(1-Tv2+T)

H(z)= (10.61)

By eq. 10.60, H (e/®T) takes on the values of G(s) as 5 varies along a path defined by
_1 jar_ . _—l+coswT _sinel
) —T(e )= T +j T

which is shown in Fig 10.28.

Fig. 10.28. The 5-plane frequency response path.

In this figure we see that the forward difference transformation is also only useful for
transforming LP analog filters. Furthermore, by eq. 10.60, the poles of H(z) can be found through

z=1+sT = (1+Re(s)T) + jIm(s)T (10.62)

If G(s)is stable, then & (z) will be stable only if T is chosen such that for Re (p;) and Im(p,) of every
pole s = p, of G(s), T satisfies

=

>
>
o

|

Hlka
'

=

(A+Re@)TY +Im@p)TP<1 — T<ile—(ﬁ£ (10.63)
Pi
[ —
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and thereby, the poles of H(z) will be inside the unit circle. Thus, if the sampling frequency is too
small, then a forward difference approximation will yield an unstable discrete time system.

10-3.3 Bilinear Transformation

An H(z) for which H (¢°T) is a better approximation of G (jQ) than with the backward or
forward difference transformation results by using the trapezoidal integration rule to approximate
) integration.

n Suppose we have

ay _ =1
dr—u{r) — Y(s]-sU(s)

For any two time points # =¢, and t =1,, where ,>1,, (&) is given by

1)

5
y@) = [ udr+y()

Let = (k +1)T, 1, =kT , and by the trapezoidal integration rule we obtain

u((k+1)T)+u(kT)

> T +y(T) (10.64)

y(k+1)T) =

After taking the Z-transform of eq. 10.64 and rearranging, we get

Tz+1
Y(z)_iz—l

Therefore, approximating the integral operation corresponds to

U(z)

1 Tz+1
2 ek &R 10.65
s__')22—1 ( )

Recall from Chapter Eight that any proper G (s) can be realizbd with the operations: addition,
ful for multiplication by a constant, and integration. Therefore, by eq. 10.65, we can obtain an H(z) with
h
MOIEY  H(2)=G), - (10.66)
(10.62) =T )
»f every Due to the form of this transformation, it is called a bilinear transformation.
Now, H(¢’*") takes on the values of G (s) as s varies along a path given by
Deis] D alelRo R R o 5N, By

ST T 41 T gioiy g-ietn ejo)i"l‘.’.:T (@9 4 g 79Ty )

(10.63! 5

68



602 INTRODUCTORY SIGNAL PROCESSING

.2 wl’
=iz :an(—z—) (10.67)
Eq. 10.67 shows that the bilinear transformation givenin eq. 10.66 maps the unit circle in the z-plane

onto the jQ-axis in the s-plane. Therefore, H(e’*") takes on the values of G (jQ). Recall that thig
is not possible with the forward or backward difference approximations.

The digital filter and analog filter input frequencies are related through

2
Q:TW\(%T-J (10.68)

whereforw=0, Q=0,and form= w, Q= ;um(%;] = ;tan(ggj = oo. Therefore, as wvarieg from

©=0to ® =y, H(e’") takes on all the values of G(jQ) as Q varies from Q =0 to Q = oo, which
is called the warping effect. Nevertheless, the bilinear transformation is useful for transforming
any analog filter type. The extent to which the shape of G(jQ) is preserved in H (e/*") through the
nonlinear relationship given in €q. 10.68 will depend on T and the nature of G (5).

: 4 In(z)
TJR - // f e=ell oogp
s=plane

2==-1, 5=+j= /'/ -~ -
o

> — '/ =;fz)
/a =

Fig. 10.29. Bilinear transformation s-plane to z-plane mapping.
By solving for z in terms of 5 from eq. 10.65, the poles of H(z) can be found through
1 +1s _;+Re(s)+ﬂm(s)

Z=— == (10.69)
T—25 7—Re(s)—jIm(s)
The magnitude | z|| of z in €q. 10.69 is given by
] 2
F+Re(s) + Im(s))?
Izl 2=.(’ ) (10.70)

(2-Re®) + tmis)y
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Ineq. 10.70, if Re(s) is negative, then || z|| <1, and if Re(s) is positive, then || z|] > 1. The bilinear
transformation maps the entire LH (RH) s-plane onto the inside (outside) of the unit circle in the
z-plane. This is shown in Fig. 10.29, and we see that a stable G (s) will result in a stable H(z).

Example 10.11. For G (s) given in Example 10.10, the bilinear transformation results in
1 B T*(z*+2z +1)
[z.»:]u @(3 =_—_1) +1 @+2TV24T)2% = (8- 277z + (4—2TN2+T?)

Tz+1 Tz+1

H(z)= (10.71)

2
& o (2)

: G
Fig. 10.30a. Analog filter magnitude frequency response.

Al

/ forward difference

bilinear

backward difference

> T — =
1 we u

Fig. 10.30b. Digital filter magnitude frequency response.

The poles of G (s) are at 5 = (—1+ j)\2/2 . Let us compare the frequency response magnitudes
of the digital filters we have obtained by the backward, forward, and bilinear transformations. For

this, we must select a value for T. To satisfy eq. 10.63, T must be less than /2 secs., orf.> 12
Hz. Moreover, since g (1) = L™(G (s)) is not bandlimited, we must choose an f, large enough so that
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are shown in Fig. 10.30b.
Notice that with the bilinear transformation, H(z) has a bandwidth of @, =0.980 rad/sec
which can be found by substituting Q, = 1 into eq. 10.68. As T is decreased, . = L, . However,

the shape of || H (e’ “D| will always appearto be a squeezed version of | G(f Q)| due to the warping
effect.

Example 10.12. Suppose a signal u(z), which is bandlimited to 200 Hz, is to be low-pass filtered
by a second order digital filter with J. =80 Hz. The sampling frequency must be greater than 400
Hz. Let us use £ =800 Hz, and design H(z) with the bilinear transformation. Now we face the

problem of selecting an appropriate G (s). Regardless of which G(s) we use, if the bandwidth of
H(z) is to be @, = 160x = 502.65 rad/sec, then by eq. 10.68 the bandwidth of G (s5) must be

Q- 2 m( (160m) 2(1!800))

1/800

Then, when we transform a G (s) with BW=0Q, to H(z) with the bilinear ransformation, the value
I GG 2= 172 will occur for |H (e""‘r)jl * when @ = @, . Thus, H(z) will have the desired BW.

=519.87rad/sec

We will consider the problem of selecting G (s) in a short while. For now, since G(s) in eq.
10.50 will yield a second order digital filter, let us use it. However, its bandwidth is not Q. =519287,
The bandwidth we need can be obtained, if in G(s) of €q. 10.50 we replace s by

5

.S'(—?Z: ’ _(10.72)
to obtain
1 (9
G(s)= = = 10.73
? (&S +2(g)e1 srasva i

Notice that for G(s) given in eq. 10.73, MZ(Q=Q,)=1/2. In fact, since the bandwidth of G (s)in

eq. 10.50is BW =1, it is called a normalized LP filter, and eq. 10.72 is a normalized analog LP
filter to unnormalized analog LP filter transformation. Hereafter, we shall denote a normalized
analog LP filter transfer function by Gy(s), and G(s)in eq. 10.73 is found with

GCE)=Gy(s) 1, s (10.74)
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where the function f(s), which is called a frequency transformation, is given by f8)=5/Q,.

Finally, with eqs. 10.73 and 10.66, H(z) is given by
2

2:-1\ 2z-1

(B ran2(i)+ e

which has the specified bandwidth @, = 160r = 502.65 rad/sec.

H(z)= (10.75)

The analog filter to digital filter transformations that we have developed so far are generally
referred to as numerical approximation methods. There are numerous other numerical approxi-
mation methods that can be employed to discretize an analog system. See, for example, the method
used in Example 8.30. In a short while, we will develop a few more methods for obtaining an H(z)

given a G(s).
10-3.4 Analog Prototypes

In the previous example we saw that there are two aspects to designing a recursive digital
filter H(z) based on an analog prototype G (s). First, we must convert the specifications for H(z)
to specifications for G (s). This can depend on the discretization method that will be used to obtain
H(z) from G(s). Second, we must determine a G(s) that meets its specifications.

We will now obtain various forms of G (s) based on achieving requirements of MZ(). First
of all, we note that '

ME(Q) =G (G () = GG Q)
and therefore M2(Q) is a ratio of polynomials in Q* with real coefficients. Assuming G (s) is stable,
the magnitude frequency response is given by '
MHQ)=G(s)G(=s)| s=jn
Denote the product G (s)G (=s) by T(s%), which is a function of even powers of 5. If s =5; is any
pole (zero) of G (s), then s =—s; is a pole (zero) of G (—s). In general, the factors of T'(s %) are:
(s+o)(—s+o)
(57 4+ 0,5 +0g) (57 — 05 + )

*+0)(s*+ o)

which are due to a real pole or zero, a complex conjugate pair of poles or zeros, or a complex
conjugate pair of imaginary zeros of G (s), respectively, where all the poles of G(s) must be in the

10.74)y gy -plane. From the form of T'(s?) we see that the poles and zeros of T'(s”) are located symmetrically

about the jQ-axis in the s-plane.
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Given M(R), we form T(s%) with

T =MyQl,_,, (10.76)

and then factor T'(s?). To obtain G (s) we use the LH s-plane poles of T(s?) and half of the zeros of

T(s? so that the remaining zeros and the zeros we are using form a symmetric pattern about the
J82-axis.

Now, we must select a suitable M3(Q). Since we expect to obtain G (s) through eq. 10.74, it
is more convenient to develop various forms for MYEQ) = Gy(jQ)Gy(—j€2) to obtain Gy(s), which
can then be unnormalized. We must choose a function MZ(Q) that approximates the ideal LP filter
characteristic shown in Fig. 10.31. In the literature concerned with analo g filterdesign many suitable
forms for M;(€2), which have various additional properties, have been reported. Here, we shall
consider only two such forms for MZ(C).

2
T M ()

1

— 0

1
Fig. 10.31. Ideal LP filter magnitude characteristic, !

Example 10.13. Suppose M (Q) is chosen to be
1 ' |

2 —_—
Mi@=— 1077 |

Notice thatMy(Q=0)=1, M3 Q=1)=1/2, and M3(Q — ) = 0, and My (Q) has the characteristic
of an LP filter. By eq. 10.76, Ty(s?) becomes

1 1
Ty(s)) =— = —— .
O 1454 |
14(3) 145

; ; |

Now we must find the four roots of s*+1=0, or s*=+;j . For s*=j, we have
3
i3

K
" 13
s’=j=¢%, s=te’*

For s =—, we have }
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Sz=—j = e'-*'ij 5 =i£-j:
Denote the four roots by s, = — 7™, 5, =—¢/™, 5, = ¢ 7™, and 5, = ¢/™ . Using the LH s-plane poles
of Ty(s*) results in
1 1
Gyls)= =
VT —s) 6 —s)  s24 25 +1
Because of the form we chose for M2(Q) in eq. 10.77, we know that this Gy(s) has an LP filter
characteristic with Q= 1.
A general form of eq. 10.77 is given by
1
MYQ)=—— (10.78)
o 1+ @
which is shown in Fig. 1032 forn =2and n =3.
4 ¥@
= &
Fig. 10.32. Butterworth LP filter magnitude characteristic.

Notice that for any positive integer n, MHQ=1)=1/2, and that as n is increased we come
closer to an ideal LP filter characteristic. M7() given in eq. 10.78 is called a Butterworth char-
acteristic, and since we have that

d .
My () |g_,=0

10 V) la=o
fori=1,---,2n—1, it is also called a maximally flat characteristic. The poles of Ty(s %y are the
roots of 1+ (~s%)" =0, and the LH s-plane roots are given by

fAA-1_ =
A=—mr+z
;=g (53)
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fori=1, -+, n, which are all located on a circle of radius one in the s-plane. And, Gy(s) is given
by
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Gy(s) =TT — :

= (10.79)
iZ1(5=8) o5+ oS+ 0y

Since Gy(s) given in eq. 10.79 has no finite zeros, it is called an all-pole function. Nevertheless,
since lim Gy(s) =0, we say that G(s) has n zeros at infinity. For any n, the o;,i =0, ---, # can

5=

be determined, and for n =1, ---, 5 these coefficients are given in Table 10.1.

Table 10.1 Butterworth Filter Coefficients

n o o o, o o, o
1 1.0 1.0

2 1.0 1.4142 1.0

3 1.0 2.0 2.0 1.0

4 1.0 2.6131 3.4142 2.6131 1.0

5 1.0 3.2361 5.2361 5.2361 3.2361 1.0

Usually, the choice for » depends on a transition band specification on M3(Q), whereby we

stipulate that M(Q) shall remain less than some specified value forall greater than some specified
frequency.
Example 10.14. Let us find a Butterworth LP filter transfer function G (s) with BW =Q,_ = 125
rad/sec such that the gain is down at least 20 dB from the maximum gain by Q = 275 rad/sec. The
term gain is used in referring to My(Q). The maximum gain of 0 dB occurs at =0, and the gain
is-3dB (ordown3dB)at Q=0Q,_.

To use Table 10.1 or eq. 10.79, we convert the above specifications to those of a normalized
LP filter, i.e., BW = 1. This is done by using eq. 10.72 so that M,;(2) must be down at least 20 dB
by Q=275/125 = 2.2 rad/sec. Then, when s in Gy(s)is replaced by 5/125 , the frequency 2.2 rad/sec,

at which My (€2) is down at least 20 dB, is transformed to 275 rad/sec, at which M;(Q) is down at
least 20 dB.

For this normalized filter, the transition band specification requires that

10log M(2.2) <20, or 20logM,(2.2) <—20 (10.80)
—~log(l+ 22" <=2

4.84) =210 -1
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The smallest integer that satisfies eq. 10.80 is n = 3. Of course, we can use a larger value of n , but
this would unnecessarily increase the order of Gy(s). Our goal is to satisfy the specification, for
which n =3 is adequate. From Table 10.1 we get
1

Gy8)=4—F—7"—
W) 524257+ 25 +1
and after replacing s by 5/125 we obtain the desired G (s), i.e.

1

BEaEar

which satisfies the given specifications. Notice that G (j275) = Gy(j2.2).

G(s)=

Another commonly used form for MZ() is given by

1

2 L ——
Malt= 1+ECHQ)

(10.81)
where € is a parameter that we must select. If for 0 < Q <1, C,(Q) satisfies 0 < CHQ) <1, then
ME(Q) satisfies 1/(1 +€%) < ME(Q) < 1. And, if CX(Q) increases for @ =1 to Q = o, then eq. 10.81
exhibits the behavior of an LP filter. A set of functions C,(€2), which meet the above requirements,
are the Chebyshev polynomials, i.e.

C,()=Q

C,(Q) =201

C,(Q)=4Q°-3Q

L]

Cn + 1(0) = mcﬂ(QJ = Cu —I(Q)

forn=2,3,---.Forn=1,2, and 3, the C,(C) are shown in Fig. 10.33a, and the resulting MEQ)
are shown in Fig. 10.33b.

The resulting filter is said to have a Chebyshev characteristic. In Fig. 10.33b we see that
Q=1 is the bandwidth if £ = 1.0. Instead, for any value of the parameter £, Chebyshev filters are
normalized to the ripple bandwidth £,= 1. A Chebyshev filter is also called an equal-ripple filter,

because in the pass-band all maximum and minimum values of M3(Q) are 1 and 1/(1+¢€%),
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{
respectively. The parameter € determines the ripple minimum of —10log(1 + %) dB. Ideally, we !
want a small ripple. However, in eq. 10.81 we see that as we decrease €, we must increase » to
mainiain a narrow transition band.

2
4 H)

Fig. 10.33b. Chebyshev filter characteristic. |
Another expression for the Chebyshev polynomials is given by

C,(Q) =cos(ncos (), |Q| <1 (10.82a)

C,(Q) = cosh(n cosh™(Q), Q| >1 (10.82b)
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For € < 1, the bandwidth €, is determined with

which yields

Q= cosh[lcosh'l(ln
n €

The poles of Ty(s?) are the roots of 1 +€*C(s/j) = 0, which depend on both e and n . The LH s-plane
roots are given by

1

1

1 +e%cosh?(n cosh™(Q2.)) "2

§5; =—sinh(v) sin(w;) + j cosh(v) cos(w;)

INFINITE IMPULSE RESPONSE FILTER DESIGN
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(10.83)

(10.84)

fori=1,2,--,n, where w;=(2i = 1)n/(2n) and v = i sinh™'(1/g). As for a Butterworth filter, it is
convenient to compute the coefficients in eq. 10.79 using the poles given in eq. 10.84 just once,
and then obtain them from a table. However, since the Chebyshev filter poles also depend on €, the
o;,i=0,1,--,n required in eq. 10.79 are given in Table 10.2 only for a ripple trough of —0.5 dB,

—1.0dB, and 3.0 dB for n =1, -+, 5. In the literature concerned with analog filter design, the
reader will find more extensive tables of Butterworth and Chebyshev filter coefficients.

Table 10.2 Chebyshev Filter Coefficients
-10log(1 +€%)=-0.5dB, €=0.1220
n o o, o, o 0 o
1 1.0 0.3493
2 1.0593 0.9960 0.6986
3 1.0 2.1446 1.7506 1.3972
4 1.0593 2.8656 47978 3.3461 2.7945
5 1.0 4.2058 7.3192 10.8279 6.5530 5.5890
-10log(1 +€)=—1.0dB, & =0.2589
n a, oy o, a, o ot
1 1.0 0.5088
2 1.1220 11172 1.0177
3 1.0 2.5206 2.0117 2.0354
4 1.1220 3.0230 5.9186 3.8787 4,0708
5 1.0 4.7264 7.9331 13.7496 7.6272 8.1416
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-10log(1 +&*)=-3.0dB, € =0.9953
n Oty oy o, O Oy Cls
1 1.0 0.9976
2 1.4125 1.2867 1.9953
3 1.0 3.7046 2.3833 3.9905 .
4 1.4125 3.2305 9.3308 46416 7.9810
5 1.0 6.5126 8.7623 22.5895 9.1705 15.9645

Example 10.15. Let us find a Chebyshev LP filter with a ripple bandwidth of 125 rad/sec such that
the gain is down at least 20 dB from the maximum gain by 275 rad/sec. The maximum gain of 0
dB occurs at the pass-band ripple peaks. Furthermore, suppose that a pass-band ripple trough of
—1.0dB is acceptable.

To use Table 10.2, we convert the above specifications to those of a normalized LP filter,
ie,Q,=1,and My(Q)should be down atleast 20dB by Q = 275/125 = 2.2, First, we must determine

€?, which can be found with
-10log(1 +&)=-1.0
and £ =0.2589.
The normalized filter transition band specification requires that

~101og(1 +0.2589C3(2.2)) <-20 (10.85)

10%-1

22)2
G22) 0.2589

=382.3870

Now we must check eq. 10.85 tofind the smallest integer » that satisfies it. Since C2(2.2) = 75.3424,

and C7(2.2) = 1295.4241 , we choose n = 3, which is more than adequate. In fact, with n =3, we
could increase the pass-band ripple trough to

10°-1
—10logl 1 + =-0.324B
| g[ 03(2-2)J

and still achieve the transition band specification. Moreover, with n =3 and £” = 0.2589, eq. 10.83
yields the normalized filter bandwidth of _ = 1.0949, and the gain is down 25.27 dB at 2=2.2.
The gain of the normalized Butterworth LP filter found in Example 10.14 is down 20.58 dB at

Q=22 for n =3. From this comparison we see that if we can accept the pass-band ripple, then a
Chebyshev filter can provide more stop-band attenuation than does a comparable Butterworth filter.

From Table 10.2 we get
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1
2.03545” +2.01175%+2.5206s + 1.0

and after replacing s by s/125 we obtain the desired G (s). The ripple bandwidth of G (s)is Q,=125,
and the bandwidth of G (s) is 2= (1.0949) (125).

Gy(s)=

On the other hand, if we want G (5) tohave a 3 dB bandwidth of 125, then we must unnormalize
Gy(s) by replacing s by s/(125/1.0949), and the gain M;({2) will be down even more than 25.27
dB at Q=275.

10-3.5 Analog Frequency Transformations

So far we have only found a G (s) that performs as an LP filter. To design digital BP, BS and
HP filters, we must also be able to obtain analog BP, BS, and HP filter transfer functions, which
are then discretized to find H (z). It is possible to obtain a G (s) that exhibits the behavior of any of
these filter types by an appropriate choice for the frequency transformation f(s) in eq. 10.74.

We have been using the symbol o for the digital filter H (z) frequency variable, and for an

unnormalized analog filter G (s) frequency variable we have been using the symbol £2. As we obtain
additional frequency transformations it will be useful to distinguish between the normalized analog
LP filter Gy(s ) frequency response and that of G (s). Let us use the symbol p for the Laplace variable

in Gy, and write Gy(p) instead of Gy(s). Also, for the frequency response of Gy(p), we will use
A for the frequency variable, i.e., p = jA. Now, eq. 10.74 becomes

G(s)= GN(p)IFmJ (10.86)

and f(s) is called a normalized analog LP filter to unnormalized analog filter frequency trans-
formation.

For example, in Example 10.14 we would write Gy(p)=1/(p*+2p*+2p+1),
h.=1.0,Q,=125, and f(s)=5/Q,, and then obtain G(s) with eq. 10.86. Then, the frequency
responses of G (s) and G (p) are obtained with G (<) and Gy(jA), respectively. With p =5/Q,
the normalized LP filter frequency variable and unnormalized LP filter frequency variable are related
through A=Q/Q,. Thus, Q=Q, - A, =1,and Q=275 - A=2.2.

Let us consider another frequency transformation f(s) = £2./s . For the frequency response of
G (s) we evaluate Gy(p) for

Q Q9
“ie" 7 a
and we see that f(s) maps the jQ-axis in the s-plane onto the jA-axis in the p-plane, which is
required of any f{(s) that we might choose. With p = jA, we have
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7L = —E (10.87}

and we can relate the A and ) frequencies as follows.
A== Q=0
A=—k, =-10— Q=+0,
A=—0"2 Q=+
A=0">Q=-0c
A=+h,=10-50=-0,
A=+400 - Q=-0"

Therefore, G(j0"), G(j€,), and G (jeo) take on the values Gy(—jeo) =0, Gy(—j1), and Gy(j0),
respectively, resulting in MZ(Q) as shown in Fig. 10.34.

2
4 My Hg(ﬁ)
1.0 1.8 s
-
~
—————— L 0.5-== bt SNV BT
I | — 1 |
I 1 ! !
3 s N 1
;S 1 A 3
iy n, a

Fig. 10.34. Normalized LP to unnormalized HP transformation.

InFig. 10.34 we see that f(s) = Q, /s transforms Gy(p) into an HP filter with cut-off frequency

Q=0,. If we use just f(s) = 1/s , then we would obtain a normalized HP filter, which can also be
unnormalized.

Example 10.16. Let us find a Butterworth HP filter G (s) with cut-off frequency €2, = 50 rad/sec
such that the gain is down at least 40 dB by € = 20 rad/sec.

‘We must first convert these specifications to those of a normalized LP filter. By eq. 10.87,
Q, =50 and Q =20 transform to A, =-1.0 and A = -50/20=-2.5, respectively. Since My(A) (and
M(£2)) is an even function, the gain of Gy(p) must be down at least 40 dB by A =+2.5. Now, the
reader should proceed as in Example 10.14 to obtain Gy(p), and then with eq. 10.86 G (s) is given
by

4

5
GE)= 4 3 2 4
5%+ 130.6555° + 8535.55“+ 326637.55 + (50)

Notice that the transfer function of an HP filter is not a strictly proper function.
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The LP to HP transformation f{(s) = 1/s is useful for obtaining yet another type of function
MZ()) in addition to those given in egs. 10.78 (Butterworth) and 10.81 (Chebyshev). If we subtract
M) given in eq. 10.81 from 1, then we get

1 ECHN)

= = 10.
1+€CX\)  1+CHN (158}

which, for n =5, is shown in Fig. 10.35a.

l-H;()\).n'S

1.0

/\/ .
1.0 X

Fig. 10.35a. Equal ripple stop-band HP filter.

The characteristic shown in Fig. 10.35a is that of an HP filter that can be transformed into an
LP filter characteristic by replacing A by 1/, resulting in

ECH1/A)
1+2CH1A)

My = (10.89)

which, for n =5, is shown in Fig. 10.35b. This normalized LP filter characteristic possesses the
equal npplc property in the stop-band, and it is called an inverse Chebyshev characteristic. As the
reader might suspect, there are elliptic filters, which possess the equal ripple property in both the
stop-band and the pass-band. For the further development of inverse Chebyshev and elliptic filters,
the reader is referred to the literature on analog filter design.

2
4 MO0

1.0 )

Fig, 10.35b. Normalized inverse Chebyshev LP filter characteristic for n =5.

Let us expand our repertoire of methods for generating a G (s) for different filter types by
investigating some additional frequency transformations. Consider the transformation
F(s) = (s*+ Q)/(Q,s),, where Q, and €, are constants that will be specified later. For the frequency
response of G (s) we evaluate Gy(p) for
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_OP+RE 1 Q-
P=7gai0 o, o
With p = jA, we have

rel Q-

(10.90)

and we can relate the A and Q frequencies as follows.
A=—oc = Q=—, Q=0
A==0" - Q=-07,Q=0;
A=0" 5 Q=-0;,Q=0;
A=tee = Q=-0"Q=+c

Therefore, G(j0"), G(j€%), G(j€2), and G(joo) take on the values Gy(—joo), Gy(—j0"), Gy(+j0"),
and Gy(jeo), respectively. This results in an MA(C2) as shown in Fig. 10.36, which is a BP filter
characteristic.

2
Mc(ﬂJ
1.0
rd
7
et 0s-F-—e
— ] i
I |
> - t—t i —t ' = »
i
/ oM
_at &
% T

Fig. 10.36. Normalized LP to unnormalized BP transformation.

For MZ(Q), ©, and Q, are the lower and upper, respectively, cut-off frequencies, which we
want to come from A =—A, =—1.0 and L=A,_= 1.0, respectively, and therefore we have

1 &-0}
~1= ﬂ Ql {10.913)
1 QG-Qf
1=— 10.91b
Q Q ( )

Eliminating &, from egs. 10.91 results in
0,3 - 9) = 0, - Q)
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Q-1-0-2((}'1 + Qz) i Qg(ﬂl +8,)
= (ngz)m (10.92a) l

Substituting eq. 10.92a into either eq. 10.91a or 10.91b yields
Q,=0-9 (10.92b)

Therefore, £, is the bandwidth of the BP filter G (s), and f(s) transforms a normalized LP filter
into an unnormalized BP filter. Notice that £, is the geometric mean of {, and Q, and not the
arithmetic mean.

Example 10.17. Let us determine a Butterworth BP filter transfer function G (s) with cut-off fre-
guencies at £2, = 400 rad/sec and £, = 600 rad/sec, which is down at least 20 dB at {2, = 300 rad/sec
and £, =700 rad/sec. We refer to the set of frequencies £,, £, Q;, and Q, as the critical
frequencies. First, we normalize the critical frequencies with eq. 10.90, resulting in

_ 1 400(400-600)
T 600-400 400 N

%__1_600(600—400)_
~200 600 .

1 (300)%— (400
%2200( ) 3{00 )600) _ _, 500
2 = 1 (700)*— (400) (600)
47200 700

A, <10

1.0

=1.786

Since M()) is an even function, which decreases monotonically, the normalized LP filter must
satisfy the 20 dB down requirement by A = 1.786 (This will also satisfy the 20 dB down requirement

by A ==2.5.) resulting in
—10log(1+(1.786)*)<=20 — 1+(1.786)* =100
This requires # = 4. From Table 10.1 we obtain Gy(p), and then G(s) can be found with

L s ) [ —

Notice that the order of the LP filter is n = 4, while the order of the resulting BP filter is 2n = 8.

To obtain a band-stop filter with cut-off frequencies at Q, and €,, we replace f(s) by 1/f(s)
in the LP to BP transformation, resulting in the normalized LP to unnormalized BS transformation
given by ;
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G)=G

©)=Cu®),_g a0 5100)
By means similar to how the normalized LP and BP filter characteristics were related, the reader
should investigate the LP — BS filter transformation.

The frequency transformations we have investigated are summarized in Table 10.3. For any
f(s) that the reader may invent, recall that f(s) must map the jQ-axis onto the jA-axis. Furthermore,
the LH p-plane poles of Gy{p) must map to LH s-plane poles, and G (s) must be a proper function.

Table 10.3. Normalized LP Filter to G(s) Frequency Transformations

G6)=Gy(p)l, )

fG) G(s)
5
Q LP, bandwidth =Q,
£
3 HP, cut-off freq. =Q,
1 S+QQ, .
0,-0 s BP, bandwidth =£,—8Q,
5 0->0Q
Q-0)— < = .
Q, ])32"‘9192 BS, pass-band {Qz e

Now that we know how to determine a G (s) with various frequency selective properties, let
us develop a few more methods for obtaining an H(z) given a G (s).

10-3.6 Impulse Invariant Method

Let g(r) =L (G (s)) denote the impulse response of an analog filter (system) with transfer
function G (s). The first method we will consider is called the impulse invariant method, whereby
H(z) is obtained with Z(g (kT')). The unit pulse response h(k) of the resulting digital filter will be
determined by the impulse response of the analog filter sampled at r = kT .

By the Poisson summation formula (eq. 9.2c) we have

34U =250 +7 E G@-mo)
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Now consider Z(g (kT)), which is given by
Z@UT)= 3 g (1)

and therefore
ZQUTY|,_ =38 +1 3 G(@-ma)

Our goal is to find an H(z) such that H(e/*T) is comparable to G (jo), and then H(z) will
exhibit frequency selective properties similar to those of G (s). To achieve this goal, f, must be large
enough such that G(s) can satisfy

G0N o) >02=0 (10.93a)
which is required to avoid aliasing error. Furthermore, by eq. 9.2c we also require that

g0 =0=lmsG(s) (10.93b)
which means that the order of the numerator polynomial of G (s5) must be less than the order of the

denominator polynomial by at least two. Therefore, the impulse invariant method is not useful for
discretizing analog filters such as HP or BS filters.

If G(s) satisfies eqs. 10.93, then by the Poisson summation formula we have
1
ZEUT),_u=7G ()

for| | <®,/2, and to approximate G (j®) we use
H(z)=TZ(g(kT)) (10.94)
If eqs. 10.93 are satisfied, then the impulse invariant design method produces an H(z) that

approximates both the magnitude and phaseshift characterisdc of G(s). Notice that h(k) = Tg(k),
and the digital filter unit pulse response follows samples of the analog filter impulse response.

Letuswrite G(s) = P(s)/Q(s) .1f G (5) has only simple poles, then its partial fraction expansion
is given by

» K,
6e)=PO_§ K
Q@) i=1(s-p)
where now the p;,i=1,-:-,n, denote the » poles of G(s), and g(¢) is given by

2= 2 Ke"u,0)

Substituting the Z-transform of g (kT) into eq. 10.94 results in
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He=T 3 (10.95)

i=1]1—gf"y
Ineq. 10.95 we see that the poles of H (z) can be found through the relationship z = ", which maps

the LH s-plane onto the interior of the unit circle in the z-plane. Therefore, if G (s) is stable, then
H(z) in eq. 10.94 will also be stable.

There is no restriction that G (s) have only simple poles. If G (s) has multiple poles, then we
perform an appropriate partial fraction expansion and proceed as above to obtain an H (z).
Example 10.18. Consider again the digital filter design problem of Example 10.12, where a signal,
which is bandlimited to 200 Hz, is to be LP filtered by a digital filter with bandwidth w, = 160,
With the impulse invariant design method @, is also used as the bandwidth of G(s). In fact, all of
the critical frequencies of H (z) are used as the critical frequencies of G (s) to meet transition band
requirements. Let us try a Butterworth characteristic, and suppose that » = 2 is sufficient to meet
some transition band requirement. Unnormalizing Gy(p ) givenin eq. 10.50, which we nowrecognize
to be a Butterworth filter, with f(s) = s/w, yields the desired G (s ), as given in eq. 10.73. Since the
bandwidth of G (s)is f, = 80 Hz, then £, = 800 Hz, as used in Example 10.12, should be large enough
to incur only a small aliasing error with eq. 10.94. This will allow us to compare the H (z) as found
in Example 10.12 with the bilinear transformation to the & (z) that we will obtain in this example.

& 1)

1.04

bilinear transformation

impulse invariant

161‘1& Wy %m
R
Fig. 10.37. Digital LP filter magnitude response.
By eq. 10.95, H(z) turns out to be
20 ™ sin(o)z
22— 2e™cos(0)z + ™

H(z)= (10.96)

where o= 0, TV2/2 =\2/10. The M*() of the H(z) given in eqs. 10.75 and 10.96 are shown in
Fig. 1037 for0 < m< ,/2. '
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Notice that with the bilinear transformation M *(w,/2) = M3(e) and M*(0) = M2(0), which will
occur regardless of the value of T, However, if we decrease f,, then with the impulse invariant
method, M*(w,/2) will increase due to aliasing error. With £, = 800, both methods yield magnitude

responses similar to MZ(w). The final choice for an H (z) will also depend on additional factors such
as the phaseshift characteristic, and if necessary, how readily it can be corrected with an all-pass
equalizer to approximate a linear phaseshift in the pass-band. Also, from an implementation
viewpoint, the differing arithmetic and memory requirements necessary to run the difference
equation corresponding to each H(z) may play a deciding role.

| 10-3.7 Modified Impulse Invariant Method

Suppose we write G(5) as

m

PG _, Oe-2)
1]

TR

(10.97)

(s -p)
i=1
where G, is some constant, and the z;,i =1, -+, m are the zeros of G(s). If » is not significantly

greater than m , then aliasing error will occur with the impulse invariant method. Instead, let us
define the functions given by

O S Vi
16-p) fis-2

so that G (5) = G,(5)/G,(s). Both G,(s) and G,(s) are all-pole functions. If m and » are greater than
one, then g,(0") =0 and g,(0*) =0. Now choose T such that
G(jw) =0, G(w)l =0

o] >w/2

@ > o2
and by the impulse invariant method obtain H,(z) and H,(z), i.e.

H\(z)=TZ(g,(kT)), H,(z)=TZ(g,(kT))
Therefore, for | @] < ®,/2, H,(e’") = G,(jw), and H,(e’*T) = G,(jw). Finally, H(z) is obtained with

_H\(z)_Z(g,(kT)

HE)= g &) 2Ty

(10.98)
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This technique is called the modified impulse invariant method, where both the poles and
zeros of G (s) are impulse invariant discretized. If G (s) has any zeros in the RH s-plane, then G,(s)
will not be stable. This problem can be avoided by first replacing the RH s-plane zeros s =z of
G(s) by s =—z, which will not change || G(j w)| , and then proceed to obtain & (z). The poles of
H(z) are due to the poles of H,(z), which come from the poles of G (s), and the zeros of Hyz). It
H,(z) has any zerog on or outside the unit circle in the z-plane, then H(z) will not be stable. This
problem can also be avoided by replacing the zeros of H,(z) that are outside the unit circle by their
Teciprocals, which, according to eq. 10.12, will not change the shape of | H (G Also, the
magnitudes of any zeros on the unit circle can be slightly reduced. Finally, we expect that
M*(w) = M3(w). However, the unit pulse response of A (z) will not match g (kT). Nevertheless, the

major disadvantage of this method is that the order of H (z) will be greater than the order of a filter
obtained by some other method such as the bilinear transformation.

10-3.8 Unit Step Invariant Method

A design method that is similar to the impulse invariant method is called the unit step
invariant method. By this technique we match the unit step response of the digital filter H(z) to
samples of the unit step response of the analog filter G (s). Therefore, H(z) is obtained with

2.
—iF 5

whichrequires that G(s)isa strictly proper function. By this design method we preserve the transient
behavior of the analog filter.

Example 10.19. Suppose G(s)=1/(s +a), where a > 0. The unit step response y(¢) is given by

y(:)=L"[

) = (1=e™u_ (1)

s(s+a)) a

By eq. 10.99, the unit step invariant method yields

1 1 -
H(z)=(1 ~2")[é(1 _z-l—l_z_leﬂrD%l(l =g T )z _Lﬂ,r

Based on a state variable description of an analog system with transfer function G(s), the unit
step invariant method was developed in the time domain in Chapter Eight, and it was used to
discretize an analog Butterworth LP filter in Example 8.20. Recall thatin Chapter Eight we obtained
this method by approximating the input with a piecewise constant function.

Due to aliasing error, this technique is not useful for discretizing BS and HP analog filters,

However, because of the added factor 1/s in €q. 10.99, the aliasing error will be less than with the
impulse invariant method.,
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A technique that simply attempts to match the peaks and troughs of M3 () for G (s) given in
¢q. 10.97 is called the matched Z-transform method. By transforming poles and zeros of G(s)
according to z = ¢, H(z) is obtained with

. f[(l —e"'Tz'l) )
H)=1+)"""6, " —— (10.100)
il:[I(l »-e""rz‘l}

where, as usual, m < n . The extra zeros at z =—1 are added to H(z) for the following reason. The
frequency response G(jo) is obtained as @ varies from @ =0 to W= o, and for large ®, G(jw)
behaves as G, /(jw)" ™™ . If n > m , then G (je=) = 0. For a digital filter H(z), the frequency response
H(e’7) is obtained as o varies from @ =0, ie,z=1,t00=0=0,2=nT,ie,z=¢"" =-1.
| To force a correspondence between the high frequency behavior of G(jw) as @ —> o and H (e/*")
as m — oy, the exira zeros are added to H(z). This method is useful for discretizing any type of
analog filter. However, it does not preserve detailed characteristics of G (s).

10-3.10 Design Summary

Each of the discretization methods we have considered has its own advantages and disad-
| vantages. Often, designing a digital filter requires a considerable amount of guess and try numerical
| experimentation to arrive at an acceptable H(z). However, because of its simplicity and wide
| applicability, the bilinear transformation is most commonly used to obtain a digital filter based on

an analog prototype. Let us summarize the steps involved in determining a digital filter transfer
function H (z). We start with a specification of constraints on the digital filter frequency response,
and then:

| (1) convert these constraints to those of an analog prototype. This will require prewarping the
critical frequencies as with a bilinear transformation, i.e., eq. 10.68,

(2) normalize the analog prototype critical frequencies to those of a normalized analog LP filter,

(3) select an LP filter characteristic, if a characteristic has not already been specified, and
determine parameter values such that Gy(p) satisfies specifications,

(4) unnormalize Gy(p) through a frequency transformation to obtain G (s),

(5) select a discretization method, if a method has not already been selected, and obtain H(z)
from G (s), and

(6) evaluate the frequency and transient response of the resulting H (z), and if necessary repeat
steps (1) through (5).
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With the above procedure we will be successful in designing a recursive digital filter that |
meets magnitude frequency response requirements. Although the extent to which the phaseshifi is -
not linear varies from one LP filter characteristic to the next, we have no direct control over the
resulting phaseshift. A further possibility is to use a normalized analog LP filter prototype that
already approximates a linear phaseshift characteristic such as the Bessel filter, which has 5
maximally flat group delay characteristic. For this, the reader is referred to the literature on analog |
filter design. If a nearly constant pass-band group delay is necessary, then a phase equalizer such

as the all-pass function given in eq. 10.15a can be used. The problem is that, other than guess and

iry procedures, there are no relatively siraightforward methods for determining the equalizer pole
locations to achieve an overall nearly constant group delay.

10-3.11 Phase Equalization

We will now develop a, albeit, computer intensive procedure for phaseshift equalizer design, ‘
For this, we shall continue with the equalizer design discussion that was initiated in Example 10.3.

Example 10.20. Assume that we have designed a digital filter such as the BP filter of Example

10.2, which we now denote by H,(z), i.e. |
1
212

=1’y (2 —ye™™)

where y=0.95, @, =4n/3, and T = 1/8.. The cut-off frequencies are , = 3.75 and w,=4.55. The

group delay 7,(®) is given in Example 10.3, and it is repeated here for convenience, i.e.

Y -yeos(@-w)T)  y*—7ycos((@+wy)T)
1+9*=2ycos((m— w)T) 1+ —2ycos((@+wy)T)
We shall arbitrarily try two all-pass functions as given in eq. 10.15a, so that Hgy(z) has the form

2 (1-piz)(1-p/z)

Hey= H{ p _)( p

i=1 (z=-p;)z-p) _

The overall transfer function will be Hy(z) = H,(z)Hpo(2), and T,(®) = 7,(0) + Tgo(). We expect to
achieve an equalizer design as is illustrated in Fig. 10.6d.

H\2)=

(@) =T(1 -

The equalizer design procedure is based on finding the p, and p, that minimize the square
of the difference between 1,() and some constant group delay T, i.e. '

(@, Py, PY) = (@) = )" = (1,(@) — (T, — Teo(@)))’

over some frequency range. Here, 1,(w) is given, and 1,, p,, and p, must be found, We could also
specify 1y, but we shall leave it as a variable, the value of which is to be determined by minimizing
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¢”. The phaseshift equalizer can only add to the group delay of H,(z). We shall think of e? as a
function of one independent variable, i.e., @, and five parameters, i.e., Ty, 0, B;, 0, and B,, where

= alefﬂ| and p, = a'zejﬂz-

Minimizing e* is a formidable task, and an inspection of Fig. 10.6d reveals that we should
approximate a linear phaseshift characteristic over a restricted frequency range that extends from
about @ = , to about @ = ®, . Practically, phase distortion in the stop-band is notan issue. Therefore,
let us select / frequency points within this range at which we shall minimize 2, and minimize the
sum of the errors squared, i.c.

e’(pupy) = _PLZI W;(T,05) = (T — Tao(x,)))’ (10.101)

where the x;, i =1, -+, 1, are the frequency points, and the w; are positive numbers called weights,
which allow us to attribute more significance to minimizing e at some frequency points than at
others. If it is equally important to minimize e? at every point, then we set w,;=10,i=1,--,1.
T,(x;) is known at every frequency point @ = x;, and it is the data to which we must fit the function
FO6, T, by, ) = (T — Teo(X: s P15 P2)).

Let the array P denote the parameter set (ty, &, , B, , 0, ), where P(1) = Ty, P(2) =0, ete.,
and write the function f as f(x;, P). Now, we have cast the equalizer design problem into that of
fitting a function to data by minimizing the sum of the errors squared, which is given by

e’(P)= é wi(t () = f(x;, P))* (10.102)

Numerous methods have been developed for minimizing functions. Most minimization
methods require either analytically defined or numerically computed partial derivatives of the
function to be minimized with respect to each of the variables, which in our problem is the parameter
set P. We shall employ a method that does not require partial derivatives. There is no function
minimization method that is guaranteed to find the global minimum of a function as opposed to
finding some local minimum of the function (See Fig. 10.38.), unless the function has only one
local minimum, which is then the global minimum. Therefore, we must provide an initial guess for
P that s in the vicinity of that P = P_,,, where e takes on its global minimum value,

A good initial guessrequires some knowledge of the problem athand. A function minimization
method is then expected to adjust the initial guess to a value for which e? takes on a local minimum
value, which may also be the global minimum. In Appendix E is a subroutine that performs this
task, The function minimization method that is implemented by this subroutine is called the simplex
algorithm. For a detailed description of this algorithm the reader is referred to the literature that is
cited at the end of Appendix E.

To use the subroutine given in Appendix E, we must provide a main program that calls this
subroutine, and we must provide the data 7,(x;) and x;,i=1,---,1, an initial guess for P, and a

subroutine that evaluates the function 2, which is to be minimized.
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&
function of one varimble

o locel minima |

N

: o glebal minimm
|

»

varizhle

Fig, 10.38. A function with several minima.

To be more specific, let us try I = 21 frequency points, which are given by
X=0+ (0~ )i:—[
i = O+ W, — 0y

so that x; = @, and x,, = @, . We will use a computer to calculate the data 7,(x;). For the initial guess
of P,let P(1) = 2.4 secs., which is the peak value of 7,(®) (See Fig. 10.6¢.), P(3) = 0, T, P(5) = ,T ,
which initially places the equalizer peaks at &, and w,, respectively (See eq. 10.15b.), and
P(2) =P(4) =1 so that the extent of the equalizer peaks are the same as that of 7,(®). Fig. 10.39

shows the main program and all necessary support subprograms to apply subroutine MINMUM
given in Appendix E.

C THIS IS THE MAIN PROGRAM FOR FINDING THE PARAMETERS
C OF A PHASE EQUALIZER.

IMPLICIT REAL*8 (A-H,0-2)
REAL'8 NAME
REAL*4 GDELAY(1024),FREQ(1024)
LOGICAL OUTPUT
EXTERNAL ERSQR
DIMENSION X(100,5), WGT(100),Y(100), GUESS(20),P(20)
COMMON /POINTS/X,NVAR/VALUES/WGT,Y NPTS
DATA NAME/-ERSQR--/
CALL DAT
CALL INIT(GUESS)
DO 1 1=1,20
1 P(I)=GUESS())
OUTPUT=.FALSE.
CALL MINMUM(ERSQR,F,P,NAME,OUTPUT)

c PLOTTING THE OVERALL GROUP DELAY

PI=3.1415926
T=1./8.
WF=PII'T
GAMMA= 95
W0=4.*P/3.
N=256
DW=WF/N
DO 21=1,N
W=(I-1)*DW

93




o000

901

802
903

INFINITE IMPULSE RESPONSE FILTER DESIGN 627

FHEE&L
GDELAY/()=TAU1(W,GAMMA,W0,T)+TAUEQ(W,P(2) P(3), T)+
1 TAUEQ(W P(4),P(5),T)

CALL PLOT(—-—- GFIOUP~ DELAY-----"N
1 ngI’sAY --SECS.-’FREQ,-RAD/SEC")’

END
SUBROUTINE DAT

THIS SUBROUTINE PROVIDES THE POINTS AND DATA.
UP TO NPTS=100 DATA POINTS CAN BE SPECIFIED.
THE DATA AND FUNCTION CAN DEPEND ON UP TO
NVAR=5 INDEPENDENT VARIABLES.

IMPLICIT REAL"8 (A-H,0-Z)
DIMENSION X(100,5),WGT(100),Y(100)
COMMON /POINTS/X, NVAR/VALUES/WGT,Y NPTS

SPECIFYING THE NUMBER OF INDEPENDENT VARIABLES
NVAR=1
SPECIFYING H1(Z) PARAMETERS

Pi=3.1415926
W1=3.75
We=4 55
W3=2.7
W4=5.3
GAMMA=.95
W0=4.PI/3.
T=1./8.

SPECIFYING THE NUMBER OF DATA POINTS
NPTS=21
PROVIDING THE DATA AND WEIGHTS

DO 1 1=1,NPTS
X, y =W3+(W4-W3)*(I-1)/(NPTS-1)

WGT[I]-I“2

IF(L.GT.(NPTS+1)/2) WGT())=(NPTS+1-)**2
Y()=TA 1(w GAMMA,W0,T)

WRITE(6,901

WRITE(s, 9021) él J=1,NVAR)

DO 2 I=1,N

WRITE(6,903) WGT(1),Y(I),(X(1,J),J=1,NVAR)
RETURN

FORMAT(2X,'WEIGHTS' 4X, DATA',8X, INDEPENDENT’,
1 1X,'VARIABLE(S))

FORMAT(24X,5(13,9X))

EﬁgMAT 1X,7(1PD10.3,2X))

FUNCTION TAU1{W,GAMMA,W0,T)
IMPLICIT REAL*8 (A-H,0-Z)
C1=GAMMA*DCO! s{w WO)*T)
C2=GAMMA*DCOS((W+W0)*T)
C3=GAMMA*2
C4=(C3-C1)/(1.+C3-2.C1)
C5=(C3-C2)/(1.+C3-2.C2)
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TAU1=T*(1.-C4-C5)
RETURN
END

SUBROUTINE INIT(GUESS)

c THIS SUBROUTINE PROVIDES THE INITIAL GUESS FOR
¢ THE PARAMETERS,

IMPLICIT REAL"8 (A-H,0-2)

DIMENSION GUESS(20)

GUESS(1)=2.4

GAMMA=.95

W3=2.71

W4=5.29

T=1/8.

GUESSES “W3'T

GUESS(5)=W4*T

GUESS(2)=GAMMA

GUESS(4)=GAMMA

RETURN

END

SUBROUTINE ERSQR(F,PARMS,NPARMS)
c THIS SUBROUTINE COMPUTES THE SUM OF
¢ THE WEIGHTED ERRORS SQUARED.

IMPLICIT REAL'8 (A-H,0-2)

DIMENSION WGT(100),Y(100),PARMS(20)

COMMON VALUES/WGT.Y.NPTS

DO 1 I=1,NPTS

1 F=F+WGT()*(Y()-FUNK(PARMS,|,NPARMS))**2

RETURN

END

FUNCTION FUNK(PARMS,|,NPARMS)
c THIS FUNCTION SUBPROGRAM EVALUATES THE USER SPECIFIED
¢ FUNCTION TO BE FITTED TO DATA. THE FUNCTION GAN DEPEND
c ON UP TO NVAR=5 INDEPENDENT VARIABLES, AND UP TO
c NPARMS=20 PARAMETERS.

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION PARMS(20),X(100,5)

COMMON /POINT/X NVAR

DATA DELTA/1.D-08/
c SPECIFYING THE NUMBER OF PARAMETERS

NPARMS=5
c LIMITING THE PARAMETER RANGE

IF(PARMS(1).LE.0.0) PARMS(1)=DELTA

IF(PARMS(2).LE.0.0) PARMS(2)=DELTA

IFEPARMS 2).GE.1.0) PARMS(2)=1.0-DELTA

IF(PARMS(4).LE.0.0) PARMS(4)=DELTA

IF(PARMS(4) GE.1.0) PARMS(4)=1.0-DELTA
c EVALUATING THE FUNCTION IN TERMS OF THE PARAMETERS
¢ AND THE INDEPENDENT DATA POINTS
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¥v =X(1,1)
FGNK' PARMS(1)- TAUEQ(W,PARMS(2),PARMS(3),T)-
1 TAUEQ(W,PARMS(4) PARMS(5).T)

END
FUNCTION TAUEQ(W,A,B,T)
C _ EVALUATES EQ. 10.15B

IMPLICIT REAL*S (A-H,0-2)
C1=A"DCOS(W'T- )
C2-A'DCOS(W'T+8)
I‘2
04 (03 -C1)/(1.4C3-2.°C1)
3 C21:4C3-2. cz;
(1.-C4-Cs)
RETU
END

Fig. 10.39. Program listing for equalizer design,

Referring to Fig. 10.39, subroutine DAT provides the data, subroutine INIT provides the
initial guess, subroutine function TAU1 evaluates T,(w), and subroutine function FUNK evaluates
f0;,P). The output of the program is shown in Fig. 1040, from which we get
o, =0.9315, B, =0.4074, &, = 0.9327,, and B, =0.6397.

WEIGHTS DATA INDEPENDENT VARIABLE(S)
1

1.000D+00 1.818D-01 2.700D+00
4.000D+00 2.131D-01 2.830D+00
9.000D+00 2.536D-01 2.960D+00
1.600D+01 3.071D-01 3.090D+00 |
2.500D+01 3.792D-01 3.220D+00
3.600D+01 4.789D-01 3.350D+00
4.900D+01 6.198D-01 3.480D+00
6.400D+01 8.230D-01 3.610D+00
8.100D+01 1.117D+00 3.740D+00
1.000D+02 1.527D+00 3.870D+00
1.210D+02 2.018D+00 4.000D+00
1.000D+02 2.395D+00 4.130D+00
8.100D+01 2.373D+00 4.260D+00
€.400D+01 1.971D+00 4.390D+00
4.900D+01 1.482D+00 4.520D+00
3.600D+01 1.083D+00 4.650D+00
2.500D+01 7.985D-01 4.780D+00
1.600D+01 6.020D-01 4.910D0+00
9.000D+00 4.655D-01 5.040D+00
4.000D+00 3.686D-01 5.170D+00
1.000D+00 2.981D-01 5.300D+00

STARTING THE MINIMIZING PROCEDURE FOR THE FUNCTION ERSQR OF 5 VARIABLES
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FUNCTION VARIABLES
INTERATION VALUE 1 2 3 4 5
0 4.320D+02 2.400D+00 9.500D-01 3.388D-01  9.500D-01  6.6120-01

CONVERGED
402 6.071D+01 4.011D+00 9.315D-01  4.074D-01  9.327D-01  6.397D-01

Fig. 10.40. Equalizer design program output.

1 Y2 b
Fig. 10.41. Equalized group delay.
With these equalizer poles, the overall group delay T,(m) is shown in Fig. 10.41, where we
see that within the pass-band of H,(z), the group delay of H,(z) has been corrected to remain within

+10% of 1,=4.011 secs. It is very likely that with more frequency points and additional all-pass

sections we can achieve an even better phase equalizer. This will require further numerical
experimentation.

SECTION 10-4 Summary

We have considered the design of two types of digital filters. These are the recursive form as
ineq. 10.1, and the nonrecursive or convolutional form as in eq. 10.2. We started our study of digital
filter design techniques by first showing that to achieve a real LTI digital filter, M (®) and ¢(w) in
H(e’") = M (w)e’* must be even and odd, respectively, real periodic functions of frequency. Then
we described the ideal frequency response of standard filter types, i.e., LP, BP, HP, and BS filters,
and showed that an ideal filter must have a linear phaseshift characteristic or constant group delay.
We also showed that an ideal magnitude characteristic cannot be achieved with a causal and finite
duration unit pulse response filter. Since in general, we cannot expect to achieve an ideal response
characteristic, digital filter design becomes an approximation problem given specifications on
allowed maximum deviations away from an ideal characteristic. Typically, such specifications are
imposed on the magnitude frequency response, and we showed that the settling time of a filter is
inversely proportional to its bandwidth. While we can approximate an ideal magnitude frequency
response as closely as we like, we cannot in general also achieve a linear phaseshift characteristic.

97




REFERENCES 631

A linear phaseshift characteristic can be obtained with a nonrecursive form if the unit pulse
response satisfies certain symmetry conditions. Such symmetry conditions were incorporated into
two FIR filter design methods. The first method we considered is called the Fourier series method,
which approximates a desired continuous frequency response with a Fourier series to eventually
yield the finite duration unit pulse response of the filter. The second method we considered is called
the frequency sampling method, which yields a filter with a frequency response that passes through
samples of a desired frequency response. However, the computational requirements of running a
rfwnrccursive form are greater than those of a comparable (in the magnitude response) recursive

oI ; :

Several recursive digital filter design methods were developed and compared. All of these
methods are based on discretizing an analog prototype transfer function, and basically, they fall
into two categories. The first category consists of methods for numerically approximating a con-
tinuous time system with an LTI difference equation. Among these methods, we considered the
first order forward and backward difference approximations and the bilinear transformation. There
are numerous other numerical approximation methods. However, because of its simplicity and
suitable properties, the bilinear transformation is commonly used. The second category consists of
methods whereby we obtain an H(z) such that & (¢”°") matches as closely as possible G (jw). Of
course, the methods in the first category also have this goal. However, methods such as the impulse
and unit step invariant methods, modified impulse invariant method, and matched Z-transform
method are more direct in attempting to match the frequency response of the analog prototype.

It is convenient to require only a few tables of precomputed normalized analog LP function
coefficients to arrive at a variety of other analog prototypes. For this, normalized LP to LP, BP,
HP, and BS frequency transformations were used. An alternative would be to discretize a normalized
analog LP function, and then employ digital filter frequency transformations to obtain a final H(z)
(See Problems 10.33 and 10.34.).

In the next chapter, we will utilize four distinctly different microprocessors to implement a
digital filter. This will require knowledge of digital system hardware design and programming in
addition to an understanding of the intended application in order to select an appropriate micro-
processor and develop a digital signal processing system.
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PROBLEMS

For a discrete time system with transfer function
1-2z72

I e
&= o6

obtain M*(w) (Use eq. 10.10.), $(m), and 7(w). Verify that the real and imaginary parts of
H (e®") are even and odd, respectively, periodic functions.
For an all-pass digital filter with a transfer function as given in eq. 10.15a, verify that
MYw)=1.
Consider the averaging algorithm given by
1 N-1

y(k) =R;‘_§nx{k —1i)
Obtain H (z), and expressions for M*(w) and t(w). For £ = 10 Hz and N = 3 and 4, sketch
M*(w) and ¢(m) for @ =0to w, .

By a procedure similar to that used to obtain the unit pulse response of an ideal BP filter as
givenineq. 10.17, obtain the unit pulse response hy,(k) of an ideal HP filter. Sketch hy,(k).

Consider the block diagram shown in Fig. P10.5, where a digital filter is used to obtain
another one. If H(z)is an ideal LP filter with BW = w, , then sketch the magnitude frequency

response of Y (z)/U(z). What kind of filter has been achieved, and is it also an ideal filter?

utz) e 1)

H(z)

Fig. P10.5. Filter derived from another filter.
A BP filter can be achieved by cascading an LP filter and an HP filter. Assume we have
ideal filters with nonzero group delays. The BP filter cut-off frequencies are to be , and
a,. Specify the characteristics of the LP and HP filters to obtain a BP filter, and show the
cascade connection. What will be the group delay of the BP filter?
Suppose that a discrete time signal « (k) is represented by a finite number of points, which

have been recorded, i.e., stored in computer memory. Now off-line processing is possible
with a digital filter H(z) to obtain N + 1 points for the output v(k) as shown in Fig. P10.7a.
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o _*I'_. v, Km0, 1,

(a)

v(N-k)=wlk) hk) —— x(k)

()
Fig. P10.7. Zero phaseshift filter.

Suppose N is large enough so that we have a good representation for v (k). Now define wi(k)
tobe the time reversed v (k),i.e., w(k) = v(V — k), k=0,1,---,N,andletx(k) be the response
of the filter H(z) to w (k) as shown in Fig. P10.7b. If the final output is y(k), which is x (k)
time reversed, then show that the phaseshift from u (k) to y (k) is zero. Also, find Y()U(z)
in terms of H(z). If H(z) has an ideal BP filter magnitude frequency response with cut-off
frequencies at ®, and w, and arbitrary phaseshift characteristic, then what filtering activity
is achieved as we go from u(k) to y(k)?

Two digital filters have transfer functions given by

1+2z7 2+z7!
B g O g

For each filter obtain and sketch the magnitude squared frequency response for @ =0to w, .

Now obtain and sketch the unit step response of each filter. What, if any, is the basis for
the difference in their transient responses? Are the phaseshift characteristics the same?

Some digital filter design procedure has yielded the followin g transfer function.

1+z7+1.25;72

H =
= 125

Is this filter stable? If not, then obtain a stable digital filter transfer function with the same
magnitude frequency response as that of H (z).

The unit pulse response of a digital filter is given by

h(T) = ()t s'm(-g kT]u_l(kT)

IfT =1 sec., then whatis the settling time of the filter for y= 0.5 and 0.97 Sketch a pole-zero
plot for each value of y.

Suppose that the unit pulse response A(k) of an LTI discrete time system is greater than or

equal to zero for all k. Explain why the unit step response of this system cannot exhibit any
oscillatory behavior. Hint: consider eq. 10.18.
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10.12 Ittakes a computer T = 0.4 msecs, to process each input sample by a particular digital filter
algorithm. An amount of 0.1 msecs. is required to perform a sample and hold and A/D
conversion. Can this system perform real-time processing of signals bandlimited to 1250
Hz? If it can, then obtain a flowchart similar to Fig. 10.14, which describes the sequence
of events. If it cannot, then what is the input bandwidth limit? And, obtain an appropriate
flowchart, Hint: consider the situation where the 0.1 msecs . duration tasks take place while
the computeris executing the algorithm. Now suppose thas been reduced to = 0.04 msecs.
What is the resulting input bandwidth restriction? If necessary, obtain a revised flowchart.

10.13 A signal is bandlimited to 500 Hz. Use the Fourier series design method to approximate
the ideal magnitude characteristic shown in Fig. P10.13a, and obtain a linear phaseshift and
causal FIR LP filter with £, =250 Hz.

4 Mluw)

(a} rea

e Ye Q‘] Ye
& Miw)

1

{b) T S . SN ammdp £
f 1/2 ; &
h ’
A 4 + B

1
" —A, »
~u w Q“\ i i
4 /-\.f i BT e, u

w —hu W+l
[ c

Fig, P10.13. LP filter characteristic.

Assume f, = 1000 Hz, and truncate the series with K =35. Will the resulting filter phaseshift
characteristic be linear in the stop-band?

10.14 Repeat Problem 10.13 with f, = 2000 Hz.

10.15 Repeat Problem 10.14, but use the characteristic shown in Fig. 10.13b with Aw=100rn
rad/sec. How does the addition of a transition band affect Gibbs’ oscillation?

10.16 A signal is bandlimited to 500 Hz. By the Fourier series design method, design a constant
group delay and causal FIR filter that approximates

i jory _ JJ@, 0S0<500m
«¢7)=10, 500m<®<w,—500m
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Assume f, =2000 Hz, and truncate the series with K = 5. Sketch the resulting A (k) and
magnitude frequency response.

636 INTRODUCTORY SIGNAL PROCESSING

10.17 For f,=2000 Hz, use the Fourier series design method to obtain a linear phaseshift and
causal FIR filter, which approximates an ideal BP filter with lower and upper cut-off fre-
quencies at f; =250 Hz and f, = 500 Hz, respectively. Use K = 10. For this resulting filter,

what will the cut-off frequencies be if £, is changed to f, =4000 Hz? Finally, obtain a direct
form simulation diagram, which uses the least number of multipliers.

10.18 Repeat Problem 10.13, and use the Hann window to reduce Gibbs’ oscillation.

10.19 Repeat Problem 10.13, and use the Bartlett window. Does the resulting filter magnitude
characteristic exhibit any Gibbs’ oscillation?

10.20 The zeros of an FIR filter are: —1 »+1,0.75£j0.25, and 1.2+ j0.4. Does this filter have a
linear phaseshift characteristic?

1021 Verify egs. 10.44 and 10.47.

10.22 For the frequency sampling FIR filter design method, specify M,(n) and ¢,(n) for the LP
filter described in Problem 10.13. Use N =5. Obtain a simulation diagram based on egs.
10.43. Sketch the resulting M (o) for ® =0 to w,.

10.23 Repeat Problem 10.22 for N = 6.

10.24 For the frequency sampling FIR filter design method, specify M,(n) and ¢,(n) for the LP
filter described in Problem 10.15. Use N = 64. Specify any additional parameters so that
a power of two FFT algorithm can be used to obtain h(k). .

1025 If A(k) is to be antisymmetrical about ¢t = (N — 1)T /2, then, for N even or odd, give an |
expression for ¢,(n), as in egs. 10.45 for a symmetrical 4 (k). Can the specification for M,(n)
be the same as for the symmetrical case? Can an LP FIR filter be realized with an anti-
symmetrical (k) ?

10.26 With the frequency sampling method, repeat Problem 10.16. ‘

10.27 Assume a signal u (k) has a time varying spectrum U, (n). Suppose the contribution of only
one frequency component to the signal is of interest, i.e., n =i or @, = 2ni/T, 0. Atany time
k, the spectrum at @, is to be computed using the samples x(k), x(k — 1), -+, x (k — W -1)).
Design an FIR discrete time system, the output of which is y(k) = U,(i). Hint: take the

Z-transform of the DFT of the N points x(k —1),1=0, -, (N — 1). Draw a block diagram
of the resulting FIR system.

10.28 Consider discretizing a continuous time systern with transfer function G(s) = 10/(s + 10) by
the forward difference approximation. What is the maximum value for T so that the resulting

digital filter H(z) will be stable? Sketch the resultin g M*w) for T =0.05 and 0.1 , and
compare this to MZ().

103



10.29

10.30

10.31

10.32

10.33

10.34

10.35

10.36

10.37

PROBLEMS 637

A time function is bandlimited to 20 Hz. Design a recursive digital LP filter with BW =5
Hz, such that the gain is down at least 20dB at 10 Hz. Use the bilinear transformation method
on a Butterworth analog prototype. Assume f, =40Hz. Write the resulting difference
equation for running the filter.

Repeat Problem 10.29, but obtain a Chebyshev digital LP filter with a ripple bandwidth of
5Hz. Let the peak to peak ripple be 1dB.

Starting with eq. 10.82a, obtain the Chebyshev polynomial recursion formula. Hint: use
the identity, cos((n + 1)x) = 2 cos(x) cos(nx) —cos((n — 1)x). Sketch C,(£2), and Cs(Q), and
the resulting MZ(Q).

Study the transformation 5 = (z + 1)/(z — 1) for obtaining a digital filter from an analog LP

prototype. What kind of digital filter results? Derive an expression that relates the analog
filter and digital filter input frequencies.

Suppose that by any of several methods a digital LP filter H,(z) with BW =1 Hz has been
designed. Consider obtaining another digital filter H,(z) with

H@) =H@),_,,,
where f(z) =—z . Show that H,(z) is the transfer function of a digital HP filter, and determine
the cut-off frequency, if f, = 10Hz.

Suppose that f(z) = —z”is used in Problem 10.33 to obtain H,(z). What type of filter results?
Sketch MZ(w) for =0 to @, .

Find the transfer function of an analog Buiterworth LP filter with BW = 100 Hz, such that
the gain is down at least 20 dB at 400 Hz. With f, = 2000 Hz, use the bilinear transformation
to obtain a digital LP filter such that the gain of the digital filter at 100 Hz is the same as
that of the analog filter at 100 Hz. What is the bandwidth of the resulting digital filter?

Use the bilinear transformation to design a digital BP filter with cutoff frequencies at 1500 Hz
and 2500 Hz such that the gain is down at least 20dB at 500 Hz and 5000 Hz. Use a
Butterworth prototype, and assume that f; = 20 KHz.

The bilinear transformation is based on the trapezoidal integration formula, which is one of
many numerical integration formulas. Another numerical integration formula is Simpson’s
rule, which is given by

yk+1)=yk-1) +§(u(k + D) +4ulk)+ulk—1))

Obtain a transformation based on Simpson s rule for discretizing an analog system described
by G (s). Determine an expression that relates the analog and digital filter input frequencies.

Does this transformation map the jQ-axis in the s-plane onto the unit circle in the z-plane?
Will it always yield a stable digital filter from a stable analog filter? Now use
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Gy(p)=1/(p +1)as anormalized analog LP filter prototype to obtain H, (z) using the bilinear
transformation and to obtain H,(z) using the transformation based on Simpson’s rule. The
bandwidth of both Hi(z) and H,(z) is to be 1 Hz, where JS.=10Hz. Sketch both M?() and
M3(w). Which digital filter provides more stop-band attenuation?

Design a digital HP filter based on an analog Chebyshev LP filter prototype with a 1 dB

peak to trough ripple. With £, = 200 Hz, the digital filter cut-off frequency should be 80 Hz,

and the gain should be down at least 20 dB for frequencies less than 50 Hz. Use the bilinear
transformation method.

Design a digital BS filter with cut-off frequencies at 40 Hz and 80 Hz, such that the gainis
down at least 20dB for frequencies greater than 50 Hz and less than 70 Hz. Apply the

bilinear transformation to a Butterworth analog prototype, and use f, = 400 Hz.

With £, = 5 Hz, use the impulse invariant method to discretize an analog system with transfer

function G(s)=s/(s*+s +1). Sketch M3(w) and M *(@). What is the major cause for the
difference between the analog and digital filter frequency responses?

Using the modified impulse invariant method, design a digital HP filter based on a second
order Butterworth analog filter prototype. The sampling frequency is £, = 1000 Hz, and the

digital HP filter cut-off frequency should be 200 Hz.
Repeat Problem 10.40, but use the unit step invariant method.
A third order analog Butterworth LP filter with @, =1 is described by
Gls)=1(s + 1) (s*+5 + 1)). Using the matched Z-transform method, obtain a digital filter
H(z) from G(s). The digital and analog filter should have the same zero frequency gain.
Use f, = 10 Hz, and write the resultin g difference equation. Sketch M%(w) for w =0 to w,.
Suppose the following transformation, i.e.
2*-2z cos(mT) + 1
S= @
22-1

is used to obtain a discrete time system with transfer function H(z) from an analog LP filter
G(s) with BW =0, . Show that H(z) is a BP filter, and that H(z) will be stable if G(s)is
stable. Obtain an expression that relates the analog and digital filter input frequencies. If
@; and o, are the lower and upper digital filter cut-off frequencies, respectively, which must
map to —£2, and +Q,, respectively, then show that @, is determined with

sin((@, + w,)T)
sin(@,T) + sin(w,T)

cos(w,T) =

105




10.45

10.46

10.47

PROBLEMS 639

Now, apply this transformation to obtain a digital BP filter with w, = 20 Hz, 0, = 40 Hz, and
f,=200Hz. Base the design on a normalized analog prototype filter with Gy(p) = 1/(p + 1).
Sketch the magnitude frequency response M*(@) for @ =0 to o,

Assume that H,(z) is a digital LP filter with BW = @, . Show that if a, is sufficiently greater
than @, , then Hy(z), as obtained with

Hz(z) = Hl(zg‘m"’] + H1(Ze -jmor}

isa BP filter. Let Hy(z)=a(l+zY)((1 +a)— (1 —a)z "), where a = tan(1t/16), which is an
LP filter with @, = ®,/16 . For this H,(z), obtain Hy(z) with 0, = ©,/4, and sketch M3 (w) for
@=0to w,. What happens to M;(w) as @, is decreased?

The transfer function H,(z) of a digital LP filter with , = 2 when f, = 16 is given by

_02(1+z7Y

H(z)=
@)= 08

Determine and sketch the group delay t(®) for w=0to ,. Consider cascading H,(z) with
one second order all-pass section Hgo(z) as given in eq. 10.15a. In terms of the poles
p = o.e® of the all-pass section, write an expression for the overall group delay 7,(w), where
Hy(z) = H\(z)Hgg(z). Now, by guess and try, specify values for o.and [ such that areasonably
constant group delay T,(w) occurs in the frequency range @ =0 to 4. Sketch the overall
group delay for @ =0 to ®,.

Consideralinear phaseshift FIR filter forwhich H (z) = (1 + az (1 +(1/a)z ™). Twopossible
realizations are shown in Fig. P10.47.

Let us investigate what happens to the frequency response of the filter due to representing
coefficient multipliers with a finite number of binary digits (bits). Let 2 =0.8, and obtain
and sketch M*(w) for ® =0 to ®, . Now, suppose we must represent each coefficient with

only two integer bits and two fractional bits, which are obtained by rounding off the binary
representation, i.e., add (0.001), to the binary representation and truncate to two fractional

bits. Therefore, ¢, = (00.11), = (0.75),9, ¢, = (01.01), = (1.25),,, and ¢, = (10.00), = (2.0)y,.
Which realization, i.e., the cascade or direct, preserves the linear phaseshift characteristic?
Now, for each realization write M*(w) in terms of the coefficient multipliers ¢, , ¢,, and ¢;.
An indicator of the gain sensitivity to coefficient multiplier quantization error is oM ac;.
For example, show that

oM? = (1.6 +2cos(w)) (2.5625 + 2.5 cos(wT))

dey -

=0.80,c,=125
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Also, obtain the gain sensitivities with Tespect to ¢, and ¢, . In general, these sensitivities

depend on the input frequency. Which realization is less gain sensitive to coefficient mul-
tiplier quantization errors?

ufk) () T y (k)

delay delay
: ] |_.|:‘ V=g

ey = 1/a
'

(a)

ullk)

¥kl

Gy = 1/
£q a+1l/a

(&)

Fig. P10.47. Two realizations for & (z).

10.48 Consider the digital LP filter

y(&)=0.05u(k) +0.95y(k —1)

where y(~1) is the initial condition and u(k) is the input. Let us investigate what happens
due to quantizing the result of a multiply accumulate operation. It will be arithmetically
convenient if we let u (k) = U, (k), and then, ideally, the steady-state response for any initial
conditionis 1.0. However, suppose thateach y (k), k =0, 1, --- is Tounded off to two fraction
digits, i.e., add 0.005 and truncate to two fraction digits, before it is used to process the next
input sample to obtain the next output. For example, if y(—1) = 0.83, then y(0)=0.8575.
But, due to rounding off, ¥(0) =0.86 will be used to obtain ¥(1), which is rounded off to
obtain y(2), etc. Manually, compute yk), k=0,1, - untl steady-state conditions for two
fraction digits have been reached for each of the initial conditions:
y(-1)=0.80,0.85,0.90, 0.95 » 1.05,1.15,and 1.25. What happened for initial conditions

less than 0.91 and greater than 1.117 This phenomenon is called the deadband effect, to
which digital filters are susceptible,
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Write a main program that uses subroutine FILTER given in Fig. 10.8 to obtain the response
of a BP filter with transfer function given by

2 § 2
2t =2z 47
H(z)=———
z"—3z +;

Let f. = 16 Hz.

(a) Suppose the input is u (k) = sin(w,kT") + sin(w,kT ), where @, = 2(2) and w, = 2r(4).
Obtain 128 point plots, which should be sufficient to discern the steady-state
response, of the input and output. Assume zero initial conditions.

(b)  Now let the input be u(k) = sin(wkT), and obtain plots of the output for w = 2, 30m,
and 34m. Explain any differences and similarities between these outputs.

Modify the main program of Problem 10.49 to implement the procedure described in Problem
10.7. The program should first obtain a 256 pointresponse to u (k) = sin(wkT'), where w = 27,
fork=0,1,--,127,and u(k) =0, for k = 128, 129, ---, 255, of the filter in Problem 10.49.
The program should plot y(k), k =0, 1, ---,255. For what range of k have we achieved a
zero phaseshift BP filter? Repeat the above for w= 8.

Modify the main program of Problem 10.49 to implement a filter, which consists of the H(z)
given in Problem 10.49 cascaded with itself. Now repeat parts (a) and {(b) of Problem 10.49.
It may be necessary to increase the number of points to discern the steady-state response.
Write a main program that uses the following subroutine to compute and plot the frequency
response of the FIR filters resulting from Problems 10.13, 10.18, and 10.19. Obtain the
frequency responses for K =10 and 50. Without windowing, is the amplitude of Gibbs’
oscillation reduced as K is increased? Now consider the desirable attributes of a window
function as arrived at from eqs. 10.32, and make up a window function w,.g.(i). Use this
window function to obtain the frequency response for K =5, 20, and 50. In all cases, be
careful to use the proper window width. Does w,...(i) reduce the amplitude of Gibbs’
oscillation without increasing the transition bandwidth too much?

SUBROUTINE SYMFIR (T,H,K,N)
DIMENSION H(128),AMP(1024),W(1024)
FF=(1./T)/2.

DW=2.3.1415926"FF/N

DO 1 _1 N

wn&lf)’{j (K+1}

1I1K

1 AMP(J) AMPL) 12 H() COS(IKCM) T W)
CALL PLOT(FIR-FILTER-FREQ-RESPONSE"N,
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1 AMP,--MAG---,W,'RAD/SEC-')
RETURN
END

This subroutine implements eq. 10.36a, and computes and plots N points of the magnitude
frequency response. The array H contains the unit pulse response, ie.,
H(1)=h(0), -, HK+1) = £ (K).

10.53 Modify the subroutine given in Problem 10.52 to compute and plot i) ok according to eq.
10.36b, and write a main program to obtain the frequency response of the FIR differentiator
resulting from Problem 10.16. Do this for K =5, 20, and 50. What happens to Gibbs’
oscillation as K is increased? Repeat the above, but use the Hann and Bartlett windows,
Does either of these windows prevent sign changes in H (/") for 0 < @ < w,/2?

10.54 Write a main program that uses the DFT as computed with the FFT algorithm to determine
the unit pulse response of a linear phaseshift FIR filter by the frequency sampling method,
Do this for the LP filter specified in Problem 10.13 (See Fig. P10.13a.) with 8 and 32
frequency samples. Also, modify the subroutine in Problem 10.52 to obtain the frequency
response according to eq. 10.38a. For each case, obtain plots of the FIR filter unit pulse |
response and a 128 point frequency response. Does increasing the number of frequency
samples reduce oscillations in the frequency response? Repeat the above for the LP filter
given in Fig. 10.13b (Aw = 100x). Does introducing a transition band reduce oscillations
in the frequency response? Is Aw = 100x necessarily the best transition band width for the
least frequency response oscillations?

10.55 With f, =5 Hz, obtain 1Hz ripple bandwidth digital LP filters from a second order 1 dB
ripple analog Chebyshev LP filter by the bilinear transformation, the impulse invariant
method, and the matched Z-transform method. Write a main program, which uses the FFT |
algorithm, to compute and plot a 256 point frequency response for each of the resulting
digital filters. Which filter has the best stop band attenuation? Which filter incurs the most
aliasing error? Which filter best preserves the equal ripple characteristic of the analog filter?

10.56 Write a main program and support subroutines similar to the programs given in Example
10.20 that will determine the poles of the all-pass phase equalizer for the LP filter described
in Problem 10.46. Also, obtain 256 point plots of the original and equalized group delay.
Try both 11 and 21 frequency points over the frequency range w=0 to 4. Use the result
of Problem 10.46 as the initial guess for the poles.

10.57 Consider again the digital BP filter given in Problem 10.49 as it would be implemented with
finite word length digital hardware, where the input, filter coefficients, and addition and
multiplication results must be quantized to a finite number of bits. Also, addition or mul-
tiplication may produce a result that is outside the range of numbers that can be represented
with the given number of bits. This is called overflow, in which case the result is replaced
with the largest positive or negative value that can be represented with the given number of
bits, i.e., the saturated value. It would be convenient to be able to simulate binary round
off quantization on a general purpose computer. For this, the following function subprogram
QUANT is useful. It accepts a number X in base 10, performs a binary round off to NF
fractional bits, and returns the binary quantized number in base 10. Also, if X is outside the
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range [-OMAX, OMAX] , where QMAX =2""—2™, and NI is the number of integer bits,
then X is rounded off to the saturated value + QMAX . For example, if X =-4.196, then
Y=QUANT(X,3,2) yields Y =—4.25, while Y=QUANT(X,2,3) yields the saturated value
Y =-3.875. With NI large enough, saturation can be avoided. NI and NF cannot be less
than zero, and NI and NF cannot both be zero.

FUNCTION QUANT(X,NI,NF)
QUANT=0.
IFSNI.LT.0.0R.NF,LT,O RETURN
IF(NI.EQ.0.AND.NF.EQ.0) RETURN
IF{X.EQ.O).() RETURN

AX=ABS(X)

SIGN=1.

IF(X.LT.0.) SIGN=-1.

IX=AX

FX=AX-IX
TWOPNI=FLOAT(2**NI)
TWOMNF=1/FLOAT(2**NF)
QFX=0.
IF(NF.EQ.0) GO TO 2
DO 1 I=1,NF
FX=2.FX
IF(FX.LT.1.) GO TO 1
FX=FX-1.
QFX=QF X+1./FLOAT(2**)

1 CONTINUE

2 FX=2.FX
IF(FX.GE.1.) QF X=QF X+ TWOMNF
QX=IX+QFX
QMAX=TWOPNI-TWOMNF
IF(QX.GT.QMAX) QX=QMAX
QUANT=SIGN*QX
RETURN
END

Write a main program that uses subroutine FILTER given in Fig, 10.8. Add NI and NF to
the argument list of subroutine FILTER, and replace the statement
SUM=SUM-+C(INDEX)*Y(INDEX) '
with
CY=C(INDEX)*Y(INDEX)

X=SUM+QUANT(CY NI,NF)
SUM=QUANT(X,NI,NF)

With variations of the above replacement, product only and sum of products only quanti-
zation can also be simulated. In the main program, use statements such as
BO=QUANT(BO,NI,NF) to quantize the filter coefficients.

(a)  Obtain 256 point plots of the unit step response of the BP filter given in Problem
10.49 for NI=3 and NF=12, 8, 4, and 2. Use zero initial conditions. Ideally, the
steady-state unit step response is zero. However, what happens to the transient and
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the steady-state response as the number of binary fraction bits is reduced? Is the
filter stable for every case? Does the steady-state response settle to a constant value
for every case? Repeat the above for NI=1.

(b)  Now, suppose the input s u (k) = A sin(8mkT'), where f, = 16, and NI and NF are fixed
atNI=1 and NF=6. Notice that the input must also be quantized. Whatis the maximum
input amplitude to avoid digital filter input saturation? With this maximum input
amplitude, obtain and plot the filter response for zero initial conditions. Does the
output ever become saturated? If it does saturate, then scale H(z) to obtain a response
that does not saturate. Give reasons for why the steady-state response is not a pure
sinusoid.

10.58 Modify the function subprogram QUANT to perform quantization by truncation, and repeat

Problem 10.57.
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About the book

This book presents the fundamentals of continuous and discrete time signal
processing. Itisintended for the reader with little or no background in this subject.
The emphasis is on development from basic principles.

The first chapter gives an overview of some applications of signal processing.
Then, this book presents topics such as: system properties, convolution, periodic
continuous and discrete time signals, the discrete Fourier transform (DFT) and its
applications, the Fourier transform, the fast Fourier transform (FFT), correlation
analysis, the Laplace transform, the Z-transform, state variable methods for
describing and analyzing continuous and discrete time linear and time invariant
systems, the design of digital filters, and the application of special purpose micro-
processors for real-time digital signal processing.

Some features of this book are:

1) gradual and step-by-step development of the mathematics for signal processing,

2) numerous examples and homework problems,

3) many examples of using the computer for applying the theory,

4) emphasis on the relationship between continuous and discrete time signal
processing, :

5) computer based assignments to gain practical insight,

6) aset of computer programs to aid the reader in applying the theory.

With this book the re an become knowledgeable about both the theoretical
and practical aspects of digital signal processing.
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