A Modern Approach
to Radio Engineering

The first comprehensive guide
to software radio design
and implementation

Multirate DSP, RF front-ends, direct
digital synthesis of modulated
waveforms, A/D and D/A
conversion, and more

Enhancing performance through
smart antennas and other
adaptive array algorithms

Techniques for building more
flexible, object-oriented
real-time software

Jeffrey H. Reed

Prentice Hall Communications Engineering and Emerging Technologies Series
Theodore S. Rappaport, Series Editor

1 Comcast, Ex. 1045



MQ\H.S\Q*.@ z:—H- — = A Modern >c3om. | ;
to Radio Engineer:




A cataloging-in-publication data record for this book can be obtained from the Library of Congress,

Production Supervision: Laura Burgess
Publisher: Bernard Goodwin

Editorial Assistant; Michelle Vincente
Marketing Manager: Dian DePasquale.
Manufacturing Manager: Alexis Heydt-Long
Cover Design Director: Jerry Votta

Cover Design: Nina Scuderi

Art Director: Gail Cocker-Bogusz

Production Services/Compositor: Lori Hughes

(C)2002 Prentice Hall PTR
A division of Pearson Education, Inc.
Upper Saddle River, NJ 07458

Prentice Hall books are widely used by corporations
and government agencies for training, marketing, and resale.

The publisber offers disconnts on this book when ordered in
bulk quantities. For more information, contact:

Corporate Sales Departnent

Prentice Hall PTR

One Lake Street

Upper Saddle River, New Jerscy 07458

Phone: 800-382-3419
Fax: 201-236-7141
Email: corpsales @prenhall com

All products mentioned herein are trademarks or
registered trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form
or by any means, without permission in writing from the publisher.

Printed in the United States of America
0 9 8 7 6 5 4 3 2 1

ISBN 0-13-081158-0

Pearson Education LTD.

Pearson Education Aunstralia PTY, Limited

Pearson Education Singapore, Pte. Lid.

Pearson Education North Asia Lid.

Pearson Education Canada, Ttd. : T
Pearson Educacidn de Mexico, §.A. de C.V.

Pearson Education—Japan

Pearson Education Malaysia, Pte. Lid.




Contents

PREFACE
ACKNOWLEDGMENTS

1 INTRODUCTION TO SOFTWARE RADIO CONCEPTS
1.1 The Need for Software Radios
1.2 What Is a Software Radio?
1.3 Characteristics and Benefits of a Software Radio
1.4 Design Principles of a Software Radio
1.5 Questions

2 RADIQO FREQUENCY IMPLEMENTATION ISSUES
2.1 The Purpose of the RF Front-End
2.2 Dynamic Range: The Principal Challenge of Receiver Design
2.3 RF Receiver Front-End Topologies
2.3.1 Characteristics of the Topologies
2,32 Topologies
2.4 Enhanced Flexibility of the RF Chain with Software Radios
2.5 Importance of the Components to Overall Performance
251 Antennas ' :
2.5.2 Duplexer and Diplexer
253 RFFilter
2.54 Low Noise Amplifier
2.55 Image Reject and IF Filters
256 RF Mixer
2.5.7 Local Oscillator
258 Automatic Gain Control
259 Analog to Digital Converter
2.6 Transmitter Architectures and Their Issues
27 Noise and Distortion in the RF Chain
27.1 Noise Characterization
272 Distortion Characterization
2.8 ADC and DAC Distortion

Xix

o0 3N W B = e

11
13
14
14
15

21

21
21
26
26
27
27
27
23
29
32

.33

35
35
38
42

vii




R - o e o L

viii Contents
2.9 Predistortion 43
2.10 Flexible RF Systems Using Microelectromechanical Systems 49
2.11 Conclusion 52
2.12 Questions 53
3 MULTIRATE SIGNAL PROCESSING 55
3.1 Introduction 55
311 Cost 55
312 Flexbility 56
3.1.3  Overview of the Chapter 57
3.2 Sample Rate Conversion Principles 57
3.2.1 Decimation 58
3.22 Interpolation 62
3.2.3 Two Multirate Identities T
324 Nop-Integer-Rate Conversion 78
325 Sampling Rate Conversion by Stages 79
3.2.6 Cascaded Integrator Comb Filter 87
3.3 Polyphase Filters 96
3.3.1 Polyphase Decimation 96
332 Polyphase Interpolation 98
3 4 Digital Filter Banks 101
34.1 Implementation 103
342 DFT Filter Banks 103
343 Transmultiplexers 112
3.5 Timing Recovery in Digital Receivers Using Multirate Digital Filters 114
3.5.1 Timing Recovery in a Classical Analog Receiver 117
3,52 Timing Recovery in the Digital Domain Only 117
3.5.3 Early-Late Gate Synchronizer 120
354 Timing Offset Control Using the Barly-Late Gate Principle 120
3.6 Conclusion ' 124
3.7 Questions 125
4 DIGITAL GENERATION OF SIGNALS 127
4.1 Introduciion 127
4.2 Comparison of Direct Digital Synthesis with Analog Signal Synthesis 129
4.3 Approaches to Direct Digital Synthesis 131
43.1 Pulse Output Direct Digital Synthesis 131
432 ROM Look-Up Table Approach 133
43.3 Phase Truncation Distertion 133 .
434  Analysis of the Output Sequence 139
44 Analysis of Spurious Signals 140
4.5 Spurious Components due to Periodic Jitter 143
4.6 Bandpass Signal Generation 144
4.7 Performance of Direct Digital Synthesis Systems 146




Contents . ' ix

4.7.1 Experimental Findings : 146

472 Use of Hybnd Systems 147
4.8 Hybrd DDS-PLL Systems : 148
4.9 Applications of Direct Digital Synthesis 148
4.10 Generation of Random Sequences 150
4.10.1 Types of Sequences and Their Properties : 150
4.10.2 Randomization with the Wheatley Procedure 153
4.11 ROM Compression Techniques 157
4.11.1 Interpolation Using Taylor’s Series Expansion : 158
4.11.2 Interpolation Using Trigonometric Identities 160
4.12 Sine-Phase Difference Algorithm Approach 163
4.13 Modified Sine-Phase Difference Approach (Parabolic Approximation) 164
4.14 Conclusion 166
4.15 Questions _ 167

5 ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERSION 169

5.1 Introduction 169
5.2 Parameters of Ideal Data Converters 171
52.1 Sampling Process 17
5.22 Quantization 184
5.3 Parameters of Practical Data Converters . - ' 195
53] Generic Data Converter Physical Models : 195
532 Practical Transfer Characteristic Considerations _ 199
533 Dynamic Range Considerations 202
534 Practical Timing Issues : 208
53,5 Analog Bandwidth 217
53.6 Power Consmmption - 217
5.3.7 Impact of Noise and Interference on Dynamic Range
Requirements ' : 221
5.4 Techniques to Improve Data Converter Performance 224
54.1 Dithering 225
542 Automatic Gain Control 228
5.5 Common ADC and DAC Archifectures 232
551 Parallel Structures: Flash ADCs, String DACs, and Binary
Structures 232
552 Segmented Structures: Folding and Interpolating ADC
and Segmented Ladder DAC 236
553 Tierative Structures: Subranging/Pipelined/Half-Flash ADC, '
Successive Approximation ADC : 242
554 Sigma-Delta Structures: ADC and DAC 246
5.6 Conclusion : 256
5.7 Questions ' 259




X

Contents

6 SMART ANTENNAS

6.1 Introduction
6.2 Vector Chanpel Modeling
' 6.2.1 Array Steering Vectors

6.2.2 Multipath Channel Models
6.2.3 Multi-User Channel Models

6.3 Benefits of Smart Antennas
6.3.1 Beamforming
6.3.2 Space-Time Equalization
6.3.3 Diversity

6.4 Structures for Beamforming Systems
64.1 Multiple Fixed-Beamm Antenna Array
6.42 Fully Adaptive Armay

6.43 Relative Benefits and Trade-Offs of Switched Beam

and Adaptive Array Systems
6.5 Smart Antenna Algorithms
6.5.1 Diversity Combining Techniques
6.5.2 Adaptation Algorithms Using Training Sequences
6.5.3 Blind Algorithms
6.6 Diversity and Space-Time Adaptive Signal Processing
6.6.1 Algorithms for Receiver STAP
6.6.2 Overloaded Array Processing
6.7 Algorithms for Transmit STAP
6.7.1 Space-Time Pre-Filtering
672 Space-Time Trellis Coding
6.7.3 A Simple Transmit Diversity Scheme
6.8 Hardware Implementation of Smart Antennas
6.8.1 Digital Beamforming Receiver Implementation
6.8.2 Digital Beamforming Transmitter Implementation
6.8.3 Component Issues
6.9 Array Calibration
6.9.1 Remote Transmitter Approach
6.9.2  Test-Tone Approach
6.10 Virginia Tech Space-Time Adaptive Radie Case Study
6.10.1 Overview of the VI-STAR Architecture
6.10.2 RF Design of VI-STAR
6.10.3 Software Issues for VI-STAR
6.10.4 Key Design Issues of VT-STAR
6.11 Conclusion
6.12 Questions

7 DIGITAL HARDWARE CHOICES

7.1 Introduction
7.2 Key Hardware Elements

263
263
264
265
270
273
274
275
276
276
276
278
278

282
282
283
289
292
300
301
308
309
309
310
314
316
317
317
319
321
321
322
323
324 -
325
327
333
333
335

339
339
340




Contents xi
7.3 DSP Processors 342
7.3.1 DSPCore 342
7.3.2 DSP Axchitectures 342
7.3.3 Numeric Representation 347
734 Addressing 350
7.3.5 * Pipelining 353
7.3.6 Peripherals and Additional Features 355
7.3.7 Multi-Processing 355
7.3.8 Multi-Processing Using a Real-Time Operating System 357
7.3.2 The Software Design Cycle 358
7.3.10 Maximizing Performance 360
7.3.11 Benchmarks and Performance Evaluation 368
7.3,12 (Case Study: TMS320C54x Series D5Ps 370
7.4 Field Programmable Gate Arrays 3N
74.1 Operation of an SRAM-Based FPGA Cell 371
74.2 TImplementing DSP Functions in FPGAs 373
743 TFPGA Architectures 373
74.4  Applications of FPGAs to Software Radios 377
74.5 Design Principles using FPGAs 378
7.5 Trade-Offs in Using DSPs, FPGAs, and ASICs 379
7.6 Power Management Issues 379
7.6.1 DSP Power Management 380
7.62 Low-Power VLSI Design 381
7.6.3  Architectural-/System-Level Approaches 383
7.7 Using a Combination of DSPs, FPGAs, and ASICs 386
7.8 Conclusion 387
7.9 Questions 388
8 OBJECT-ORIENTED REPRESENTATION OF RADIOS AND NETWORK
RESOURCES 391
8.1 Introduction 391
8.2 Networks 39z
8.2.1 System Layers 395
8.2.2 Switching 356
823 Quality-of-Service 396
824 Internet Protocol : 397
8.2.5 Asynchronous Transfer Mode 403
82.6 Networks and Software Radios 404
8.3 Object-Onented Programming . 405
8.3.1 Objects 406
832 Java 411
8.3.3 Java and Software Radios 414
8.3.4 The Radio Virtual Machine 415
8.3.5 Object-Oriented Software and Software Radios ' 415




Contents

8.4 Object Brokers 416
841 Common Object Request Broker Architecture 419
842 Software Radio. Implementation Issues 422
843 Object Brokers and Software Radios 424

8.5 Mobile Application Environments 424
8.5.1 MExE ' : 427
85.2  Service Discovery 432
8.53 Mobile Application Environments and Software Radios 432
8.54 Security in Software Radio 433

8.6 Joint Tactical Radio System 434
8.6.1 Hardware Classes 434
8.62 SCA Structure _ 435

8.7 Conclusion 440

8.8 Questions 441

CASE STUDIES IN SOFTWARE RADIO DESIGN 443

9.1 Introduction and a Historical Perspective 443
91.1 Architectural Characteristics Intrinsic to a Software Radio 445
9.12  Architectural Characteristics Important to a Software Radio 446
913  Architectural Characteristics of Practical Software Radios 448

92 SPEAKeasy 450
9.2.1 SPEAKeasy Phase I _ 451
9.2.2 SPEAKeasy Phase I 455
92.3 SPEAKeasy Summary 462.

9.3 JTRS 462
03.1 Goals of the SCA - 465
932 Attributes of the SCA Developed from the PMCS Guidance

Document 465
933 SCA Architectural Details 466
934 JIRS Summary ' 475
935 SDR Forum Architecture Details 476
036 Summary _ 481

9 4 Wireless Information Transfer System : 481
94.1  Architecture Goals 483
9472  Architecture Overview - 483
043 Software Architecture ' 484
944 Hardware Architecture ' e 484
945  Architectural Details _ : 486
94.6 WITS Summary 490

9.5 SDR-3000 Digital Transceiver Subsystem 492

9.6 SpectrumWare 494
96.1 SpectrumWare System Description 495
9.6.2 Input/Output ' . 495
963 Programming Environment - 496




Contents

xiii

9.7.2 Layered Radio Architecture Implementation Example
9.7.3 CHARIOT Summary

9.8 Conclusion )

9.9 Questions

A RF ENGINEERING BOOKS AND TRADE PUBLICATIONS

A.1 Electronics
A2 RF Circuit Design and S-Parameters
A3 Filters
A4 Microwaves
A5 Oscillators
A.6 Phase Locked Loops and Frequency Synthesizers
A.7 Receivers and Systems
A.8 PSpice
A.9 Trade Publications and Periodicals

A.10 Web-Accessible Tutorial Materials

B THE COORDINATE ROTATION DIGITAL COMPUTER ALGORITHM

B.1 Introduction

B.2 CORDIC Overview

B.3 Derivation of the CORDIC Algorithm
B.3.1 Translating a Point Along a Circle of Radius R
B.3.2 Rotation Through Iterative Subrotations .
B.33 Computationally Simplifying the Iterative Rotations
B.3.4 Putting the Equations in Final Form
B.3.5 Vectoring Mode

B.4 CORDIC Algorithm Performance

B.5 Extensions to the CORDIC Algorithm

REFERENCES

GLOSSARY OF ACRONYMS

ABOUT THE AUTHOR

ABOUT THE CHAPTER CO-AUTHORS

INDEX

10

507
509
509
512

515
515
515
316
316
516
516
517
317
317
518

519
519
520
520
520
522
523
524
525
526

- 527

531
549
557
559

561




5 T

Chapter 3

MULTIRATE SIGNAL

PROCESSING

Low complexity digital signal processing applications can be performed using a single
sampling rate for the whole implementation. For high complexity applications, sometimes
it is beneficial to alter the sampling rate used at different stages of the sysiem to reduce
the required computational complexity and to enable the use of low-cost digital signal
processing structures. The implementation of a digital signal processing application using
variable sampling rates is called multirate digital signal processing.

3.1  Introduction

Multirate digital signal processing techniques can improve the flexibility of a software ra-
dio. For instance, a multimode receiver may share the same ADC and sampling rate for
multiple receiver implementations. Yet there is an optimal sampling rate and resolution
for each of these standards. At the receiver, a signal is typically digitized at a rate sig-
nificantly higher than the bandwidth so that the anti-aliasing filter specifications can be
relaxed, but then the sampling rate is immediately reduced to the minimum sampling rate
to avoid excessive computation. Furthermore, it is desirable that the sample rate be exactly
some integer multiple of the symbol rate to ensure that the receiver is synchronized to the
incoming data, otherwise, symbols may be lost or counted twice. For a transmitter, the
signals are created at the minimum sampling rate to avoid excessive computation, but the
sampling rate is increased before the DAC to relax the specifications of the interpolation
filter.

3.1.1 Cost

In any system design, it is important to minimize the resources used by the system to
perform its intended application. For a computer-based design, the most critical parareter
is MIPS (millions of instructions per second). A system design that can deliver a desired
application using a minimal pumber of MIPS is generally less expensive and consumes
less power than a design that requires higher-performance hardware. Any technique that
will reduce the number of instructions needed to perform a task is a welcome addition to

55
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Figure 3.1: Block Diagram of a Simplified Basestation Receiver.

an efficient system design. One of the most basic means of reducing the number of MIPS
used is to minimize the information content of the 51gna] to be processed to only its essential

_content.

An example of a multimode system is a basestation designed to handle nm]tlple S€r-
vices. The basestation can digitize the whole band of the reverse link and digitally extract
individual channels. The advantage of this approach is the need for only a single RF front-
end and ADC to service a whole spectrum of standards. On the forward link, signals can -
be combined in the digital domain so that a single, common, RF front-end and DAC can be

used to service a sector. This implementation option can drastically reduce the cost of RF

components. Furthermore, since the cost of state-of-the-art, high-speed digital signal pro-

cessing chips rises exponentially with speed, the use of channelization (to lower sampling
rates) and parallel processing allows the use of lower-speed chips, significantly reducing

the implementation cost. Figure 3.1 shows an example of channelization where the task of
a basestation's radio interface is to collect the signals transmitted by all mobile units and to

separate each channel for individual processing.

Each new data stream stemming from the original collected data stream has a lower
data Iate than that of the original; if the original stream is % bps, each channelized stream -
will be £ =, where n, is the pumber of channels. The lower data rate at which each channel
transn:uts allows parallel implementation of less demanding algorithms, enabling the use of
less complex and potentially more power-efficient hardware.

3.1.2  Flexibility

Attimes, it is important for a system to operate in several different modes. This need is most
apparent in cellular phones designed to operate using different standards. For example, .
the design specification may require a basestation to be able to handle I3-136 (30 kHz
channels), GSM (200 kHz), IS-95 (1.25 MHz channels), and WCDMA (5 MHz channels).

12




Section 3.2 Sample Rate Conversion Principles : 57

While each of these standards has different rcqmrernents it is possible for a smgle system

to be able to handle all of them.

ADCs are usually subjected to a resolution versus speed trade-off. Higher-speed data
acquisition is usually achieved through the reduction of resolution; an eight-bit sample is
acquired faster than a twelve-bit sample. The use of multirate digital signal processing
techniques in a system design allows the designer to trade sample rate for data resolution.
For more details on analog to digital conversion, refer to Chapter 5.

3.1.3 Overview of the Chapter

The application of multirate technigues to a system design allows the designer significant
latitude in selecting the system’s cost, modes of operation, level of parallelism, and level
of quantization noise in the system. For these and other reasons, an understanding of the
multirate digital signal processing algorithms is necessary.

In Section 3.2, rate conversion principles applicable to upsampling and downsamp]mg
will be presented. In Section 3.3, polyphase filters will be reviewed. Section 3.4 will
present a review of digital filter banks and will include examples of existing systems em-
ploying multirate techniques. Section 3.5 applies multirate techniques to the problem of
symbol timing recovery. The chapter is concluded in Section 3.6.

3.2 Sample Rate Conversion Principles

The conversion of a data stream’s sample rate is an important part of digital signal pro-
cessing. A data stream can be downsampled to a lower sampling rate or upsatnpled toa
higher sampling rate. Figure 3.2 represents the process of sample rate conversion. A sig-
nal, x{n), sampled at F, . is passed through a sampling rate converter. The output signal
is the waveform y(m) sampled at F; . The sampling rate converter can be thought of as
the time-varying filter A{n, ). Note that r and 7n are indices for different tiroe scales.

The sampling rate conversien factor is expressed as the ratio of two relatively prime
numbers, i.e., numbers whose greatest common divisor is one. Therefore, the filter A (r, m)
is a rate converter whose sampling ratio is determined by Equation 3.1, :

' Fs,z _ £ (31)

F,, D

x(n) yim)
F
5.X Fs,y'

Figure 3.2: Sampling Rate Converter.
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58 Multirate Signal Processing Chapter 3

The factors I and D in Equation 3.1 are the interpolation and decimation factors, respec-
tively, both of which are relatively prime. In the following decimation example and analy-
sis, I is assumed to be 1 [31,32].

3.2.1 Decimation

Decimation is the process by which high-frequency information is eliminated from a signal
to reduce the sampling frequency without resulting in aliasing. As shown in Chapter 5,a
sampled signal, seen in Figure 3.3, repeats its spectrum every 2w radians, If decimation
without filtering were performed, aliasing would occur, an example of which is seen in
Figure 3.4.

Figure 3.5 shows a block diagram of the decimation process. The operation is comm-
posed of lowpass filtering followed by downsampling. The downsampler picks a subset of
the samples that are passed through the lowpass filter {LPF). The LPF used is designed to
avoid aliasing and has a cutoff of Z., the point that aliows the non-aliased part of the signal
seen in Figure 3.4 to pass.

The end result of the decimation procedure is the content of the original signal below % 5
but it is sampled at a lower rate. Figure 3.6 shows the expected spectrum of the decimated
signal. _

To fully explore the process of signal decimation, an analysis of the algorithm is nec-

' essary. Two processes are used in the decimation procedure: filtering and downsampling.

Equation 3.2 shows filtering performed with filter () on signal () in the time domain.
Subsampling is the selection of every Dth sample, shown in Equation 3.3,

v{n) = Z hp(K)e(n— k) (3.2)

k=—n0

y(m) =o(mD) | (3.9)

Amplitude
1
X(@y) o,
I I I ; L L]
-3 op 0 0 T 2n 3x  Normalized
Frequency

Figure 3.3: Sampled Signal Spectrum.

14




T T YT TP

e e U T Y O

| xwnl
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Figure 3.5: Decimation Circuit Block Diagram.

MER]
- - ;ﬂ
Y
2r  -m 0 T . Normalized
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Flguxe 3.6: Decimated Signal Magnitude Spectrum. (Note in this case 2w corresponds to
F =/ D in actual frequency.)
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The combination of Equations 3.2 and 3.3 yields
ym)y= Y hp{k)z(mD —k).
k=—o0
Define t(n) as

_ ] vln) n=0,+£D,£2D, ...
(n) = 0 otherwise

(3.4)

(3.5)

and model as u{n) sampled with impulse train p(r), where p{n) is defined in Equation 3.6
using the Fourier series for a sampling impulse of period D. ©(n) is shown in Equation

37

fll

' 1 Pt k
j Qo S
p(n) E.Z G
k=0
(n) = v(n)p(n)
Using Equations 3.3-3.7, the following relationship can be derived:
ylm) = v(mD) = v(mD}p(mD) = (m).

The discrete time Fourier transform (DTFT) of y(m) can be calculated as

Lo o)

V()= 35 ylm)eiom

mf =—o0
where

f
= dr—_
Wy ﬂFs’y

1epresents the normalized sample rate with respect to signal ¥.

= »)

Yiwy) = Z v(m’D)e_:’;“’ym“

mi=—o
o

= 3 Fm)e I

m'=—ca

16
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Let = m'D.

V() = Y #(m)e?m

= Y vim)p(m}e? BT

%) 1 D—1
_ 2wtk —'%V—m
= mzz_mv(m) lﬁgjeﬂ B } e 7

- LYY wm[erbe]

k=0 m=—oo
1 Dol oo Wy gnk
LS pmerit
k=0 m=—co
D—-1
1 wy 27k
> 1% (5 - ?) _ (3.9)

Note the sampled v(n) frequency domain representation cansists of replicated images at
27k with a normalized frequency scale of wy, /D.
Since V (wy) = Hp{wy)X (wy}, the final form of Equation 3.9 can be rewritten as

D—1 : .
1 wy — 2wk wy, — 2Tk '
Y(wy)=EZHD(yD )X(?"D ) (3.10)
k=0 .

From Equation 3.10, it can be seen that an image of Y is replicated every %l radians
{relative to the original signal’s normalized sample rate).

The image of interest, the primary image, is centered at zero; Equation 3.11 shows the
form of the primary image (k = 0).

= s ()% (3)

Assuming that Hp is a perfect LPF, Lie., _

Wy, |1 Jwyl €m '
HD[ﬁ) o { 0 otherwise, G.12)

'Note: with respect to the original sample rate

— 1 Jug| <#/D
Hp (ws) = { 0 otherwise.
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then Equation 3.11 is simplified to

1 w
Y (@)= 5X (5?") Jwy| < 7. (313)

Decimation filters out the information in the original signal above = + (with respect to
the original sample rate). A lowpass direct mapping is possible from wy to w; and vice
versa; this relationship is best described as the spectrum spanned by X {wz), 0 <wg <5
is also spanned by Y {w,), 0 < wy < .

3.2.2 Interpolation

Upsampling is the process to increase the number of points per unit time used to describe
a signal. The spectral content of the signal does not change; what does change 1s the spec-
tral separation between images of the original spectrum. When upsampling is employed,
no new information is added to the signal. The process of upsampling decreases the time
between samples of a signal. This process can be used for matching sampling rates be-
tween two Systems or as the last step before the DAC to help relax the requirements for the
reconstruction filter. If the signal shown in Figure 3.6, X (w, ), were sampled at twice the
rate shown in the figure, its spectrum would appear as shown in Figure 3.7. Several meth-
ods of interpolation are presented in this section: zero-insertion, zero-order-hold (ZOH),
zero-insertion and raised-cosine filtering, and fast Fourier transform (FFT) expangion.

Zero-Insertion Interpolation

In this method, zeros are inserted between samples of a signal, generating a new signal.
This new signal is then lowpass filtered, yielding an upsampled version of the original (see
Figure 3.8}.

For the purpose of analysis, assume that the original signal is z(n} and that the goal is
to upsample 1t by a factor of . I — 1 zeros are inserted between each pair of consecutlve

- samples of z(n), yielding v(m), which can then be defined as

_ [ x() m=0,41425, ... '
v(m) = { 0 otherwise ' G149
Taking the Z-transform of v(m) and defining 7’ = mJ yields V(z):
V(z) = Z omNz™ = Z v(mI)z~™ (3.15)
= Z e(m)z~™ = Z x(m) (zI) e
From Equations 3.15 and 3.14,
V(z) = X (). ' (3.16)

18




Aouanbalg
pazijewoN

“(z = ) wnnoadg epmrudely [eusig pordwresdn) 1'¢ M3

 §

£y

oM

63

19



o4 Multirate Signal Processing  Chapter 3

Zero-Insertion —»
(t=5)

M"Sért -1 Zeros | V(T hm) | ym)
FIR LPF

Figure 3 8: Direct Implementation of an Interpolator.

To evaluate the DTFT of V' (%), evaluate Equation 3.16 with z = e, yielding
1
Viwy) = TX(ny)' _ 3.17)

Note that the § factor is included to mode] the reduction in power (in the normalized scale)
resulting from inserting I — 1 zeros. .

Equation 3.17 shows a contraction of the spectrum; a copy of the spectrum of the orig-
inal signal is generated every 27“ radians instead of every 27. This means that a direct
mapping between wy, and w; is possible, as seen in Section 3.2.L

Since wy, = Qwﬁ and w, = 2?1'1{—@, wy = “F, and therefore,

0w, <7 mapsto 0 < wy < (3.18).

e

Using Equation 3.18, the range for wy, becomes 0 < |wy| < m/1. Equation 3.18 implies
that the upsampled signal can be recovered by filtering the zero-inserted signal with an LPF
hz(rn) whose cutoff frequency is less than .

For illustrative purposes, a MATLAB example of this process is considered. The up-
sampling factor selected for this example is four. Figure 3.9 shows the original signal and
its zero-insertion version. Figure 3.10 shows the time signals’ respective spectrum. As
expected, the zero-insertion version contains an additional I —1 = 3 copies of the original
spectrum, or a Copy every 27” radians. This signal was filtered with a 200-order LPF with
a cutoff frequency of % radians, resulting in an interpolated version of the signal seen in
Figure 3.11. Note on the normalized scale, the peak has moved closer to zero radians per
second for the upsampled signal compared to that of Figure 3.10a. The true frequency is
still the same but is lower when normalized with respect to the sample rate.

20
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Zero—_Order—HoId {nterpolation

" In this method, space between two samples is filled with a sample generafed using some
function, in this case a ZOH or zero-order interpolation. This method for upsampling is
similar to the zero-insertion method described in Section 3.2.2, but this method is com-
putationally more expensive and generates less distortion at the higher frequencies for a
given interpolation filter In zero-order interpolation, a signal is upsampled by extending a
sample's value over several samples, as seen in Figure 3.12, before lowpass filtering.

Figure 3.12 presents an example of ZOH upsampling at four times the original sampling
rate. Sample n from the original sequence z[n] is placed in samples vldn), v[dn + 1],
v[dn + 2], and w[dn + 3] of the new sequence y[m] of size 4n. This addition of extra
points creates a significant amount of high-frequency distortion in the form of replicated,
attenuated images in the spectrum. :

The zero-insertion signal, v(rm), is generated using Equation 3.14. In the ZOH version
of this signal, T(1m) can be generated by Equations 3.19 and 3.20. A ZOH can be considered

as the sumn of the sampled signal plus I — 1 delayed copies of v(m), shown in Equation
3.20.

[ =m(®) m=0,+,£2],..
o(m) = { 0 ! otherwise } : (3.19)
11 .
v(n) =Y v(n—k) (3.20)
k=0 . '

With the Z-transform for T(m} defined as

o3

V=Y dmz", (32D
m=-—0
. . \\-'\-“'"' __.*'J”IJ“'. . ..
_.-". R — Sample peee -'.":'--on.l; *
:r:. & -
. Hold sone
a
— lima —= lime

Figure 3.12: Sample and Hold. (Note: Black dots- are the sampled signal and gray dots
represent the held value.) .
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V(z) can be calculated as

o I
_ Z @(mj-)z—mf Zz—k (322)
m=—og k=0 :
= > alm)z ™Y (k) —u(k— 1)) 27
m=—oo k=0

Substituting e/ for z in Equation 3.22 yields Equation 3.24, or a lowpass filtered
version of the spectrum seen in Equation 3.17. The attenuated images resulting from this
process can be filtered out using an LPF with a cutoff frequency less than T, where [ is the
upsampling ratio,

1— e 7wud
V([L’-y) = X(w,yI) (]_—3—_3“"9) (323)

e\ sin (%)

K(wy, I)

= = E}(I—‘l) w
X{wyDe iy /2)

Figure 3.13 shows a sinusoid and its zero-order upsampled version before filtering, The
high-frequency components generated by the ZOH operation are seen in Figure 3.14. A
significant amount of distortion is apparently generated by this procedure. However, given
a well oversampled signal, this distortion is well beyond the spectrum of interest, so it can
be filtered out using an LPF. Figure 3.15 shows the waveform resulting from the filtering
operation and its spectrum. Note that the spurious signal content has been considerably
reduced by the holding process compared to the zero-insertion interpolated signal for the
same filter order. The gain of the LPF can be adjusted to ensure equal power for the input
and output signals. o

Note that the use of a ZOH for interpolation introduces distortion on the interpolated
signal beyond that introduced through the zero-insertion method. Compared to the zero-
insertion spectrum, the ZOH spectrum has an extra sinc term that helps to attenuate the
high frequency distortion although it slightly distorts the desired portion of the interpolated
signal spectrum. This in-band distortion can be cancelled by using the proper passband
characteristics in the interpolation filter design.
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Zero-Insertion and Raised-Cosine

To minimize inter-symbol interference (IS]), the use of raised-cosine pulse-shaping is im-

portant. If the upsampling of a pulse code modulation (PCM) signal is to be performed at
the transmitter, the upsampling and raised-cosine filtering can be combined to simplify the -
overall design. _ '

This combination is performed by using the zero-insertion interpolation method de-
scribed earlier but with a raised-cosine filter instead of a lowpass interpolation filter. In
practice, the LPF can be ignoered since the raised-cosine filter has a smaller bandwidth than
the interpolating LPF, as indicated in Figure 3.16. One could view the process as a pulse
train that excites a filter that performs both pulse-shaping and interpolation.

Figure 3.17 shows an example of this application. A three-bit PCM sequence is sam-
pled. Each of these samples is mapped onto a one-dimensional constellation and upsampled
before modulation. Though not shown in Figure 3.17, the pulse-shaped waveform is now
ready to be modulated and transmitted.

Can Be Combined

Pulses of Data . -
Raised Raised
—_— h » LPF »| Cosine |- Cosine
Filter Pulses
- —

Upsampling tc Increase
Sample Rate of Pulses

Figure 3.16: Combined Upsampling and Raised-Cosine Filtering.

Fast Fourier Transform Expansion

The FFT lends itself well for upsampling a signal. The basic idea behind the FFT approach
is to construct what the FFT of an oversampled signal should be by using the FET of the
original signal. Bach sample at the output of an FFT is separated by %, where F; is the
sampling frequency and IV is the number of points used in each block., Upsampling using
an FFT is performed by taking NV frequency samples, zero-padding V(] — 1) consecutive
zeros between the positive and negative images, and performing an inverse FFT of the
augmented signal. The principle behind this process is to create the Fourier transform of
the desired signal by inserting zeros in the frequency domain representation of the signal.
The resulting signal contains NI samples but spans the same time interval as the original
signal. .

Figure 3.18 shows the original signal and it§ upsampled version; the signal used in this
example is a Rayleigh fading envelope. Figure 3.19 shows the magnitude and phase of the
original spectrum and the padded magnitude and phase of the upsampled signal. Although

;
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this example is not directly applicable to the irnplementation of a software radio, it is useful

[for the simulatton of fading channels, where fades could span over several samples [33].

Assuming that a signal z(n) was periodic with a period of IV samples, then the discrete

-Fourier transform (DFT) of that signal is defined as

N—1
X(k) =Y o(n)e "F"

=0

The inverse DFT (IDFT) of this signal wonld be

(3.24)

(3.25)

anvelope

0 ; ; ; ) ;

10 10 i
0 .10 20 30 40 0 50 - 100
sample sample
(a) Original {b) Upsampled

Figure 3.18: Rayleigh Fading Envelope.
!

31

150




76 : Multirate Signal Processing Chapter 3
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Figure 3 19: Rayleigh Fading Envelope, Original and Upsampled Spectrum (Magnitude
and Phase). :

If X (k) were padded with N(I — 1) zeros over Z <w<2m—x/l, then the IDFT of
that signal would be

alm) =57 3 X(k)ewﬁ’?’l.. . (3.26)

The result seen in Equation 3,26 is a description of the same speciral content as seen
in Equation 3.25, but the signal in Equation 3.26 is cyclical over NV I samples; it is an
oversampled version of the original signal z(n).
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3.2.3 Two Multirate ldentities

As we have seen so far, the basic multirate system? consists of a sampling rate alteration de-
vice and a digital filter. In many applications, these components are cascaded. Changes in
the position of these components will result in computationally efficient rea]ization keep- .
ing the input/output (I/O) relation unaltered. For example, placing the filter Hp(z?), the
impulse response of which is interpolated by D, in front of the downsampler is equivalent
to downsampling a signal by D first and then passing it through an LPF H 5(z) created by
expanding the original filter impulse response by a factor of D. This concept is shown in
Figure 3.20.

A proof of the identity is given below. We know from Equation 3.9 that the subsampled
signal in Figure 3.20b can be written as

= wy 21rk
Viwy) = Z = -==, (327
k=
and the filtered signal in Figure 3.20b becomes
D—1
1 2k

X (— - L) Hp(wy). (3.28)

k=0 -

Likewise, Figure 3.20a can be represented as

w) =3 Z (_ - @) Hp (DL;”}“) . 329)

This equation can be realized by Figure 3.20. For notétional simplicity, we will express
Equation 3.28 as

Y{wy) = '[X(Wm)]jjl Hp{wy) (3.30)

where D | comesponds to subsampling by a factor D. Equation 3.30 can be realized as
Figure 3.20b, and thus Figures 3.20a and 3.20b represent equivalent systems.

Y

x(n) Hp(20) ¢D ¥(m)

= o, b0 A b | AT

(a) _ (b)

Figure 3.20: The Decimation Identity.

2Material for this section is adapted from [31,34-36].
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x{n):

h 4

| Hiz)

( _
T r y(m) x(n) T ’ - ym)

~ Figure 3.21: The Interpolation Identity.

Similar equivalence can be realized in the case of interpolation. There is a correspond-
ing interpolator identity that states that upsampling using a filter & 1(2) is equivalent to
filtering with H(z) and then zero-filling 7 — 1 zeros between samples of the filter cutput.
This identity is shown in Figure 3.21. The identities expressed by Figures 3.20 and 3.21
are called the Noble Identities.

3.2.4 Non-Integer-Rate Conversion

In Sections 3.2.1 and 3.2.2, integer downsampling by a factor of D and upsampling by a
factor of J were discussed. In both cases, oply integer-rate conversions were discussed,
However, integer-rate conversions® are not always the desired operation. Non-integer-rate
conversions are achievable through the use of cascaded interpolations/decimations such
that a total rate change of % is achieved.

Figure 3.22 shows a block diagram of the implementation of a non-integer-rate conver-
sion. Sinee the input vector z{n) is interpolated by a factor of I, then

_ [ z(3y p=0,4I,%2],... _ _
v(p) = { 0 otherwise. (3:31)

_ Since the filter H(z) acts both as a decimation and an interpolation filter, then its fre-
quency response should be '

I |w|<min (%, %)

0 otherwise (332

@ = {

where the gain of I is used to compensate for the upsampling process to achieve the same
cutput power.

x(n) Tf v(p), Ho) (), ¢D yim)

—p] i

Figure 3.22: Non-Integer-Rate Conversion Block Diagram.

IMaterial for this section follows the development in [34].
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Using the resulis of Equation 3.17, the signal V' (w,) is

Viwp) = H(wp)V(wp)
= H_(WP)X(WPD

where wp = 27 f; is the spectrum for the normalized sample rate corresponding to the time
index p. Since H(wp) acts as the ideal interpolation filter, V (w),) can be simplified to

(3.33)

74 _ [ IXwpD)  |wpl<min (5, 5)
Vi) = { 0 otherwise. (339
Decimating V (w,) yields
D-1 .
1 = [wy, — 21k
v = — =¥, ;
(wy) DZV( 5 ) (3.35)
k=0
Combining Equations 3.34 and 3.35 and applying the conversion w, = wp/ D yields
I I - TOW
Y(w)={ D~ (5“"") rlsmin(3.5) (3.36)
0 otherwise.

Equation 3.36 clearly shows that the sampling rate has been changed by a facter of %.
Although this method allows non-integer-rate conversions, it is limited to changing rates
by rational numbers.

3.2.5 Sampling Rate Conversion by Stages

The decimator and interpolator discussed so far are of a single-stage structure. When large
changes in sampling rate are required, multiple stages of sample rate conversion are found
to be more comnputationally efficient. Most practical systems employ a multi-stage struc-
ture, resulting in a considerable relaxation in the specifications of anti-aliasing (decimation)
or anti-imaging (interpelation) filters in each stage compared to a single stage realization.
The decimation in Figure 3.23 can be realized in two stages if the decimation factor
D can be expressed as a product of two integers, 17 and D;. Referring to Figure 3.24,
in the first stage, the signal z(n) is decimated by a factor of D;. The output, v(p) is
further decimated by Do in the second stage resulting in an overall decimation of z(rn) by

x(n)_ y(m)

H(z) —>¢D'*——-——>

™,

Figure 3.23: Decimation in a Single Stage.
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v(p) '
SN g > l o | Ha l o, I2T

. Figure 3.24: Decimation in Two Stages.

D = (D1 D). The filters H;(z) and Hz(z) are so designed that the aliasing in the band of
interest is below a prescribed level and that the overall passband and stopband tolerances are
met. This multi-stage sampling rate conversion system offers less computation and more
flexibility in filter design. An example is given below to illustrate the idea of multi-stage
sampling rate conversion.

We have a discrete time signal with a sampling rate of 90 kHz. The signal has the
desired information in the frequency band from 0 to 450 Hz (passband), and the band from
450 to 500 Hz is the transition band. The signal is to be decimated by a factor of ninety.
. The required tolerances are a passband ripple of 0.002 and a stopband ripple of 0.001.

Decimation in a Single Stage

First we consider a single-stage design as shown in Figure 3.25(a). The specifications of
the required LPF are shown in Figure 3.25(b).

According to the formula by Kaiser, the approximate length of an FIR filter is given
by [34]

—90log10+/80, — 13 _
N = 2010V % (337)
14.6A7

where peak passband ripple (linear) §, = 0.002, peak stopband ripple {linear) 6, = 0.001,
normalized transition bandwidth Af = %, passband edge frequency f, = 440 Hz,
stopband edge frequency f; = 500 Hz, and sampling frequency F; = 90 kHz.

From Equation 3.37, the lowpass FIR filter H () has alength of IV s 5424. Therefore,
the number of multiplications per second, M., needed for this single-stage decimator 18

| Moee = 5424 % 9% = 5,424, 000. (3.38)

Since only one out of ninety samples is actually used, the computation rate is based on the
decimated signal rate.

Decimation in Two Stages -

Let us now consider the two-stage implementation of the decimation process as shown in
Figure 3.26.

36




* - E

Section 3.2 Sample Rate Conversion Principles 81
x{n yim)
Q.._ Hiz) P 4 90 —™
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A HNI
0.00Z XA A
A

I

i

|

0.001 J:
VAVAVAVAVAVENEEE
/ f(Hz)

450 Hz 500 Hz

®)

Figure 3.25: (a) Block Diagram for Single-Stage Decimation, (b} The Filter Specification.

X{r) | ¥m)
Y > ¢45 » Ho(z) ¢2 >
Fs Fa, Fs,

Figure 3.26: Block Diagram for Multi-Stage Decimation.

Due to the cascade decomposition, each of the two filters, Hy (2} and Ha{z}, must have
a linear passband ripple specification half of that specified for the single-stage filter, H(z).
The stopband ripple specifications for these two filters can be the same as that of H{z)
since the cascade connection will only reduce the stopband ripple.
Stage One
The first stage will decimate the input signal z(n} by a factor of forty-five. The filter
specifications for the first-stage LPF H;(z) are

8p, = 0.001 = (0.002/2),

85, = 0.001,

For= 450 Hz,

Fop = 2000 — 500 = 1500 Hz,
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A H0

AR )

450 Hz 1500 Hz

0.001

[ N ——

Figure 3.27: Decimation Filter Design for Stage One.

F, =90kHz, and

Fo= 22800 — 2,000 Hz.

These specifications are shown in Figure 3.27.

The reason for choosing this value of the stopband edge is that, after decimation by a
factor of forty-five, the residual energy of the signal in the band from 1000 to 2000 Hz will
be aliased back to the band from 0 to 1000 Hz. Due to the attenuation in the stopband, the
energy of the signal in the band from 1500 to 2000 Hz is very small compared to that in
1000 to 1500 Hz. So the amount of aliasing in the desired band of interest (0 to 430 Hz)
will also be small, resulting in very little signal distortion. '

According to Equation 3.37, the approximate length of the FIR filter, Hi(z)is Ny =
276. The number of multiplications per second for the first stage is '

F 90000 . -
My goe = Nj =% = 276 % ——— = 552, 000. 3
1, i « = = 562,000 (3.39)

Stage Two
The specifications for the second-stage filter, Hz(z), are

5,, = 0.001 = (0.002/2),

85, = 0.001,

fps = 450 Hz,

fs. = 500 He, and
F,,= 2000 Hz.

Figure 3.28 shows the characteristics of Ha(z). This Stage will perform a decimation
~ of factor two on the output signal of the first stage. So, the total decimation of z{n)isbya
factor of ninety as required. .
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A (B

0.07 -

0.001 f--m------ VAVAVAVAY S

/ \ f(Hz)

450 Hz 500Hz

Figure 3.28: Decimation Filter Design for Stage Two.

For the second stage, the length of the filter, as calculated from Equation 3.37, is N3 =
129. The number of multiplications required for this stage is

Mg ace = 120 % @ = 129,000. (3.40)

The total number of multiplications per second required for the two-stage implementation
of the decimator is ' '

Mace = My sec + Ma gec = 552,000+ 129, 000 = 681, 000. (3.41)

681,000

5,492,000 — § of the operation required of

So, the two-stage implementation requires only
the single-stage implementation.

Decimation in Three Stages

To further illustrate the concept of multi-stage implementation of decimator and interpola-
tor, we will now consider the three-stage implementation as shown in Figure 3.29.

Stage One

In this stage, decimation by fifteen is performed on the input signal @(n). The characteris-
tics of the LPF, H;(z), are shown in Figure 3.30. The filter specifications are

8p, = 0.00067 = (0.002/3),
85, = 0.001,

fo, = 450 Hz,

fs, = 6000 — 500 = 5500 Hz,
F, = 90 kHz, and

F,,= 25300 = 6,000 Hz.
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-0.00067

0.001

NNNNS .

f(Hz)

5500 Hz

Figure 3.30: Decimation Filter Design for Stage One.

As in the two-stage case, the choice of stopband edge frequency can be extended to the
point for which negligible aliasing accurs in the passband {band of interest).

The approximate length of the filter as given by Equation 3.37 is Ny = 60. The number
of multiplications per second for this stage is calculated as

F, 90000
M seq — - = e = 2 . ’ 42
1, N1D1 60 = G 36,000 (342)

Stage Two
In this stage, a decimation by a factor of three is done. The specifications of the LPF in this
stage, Ha(z), are

bp, = 0.00067 = (0.002/3},
&5, = 0.001, :
fos = 450 Hz,
fso = 2000 — 500 = 1500 Hz,
F¢, = 6000 Hz, and
F,,= %900 = 2000 Hz.
As before, the stopband edge frequency can be stretched out to 1500 Hz. The filter
characteristics are shown in Figure 3.31.

The length of filter required for this stage is N3 = 20 and the number of multiplications
per second 1§

o 6 |
il =20 % —(:3@ = 40, 400 (3.43)

—

2

Stage Three
The third stage performs a decimation of factor two on the output of the second stage. The
specifications of the LPF, Hz(z), in this stage are
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1500 Hz

Figure 3.31: Decimation Filter Design for Stage Two.

55 = 0.00067 = (0.002/3),

555 = 0.001,
Fps = 450 Hz,
f,, = 500 Hz,

F',,= 2000 Hz, and
Fag
Fsa:' N3 _53_'

Figure 3.32 shows the specifications for Ha(z). As before, the approximalé length of

the filter, as calculated from Equation 3.37, is Ny = 134. The number of multiplications

required per second in the third stage is

0.00% f---

VAVAVAVAN >

450 Hz

el f1H2)

500 Hz h

_ Figure 3.32: Decimation Filter Design for Stage Three.
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M sec = 134 % @ = 134,000. (344)

The total number of multiplications in the three stages of implementation is
Moee = My sec + My sec + Mz sec = 360,000 + 40, 000 + 134, 000 = 534, 000. (3.45)

Compared to the single-stage implementation, the number of multiplications per second
are reduced by a factor of é{,%t%l = 10 by using three stages,

From this example, we can see that a significent saving in computation as well as in
storage can be achieved by a multi-stage decimator and interpolator design. These savings
depend on the optimum design of the number of stages and the choice of decimation factor
for the individual stages. u

The examples illustrate the many different combinations and ordering possible. One
approach is to determine the sets of T and D factors that satisfy the filtering requirements
and then estimate the storage and computational costs for each set. The lowest cost solution

is then selected [37].

3.2.6 Cascaded Integrator Comb Filter

In software radio systems, sample rate changes can be very large, with changes from many
tens of MHz to around 100 kHz being common. Of course, such a requirement leads to
large order and high-rate digital filters, which can easily become a bottleneck in the averall
system design. A cascaded integrator comb (CIC) filter* can be used to reduce the compu-
tational demands. A CIC filter is what the name indicates: a cascade of simple integrators
(accumulators) and a cascade of comb filters (delay and subtract from current sample).
These basic building blocks are shown in Figure 3.33. The CIC filter can implement an
wmterpolation or decimation filter (see Figure 3.34) that uses only delay and add operations
and thus is well-suited for FPGA and ASIC implementation. Furthermore, the same basic
filter structure can be used to handle variable sample rate conversion.

7 M
i
output input ouiput

(a) Simple Integrator Stage. (b} Simple Comb Filter Srage.

Figure 3.33; Building Blocks of a CIC Filter.

4This section is based on material from [38-40].
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Basic Structures

'CIC Decimation Filter

The CIC implementation of a decimation filter s the cascade of an integrator stage, a dec-
imation procedure, and a comb stage as shown in Figure 3.35. To analyze the CIC filier’s-
response, combining the integrator and comb stages into a single transfer function are 1m-
portant to reduce the complexity of the analysis. However, to reduce the computational
expense of the operation, the implementation of the filter is performed in two separate
sections, before and after the decimation. '

The integrator section is the cascade of N ideal digital integrator stages operating at the
high sampling rate of F, where the transfer function is defined as '

Hy(z) = ( . _1)N. | (3.46)

—Z

The comb sections consist of N comb stages operating at the low sampling tate of &,
where I is the integer-rate change factor. The comb sections have a differential delay of
M samples per stage, where the system function is defined as

Holz) = (1— 27 , (3.47)

and M is typically chosen as 1 or 2.

The cascade of the integrator and comb sections of the CIC filter requires a decimation
process to be implemented between these two filters. It is possible to apply. the Noble
Identities to switch the positions of the comb stages and the decimation procedure (see
Section 3.2.3) to simplify the analysis. Figure 3.36 shows a block diagram of this change.
The order of the comb filter and the decimation procedure can be switched without causing
any change in the end results of the filtering operation. '

The integrator and comb stages of the filter can be combined into a single transfer
function, thus simplifying analysis. The transfer function of the cascaded integrator comb
filter before decimation is then

1 — BN AM-1 N
and the frequency response (with respect to the higher input sample rate) is
N
: w M
|H(w)| = [L( 2 )] : . (3.49)

s (2)

This filter is a cascade of N copies of an RAMth-length FIR filter whose coefficients
specify a rectangular time-domain window, so it 1s indeed an LPF. Furthermore, because of
the symmetry, this is a linear phase filter. Therefore, the CIC decimation filter 1s actually
an alternative implementation of a general decimation filter. The key is that, in this CIC
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92 _ Multirate Signal Processing Chapter 3

structure, the comb stage operates at the low sampling rate, resulting in a more efficient

implementation of the decimation filters.

_ Note that the frequency response H (w) is with respect to the original sample rate. By
letting ' = wR, the frequency response with respect to the decimated sample rate is found.

N

sinmtMw' /2

iy

IR

|H{w')| = (3.50)

sin

Note that a null in the frequency response occurs at 1/M for both the decimated and non-
decimated filters. Furthermore, if R is large, then H (') can be approximated as
sinmMw' /2|~
HW)| = | RM ——— 351
AW~ (R B @51
The gain of the filter is (RM )Y, which can become very large, necessitating the need for
large registers, :
As an example, the frequency response of Equation 3.48 is plotted in Figure 3.37 for
N = 4, M = 1, R = 7 for a cutoff frequency f. = 1/8. The input sample rate is 7 and

These bands are
aliased into the
passhand after
decimation.

IERYER
| L

0.5 1 15 2 2.5 3

Magnitude Response {dB) —»

-120
0

Frequency Relative to Low Sampling Rate —»

Figure 3.37: Frequency Response of the CIC Filter.

SOURCE: E. B. Hogenauer, “An Economical Class of Digital Filters for Decimation
and Interpolation,” [38]. © IEEE, 1981 Used by Permission.
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the output sample rate is 1. Note the bands at multiples of 1 Hz will be aliased into the
passband region about { Hz. At multiples of 1 Hz, there are nulls in the frequency response

" and thus aliasing will be minimal in the passband. The filter is designed to attentnate the

signal so that there are acceptable levels of aliasing at the passband edge, f.. There is, of
course, a droop in the passband, but this droop can be compensated for by a shert FIR filter
at the output of the-CIC filter operating at the reduced sample rate or using the sharpening
technique proposed by Kwentus [40].

CIC Interpolation Filter

The structure of the interpolation CIC filter, as seen Figure 3.38, uses a comb stage followed
by an upsampler and an integrator stage. Using the Noble Identities, the CIC interpolator
can be analyzed using the equivalent structure shown in Figure 3.39.

Obviously Figure 3.38 has a more attractive implementation since comb filter stages
operate at a lower rate. The analysis of the interpolator CIC filter follows that of the deci-
mator CIC filter. One difference here is that the purpose of the CIC filter for the interpolator
is to suppress replicated images that occur due to zero-insertion, while the CIC filter for the
decimator is used to suppress aliasing.

Economics of CIC Filters

The CIC filter presents several advantages over more basic implementations of decimation
and interpolation filters:

e no multipliers are required,

» no storage is required for filter coefficients,

o the structure of CIC filters is very regular, consisting of two simple building blocks,
o very little external or complicated control is needed.

Two primary problems are encountered in the implementation of CIC filters. First, the
register widths can become large, especially for large values of 1. Secondly, the frequency
response is fully determined by only three integer parameters, M, N, and R, resulting in a
limited range of filter configurations [38-40]. While a detailed description of this register
growth problem is beyond the scope of this discussion, Hogenauer [38] provides details
that show the number of output bits B, is given by

Boyt = Bin + Nlog, RM o (3.52)

where By, is the number of input bits, Strategies exist for truncating and rounding the
pumber of bits throughout the filtering process to reduce the number of bits [38].

Given the advantages and disadvantages of using CIC filters, they are ideal for applica-
tions in which high sampling rates make the use of multipliers a computationally expensive
option. This technique is especially useful for FPGA design where multipliers are avoided
because of the large silicon area required. The use of CIC filters is also important in ap-
plications in which large rate change factors require large amounts of coefficient storage
or fast impulse response generation and the memory is either unavailable or too slow to
perform the desired application. '
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26 . Multirate Signal Processing  Chapter 3

3.3 Polyphase Filters

One of the principal benefits of the implementation of multirate systems is the large reduc-
tion in computational cost [35]. This cost reduction may be achieved by using inexpensive,
low-speed processing elements in place of costly, high-speed elements. Polyphase filters
allow this trade-off. These polyphase filter structures are detived in the following subsec-
tions. :

3.3.1 Polyphase Decimation

From Section 3.2.1, the time domain relationship of the decimation process is expressed as

y(m) = Z hp(Dz(mD —1). (3.53)
[=—oc :
Let
I=4D+ k.
. Then
D—-1 oo
ym) =SS hp(iD+ k)@ ((m—i)D k).
k=0 i=0
Define
pu(i) = hp(iD 1+ k) . (3.54)
zxfi) = z(iD - k). . (3.55)

‘Note that py,(7) comes from decimated versions of hp {m) that are time-shifted by k. 2 (1)
has a similar interpretation. Thus, :

D-1 o™
ym) = Z pr{i)zr(m — i}
oo
ylm) = pr(m} * zx(m). (3.56)
k=0

Hence, the decimation operation can be decomposed into a sum of D parallel filtering
stages where the filters py(m) are formed by decimating hp (m + k) by afactor D. Fur-
thermore, %5 (m2) has a similar interpretation. A realization of Bquation 3.56 is shown in
Figure 3.40, and, with some thought, Figure 3.40 can be transformed into Figure 3.41.

Figure 341 does have an intuitive interpretation. Examining Figure 3.5, it is apparent
that as a sample progresses through h(n), only a subset of fhe filter coefficients (one out of
D) will engage the sample to lead to an ontput value. The set of coefficients that enpage
that sample represents a single branch in Figure 3.41.
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Figure 3.40: General Structure of a Polyphase Decimator.
po(m) y(m)
O‘{ py(m); +
Fy
x(n)

Figure 3 41: Equivalent Commutator Model of the Polyphase Decimator.
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98 ) Multirate Signal Processing Chapter 3

3.3.2 Polyphase Interpolation

~ Thederivation of the polyphase interpolator follows closely the derivation of the polyphase
decimator [35]. We know from Figure 3.8 that the upsampling operation can be expressed
as : .

y(m) = v(m) = hy(m) (3.57)

where v(m) is given by Equation 3.14. We will assume for this analysis that hr(m) is a
finite impulse response (FIR) filter with length V and that N = P - I. Thus,

N-1 '
y(m) = vlm — Dhr(l). (3.58)
1=0
Let
=14l 4k (3.59)
Then
1-1P-1
y(m) =Y "3 wim— il — k)hr(il + k). (3.60)
k=0 i=0
From Equation 3.14,
, _J zn—19) m=nl+k
vim =il —k) = { 0 otherwise. (.65
Thus, only one index of k results in a non-zero term.
I-1P-1
y(m) =) > aln —puld) (3.62)
k=0 i=0
where again
pr(i) = he(il + k) (3.63)
or
I-1
y(m) =Y z(n) = px(n) (3.64)
k=0 '
or .
y(nl + k) = z(n) = pr(n). . (3.65)

Equation 3.64 can be realized using the structure shown in Figure 3.42, which can easily
be shown to be equivalent to Figure 3.43.
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Figure 3.42: Geueral Structure of a Polyphase Interpolator.

Figure 3.43: Equivalent Commutator Model of the Polyphase Interpolator.
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100 Multirate Signal Processing Chapter 3

In Figure 3.42, for each new sample z(n}, the interpolator gives 1 output samplés of
y(m). The upper path (k = 0) contributes the samples of y(m) for m = 0, £, £21.... The

" pext path (k = 1) contributes for m = 1, £(I + 1), +(27 + 1).... The last path (k = I —1)

contributes to y{m) for m = (I — 1), £(2I — 1}, +(37 — 1).... So for each input sample,
#(n), each branch contributes one of the I outputs of the interpolation. If the length of the
original interpolation filter is V, then each of the [ filters polyphase Iepresentanon has an
integer lengthof &

The I bra.nches of the network in Figure 3.42 contribute I sample values for 7 different
time slots so that the upsampler and the delays can be replaced by a commutaior as shown
in Figure 3.43. Starting from the branch & = @ at time n = 0, the commutator rotates
counterclockwise, sweeping through the I branches of the polyphase network for each in-
put sample x(rn). The computational load would then decrease significantly by avoiding
multiplications and additions with zero compared to a non-polyphase structure. The filter
implementation seen in Figure 3.43 performs the same function as a standard implementa-
tion of an FIR filter, but no operations are performed on the zero coefficients of the input
vector. '

Pulse-shapmg is used to minimize both ISI and bandwidth. The Nyquist criterion places
conditions on the pulse-shaping filter to ensure that the IST at the decision sampling instance
is zero. Special filters, such as raised-cosine filters and Gaussian filters, are used to satisfy
the Nyquist criterion. Furthermore, the pulse-shaping filter should have a narrow band-
width and a sharp toll-off to maximize spectral efficiency of the communication system.

The ISI can be eliminated by using certain special pulse shapes. The magnitude of
the impulse response of the pulse-shaping filter should be zero at multiples of the symbol
interval, Tyymmbo: 28 shown in Figure 3.44. The pulse-shaping filter can have any non-zero
value between the symbol centers. Thus even if the pulse shapes are infinitely long, there
will be no interference from other symbols if they satisfy the Nyquist criteria at the instant
at which the symbol is sampled. DECT and GSM standards use Gaussian pulse-shaping,
but raised-cosine is the most popular pulse-shaping. _ ' |

Sampling Points

L
T AN

Figure 3.44: Pulse Shapes Satisfying the ﬁyquist Criteria
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The continuous time raised-cosine filter satisfies the Nyquist criteria for eliminating
ISL. The impulse response and frequency response of the raised-cosine pulse-shaping filter
is given by : :

_ sin(2m fot)\ [ cos(2m fat) _
and
He(f) =1, |fl < fi
=1/2 (1+cos (%—))) , hEfI€£B
=, o 11> B

where B is the absolute bandwidth, f; is the 6 dB bandwidth, fa = B — fo, fu = fo— fa,
r = fa/fo. The value r is defined as the roll-off factor and determines the width of the
transition band in the frequency spectrum. If r = 0, the pulse becomes rectangular in the
frequency domain. The ideal raised-cosine pulse is of infinite duration in the time domain.
However, 1n practical applications, it is truncated to a desired length, which results in side
lobes in the frequency spectrum. A thirty-two-tap raised-cosine filter for = 0.33 is
created as shown in Figure 3.45 by sampling the continuous time impulse response.

This filter has to be implemented in the polyphase form for decimating by a factor
of four. The coefficients of each of the filters po(i), p1(4), p2(5), and ps (%) are given by
Equation 3.63 through sampling of 3.66 and are tabulated in Table 3.1. L

3.4 Digital Filter Banks

Polyphase decomposition of decimation and interpolation filters, as explained in Section
3.3, suggesis a way to reduce the computational complexity in the implementation of mul-
tirate techniques. A more intuitive approach, however, is the application of digital filter
banks” in breaking a wideband signal into multiple bands (channels). Each of these bands
can be processed individually, thereby allowing lower-speed computational techniques to
be applied to each of the channels. This partitioning of a signal using a digital filter bank
can be applied to other applications apart from the reduction of computational complexity,
such as the conversion of a signal from frequency division multiplexing (FDM) to time
division multiplexing {TDM) or vice versa.

In the following discussion, we assume a uniform filier bank, i.e., all the channels
have the same bandwidth and sampling rates. The channel outputs are also assumed to
be critically sampled, meaning that the total number of samples per unit time from all the
channel outputs together is the same as the number of samples per unit time of the input
signal. We consider the DFT as a filter bank, and, altbough it is not very good in terms of
stopband responses, it can be improved considerably as shown in Section 3.4.2.

*Material for this section is based on [31,34,41].
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Impulse response of the origlnel 32 tap raised-cosine filter (r = 0.33)

Frequency Tesponse

fraquency

{b)

Figure 3.45: (a) Impulse Response and (b) Frequency Response of a Raised-Cosine Filter.

- 102

[i] po(d) [ pu(i) | p2li) | pali) |

[ 0] -0.0001 00174 | -0.0372 | -0.0373
1 | 0.0005 0.0689 | 0.1263 0.1141
2 | -0.0013 -0.1872 | -0.3357 -0.304
3 | 0.0036 0.5718 | 1.2464 1.7924
4 | 2.0000 1.7859 | 1.2359 0.5613
5 | -0.0036 03073 | 03343 | -0.1841
6 | 0.0013 0.1151 | D.1258 0.0678
7 | -0.0005 0.0376 | -0.0370 | -0.0170

Table 3.1: Filter Coefficients for Polyphase Raised-Cosine Filter.
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3.4.1 Implementation

'The_implementation of a digital filter bank follows two basic architectures: an analyzer for
decomposing the input signal into several channels and a synthesizer for reconstructing the
input by combining the channel sjgnals. Figure 3.46 shows a basic block diagram of both
of these architectures.

In a filter bank analyzer, the input signal is divided into a set of NV channels using
complex bandpass filters, The center frequencies of these bandpass filters Hy (w — wy ) are
equally spaced with center frequencies wy, = 2;{,—}“, k=0,1,...,N— 15 The outputs
of these filters can now be decimated by a factor of N. An equivalent procedure is to
downconvert (frequency shift) by wy, lowpass filter, and decimate by N. Understanding
the equivalence of these channelization approaches is an important concept.

1 = Tr T

BPF _JF I
1 —-
Wideband Narrowbandg Narrowbang | BPF —|_Widebar1d

Input Qutputs Inputs Qutput
o )
Analysis Synthesis

(@) (b)

Figure 3.46: (a) Digital Filter Bank Analysis, (b) Synthesis Architecture.

3.4.2 DFT Filter Banks’
Basic Forms

The DFT is a well-known approach for splitting a signal into several bands. Figure 3.47
shows a basic N-channel DFT filter bank analyzer. The input signal, z(n), is first mul-
tiplied by the complex sinusoids e duRn f=0,1,2, -, &N — 1, resulting in V complex
signals. These modulated signals are then lowpass filtered by h(n) and downsampled by
a factor of N (critically sampled), and thereby effectively converting them to baseband
signals. The channel outputs, Xx(m), can be expressed as

Xi(m)= Y ho(mD - Dr(De ™ k=0,1,2,. N~1, (367

{=—opa

% Hy(w) is defined as an LPR.
"Material in (his section follows the developmentin [31,34],
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4()%)—‘[ hgy (1) ]—»[ io ]——» X o (m)
e —jEn“?- n |
xﬁ_'(?—" nm - Lo b= xm
sj2nkn '
®
]
[
@ {1} xeam
-fam ﬂfin )

Figure 3.47: Basic Form of a DFT Filter Bank Analyzer (when [) = N system is critcally
sampled).

and when critically sampled (D = N), Xp(m) is

= > ho(mN — Dz()e 927wt | (3.68)

l=—0c
Recalling that the N-point DFT of a signal z{n) has the form

N-1
Xp= Y a(n)e T k=0,1,2,., N—1, (3.69)

n=0

for practical purposes, we can assume that the filter h(n) has a finite tpulse response of
length N'. With this, we can conclude that Equation 3.67 expresses the N-point DFT of the
sequence h(mN — [)z(l) for each value of 1. :

In the DFT filter bank synthesizer, as shown in Figure 3.48, all the N channel sngnals
are interpolated (upsa.mp]ed and lowpass filtered) first by a factor of N that restores them
to their original sampling rate. Finally, all the channel signals are upconverted and summed
to get the synthesizer output.
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Yo(m)‘»{ tw ]—»‘ gi,(ﬂ)jJ X

Figure 3.48: Basic Form of a DFT Filter Bank Synthesizer.

Maihematically, each of the channel signals can be expressed as

win) = 3 [y, * aoln)] 27

% 2 Yalhaoln—IN)e &% k=012, ,N—1. (370

l=—o
The operation [¥% ()] 1 represents placing N — 1 zeros between samples in ¥z (m).
From the definition of the IDFT,
ZYk )2 En p =010 . N1 (3.71)

The output of the synthesizer is the sum of all the channel signals as given below.

N-1
yn) = > w(n)
- k=0

oo N— .
= > go(n—IN) Z eﬂ”wk} 3.72)
I=—pc k=

Equation 3.72 says that synthesis is achievable by taking the IDFT across channels and
interpolating each resulting time sample with the LPF gp(n).
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Alternative Architectures

An alternative way of implementing the DFT filter bank can be developed as follows.®
From Section 3.4.2, the basic DFT filter bank analyzer output is given by

Xp(my= 37 ho(mD - De()e ¥ k=0,12,.,N~1 (373

I=—na

This time it is assumed that the signal is not critically sampled, i.e., D # N. Equation3.73
can then be written as . _

I .

=00

(5 o]t

I=—co

(B, (m) % 2(m)] p, e 2 H™P £ =0,1,2, ., N—1 (3.74)
where
R (n) = ho(n)e!¥" ¥ £ =10,1,2,..,N -1 (3.75)

is a complex BPF centered at the frequency, wr = % ,k=0,1,2,..,N —1and, as
noted before, [ ]p, is the operation of taking 1 of every D samples. Figure 3.49 is the
alternate structure for the analyzer. In each channel, the signal is bandpass filtered by
R}, (n), downsampled by a factor of IJ; and then downconverted by the complex sinusoid
e=32rFmD k =0,1,2, ..., N— 1. In the case of critical sampling, i.e., D = N, Equation
3.74 becomes

Xe(m) = Y hi(mN —Da(l) (3.76)
[=—ox
= [hi(m) xz(m)]y, . (3.7

Similarly, an alternative structure can be created for the synthesizer. In the basic DFT
filter bank synthesizer, each channel signal as given by Equation 3.70 is (assuming no
critical sampling)

ye(n) = ! S Yelgoln— D) #* k=0,1,2,..,N-1. (378

37qalerial for this section follows the developmentin [31,34].
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_.Eo‘(n) = nginje fﬁ””’ﬂ—m—»@%—» X (m)

e—jzn-gr-mD
x{m) _’L i
(n) = hyfn)e |—>[ |a(%)——» X, (m)

° —127:—mD

.

.

_{hr\;q(n) =hp(n)e Jﬁ%ﬂ}m_'(%)_’ X1 (M)
' -jox L mp

Figure 3.49: Alternate Implementation of a DFT Filter Bank Analyzer.

Another way of expressing Equation 3.78 is

1| = o nm
win) = & L;o Yillgo(n — (D)5 ]
1 & o L I‘ A1
= 5 2 [0 F ] [gofn — 1D} >3]
]
Again, let
gh(n) = go(n)e/>7 ™

Then,

yr(n) = ks [i Z Y 8)&32“?@'?“139;;(% - lD)]
!

=—ra

Note that this equation resembles that of the interpolation process shown in Figure 3.8

where effectively only a subset of coefficients engage the data, and thus, it can be written
as .

(n]=i j2m B1D !l — -1 7
W = [BOE] gm0 k=012, V-1 379
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Yo(m) —'(?—'[T DJ_’gf”#ggrn)e i)

;21-;-0—!]'10
YA % [ T g;(n)=g onje J2r1niN)
;21:T
’ .
L
N T(m) % ‘T L27%8 1(”)—go(n)ef2"(N-T)n/(N)
jon B
e

Figure 3 .50: Alternate Imnplementation of a DFT Filter.Bank Synthesizer.

Note that g} (n} = go(n)e’*™ #n is the complex BPF representation of the LPF go(n) with
the center frequency at wy. This alternative implementation of the basic synthesizer is
shown in Figure 3.50.

In this alternative implementation, each of the channel input signals is separately mul-
tiplied by the complex sinusoid, translating the frequency bands to their eriginal spectral
. location. The upconverted signals are then interpolated by a factor of D), converting the

- sample rate to the original value. The interpolation filter is the complex BPF, the impulse
response of which is given by g;(n), k¥ = 0,1,2,.., N — 1, which selects the desired
bandpass image. For the case of critical samp]mg, ie, D N, Equation 3.79 reduces to

ye(n) = % 3 %ghln —IN) (3.80)
l=—00
= = Va(mh] * k() (331)

Polyphase Implementation of the Digital Filter Bank

Polyphase filters” take advantage of the similarities in the digital filter banks with the DFT
and IDFT implementation structures. The polyphase structures for the decimator and inter-
polator, as discussed in Section 3.3, can be applied to the DFT filter banks, resulting in a
highly efficient filter bank realization.

®Material for this section is based on [31,34].
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The basic DFT filter bank analyzer, discussed earlier, implements Equation 3.67:

Z ho(De(mN — D> %k =0,1,2,.. N—1 (3.82)

I=—nc

With the assumption of critical sampling, the impulse response hg(n) of the LPF in each
channel can be expressed in polyphase form as '

pi(n) =ho(nN —i) ,i=0,1,2,..,N—1 (3.83)

where ¢ refers to the sth branch in the N-branch polyphase decomposition of Ag{n) in any
of the k& channels, k = 0,1,2,..., N — 1. From Equation 3.82, replacing { by N — i and
using the definition in Equation 3.83 vields

N—-1 oo
Xi(m) = Z Z ho(rN — i)z (mN—TN+g)eJ2ﬂN(WN_1)
=0 r=—o0
= Z Z pi(r)z{(m—r)N +1i)e” j2myi
=0 r=—oo
N—-1 oo
= >0 7 pulrmi(m —r)e TR (3.84)

i=0 r=—o0

where the input signal to each branch of the polyphase network for a single channel, ¢, in
the DFT flter bank structure is expressed as

zi(n) = z(nN +1) ,i=0,1,2,..,N— L. (3.85)

Equation 3.85 can be interpreted as advancing the original input £(/N) by 7 samples and
then downsampling it by a factor of V. A closer inspection of the result in Equation 3.84
reveals that it can be expressed as the DFT of a convo]ution operation, i.e.,

Xip(m) = Z [p:(m) % z4(m)] e =727 F1 (3.86)
.i=0
= DFT [p;(m) = z;(m}]. (3.87)

The polyphase implementation of the DFT filter bank analyzer is shown in Figure 3.51
for a single filter bank channel along with the equivalent clockwise commutator model (see
Figure 3.41).

In a similar fashion, the output of the DFT filter bank synthesizer as expressed by
Equation 3.72 with the assumption of critical sampling is

N-1 h -
y(n) = > go{n—IN) l% 3 Yk(l)eﬁ“%k] k=0,1,2,..,N—1. (3.88)
= E=0 :
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pelm) o™ > X(m)

p,m) " rym — X,(m)

_—..—l -
N-poinl DFT

] -
Xpg. (M)
et s

L.

Figure 3.51: Polyphase/Convolution Implementation of a DFT Filter Bank Analyzer.

Let g(n) be divided into N sets of polyphase branch output signals of the form
wn) =yeN +4) ,i=0,1,2,.. ., N-1. . (3.89)

This actually implies that the output y(n) is computed by sequentially taking the polyphase
branch outputs, :(n) ¢ = 0,1,2,....,N — 1. Using Equation 3.88, we can reformulate
Equation 3,89 as

oo N-1
i)~ 5 s v 40 [ 3 e
[=—o0 =0
o | N L

= z go{(n —HN +1) [ﬁ Yk(l)ejzw'ﬁ‘]n - (3.90)

I=—o0 k=0

By polyphase decomposition of the LEF go (n), _

gi(n) = go(nN +14) ,i=0,1,2,.,N-1. (3.91)

66




—

Section 3.4 Digital Filter Banks 111

Applying this definition, Equation 3.90 takes the form

T oo . N—-1
win) = Y gln-1) % T moeﬂw%i} -
. I=—0oc k=0
= ) an— DIDFT Vi (1))
I=—0o0
= gi(n) * IDFT[Y,(D)],i=0,1,2, .., N— 1. _ (3.92)

According te this equation, first the IDFT is calculated using the N-channel DFT filter
bank synthesizer input signals, Yx(m) k = 0,1,2,..., N — 1 for each sample time, 7.
The ith IDFT output V;(rm) is the input of the ith branch of the polyphase decomposition
of the LPF go(n). Then for that instant of time, m, the output of the ith branch filter,
y:(mn), is the convolution of the input, V;(m) and filter coefficients for that branch, g; (m).
The final output y(r) is the interleaved version of these polyphase branch outputs. The
implementations of Equations 3.89 and 3.92 are shown in Figure 3.52.

—_
Yy(m) Volm) 2ol Yolm) .\

y(n)

Y4(m) v,(m) y,(m)
= 4”’ qm

N-point IDFT

Ypqlm)

ot L e

Figure 3.52: Polyphase/Convolution Implementation of a DFT Filter Bank Synthesizer.
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3.4.3 Transmultiplexers

_ An application of multirate digital signal processing in communications is in the channel-
ization of data streams. The goal of these techniques is to convert a TDM signal, seen in
Figure 3.53, intc a FDM signal, seen in Figure 3.54; conversely, an FDM signal can be
converted in a TDM signal.

Stream 1,

Stream 2
TDM Stream
v

Stream N |

Figure 3.53: TDM Example.

Stream 1

T

o foi

Stream 2

. '

s ejmgi

FDM Stream

Stream N 1

o fout

Figure 3.54: FDM Example.

TDM to FDM Conversion

Figure 3.55 shows a block diagram of a system that performs a TDM to FDM conversion.
Note the similarity in system layout between that seen in Figure 355 and that seen in
Figure 3.48, the basic form of a DFT filter bank synthesizer. The underlying architecture is
remarkably similar even though a specific type of interpolator structure and modulator can
be used. The TDM to FDM conversion converts a single data stream into a channelized
version of the original signal. The IDFT process collects several narrowband signals and
generates a single wideband signal that contains all the information received.
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+

Interpolaticn }—bUﬂodulation
—»Unterpolation H Mecdulation

4>[ Interpolaﬁon]—b{ Modulation

Figure 3.55: TDM to FDM.

FDM Stream

TDM Stream

FDM to TDM Conversion

Figure 3.56 shows a block diagram of an FDM to TDM conversion system. The similarities
between this system layout and the basic form of a DFT filter bank analyzer as shown in
Figure 3.47 can be easily seen. Figure 3.47 may be considered as a specific case of the
more generalized system structure seen previously.

Demodulation .
; : TDM Stream ’

FDM in

Demodulation
L ]
[ ]

Demodulation

Figure 3.56: FDM to TDM.

Wideband transceivers employing software radios can significantly reduce the cost and
complexity of basestations. Currently most of the deployed basestations utilize narrow-
. band transceiver technology in which each transceiver individually processes a separate
RF channel. In this implementation, the complexity of the system increases linearly with
the number of channels resulting in a fairly large and costly realization of the basestation.
On the contrary, a wideband transceiver processes the entire frequency band of interest
and uses low-cost digital signal processing instead of costly analog components to perform
individual transceiver functions on the signal at various stages.

69




114 Multirate Signal Processing Chapter 3

A generic wideband receiver structure used in a basestation developed by Watlcins-
Johnson, Inc.,1° is shown in Figure 3.57 [42]. In this implementation, the entire cellular
band of interest (¢.g., North American cellular band A and B with extensions) is first down-
converted to baseband by a single RF tuner. The baseband signal with a bandwidth of ap-
proximately 14 MHz is then digitized by a single ADC, which is sampling at 30.72 MHz,
slightly above the Nyquist sarpling rate. The output (real) of the ADC, which contains
all the channels in the cellular band, is digitally downconverted to individual 1&Q complex
baseband channel signals by an oscillator tuned at the individual channel carriers {(com-
plex modulation). The sampling rate of these individual complex signals is still that of the
ADC, i.e., 30.72 MHz. A decimation operation {fowpass filtering and downsampling) by a
factor of 384 is performed on these high-rate complex channel signals resulting in signals
with a sample rate of 80 kHz. The decimated channel signals are now ready for baseband
processing (demodulation). The baseband processing block requires an input sampling rate
that is an integer rmltiple of the baud (symbol) rate to facilitate symbol synchronization.
Usually the decimated signals’ sample rate is not an exact integer multiple of the baud rate.
So a further sample rate conversion is performed on the decimated signals before baseband
processing,

The part of the teceiver that performs extraction of the individual radio channels from

" the output of the ADC is called the channelizer. Reviewing Figure 3.57, it is clearly seen

that the structure of the channelizer is similar to the basic DFT filter bank analyzer ex-
plained in Section 3.4.2. Alternately, according to the alternate implementation of the
DFT filter bank analyzer as in Section 3.4.2, the channelizer can be considered a bank of
complex-valued digital BPFs followed by mixers, downsamplers, and sample rate convert-
ers. Pigure 3.58 shows this representation of the channelizer where each complex BPF
Hy,(w) has a center frequency of wy = Q—"K—k k =0,1,..., K — 1, which corresponds to a
particular RF channel.
Theoretically, a filter bank channelizer can extract any channel in the band (—F,/2, F5/2)

where F, is the sampling rate of the channelizer input (output of ADC). This implies that

" the complexity of a filter bank channelizer remains constant, independent of the num-

ber of channels. The impulse responses of the bandpass filters are defined by hy(n) =
ho(m)ei?™#™ where ho(n) is a real causal LPF. It follows then that the frequency response
of the BPF Hy(w) can be expressed as the modulated version of Ho {(w), ie.,

2
Hk(w)=H0(w--;%k) i=0,1,2,..,N— 1. (3.93)

3.5 Timing Recovery in Digital Receivers
Using Multirate Digital Filters
Multirate signal processing is very useful for creating flexable timing recovery techniques

for radios supporting multiple waveforms. Multirate digital signal processing timing re-
covery techniques may also reduce complexity compared to conventional (iming recovery

W0gome divisions of Watkins-Johnson, Inc., are now with BAE Systems.
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Section 3.5 Timing Recovery in Digital Receivers Using Muitirate Digital Filters 117

techniques that rely on altering the sample rate of the ADC. A feedback loop iS used in

. conventional techniques to adjust ADC timing, which spans across both analog and digi-

tal domains, greatly complicating the overall design. Multirate digital filters can be nsed
in digital signal processing based receivers to aveid crossing between domains and to al-
low for simplified timing recovery, providing a more flexible approach to support multiple
waveforms.

3.5.1 Timing Recovery in a Classical Analog Receiver -

In the classic 1&Q receiver, shown in Figure 3.59, a PLL is used to control the phase
of a VCO. By altering the phase, the output of the matched filter is sampled at the optimal
instance. Note that this structure is somewhat inflexible since software control of the analog
matched filter is difficult to accomplish,

A more modern appreach is shown in Figure 3.60. The signal is sampled prior to the
matched filtering operation. However, the timing recovery requires feedback between the
analog and digital domains, which complicates the overall design.

3.5.2 Timing Recovery in the Digital Domain Only

A multirate digital signal processing approach can be used to avoid the need to create
a feedback loop with the ADC. The idea is simple: the digitized signal i1s interpolated
using a polyphase filter and the sample point with the maximum energy/power is chosen,
as illustrated in Figure 3.61. Two possible approaches for this implementation exist. In
the first, the sampling process is performed asynchronously at two samples/symbol and
the subsequent polyphase filter interpolates the digitized signal to a higher sampling rate.
The correct sample is chosen from the interpolated signal as indicated. in Figure 3.61 and
the data stream is then downsampled to the symbol rate by selecting the optimal point in
the symbol. Since only a limited number of interpolated samples are actually needed to
determine the actual sample, a full interpolation filter can be avoided.

A second approach is to sample the input at a rate higher than the Nyquist rate and then
decimate it, using a polyphase filter, to the desired output data rate, Timing information is
recovered by controlling the starting index of the input samples presented to the decimating
polyphase filter’s commutator. An advantage of using a polyphase filter appreach is that,
atong with the downsampling operation, it performs a spectral translation by multiples of
the output data rate since the signal is being resampled.

For a given signal modulation and roll-off factor o of a raised-cosine pulse, the inter-
polation factor and the number of stages of interpolaticn required depends on the number
of samples per symbol. The interpolation factor should be large enough to keep the imple-
mentation loss due to missampling within a specified limit. As the roll-off factor decreases
for a given modulation type, timing becomes a more critical issue and the number of stages
of interpolation must increase to prevent significant sampling timing error. For example,
for 256-QAM modulation with &« = 0.5, an interpolation factor of I = 271 is required,
compared to I = 500 for the same modulation with & = 0.1, to keep the loss below 0.12
dB [43]. The direct method of implementation of the latter case is to operate at one thou-
sand samples per symbol by using five hundred polyphase stages to increase the sample
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3 ! Desired Sample Point
i Interpolation . ,//' ;
[ Sample i
‘ Points Qriginal Asynchronous

I
1 Points Sampled at
1 Two Samples per Symbol

Figure 3.61: Illustration of Interpolated Nyquist Pulse.

rate by a factor of five hundred. However, the unnecessary computation involved can be
avoided by using only the specific taps in the polyphase filter that output samples close to
the optimum sample point. Such an implementation can be done using the early-late gate
synchronizing technique.

353 Early-Late Gate Synchronizer

For illustrative purposes, consider the simpler problem of detecting the optimal sampling
time of a rectangular pulse that is match filtered. The early-late gate synchronizing tech-
nique exploits the symmetry of the signal or the symmetry of the matched-filtered signal.
The matched-filtered signal output R(t) typically-has a symmetric shape (neglecting dis-
tortion and noise). The optimal timing is obtained when R(t) is sampled at ¢ = T'. If we
take two measurements R(Ty + d) and R(Tp — d) and if Ty = 7', the two measurements
are equal and the optimal sample would be located halfway between the two samples, as
illustrated in Figure 3.62. Using this property, an etror signal to a timing recovery loop can
-be created.

A= R(Ty +d) - R(To — d).

The variable A is called the early/late decision statistic and is an approximation of
the scaled derivative of the matched-filter output. If A > Apresh eariys the sampling
clock should be decreased by some amount. If A < Agpresh late, then the sampling clock
should be increased. This simple principle, which was illustrated in continuous time, can
be extended to discrete time.

3.5.4 Timing Offset Control Using the Early-Late Gate Principle

The fundamental goal of symbol synchronization is to sample the pulse at its peak value. ‘
This peak can be determined by estimating the derivative of the sampled signal. The first

derivative is calculated as demonstrated—taking the difference of the early and late mea-

surements that encompasses the estimated location of the peak. In Figure 3.63, the early-

late gate derivative measurement y'(n — k/IN) for the kth polyphase output at time 7 can

be computed from the outpuis of & — 1 and k& + 1 filter stages [43,44].
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Malched Output Signal
—_p Filter > A7)
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Figure 3.62: The Matched Filtering Process Assuming a Positive Rectangular-Shaped
Pulse.

The decision statistic here is the product of the %th polyphase stage and its derivative.
This product is necessary to invert the derivative when the ouiput is negative. Thus, the
decision statistic will be independent of the desired symbol’s value. Driving this product
to zero by means of a feedback loop leads to maximum likelihood timing recovery. Notice
that the product goes to zero if either the derivative is zero (at the peak) or the kth stage
output (signal) is zero. '

The process of forming the derivative can be implemented by means of a polyphase
derivative matched filter with weights defined as the difference in weights of the & — 1
and % + 1 stages shown in Figure 3.63. That is, the derivative can be implemented as a
palyphase filter and thus only one filter actually needs be computed to supply information
to the feedback loop. Such a filter in conjunction with a palyphase-matched filter can im-
plement the system of Figure 3.63. A generic DSP-based receiver that uses the polyphase
filter approach for timing recovery is shown in Figure 3.64. Note that there is no feed-
back between the digital and analog domains. Furthermore, this approach is well-suited
for multiple channel] systems, such as FDMA systems, since each channel can have its own
interpolation filter. In this case, the polyphase filters can also aid in the receiver channel-
ization as well as in timing recovery.

This approach to synchronization has the maximum flexibility. The analog section
becomes more straightforward since the analog processing can be generic, and matched
filters for specific pulse-shaping and timing considerations are handled within the- more
flexible digital domain. Note that the resampling process translates the signal by multiples
of the data rate. This reduces the carrier offset and subsequently reduces the complexity of
the dipital signal processing based carrier recovery technique since the residual frequency
offset is lower after resampling,
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3.6 Conclusion

The advantages of multirate signal processing are manyfold and its application is common
in many systems, such as digital filtering, spectral analysis, speech coding, and analog to
digital conversion. Multirate techniques are essential in applications of high-speed data
acquisition and storage. They reduce the need for expensive anti-aliasing analog filters and
enable processing of different types of signals with different sampling rates. The cost of
high-speed components goes up exponentially with sample rate or clock rate. Multirate sig-
naling allows partitioning of the high-speed processing into parallel multiple lower-speed
processing tasks, thus allowing implementation with low-speed components at a reduced
cost. In the design of narrowband digital FIR filters, multirate techniques are especially
appealing. They facilitate the implementation of the filter at a lower sampling rate, thereby
greatly reducing the filter order and in turn the computational complexity. Wideband re-
ceivers take advantage of multirate signal processing for efficient channelization, i.e., par-
titioning a broadband signal into smaller individual radic channels. Since the channelizer
is the most computationally intensive part of the software radio, judicious design using the
multirate concept can lead to a significant saving in computational power. Finally, multi-
rate filtering techniques offer flexibility for symbol synchronization and downconversion

for software radios. Multirate approaches to timing recovery lead to straight-forward im-
plementations.

80




Section 3.7 Questions 125

.3.7 Questioné

L.

What is the benefit of using the multi-stage (rather than single-stage) structures of a
decimator or interpolator when large changes of sampling rate are required?

. Suppose we are building a cellular basestation and we have a ceflular signal of width

25 MHz, sampled at a rate of 50 Msamples/sec, We wish to channelize this signal
into channels of width 100 kHz. We want an adjacent channel rejection of 60 dB.
This should be implemented using the polyphase filter bank approach using a Kaiser
window filter. :

(2) Show the prototype filter {(sub-sampled filter). Show a block diagram of the
designed filter and a plot of the filter response.

(b) Show a frequency response plot of the filter bank with a white noise input to
prove the adjacent channel interference rejection characteristics.

(a) Implement in MATLAB a CIC filter with four stages of integrate and four
stages of comb, to reduce the sampling rate by a factor of four. Filter a sinu-
soidal signal with a frequency of 0.2 Hz (assume a normalized sample rate of 1
Hz) to illustrate the effect of aliasing.

(b) Repeat this exercise for six stages of integrate and six stages of comb.

(¢) Compare the frequency response of the filter from MATLAB with theoreti-
cal results for frequency response. Does the aliasing and attenuation observed
match predicted results?

Prove that decimating a signal by a factor of D frequency shifts the signals by mml-
tiples of D/ F,. '

Prove that insertion of 7 — 1 zeros between samples creates replicated images at
multiples of F, /1.

. Design a two-stage LPF and decimator that will take a signal sampled at 96 MHz and

convert it to a sample rate of 1 MHz. The passband of the signal after decimation
should be 450 kHz with a passband ripple of 0.01 and a stopband ripple of .001.
Repeat for a single-stage decimator. Determine the filter order(s) and show the fre-
quency response for each. What is the memory requirement and computational rate
required for each implementation?

. Redo Question 6 uging three stages of decimation.

. An interpolator is to be created for implementing an FDM system. Each channel of

the FDM system must be interpolated to a sample rate to accommodate the cornposite
signal. Assume that each channel is 20 MHz wide and the sample rate is 44 MHz.
There are eight channels in the composite signal sampled at a rate of 8 x 44 MHz.
Assume that at 22 MHz the stopband starts and the attenuation must be 50 dB. The
passband ripple is 0.5 dB. Show the ovetall frequency response, computation rate,
and memory of a single-stage implementation and a two-stage implementation.

81




126

Multirate Signal Processing  Chapter 3

10.

11.

12.

13

14.

In the example represented by Figure 3.29, redesign the filter assuming that dec-

~“imation of two is done before decimation by three. Compare the computational

requirements for each implementation and demonstrate the frequency response for
each. '

Show the frequency response of the filter given by Equation 3.46 for N = 1,2, ...5.
Comment on the trend in the frequency response as IV increases.

Show the frequency response of the filter given by Bquation 3.47 for N =1,2,...5
and M = 1,2,..5 and comment on the trend in the frequency response as ¥V and M
increase.

Show mathematically the difference in distoriion between a reconstructed signal that
uses a ZOH and one that doesn't, and comment on the significance of this distortion.

Consider a multiband system where the desired system must be able to handle GSM,
CDMA, and UMTS (Universal Mobile Telecommunication System), although not
all at the same time. We desire a constant sample rate for the ADC, which provides
exact multiples of the highest chip rate at 16x, 32x, etc. We want 1o use a digital
downconverter with a polyphase resampler to obtain exact multiples of the GSM
symbol rate, 270.833 kHz. The polyphase resampler will be bypassed for the CDMA
signals where the wider bandwidths are required. What are the required decimation
rates for UMTS, CDMA, and GSM? Note that the c]'up rate for CDMA is 1.2288
Mc/s and for UMTS (3GPP) is 3.84 Mc/s.

Determine the transfer function of the CIC interpolator filter structure shown in Fig-
ure 3.39 and plot its frequency response. :

82




Wireless Communications

A Modern Approach RHI] | ['
to Radio Engineering

The definitive engineer’s guide to designing and building software-based radios

Radios, once implemented purely in hardware, are increasingly built using programmable digital signal
processing (DSP) devices that enhance device flexibility, simplify manufacturing, and reduce costs.
However, many engineers are unfamiliar with the latest techniques for building software radios for
wireless systems and devices. This book fills the gap, introduces the key concepts of software radio
design, and covers every issue and technique engineers must understand to successfully utilize DSP in
their radio systems and subsystems. Coverage includes:

» Central role of multirate DSP in software radio design

» Constructing RF front-ends: utilizing digital processing to overcome key problems in RF design

» Direct digital synthesis of modulated waveforms

» A/D and D/A converters and conversion processes: key tradeofls among resolution, sampling
rate, and dynamic range

+ Enhancing performance through smart antennas and other adaptive array algorithms

» Practical techniques for choosing among DSP microprocessors, FPGAs, and ASICs

+ A systematic, object-oriented approach to creating flexible and reusable real-time software

The book concludes with case studies drawn from classic historical software radios, current
commercially available products, and the advanced work @f the SDR Forum, the leading consortium
of companies, universities, and research organizations promoting software radio development.

About the Author

JEFFREY H. REED, recent Director of the Mobile and Portable Radio Research Group (MPRG) and
Professor of Electrical Engineering at Virginia Tech, specializes in software radios, smart antennas,
interference rejection, modem design, and position location. Dr. Reed is co-author/co-editor of eight
books and has written chapters for many others.

ISBN 0-13-081158-0

90000
PRENTICE HALL I
Upper Saddle River, NJ 07458
www.phptr.com l '
sl7a0130ll811585

83





