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Radio Frequency Transiation for Sottware Delined Radios 57

signal requives a local oscillator that is itselt a complex signal, with components in J and Q
hranches that are in precise phase quadrature and precise amplitude balance. I this is achicved,
then the image signal will be eliminated. If precise phase quadrature and amplitude balance (or
the local oscillator 1s not achieved, however, then a small sideband will be superimposed on
the wanted sideband. This will result in magnitude and phase errors for the received signal
constellation. Because the image signal in a direct conversion receiver is derived from the
wanted signal itself, and not from a high power blocking signal, the requirements for tinage
rejection (and by implication amplitude bafance and phase quadrature of the Jocal oscillator)
are not quite as great as would be the case in superheterodyne architecture. The question of
what 1s a reasonable amplitude and phase balance is faken up again in Scction 2.4.2.

2.4.1.2 Problems with Zero IF architecture

DC Offset A signiticant problem with direct conversion archilecture is the introduction, by
the process. of a DC offset. This DC offsel can arise from a number of sousces. One typical
sowee is illustrated in Figure 2.24. [t can be seen that leakage of a local oscillator signal (o the
input of the LNA, or the mixer, can occur either through imbalance in the mixer, or via
capaciiive or inductive (substrate or bond wire) coupling within the LNA. Once these signals
are in the system, they are then mixed with themselves to produce a DC voltage at the input 10

LNA - Gain 2048 Gase gf’?d gg‘dpé'“e‘"
BPF Lep o ToAm

ES — G
TN -
e ( R
— 4
) 1o

Base band Amplifier -

! - Gam 2
LNA - Gain 20dB Gain 80dB

BPF

\ = T
| o — S ADC
............ ot R
A —
Interferer leakage™, ;
£ 1O

Figure 2.24  Sources of DC offsel
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Radio Freguency Transtation for Software Defined Radios 39

1/f Noise A direct conversion receiver has a large amount of iis gain placed at baseband
frequencies. In the previous ilustrative example in this chapier we have assumed a gain of 20
dB in the LNA, and the remaining 80 dB at baseband. The overall noise figure of a cascade ol
amplifiers is given by Equation (2), which is restaled here:
Fersfiz) 0
G,
where F is the overall noise Ggure of the receiver, F) s the noise figare of the LNAL £y isthe
noise figure of the baseband awplifier and ( is the gain of the LNA. It can be seen that (he
nowse conribution ol the second stage is reduced by the gain of the first stage. However, the
second stage will bave an excess noise figure due 0 ity operation at baseband, which
incorporates a l/f {flicker noise) component. This can mean that (he noise pertormance of
the second stage becomes just as eritical as the first.

Second-Order Distortion  Third-ordey distortioo is an important parameter in the design of a
conventional heterodyne receiver. A two-tone test performed with frequencics fy and f; will
generate third-order distortion components, 2f) = f> and 2f; — f1. which are in-band, and will
stay in-band (hroughout the complete down-conversion process. Second-order distortion
components f; — fi and /> -~ f) are out-of-band for conventional heterodyne structures and
thas need not be constdered. In a divect conversion receiver the components f; — f>and /> - fy
are still oui-of-band in the RF part of the receiver but fall within the passband of the baseband
amplifier. These components may reach baseband by:

o duect leakage through the mixer
e the second harmonic of the RE signal mixing with the sccond harmonte ot the local
oseillator signad

Second-order distortion " will demodulate any amplitede modulation present on the signal,
so variaiions on the signal amplitude caused by, for example, tading may result in a spurious
term being present at the receiver output. Second-order distortion, like third-order distortion,
is characierized by an intercept point 1P, (cf. 1Py or alternatively TOI, for third-order distor-
tion). Second-order distortion is usually tackied by using a differential circuit structure. This
type of structure is ideally suited to realization in integrated circuit format,

Retransmission of Local Oscillator Signal  The local oscillator signal not only causes
problems by being reflected off the antenna and self-inixed down to baseband, but it can
also cause problems by being transmitted from the antenna. Because direct conversion is
being used, the local oscillator is “in-band.” and may thus cause interference to adjacent
feceivers,

2.4.2 Quadratwre Local Oscillator

One of the predominant reasons designers of SDR receivers or transmitters are Jikely to reject
direct conversion architecture has to do with the difficulty of generating a wideband quad-
rature local oscillator that can cover the complete [requency band over which the SDR wall be

i P . . . . i
Or in fact any form of even order distortion,
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Radio Frequency Transiation for Soltware Delined Radios 61

are possible. and the possibility of having wideband, accurate, quadraiure oscillators avail-
able within the next 5 years is very high. The availability of such devices, at lower power
consumption, will result in direct conversion becoming a much more viable architecture for
the SDOR application,

Some work using transmission line stubs, and path differenuals, 1o set up quadraivre
signals, has been reported by Warr ¢t al. {see [30,31]). Phase balance within 1.0° with
amplitude balance of 0.3 dB. over a bandwidth approaching one octave. is reported on an
essentially ‘open loop’ systen.

2.4.3 Variuble Preselect Filters

As an allernative 10 image reject mixing, it is possible 10 employ electronically variable
preselect filters. Traditionally tuned filters have relied on varactor tuning; however, to
meet the requirements of SDR, new approaches such as tunable dielectric propertics or the
use of MEMS switching are likely (0 be needed.

2.4.3.1 Design Issues

The frequency range of wanted signals for the range of the receiver air interface stan-
dards that we have been considering can be represented graphically, as shown in the
upper line of Figure 2.27. The second line of Figure 2.27 shows the coverage required of
presciect hlters. It can be seen that four filters are requived. The table at the bottom of
this diagram lists the performance required of these filiers in terms of the upper and
lower cut-off frequencies. This table assumes that the bandwidth of the preselection filter
is limited to about 3% of the filter center frequency. and that any bandwidth required
over and above this amount can be obtained by sweeping the f(ilter characteristics. Five
percent bandwidth tends to be a reasonable figure as. when designing distributed
component filters. realization starts 10 become difficult when the fAlter bandwidih
approaches 4.

[ IR

Bhacteath

13

PR AN SEIPERE AN 2
e e . r N

[RVEC T Ir
LIy, .

15000 Hz

Figure 2.27  Frequency ol operation of an SDR image reject filter
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Radio Frequency Translavion for Software Defined Radios 03

Using this approach we can caleulate the order of the filter we would require for our image
reject filter. The standard formulae for the order of a Chebyshev filter required o give a
particular pass band loss is given by Equation (12) (see [33]).

A Do P, 0.3
cosh [(]0 n - 1)(!() n - l)

H= ol e (12)
cosh™ "oy

where 1 is the order of the filter, ar,,,, 1s the maximum permitied attenuation in the pass band

{which is approximately the image rejection expressed as a lincar ratio), and w, is the

normalized frequency that defines the beginning of (he stop band, and «,,, is the minimum

permitted attenuation in the stop band.

2.4.3.2 Practical Design of Image Reject Filter

An image reject flter will always operate at RF; therefore the option for the design of a
flexible preselect filter is at present limited to realization as either a distributed component
design or as a MMIC.

There have been a few variable MMIC filter designs reported in the literature, notably (hat
of Katzin, reporied in [34]. produced as a prototype MMIC for the Hittite Corporation. Two
versions were produced, both exhibiting = 100 MHz bandwidth. One had a center frequency
that could be swept from 150010 2.000 M7 and the other a center frequency sweepable from
1980 to 2650 MIHz. The filter unlortunately never progressed beyond the prototype stage. due
1o lack of sufficient dynamic range |35). Nonlinearity is introduced into MMIC designs from
two sources. First, it occurs because a varactlor is often used 1o une the device, and second.a
nonlinear active device is often used to compensate losses in MMIC fitier components. ™’

There are several classic types of distributed component microwave filters. If we resurct
consideration (o those filiers which could conceivably be realized in microstrip. or similar,
technalogy, then we are left with the following list.

* end coupled microstrip

s edge coupled microstrip with open circuit or short circuit termination
* interdigital microstrip

* combline microstrip

* hawpin microstrip.

Most of these filier architectures were developed in the late 1950s and early 1960s [36,37).
Figure 2.30 iliustrates the essential geometry of these filter types.

All of these filter architeciures are designed for a fixed center frequency, ixed bandwidth
application: the question thus remains as 1 how they might be electronically tuned. A number
of suggestions are listed below,

* varacior diode tuping at some straiegic point on the filler structure;

¢ constructing the filier on a substrate, whose dielectric constant could be electrically
varied:

* switching parts of the transmission line so that the physical characterisuces ol the filter
structure could be changed.

] - . . . - N
By introducing, for example, negative resistance aross an inductor,
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Maximwn resonant frequency Minimum resonant frequency
Figure 2.32  Switching filter center frequency using MEMS
Tuning of this filter using MEMS can potentially be achieved by shortening the top loading

coupled line. as shown in Figure 2.32. A simple filter of this type has been simulated on
advanced design systems (ADS); the results are shown in Figure 2.33.

- Longest stub -Shaortest stub
16 1
)] B |/ »( T T T T 1
tle 17 - 18 RE] 2 24 22 23 24
-10 4 I .
z 20 ] /
-30 ‘ _
230 ; . .
501
i Frequencey (GEHZY

Figore 2.33  Simulated response of MEMS-tuned hairpin fiker

2.4.3.3 The Potential Role of MEMS Technology

The potential role of MEMS 1echnology goes beyond the example just discussed. In the recent
; past there has been an explosive growth of interest in MEMS components [43.441. Itis possible
0 use MEMS technology not only (o realize cssentially simple MEMS switches but also to
realize quite complex mechanical shapes. Micro sized resonator structures become a possibi-
lity. This means that filiers and duplexers may be implemented as MEMS components. [tmay
not be necessary to actually tune a fiklier. but potentially the same elfect may be achicved using
MEMS switches 1o configure a path through a targe number of lixed {reguency “micro filters.”

i
i
i
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67

the [F frequency is small by definition in a low I architecture). making the image
difficult to remove using conventional filtering. To remove the image requires image
reject mixing to be performed. Image reject requirements for a low IF stage are nol as
stringent as those for a conventional superhelerodyne stage. not are they as low as the
cero IF stage.

Consider a final IF of 500 kliz. The blocking specifications for the GSM air interlace
standard (sec Figure 2.43) would permit a blocking signal at a separation of twice the 1F
frequency (1 MHz) 1o be at a level o - 33 dBm. If a caleulation hike that in Section 2.2.3.3 is
performed: it can be shown that the vequired image rejection ix 78 dB. The lower the IF, the
lower will be the required image rejection performance.

2.4.4.1 Complex Filiering

An alternative to mmage reject muxing is use of a complex filler. A conventional filter,
operating on real signals, is only capable of realizing complex poles in pairs |45.46]. If the
signal is complex, however, then a lilter that containg a single complex pole may be realized.
Figure 2.35 shows such a filter.

Alm(s) P, X “Im(s)
P, X o, p.X
P > ' >
P, % Re(s) Re(s)
L —
Y i .
! (Jm)l ow pass filter el Complex
OW pass bandpass filter
—
/ \ jw | jw
—J @, —

Figure 2.35 plane and frequency response representation of the transkation of the poles of a lowpass
0 a bandpass filter that responds only 0 positive frequencies

—
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Radio Frequency Transiation tor Software Defined Radios

Therefore the output of the filter can be shown o be

| 1
()= ——an = —{(x(0) + (=1 = 2jQ)y
w0 sley 40 .s-/wo(\\r) (=1 =ZQp0)

WO){slwy = (1 -+ 2iQ)) = x(r)

RO ]
X0 1~ 20 + st

H{ty = (19)
which corresponds with Equation (17).

The circuit that will allow complete realisation of this filter is shown in Figure 2.37. xy(1)
and xf7) represent the veal and imaginary parts of the mnput signal. ye(7) and y(7) represent the
real and imaginary parts of the output signal. Using this filter, either the positive or negative
frequency components of the flter may be selected. Residual response at the undesired
sideband will be determined by the accuracy and balance of the filter components and the
accuracy of the quadrature jocal oscillator,

——l0)

=y, (1)

Figure 2.37  Complete realization of a complex filer
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