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Prosthetic group (PQG) applications in ®F-radiochemistry play a pivotal role among current '®Flabeling
techniques for the development and availability of '®F-labeled imaging probes for PET (Wahl, 2002)
(). The introduction and popularization of PGs in the mid-80s by pioneers in '®F-radiochemistry
has profoundly changed the landscape of available tracers for PET and has led to a multitude of
new imaging agents based on simple and efficiently synthesized PGs. Because of the chemical
nature of anionic '®F (apart from electrophilic low specific activity '8F-fluorine), radiochemistry
before the introduction of PGs was limited to simple nucleophilic substitutions of leaving group
containing precursor molecules. These precursors were not always available, and some target
compounds were either hard to synthesize or not obtainable at all. Even with the advent of re-
cently introduced “late-stage fluorination” techniques for the '®F-fluorination of deactivated aromatic
systems, PGs will continue to play a central role in '®F-radiochemistry because of their robust
and almost universal usability. The importance of PGs in radiochemistry is shown by its current
significance in tracer development and exemplified by an overview of selected methodologies for
PG attachment to PET tracer molecules. Especially, click-chemistry approaches to PG conjuga-
tion, while furthering the historical evolution of PGs in PET tracer design, play a most influential
role in modern PG utilization. All earlier and recent multifaceted approaches in PG development
have significantly enriched the contingent of modern '®F-radiochemistry procedures and will con-
tinue to do so.
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be recalled that for the development of a new radiotracer,
usually (in almost all cases), a nonradioactive lead com-
pound devised by medicinal chemistry is taken as a chemical
template or scaffold and translated into a radiotracer for in
vivo imaging by introducing a radiolabel. This general strat-
egy holds true for tracers intended for PET, where so-called
organic radionuclides such as carbon-11 and fluorine-18 (*°F)
are commonly used, and where the size of compounds varies
between small tracers for brain imaging, and peptide- and
protein-based probes for cancer imaging.”® If the original lead
structure does not contain, for example, fluorine, the radio-

Introduction

B efore discussing a prosthetic group (PG)’s purpose in
radiochemistry,' its definition needs to be clarified. The
use of the term “prosthetic group” has been traditionally em-
ployed in enzymology and defined as a cofactor that is “either
tightly or loosely bound to the enzyme. If tightly con-
nected, the cofactor is referred to as a prosthetic group.” How
did this definition migrate into the field of radiochemistry and
what is the significance of it in this particular context? It should
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chemist has to add fluorine at a position in the molecule that
most likely does not interfere with its binding properties to
the target. The smaller the change in the molecular struc-
ture of the lead compound, the less probable the binding
behavior to the target structure will change. Therefore, ra-
diochemists and also medicinal chemists (addition of fluorine
to a molecule can have very positive effects on its bio-
availability and stability in vivo”) often simply exchange a
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hydrogen atom in a lead with a fluorine atom based on the
similar van der Waals radii of hydrogen and fluorine. Un-
fortunately, it is not always possible to introduce radioactive
'8F at the same position in a molecule where medicinal chem-
ists are able to add stable fluorine in their multistep synthetic
schemes. This ostensible contradiction can be explained easily
by the different requirements for nonradioactive and radio-
active fluorine in preparative chemistry. Although '*F is still
fluorine in chemical terms, the radioactive nature of 'F in-
troduces the problem of radioactive decay to the synthetic
equation. In general, multistep syntheses up to this day are
not desirable in '®F radiochemistry because such laborious
and lengthy procedures will never yield the desired radio-
tracer in high radiochemical yields (RCYs) and high specific
activities, not to mention the cumbersome purification of many
intermediates on the way toward the final product.

What Is a Prosthetic Group?

These ramifications are still the reasons why PGs have been in-
vented and used in tracer development ever since. In principle, a
PG overcomes the inability to radiolabel certain compounds with
'F in 1-2 steps via nucleophilic "*F- substitution of a leaving group
in a timely manner. Comparable with carbon-11 methylations using
"C-methyliodide, small reactive "°F bearing labeling synthons were
envisioned as analogous labeling reagents to engage nucleophilic moi-
eties such as amino, hydroxy, carboxy; and thiol groups. This strategy
made it possible to easily transfer a ''C-methylation to an equiva-
lent "*F-fluoro methylation or ethylation (or alkylation in general),
taking advantage of the already existing labeling precursor for
"'C-labeling. This concept has been recently extended to a multi-
tude of chemical ®F-bioconjugations based on click chemistry,
significantly supporting the use of PG applications in radiotracer de-
velopment despite the development of novel metal catalyzed late-
stage *“F-fluorination techniques that have substantially enriched
existing '°F-labeling techniques.'”"* Referring back to the above-
introduced definition of a PG in enzymology, a PG in
radiopharmaceutical chemistry is a serviceable auxiliary that can easily

be attached to a precursor molecule in analogy to existing 'C-labeling
techniques (alkylation, acylation, amination, etc) or click-chemistry
methodologies (triazole-, dihydropyrazine-, oxime formations, etc).
However, the use of PGs for tracer development carries an impor-
tant limitation. Usually; a first-in-kind radiotracer (especially for small
compounds of low molecular weight) is directly derived from the
lead structure that has no functionalities that could be easily modi-
fied to introduce *F by a PG. As a result, in most cases, a methyl
group that is usually abundantly available in most small organic com-
pounds is substituted for a "'C-methyl group. This strategy yields
a radiotracer that is in every regard exactly the same as the nonra-
dioactive lead compound. In contrast, the structural exchange of a
methyl group with a higher F-labeled homolog such as an
1F-fluoroethyl group or even a closely related **F-fluoromethyl group
can significantly alter the biological and chemical properties of the
resulting molecule. It is the responsibility of the researcher to prove
that this very minor chemical-radiochemical alteration in struc-
ture does not compromise important parameters such as toxicity,
metabolism, and binding affinity to the target. This of course adds
anew layer to the development process of '*F-radiopharmaceuticals,
anoticeable detriment in comparison with an unaltered "'C-tracer
that has most often already been tested for toxicity, binding affin-
ity; and metabolism in the course of commercial drug development.
This handicap, however, is offset by the advantages of '°F over ''C
in terms of nuclide properties, and longer half-life, which allows for
a prolonged duration of PET measurement and thus a higher quality
of corresponding PET images.

Many of the abovementioned concepts of '*F-PG introduction
can be illustrated by the synthesis of 6-O-2-[**F]fluoroethyl)-6-O-
desmethyl diprenorphine, a PET tracer for opioid in vivo imaging,
where the original methyl group in 6 position is substituted by an
BF-fluoroethyl moiety (Fig. 1).

The methoxy group can be easily converted into a hydroxy group
(the desmethyl precursor) that can be labeled either by ["'Clmethyl
iodide or 2-[**F]fluoroethyl tosylate ([**F]FETos)." This particular
position is the most suited to make small changes to the structure
of diprenorphine without compromising its binding to the opioid
receptors. Another group had previously chosen the N-17 posi-
tion to replace the cyclopropyl methyl group with an '*F-fluoro ethyl

unfavorable derivatization site

18F_PG labeling
at N-17 position

————

reduced binding to opioid receptors

favorable derivatization site

18F_PG labeling
at O-6 position

preserved binding to opioid receptors

Figure 1 Derivatization sites of the opioid receptor ligand diprenorhine. Structural changes of diprenorphine at the O-6 position (right) yield
preserved binding to the receptor, whereas changes at the N-17 position (left) lead to a reduced binding to the receptor.
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and -propyl moiety; but the in vivo evaluation of the resulting com-
pounds revealed reduced binding in opioid receptor-rich regions
in comparison with the "'C-original." Fortunately; the O-6 derivatized
'8F variant of diprenorphine overcomes the shortcoming of the origj-
nal "'C-labeled compound of a very limited PET scan duration and
even enables shipment of the compound to PET centers without a
cyclotron. This review does not claim to summarize the entire lit-
erature with regard to reported PGs over the last 30 years but will
rather explain conceptual strategies behind PG utilization using de-
monstrative examples.

The Early Days of Prosthetic
Group Chemistry

Early research was reported in the late 1970s and early 1980s,
when the synthesis of halo-'*F-fluoromethanes was de-
scribed in the context of hot-atom recoil labeling where the
precursor substrate was directly added to the neon gas target
and bombarded with 14-MeV deuterons.!” The “hot” 'F-
formed via the *°Ne(d,o)'®F reaction could react directly
with in-target components to form the corresponding
halo-"*F-fluoromethanes. Unfortunately, the high energy trans-
fer rates within a target during bombardment led to an increased
formation of radioactive impurities impairing the produc-
tion of higher activities. The irradiation of halo-alkanes in the
presence of '°F generates halo-'*F-fluoro alkanes, which were
characterized but not used for any kind of follow-up label-
ing. Another experimental study with more detailed information
but still limited practical applicability for preparative
'8F-radiochemistry was reported by Root and Manning.'® At
the same time, '®F-fluorinated surface oxidized silver wool as
a curious source of '"F was used for the synthesis of
halo-"*F-fluoro alkanes. The authors did not have the so-
phisticated labeling utilities at their disposal, as modern
radiochemists and consequently the reaction mechanism using
silver wool is still not well understood." Another early con-
tribution from Coenen and coworkers in 1985 fully
characterized for the first time 1-bromo-['®F]fluoromethane
with the intent to use this synthon analogously to [''C]methyl
iodide.”® The labeling conditions to '"F-fluorinate the pre-
cursor dibromomethane via nucleophilic substitution were
different from previous approaches. Almost at the same time,
Dae and coworkers reported on a mechanistic study of
halofluorination of olefins that paved the way towards other
investigations.”' The full automation of the synthesis of
bromo-'*F-fluoromethane was achieved by automated dis-
tillation of the reaction mixture over 3 Sep-Pak Plus silica
cartridges to remove the dibromomethane precursor and
unreacted '"F~.** The introduction of the aminopolyether
Kryptofix222 and potassium carbonate system as well as the
tetrabutylammonium "*F-fluoride complex”** constituted im-
portant improvements enhancing the nucleophilicity of the
'®F-anion, via complexation of the potassium cation through
Kryptofix222, leaving the '*F~ un-solvatized and thus “naked”
or through the formation of highly soluble nBusN['*F]F (due
to the phase transfer capabilities of nBusN*), respectively. The
implementation of the Kryptofix222/K['®F]F labeling system

marked a turning point in '*F-radiochemistry. It is still an im-
portant pillar of modern '®F-labeling methodology and had
a catalytic effect on the further development of PGs and ra-
diotracers in general. Previously, hard to label compounds
suddenly became available through this innovation, invigo-
rating and intensifying the research on '*F-labeled compounds
and making '*F the most important diagnostic radionuclide
today.” Besides bromo- and iodo-[**F]fluoromethane, the more
reactive ['%F]fluoromethyl triflate was introduced in 2002 via
online conversion of bromo-["*F]fluoromethane using silver
triflate in a gas-solid phase reaction.?® The year 1986 was most
memorable with regard to PG development and PG applica-
tion in tracer research. Several pioneering researchers in
radiochemistry such as Kilbourn, Katzenellenbogen, Welch,
Shiue, Wolf, Barrio, Coenen, and Stocklin presented their early
or continuing research on '®F-fluorinated alkyl tosylates,
-mesylates, and -halides at the Sixth International Sympo-
sium on Radiopharmaceutical Chemistry in Boston,
Massachusetts, USA, initializing a new important chapter in
radiochemistry that still continues to have an effect on tracer
conception. It cannot be overstated that putting forward the
Kryptofix222/K,COs labeling system for anionic **F-fluorination
sustainably invigorated and accelerated progress in '*F-tracer
development. Although some new methods have completely
omitted toxic Kryptofix222 from the synthesis and also omitted
the azeotropic drying procedure,”” this "F-nucleophilicity-enhancing
auxiliary is still in frequent use. Shive and Wolf for example applied
this labeling system in the synthesis of higher '*F-fluoroalkylated
analogs of spiroperidol (spiperone 4, Fig. 2) (at the same confer-
ence there were several contributions from different groups featuring
the synthesis of '®F-N-alkyl labeled spiroperidols 5, Fig. 2), an im-
portant ligand to investigate dopamine receptors in humans.”” The
motivation to use PG chemistry was clearly motivated by the dif-
ficult multistep synthesis of the original compound, making a routine
application for human PET imaging unlikely. The obtained
N-[**F]fluoroalkyl spiroperidol derivatives 5, despite being struc-
turally slightly different from the lead, could be synthesized consistently
from their corresponding "*F-fluoroalkyl halides in radiochemical
yields of up to 60% (decay corrected) (Fig. 2). Generally for con-
venience’s sake, a 1-step fluorination is always preferable and the
chosen route if a labeling precursor is available. However, if the syn-
thesis of a direct 1-step labeling precursor is cumbersome or the
direct 1-step labeling results in the formation of many side-
products because of harsh labeling conditions, the PG labeling
approach is preferred for reasons of more efficient synthesis and faster
and immediate evaluation of the tracer. The pioneering work from
all those early groups provided the necessary innovative momen-
tum to advance radiochemistry to the next level and set the state for
numerous applications, further developments, and, fmally; click chem-
istry in PG application.”*”!

2-["®Flfluoroethyl tosylate: The PG
Workhorse

If there is one PG that almost every radiochemist has at least
used once in his or her professional career, it would most prob-
ably be ['®F]FETos, first introduced by Block et al at the
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Figure2 Synthesis of various "*F-fluoro alkylation PGs for the

Forschungszentrum Juelich, Germany, in 1987.°* The
easy and reliable synthesis of ["*F]FETos, its simple and con-
venient purification, its perfect balance between reactivity
and stability in solution, and its unprecedented number of
labeling applications attesting to its usefulness make it the
most stand-out PG to date (originally cited from Block et al:
“This compound appears optimal as fluoroalkylation agent
with respect to size, stability and ease of its preparation”)’
(Fig. 2). Countless applications of 'F-FETos have been
published in the literature and it would be beyond the scope
of a review to just count them all. Although many other similar
2-["%F]fluoroethyl sulfonates (and triflates cf. above) have
been the subject of systematic investigations™ (eg, for the
synthesis of the dopamine reuptake ligand ["*FIFECNT 7
from precursor 6, Fig. 3), ['®F]-FETos remains the most
prominent labeling synthon among '*F-fluoro-ethylating agents
targeting amino and deprotonated hydroxy functions. ['*F]FETos
functions as an '®F-surogate PG for [''C]-methyl iodide’
although bromo-["*F]fluoromethyl or [**F]trifluoromethyl
synthons structurally more closely resemble [*'Clmethyl iodide
in terms of spatial and steric demand. A drawback of these
smaller PGs is their more intricate preparation (see above).
Especially for less-experienced radiochemists, the synthesis
of 1-bromo-'*F-fluoro methane bears some preparative
pitfalls, which can translate into low radiochemical yields
or an impure PG. Furthermore, '*F-trifluoromethyl-chemistry,
despite its high synthetic potential, has only recently been
introduced and has not been widely applied yet.”” In stark
contrast, the synthesis of ['"F]FETos is almost foolproof. The
precursor ethylene 1,2-ditosylate is commercially available,
constitutes a non-volatile solid (unlike dibromo- or diiodo
ethane, which are liquids but also greenhouse gases and
should be used with care) and has a high molecular weight

\ 18})” N
e %%“@ A

F
TosO”™ >~
n=1 Block et al. (29)

E—
O;z O;Z
F
spiperone 18F-fluoroalkyI-spiperone
4 5

synthesis of an '®F-derivative of the D2 receptor ligand spiperone.

allowing accurate, easy, and convenient weighing control.
The '"F-fluorination of ethylene 1,2-ditosylate reliably
yields the PG between 50% and 80% RCY. The ['*F]FETos is
easily separated by High Performance Liquid Chromatogra-
phy (HPLC) from its more lipophilic precursor, and final
workup is equally simple via solid phase extraction. Even pro-
cedures without HPLC separation have been reported.” As
for many PGs, one drawback of [**F]FETos should not be dis-
regarded, namely the fact that the exchange of a ''C-methyl
group with a *F-fluoro ethyl group means a change in mo-
lecular structure. Albeit small, this structural dissimilarity
necessitates that any resulting radiotracer has to be tested for
toxicity and change in biological behavior irrespective of whether
these tests have already been performed for the original
"'C-tracer that is most often structurally equal to a fully evalu-
ated pharmaceutical drug. ["*F]FETos has been challenged over
time by similar PGs such as bromo-'*F-fluoro ethane.”””® The
efficient alkali iodide promoted '®F-fluoroethylation of
p-anisidine 8, a very unreactive substrate for alkylations; using
both **F-FETos and bromo-'*F-fluoroethane demonstrates the
usefulness of both PGs for radiolabeling (Fig. 3). Several
radioligands of relevance in nuclear medicine were labeled
applying this methodology, for example, "®F-fluoroethyl-choline
9 (Fig. 3). Although strategies have been reported to
routinely prepare bromo-'*F-fluoroethane by various meth-
odologies, '®F-FETos seems continuously to assert itself as the
most applied PG in the history of PG applications. An inter-
esting metabolically stable alternative to **F-FETos has been
proposed in 2013 where a "*F-fluorocyclobutyl PG serves as
an '®F-labeling agent 10 to provide an '*F-labeled amino acid
11 (Fig. 3). The labeling yields using this synthon unfortu-
nately did not compare favorably with other '*F-alkylating
PGs despite its higher in vivo metabolic stability.”
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Figure 3 Application of several different '*F-fluoroalkylating PGs for the '®F-fluoroalkylation of different precursor mol-
ecules such as the dopamine re-uptake radioligand '*F-FECNT 7, '"F-FECH 9, and the tyrosine derivative 11.

18F.Active Esters: Unspecific but
Highly Reactive Labeling Agents

In spite of ["*F]FETos’s usefulness in labeling organic mol-
ecules of low to medium molecular weight (<1000 w), it is
less suited to react with complex molecules such as pep-
tides and proteins for diverse reasons. First of all, ['"*F]FETos
is not “super” reactive (OTos is a nucleofuge of medium re-
activity) and requires some energy (eg, higher reaction
temperatures) to react efficiently and in high radiochemical
yields. Proteins in particular do not tolerate high tempera-
tures and denature quickly. Peptides, if not fully side-chain
protected, can easily yield more than just 1 *F-fluoroalkylation
product, demanding laborious purification via HPLC.
['®F]FETos has never found widespread application for peptide
(or other larger compounds such as oligonucleotides) label-
ing, and conditions for labeling have not been optimized
because there are far better PGs for that purpose. Highly re-
active chemically activated esters, radiolabeled with *F have
early on been envisioned as reactive secondary labeling pre-
cursors for peptide and protein labeling under preferably
aqueous conditions because water perfectly dissolves both.
Direct '*F-labeling approaches in water were not available at
that time and were only introduced later in 2005-2006 using
unconventional radiochemistries based on B-'°F and Si-'*F

formation.™ The most prominent example of an activated ester-
based PG is N-succinimidyl-4-["*F]fluorobenzoate (['**F]SFB)
introduced by Vaidyanathan and Zalutsky in the 1990s."*
Its publication has set a field-wide search in motion for new
and even more efficient active ester-based PGs despite the
report of significant radioactive side-product formation. The
initial synthetic procedure (Fig. 4) where 4-formyl-N,N,N-
trimethyl anilinium trifluoromethane sulfonate 12 is
radiolabeled with "®F~ to yield 4-["®F]fluorobenzaldehyde 13,
which is oxidized into 4-["*F]fluoro benzoic acid 14 and finally
converted in situ into [**F]SFB 15, has been improved, modi-
fied, and automatized to make it more convenient and
guarantee high RCYs for routine applications. Depending on
the setup and method used, the overall synthesis can take
approximately 2 hours, which is decidedly at the higher end
of the preferable time line for PG syntheses. Automation of
this usually 3-step preparation includes the initial labeling
of the triflate salt of ethyl 4-(N,N,N-trimethylammonium)benzoate,
its ester hydrolysis, and final in situ active ester formation. It was
always a challenge for radiochemists to automatize the **F-SFB
synthesis to make its use more attractive for routine radiochemis-
try. The introduction of other ester moieties such as tert-butyl ester
into the labeling precursor 16 that is easily cleavable after
'8F_fluorination via trifluoroacetic acid yielding *F-fluorobenzoic
acid 14, has improved the original procedure for ["*F]SFB synthesis
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Figure4 Synthesis of ['*FISFB 15 and its application in radiolabeling of a dipeptide (box).

(Fig. 4).” Besides technical advancements in [®F]SFB synthesis
such as a recently reported 3-step 1-pot synthesis for automation,™
other active esters were devised to challenge ['°F]SFB with regard
to ease of preparation, synthesis time, and labeling efficiency. The
most desirable synthetic route toward an '*F-active ester would be
a single-step fluorination. One complication on the way toward a
1-step labeling procedure is caused by the inherent lability of
the active ester moiety. This strategy was tried very early in 1988
and proved to be unsuccessful at that time.” Although desirable
for the intended labeling of proteins, this chemical reactiveness
hinders the 1-step '®F-fluorination of an active ester precursor.
Even if possible, the reactiveness of the active ester moiety leads
to side products that have to be removed before the subsequent
labeling with this PG. The synthesis of N-succinimidyl
4-(["*F]fluoromethyDbenzoate (['**F]SFMB) 18 by Lang and Eckelman
was the first example of a 1-step active ester labeling that yielded
the reactive PG in 18% RCY at the end of a 30- to 35-minute
synthesis demonstrating impressively the reduction in synthesis
time in comparison with the originally published "*F-SFB synthesis.™
The relatively low yields of the *F-fluorination of precursor 17
were explained through experimentally confirmed formation of
radioactive side products 19 and products of active ester hydroly-
sis 20-21 (Fig. 5). [**F]Fluoromethyl benzoate synthesis was further
improved by changing the leaving group of the precursor mol-
ecule from Tos to Nos (4-nitobenzene sulfonate) as demonstrated
in a 1-step labeling reaction of peptides.”* In 2010, Olberg et al
and Malik et al reported on the 1-step synthesis of the '*F-labeled
nicotinic acid derived active ester [**F]Fpy-TFP 23, where the
2,3,5,6-tetrafluorophenyl active ester group survived the labeling
of the trimethylammonium moiety at the 6-position of nicotinic
acid 22.%°° The "F-fluorination surprisingly takes place at room
temperature (Fig. 5). This PG 23 has been used in the synthesis of
a PSMA targeting ligand. The purification of the PG was conve-
niently achieved by simple Sep-Pak cartridge separation, omitting
the need for an HPLC system. The yields of the labeling reaction
were surprisingly high with 60%-70% at just 40°C, and the con-

secutive reaction with several peptides (eg, arginylglycylaspartic
acid (RGD)) was almost quantitative at relatively low peptide con-
centrations. The recently introduced non-canonical labeling
approaches based on B-""F'* and Si-'*F** that are character-
ized by an easy 1l-step introduction of "F into small as well as
complex organic compounds at very mild temperatures, led to
the introduction of exotic PGs such as ['®F]SiFB 24,”*> which is
structurally very similar to ['"®F]SFB. One caveat, however, is the
higher lipophilicity of "F-SiFB in comparison with ["*F]SFB, lim-
iting its use to protein labeling only; which can sufficiently compensate
for the higher lipophilic character of the introduced silicon fluo-
ride acceptor (SiFA) group.” However, the synthesis of ['"F|24 is
outstandingly convenient, relying on the concept of isotopic ex-
change and one simple cartridge purification step only as a result
of the chemical identity of precursor and labeled product (Fig. 5).
Another PG bearing an active ester group has been published in
2013, tackling the high lipophilicity of the transferred "F-fluoro
benzyl group that can sometimes cause trouble when attached to
small peptides.” Although not based on a convenient 1-step reac-
tion, this sulfonated hetero-bifunctional **F-crosslinking PG 28 is
based on the ring opening of a 1,3-propane sultone 25 with *F-
yielding 26, its deprotection to compound 27, and its final con-
version into an N-hydroxysuccinimidyl ester 28 (Fig. 6). The
"®F-ring opening yielded only low amounts of product under
conventional ®F-labeling conditions (acetonitrile, Kryptofix222,
base) but works exceptionally well in tertiary alcohols (up to 90%
radiochemical yield) at 90°C, a new labeling paradigm introduced
by Kim et al.” The sultone ring opening leads to the liberation of
a sulfonic acid group, which imparts hydrophilicity to the PG.
The PG 28 has only been used so far in the synthesis of an
!F-labeled cyanine dye, and its usefulness for peptide and protein
labeling has still to be proven. Shortly after, the same group applied
a sultone-based labeling approach featuring a bis-sultone cross-
linker to the synthesis of a peptide without implication of an
active ester moiety”® Another well-tolerated and synthetically proven
"®F-active ester was introduced by Guhlke et al in 1994, and
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used in the synthesis of '®F-peptides.””®* The small PG
N-succinimidyl-2-['*F]fluoropropionate 32 was used in the
labeling of RGD dimer peptides, confirming its usefulness for
peptide-based PET tracer development.®” The synthesis of 32 starts
from either the bromo or the tosyl precursor 29, which is **F-labeled
under standard conditions, yielding ester compound 30. The ester
moiety is cleaved by a base, and the resulting '"F-acid 31 is con-
verted into the final active ester PG 32 (Fig. 6). A simplified
1-step synthesis for 32 has been added recently to the portfolio of
active ester PGs.”*

Click Chemistry: Modern Tools for
PG Development

Besides recent metal-mediated late-stage '®F-fluorination (see
above), the facilitation and perfecting of click chemistry for
'8F-radiolabeling (and other radioactive tags) has been seri-
ously changing radiochemistry over the last 2 decades after
K. Barry Sharpless introduced the terminology to organic chem-
istry in 2001.°7 Click chemistry applications in all fields of
radiochemistry have extensively been reviewed previously.®"
Especially, '®F-PG development has tremendously benefit-
ted from the concept of click chemistry. The chemical efficiency
of "®F-PG bioconjugation has been maximized through the
utilization of a wide contingent of click-chemistry reactions
such as oxime formation, Michael addition (eg, thiol-
maleimide conjugation), 1,3-dipolar Huisgen cycloaddition
(eg, (Cu(l) assisted as well as catalyst-free triazole forma-
tion), and more recently Diels-Alder-like reactions (eg, tetrazine-
dienophile reactions). One outstanding feature of click
chemistry is its orthogonality, which adds an unprec-
edented chemoselectivity to PG conjugation to organic
compounds that contain a large number of different func-
tional chemical groups. A click chemistry reaction should be
simple, fast, and modular. High chemical (and radiochemi-
cal) yields of stable products (such as radiotracers) and easy
removable side products (no chromatographic removal) char-
acterize a successful click reaction. If applied to radiolabeling,
another important feature has to be added to click chemis-
try’s list of requirements, namely a fast kinetic profile that is
compatible to the physical half-life of the applied radionu-
clide and applicability to low nanomolar concentrations of
the '®F-PG. Some of the most frequently used click chemis-
try reactions in radiochemistry are discussed below.

1,3-Dipolar Huisgen
Cycloadditions: Catalyzed
and Non-catalyzed

[2 + 31Cycloadditions

Triazoles, besides being very stable and biocompatible, bear
topological and electronical similarities to an amide bond. Their
introduction into the context of '®F-labeling chemistry in 2006-
2007 by Marik and Sutcliffe,” and Glaser and Arstad” (almost

simultaneously) set off extraordinary research efforts toward
'8F-radiotracer development using click chemistry (Fig. 7).
'8F-Labeled '®F-fluoroalkynes 33 (Marik and Sutcliffe’s ap-
proach) as well as '®F-azides 34 (Glaser and Arstad’s strategy)
quickly proved their value as PGs for biomolecular labeling
where a compatible alkyne or azide moiety was conjugated
to the N-terminal end of a peptide or a derivatized com-
pound of lower molecular weight.”*" The Cu-catalyzed
formation of the triazole proceeds via a [2 + 3]cycloaddi-
tion (1,3-dipolar Huisgen cycloaddition) and is usually fast
and proceeds without the formation of major side products.
However, the catalytic system has to be individually ad-
justed for each click situation. Some spin-off labeling synthons
using different "*F-fluoroalkynes and "F-fluoroazide-bearing
PGs (eg, various carbohydrate-based azides)”' have been de-
scribed in recent years®**” (Fig. 7, bottom). For example,
2-deoxy-2-[**F]fluoroglucopyranosyl azide 37, introduced by
Maschauer and Prante in 2009-2010, was proven to be a valu-
able tool for the labeling of biomolecules adding a
biocompatible glucose moiety to the tracer compound coun-
teracting the lipophilicity other PGs impart on the resulting
molecule.”"*” The synthesis starts from a fully protected
trifluoromethansulfonyl-beta-D-mannopyranosyl azide 35,
which can be ®F-radiolabeled in high radiochemical yields
to obtain the PG intermediate 36 (Fig. 7). The acetyl pro-
tecting groups are removed under basic conditions to yield
PG 37 for further click reactions. In every individual case and
for each application, the resulting compound from click la-
beling has to be evaluated again toward its binding affinity
to the molecular target. Silicon- as well as boron-based
'8F-radiochemistry has been used to devise new alkyne and
azide containing PGs for click radiolabeling™ (Fig. 7). Triazole
formation has evolved over time,” omitting the metal cata-
lyst from the reaction mixture exploiting conformationally
optimized cyclooctyne systems that react immediately with
azides as a result of a reduced activation energy for the
cycloaddition.''** This so called strain-promoted copper-
free click chemistry has been introduced in 2011 by several
groups. Campbell-Verduyn et al introduced '*F-PEGgylated
azide 38 and performed the reaction with aza-benzocyclooctyne
derivatives in plasma-dimethylsulfoxide (DMSO) mixtures to
prove biocompatibility of the click reaction for future in vivo
labeling (Fig. 8).'°' The resulting strain-promoted conjuga-
tion product 39 was obtained in 42% radiochemical yield.
Other groups explored the '®F-labeling of the aza-
dibenzocyclooctyne building block and its reaction with azide-
modified peptides. The cyclooctyne can be labeled in sufficient
radiochemical yields (cf. compounds 40 and 41) either di-
rectly with "*F'®or by using the PG ['®F]SFB,'"” and it reacts
smoothly with azide-modified peptides (Fig. 8). A general
concern regarding the use of "®F-labeled dibenzocyclooctynes
is their high lipophilicity that negatively impacts in vivo PET
imaging via unfavorable bio-distribution patterns (high liver
uptake). Kettenbach and Ross therefore introduced a hydro-
philic, '*F-labeled PEG linker to the dibenzocyclooctyne
structure, reducing the overall lipophilicity of PG 42 (Fig. 8).'**

Strictly speaking the [3 + 2]cycloadditions comply only with
the specifications of click reactions if the reaction is performed
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Figure 7 Copper-1 catalyzed 1,3-Dipolar Huisgen cycloadditions introducing '®F-labeled alkynes (eg, 33) and azides (eg, 34 and 37) as effi-
cient PGs for peptide labeling. BOX: different '®F-alkynes and azides employed as PGs.

in an organic solvent. As demonstrated by Campbell-
Verduyn et al, the radiochemical yields in biological plasma
samples are not approaching quantitative conversion. However,
it is remarkable that the reaction proceeds at all in a complex
reaction environment like this, further attesting to its
bio-orthogonality.

8F.Aldehydes: A Clickable PG for
Peptide Labeling

Aldehydes are extensively being used for the '*F-labeling of pep-
tides via bio-orthogonal click chemistry. Several functional groups
such as aminooxy-, amino-, and hydrazine groups mildly and se-
lectively react with radiolabeled aldehydes to oximes, Schiff bases,
and hydrazones. Schiff base formation, however, is less suitable for
bioconjugations because of the sheer abundance of amino func-
tions in proteins and its lower stability under physiological conditions.
Hydrazines react slower with aldehydes'® than aminooxy deriva-
tives, making them less common click parters for the '®F-labeling
of peptides. Even though not the most reactive of aldehydes,
4-['8F]fluorobenzaldehyde 44" is the most commonly applied
'®F-aldehyde in radiochemistry and has been used numerous
times to introduce '*F into peptides, multimeres, and proteins'**!""
(Fig. 9). Its synthesis is straightforward starting from
4-trimethylammonium benzaldehyde triflate 43 and performed

under standard "°*F-labeling conditions. It has also been converted
elegantly into '*F-4-fluorobenzyl iodide for the labeling of
dopamine receptor ligands."” Data from the literature demon-
strate that a PEG linker between the **F and the aldehyde moiety
(cf compound 45) led to a more favorable binding conservation
of derivatized RGD peptides for integrin owB; imaging.'®’
Another ['*F]fluoro-PEG-benzaldehyde 46 was reported for
peptide labeling via oxime formation that can be purified by
simple solid-phase extraction.'”” A heteroaromatic '“F-aldehyde,
2-["®F]fluoro-pyridinecarboxaldehyde 47, has been applied in the
fully automated synthesis of AP peptides (Fig. 9).""" Even no-carrier-
added 2-[**F]FDG 48, in its open, non-cyclic form 49, can be used
directly for oxime formation as a result of its naturally occurring al-
dehyde group. A direct site-specific radiolabeling approach has been
reported for cyclo RGD peptides from two groups'*'*> and further
used to "*F-label folic acid derivatives for oncological imaging.''® An
'8F-labeled aldehyde based on the SiFA building block has been in-
troduced by Schirrmacher et al using isotopic exchange labeling in
high radiochemical yields and specific activity The SiFA PG 50 could
be prepared without HPLC purification and conveniently used for
aminooxy-derivatized peptide conjugation."” Isotopic exchange has
also been used by Herman et al for the synthesis of **F-pentafluoro
benzaldehyde 51. The specific activity of 51, despite being low,
was sufficient to radiolabel HSA protein via reductive amination.''®
The smallest '*F-aldehyde reported is [**F]fluoroacet aldehyde 52,
which was elegantly obtained via dimethyl sulfoxide oxidation of
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Figure 10 Syntheses of various maleimide-based PGs (53-58) for radiolabeling of biomolecules through targeting of amino and thiol groups.

["F]FETos and advertised as a possible substitute for
4-["®F]fluorobenzaldehyde'" (Fig, 9).

Maleimide- and Thiol-based PGs
for Fast Michael Additions

Amines or thiols and maleimides quickly and chemoselectively
react to form amino- or thiopyrrolidine-2,5-diones via Michael
addition (Fig. 10). This labeling strategy has been used both
for peptide and for protein labeling in high radiochemical
yields. Proteins for example contain amino groups as well
as thiol-bearing cysteine side chains, which react easily
with maleimide-bearing PGs. Even if proteins do not contain
sufficient thiol functional groups (thiols react much better
with maleimides than amino groups), it is possible to intro-
duce them artificially, determine their number analytically
(eg, Ellman assay), and use them for a following radiolabel-
ing. If carefully performed, the addition of those extra thiols
or maleimides does not negatively impact the biological
properties of the protein.'?"'?* '®F-labeled maleimides
have received special attention for the development of
PGs and were first introduced in 1989 by Shiue et al for

the labeling of an antibody fragment (presumably at an NH,
group).'”” The two '*F-maleimide PGs 53 and 54 were la-
boriously synthesized in 4 and 3 steps, respectively. Although
a demonstration of radiochemical preparative skill, these PGs
did not find any future applications as a result of their far too
complicated syntheses for radiotracer development. Today, the
'8F is almost exclusively introduced into an activated aro-
matic system such as benzaldehyde comprising a leaving
group in 4-position or an activated pyridine system.'”* For
example, in a preliminary reaction 4-['°F]fluorobenzaldehyde,
which is a popular PG itself (cf. '®F-aldehydes) or even
["FIFDG, the most popular **F-radiotracer today can be reacted
with an aminooxy-derivatized maleimide (Fig. 10).
This strategy has proven valuable in the syntheses of N-[4-
[18F]fluorobenzylidene)aminooxy]hexyl]maleimide 56,'*>!'%°
N-[4-(aminooxy)butyl]maleimide 57,'** and 4-['°F]
fluorobenzaldehyde-O-(2-{2-[2-(pyrrol-2,5-dione-1-yDethoxy] -
ethoxy}-ethyl)oxime 58.'%*'* De Bruin et al introduced
1-{3-2-[**F]fluoropyridin-3-yloxy)propyl}pyrrole-2,5-dione
55'** for peptide and protein labeling following a different
multistep synthesis strategy. Unfortunately, conventional
labeling methodologies for '®F-introduction do not permit
a l-step labeling of maleimide-bearing PG precursors
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Figure 11 '*F-Maleimides (eg, 59-62) and '°F-labeled thiols (compounds 63-66) for peptide and protein labeling via Michael addition and
[*F]fluorophenyloxadiazole methyl sulfone 67 as an alternative thiol reactive PG.

because of the instability of the maleimide group under basic
labeling conditions. In an elegant work, **F-FDG was used
directly as a PG for the synthesis of a maleimide PG,
['SFIFDG-MHO 59, for peptide labeling'*” (Fig. 11).
N-[2-(4-["®F]fluorobenzamido)ethyl]maleimide 60,'**'* another
maleimide PG, used ['®F]SFB in a coupling reaction with a
maleimide for the synthesis of '®F-labeled RGD peptides.'*
Generally, the use of a multi-chain PG application is time-
consuming, intricate, and inconvenient. If more than just one
PG is used to label a compound of interest, the resulting com-
plexity of the labeling reaction quickly gets out of hand and
makes these approaches less attractive for routine produc-
tion of clinically used radiotracers. Both B-"®F*® and Si-'*F"*"*!
as non-canonical chemistries contributed to the vast contin-
gent of maleimide PGs introducing easy to synthesize synthons
61 and 62 for "F-labeling (Fig. 11). Both methodologies are
characterized by efficient 1-step labeling procedures, signifi-
cantly cutting the time required for synthesis and are generally
eligible for peptide and protein labeling. The maleimide SiFA
PG 62 was used for the labeling of rat serum albumin, which
was artificially modified with additional thiol groups (Fig. 11).
Naturally, the labeling of a biomolecule will also work the
other way around by labeling a thiol-containing PG such as
63-66 with '°F and react it with a maleimide group present

in the precursor molecule (peptide or protein). PGs bearing
an SH group have been synthesized for this purpose and used
in biomolecular labeling settings."”*'** A most recent addi-
tion to thiol-homing PGs is the introduction of a heterocyclic
methylsulfone derivative by Chiotellis et al for the '*F-labeling
of biomolecules under mild aqueous conditions'** (Fig. 11).
The methyl sulfonyl group of compound 67 acts as a leaving
group and is replaced by the thiol-bearing biomolecule. The
thiol group is one of the strongest nucleophiles in chemistry
and therefore reacts not only with maleimides but also with
bromo acetamides, which constitutes another possible
bioconjugation venue for SH-containing PGs. Bromo acet-
amides themselves are valuable labeling synthons for a variety
of labeling applications and have been used frequently.”

'8F.Amines as PGs for
'8F.radiolabeling

'%F-Labeled active esters introduced earlier are primarily tar-
geting the N-terminal ending (or lysine amino acid side chain
functionalities if present) of a peptide. The labeling of the
C-terminus has been achieved via '*F-fluoroalkylamidation
after in situ activation of the carboxylic group. In the style of
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PGs (75 and 76) for *F-radiolabeling of biomolecules.

"F-fluoroethyl transfer reminiscent of 'F-FETos or
BF_-bromo-fluoro-ethane, the introduction of a short
8F-fluoroethyl group was believed to minimize the struc-
tural alteration of the peptide to be labeled. The synthesis of
'F-fluoroethyl amine was first described by Tewson who reacted
N-[2-(toluene-4-sulfonyloxy)ethyl]-phthalimide 68 with *F
yielding the protected intermediate 69, which was deprotected
to 2-'"°F-fluoroethyl amine 70" (Fig. 12) and further opti-
mized by Gilissen et al."*® '®F-Fluorination of 2 different
precursors, N-[2-(p-toluenesulfonyloxy)-ethyl]phthalimide 68
and N-t-Boc-[2-(p-toluenesulfonyloxy)ethylamine] 71,"° yielded
2-["®F]fluoroethylamine 70 after deprotection of either 69 or
72 and final distillation for further radiolabeling of activated
carboxylic acids. The latter route was further improved by
Jelinski et al by simply changing the reaction solvent from
acetonitrile to DMSO and introducing a more sophisticated
purification procedure based on solid-phase extraction omit-
ting the cumbersome distillation step.””” In 2012, a new
radiochemistry was described that completely dismissed the
necessity for an amine-protecting group. Previously, this was
needed to prevent the amine group from intra-molecularly
reacting with the carbon atom carrying the tosyl leaving group.
2-"F-fluoroethyl amine 70 was obtained by copper-mediated
reduction of easy to synthesize 2-'*F-fluoroethylazide 74 from
the tosyl precursor 73. The azide group does not need to be
protected as a result of its inertness to the '*F-labeling con-
ditions. However, purification entailed a final distillation, which
is generally less suited for automation.”"*® 2-"®F-fluoroethyl
amine is one of those PGs that would find far more appli-
cations in tracer preparation if the synthesis would be less
finicky. 4-["**F]fluorobenzylamine 75, a more lipophilic amino
PG, has been proven valuable for the preparation of maleimide-
containing PGs and might also find applications in amidation
chemistry."* Its synthesis was improved over previously de-
scribed procedures'™ and can be fully automated.'*" One of
the very first '"F-labeled amines described was

1-[4-([*F]-fluoromethyl)benzoyl]aminobutane-4-amine 76,
an early PG employed for the labeling of insulin.'** This PG,
however, is sterically more demanding than 2-['*F]fluoroethyl
amine and did not find further application. The availability
of far more convenient PGs for peptides and proteins made
its use less appealing.

PGs for the Inverse Electron
Demand Diels-Alder Reactions

Most recently, the inverse electron demand Diels-Alder re-
action (IEDDA) has captured the attention of radiochemists
for the use in tracer development.'*'*" The highly efficient
reaction between 1,2,4,5-tetrazines and strained dienophiles
proved to be a fast and clean bioorthogonal conjugation
method (Fig. 13). The reaction is furthermore catalyst free,
which favorably translates into easier purification of the final
radiotracer. The kinetics of the IEDDA are a lot faster than
those of other bioconjugation click chemistries such the 1,3-
dipolar azide-alkyne formation. The '®F-label can be either
introduced into the tetrazine building block or the dienophile.
%F-Labeled trans-cyclooctenes (eg, compound 77) have been
jointly investigated as a PG for tetrazine-derivatized
biomolecules (eg, peptides) by the Conti and Fox groups. '
8F-PG 77 reacts readily with tetrazine-derivatized peptide 78
to the IEDDA product 79 (Fig. 13). A difficulty, however, is
the delicate stability of tetrazines in general, which can pose
a problem for the conjugation of tetrazines to biomolecules.
Another "¥F-building block for IEDDA has been described by
Li et al where a complex bicyclo[6.1.0lnonyne-based *F-PG
80 was employed to label tetrazine derivatized anti-microRNA-
21 81."! Targeting the tetrazine moiety for '*F-labeling has
its advantages because the bioconjugation of a complemen-
tary dienophile to a biomolecule of interest suffers less from
stability issues. The downside of tetrazine '"F-labeling is,
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Figure 13 PGs for the inverse electron demand Diels-Alder reaction (IEDDA): (A) '®F-Labeled trans-cyclooctene PG 77 for the labeling of tetrazine-
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however, to ensure that the tetrazine itself survives the la-
beling procedure and yields sufficient 'F-tetrazine for the final
bio-labeling. Several groups labeled tetrazine derivatives with
'8F with radiochemical yields ranging from less than 1% to
80% (Fig. 13). Key to a successful introduction of anionic
'8F~ into a molecule comprising a tetrazine moiety are the la-
beling conditions applied. Heating under very basic conditions
to do a simple nucleophilic exchange of a common leaving
group with 'F seems to have a detrimental effect on radio-
chemical yields as reported by Li et al for compound 82.'
Improved radiochemical yields of '*F-labeled tetrazine 83 and
84 were reported by Denk et al'”’ and by Zhu et al for a
SiFA-PG."* Especially the use of the mild SiFA labeling chem-
istry by Zhu and coworkers at room temperature avoided the
formation of any radioactive side products and made the overall
purification of the tetrazine PG easy and reliable. With regard
to general biocompatibility of the resulting **F-Diels-Alder ad-
dition products, the IEDDA labeling approach still has to be
optimized to reduce the overall lipophilicity of the partici-
pating educts and solve the problem of different isomers that
are formed by the IEDDA (cf. compound 79) reaction pathway.
In terms of radiochemistry, this click methodology bears tre-
mendous potential and prospect for new developments.

Miscellaneous PGs for '®F-labeling

Peptides have generally more functional groups than com-
pounds of low molecular weight. Introducing new labeling

techniques to selectively target one amino acid within a peptide
(or perhaps even a protein) would add some desirable control
to the labeling reaction and final compound characteriza-
tion. Recently, new PGs for the specific labeling of tyrosine
have been reported, introducing 2 novel '®F-labeled 1,2,4-
triazole-3,5-dione synthons ["*F]PTAD 86 (5-step reaction
starting from 85) and ['°F]SF-PTAD 88 (2-step reaction start-
ing from 87),"77°° exploiting an ene-type (tyrosine-click)
reaction introduced first by Ban et al as a general click chem-
istry tool for small as well as larger organic compounds such
as peptides and proteins'”’ (Fig. 14). So far, this exciting chem-
istry has only been used for the '®F-labeling of small molecules
of low complexity, and its value as a peptide or protein la-
beling methodology still has to be verified. As a result of the
instability of the 1,2,4-triazole-3,5-dione structure, it is doubt-
ful whether a 1-step labeling is possible to circumvent multistep
procedures. ®F-Isocyanates and isothiocyanates have been of
limited value to '*F-radiochemistry so far despite their immense
employment in organic preparative chemistry.”” One reason
is their moderate reactivity and rather long reaction times needed
for their introduction into peptides and proteins at lower tem-
peratures. Only a few '"F-labeled isothiocyanates and isocyanates
have been applied for radiolabeling with isothiocyanates being
more reactive than isocyanates. The mild SiFA chemistry enabled
a smooth introduction of **F~ into the PGs (both isocyanate
and isothiocyanate functionalized), resulting in labeling synthons
applicable to protein or peptide labeling."**** The [**F]SiFA-PGs
reactivity at room temperature was surprisingly higher
than that of '®F-fluoromethyl phenyl isothiocyanate.'”
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Figure 14 Syntheses of '*F-labeled 1,2,4-triazole-3,5 dione PGs 86 and 88 for tyrosine-specific labeling of biomolecules.

[*%F]SiFA-isothiocyanate proved to be eligible for protein la-
beling, yielding almost quantitative radiochemical yields after
10- to 30-minute reaction time with proteins like rat serum
albumin, apotransferrin, and bovine IgG. Extensive in vivo
PET data, however, are still lacking for all '®F-isothiocyanates.
Like cyanates and isothiocyanates, epoxides are known to be
extremely useful building blocks in organic chemistry but did
not find many applications as '®F-labeled PGs so far. Only
['®F]-epi-fluorhydrin has been used for the labeling of
[*FIFMISO, a tracer to image hypoxia in tumors.'* Yields of
epoxide openings are so far low to moderate and might benefit
from the application of catalysts weakening the carbon-
oxygen bond. A very early approach to use '*F-labeled azides
(predating many other PGs for protein labeling) before the
introduction of triazole click chemistry was its photochemi-
cal conjugation to biomolecules. Hashizume et al'®' and Wester
et al'® independently demonstrated in 1995-1996 that pho-
tochemical activation of '®F-phenyl azides such as
4-azidophenacyl-"*F-fluoride and '*F-3,5-difluorophenyl azide
undergo a rearrangement to form an azepin intermediate that
reacts predominantly with lysine side chains. Later
3-azido-5-nitrobenzyl-["*F]fluoride has been introduced to
'8F-label an oligonucleotide aptamer, but like the other 2 re-
ported azido-PGs, the reaction product was not further
investigated in vivo.'”’

Summary

PGs in radiochemistry for the purpose of radiotracer devel-
opment have consolidated their value over decades. PET and
especially "®F-based tracer probes have benefitted from a mul-
titude of different PGs devised to target a great variety of
functional groups in biomolecules. Some of these groups are
endogenous to the molecule (eg, NH,, COOH, OH, and SH
groups in peptides and proteins) and others have artificially
been introduced to accommodate novel developments in click
chemistry and enhance bio-orthogonality of the PG molecu-
lar reactions. The toolbox of available PGs for '*F-radiolabeling
is huge and sometimes overwhelming. The right choice of a

PG for a particular labeling situation is not easy and re-
quires knowledge about the compound to be labeled, the
biological target structure of the resulting radiotracer, and of
course the preparative skills of the radiochemistry group
dealing with the tracer synthesis. Some PGs are easier to
prepare than others, and compromises have to be made. The
overall trend in '®F-labeling chemistry moves toward syn-
thetic comfort. The reduction of synthetic effort as well as
purification has been in the focus of the radiochemical com-
munity for years to make '*F-labeling simpler. In combination
with non-canonical labeling procedures and modern late-
stage fluorination methodologies, PGs in '*F-radiochemistry
will continue to play an integral part in PET tracer
development.
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