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Abstract: We have identified a small interfering RNA
(siRNA) motif, consisting entirely of 2′-O-methyl and 2′-fluoro
nucleotides, that displays enhanced plasma stability and
increased in vitro potency. At one site, this motif showed
remarkable >500-fold improvement in potency over the un-
modified siRNA. This marks the first report of such a potent
fully modified motif, which may represent a useful design for
therapeutic oligonucleotides.

The specific and reversible modulation of gene ex-
pression through the use of short synthetic oligonucle-
otides has proven useful in the study of gene function
and as a therapeutic mechanism in man.1 Recently,
RNA interference (RNAi) has emerged as a novel
mechanism that is activated in mammalian cells by
small interfering RNAs (siRNAs), short RNA duplexes
with strands of 21-23 nucleotides.2,3 Once inside the
cell, siRNAs associate with proteins to form an RNA-
induced silencing complex (RISC).4 A helicase activity
associated with RISC separates the two strands of the
duplex,5 releasing the sense strand and permitting the
binding of the antisense strand to its messenger RNA
(mRNA) target. The resulting duplex is a substrate for
a RISC-associated nuclease, recently identified as Ago2
(also known as eIF2C2 in man),6 which cleaves the
target transcript at a single site.5,7

Despite attempts to use siRNA in vivo,8-14 the reduc-
tion of endogenous target mRNAs through the systemic
delivery of siRNA has proven difficult. Although there
have been conflicting reports on the nuclease stability
of unmodified siRNA duplexes, there is evidence that
many are degraded within minutes in mammalian
serum.9,15,16 It seems likely that siRNAs with increased
nuclease stability will have a better chance at eliciting
an in vivo response. Efforts to determine the optimal
use of stabilizing chemistries have been the focus of
several recent reports.15,17-21 From these studies, the
2′-O-methyl (2′-OMe) and 2′-deoxy-2′-fluoro (2′-F) modi-
fications have shown promise in stabilizing siRNA
without disrupting the efficiency of mRNA target reduc-
tion. To further optimize the use of these and other
chemistries in siRNA, we are conducting an extensive

SAR analysis of chemically modified siRNA. One of the
most promising designs from these studies is a fully
modified duplex that consists of alternating 2′-OMe and
2′-F nucleotides. Surprisingly, duplexes with this sub-
stitution display increased in vitro potency and in-
creased stability. Here, we report on this remarkably
active motif and present our preliminary findings.

The duplexes used in our SAR study were designed
to target one of two sites within the coding region of
the human PTEN mRNA, both previously reported as
valid target sites for siRNA.22 Modified and unmodified
duplexes were introduced into HeLa cells using a
cationic lipid transfection reagent (lipofectin). In vitro
activity was measured by performing RT-PCR on the
PTEN mRNA and comparing to mRNA levels of un-
treated cells. All PTEN signals were normalized to total
RNA, as measured with RiboGreen.23

Natural Dicer-generated siRNAs have 2-nucleotide 3′
overhangs on both ends of the short duplex.2 In an effort
to mimick this design, most synthetic siRNAs are
designed with 3′ overhangs, typically with the sequence
dTdT. Several recent reports have provided evidence
that these overhangs bind to the PAZ domains found
in numerous proteins, including the Ago2 component
of RISC, perhaps functioning as a specificity determi-
nant.24-28 However, there have been other reports that
blunt-ended RNA duplexes can function equally well
and may be more stable to exonucleolytic degradation.21

Given our goal of developing duplexes with optimal
stability and activity, we explored the use of blunt-ended
duplexes at both PTEN target sites (sites A and B). The
activities of 19-base-pair duplexes having 3′-dTdT over-
hangs (1 and 4) were compared to those of otherwise
identical blunt-ended duplexes (2 and 5) in a 10-point
dose-response experiment (Figure 1). We found only a
minimal impact on activity with the removal of the
overhangs. To confirm the specificity of PTEN mRNA
reduction, duplexes containing six mismatches (3 and
6) to the target site were included as negative controls
in each experiment. Neither control affected PTEN
mRNA or total RNA levels.

After validation of the use of blunt-ended constructs,
the remaining SAR was performed without the use of
3′ overhangs. Among the duplex designs examined were
several that belonged to a class of “alternating” motifs
in which one type of modified nucleotide was placed in
alternating positions with a ribonucleotide or a different
modified nucleotide. In a recent publication, motifs of
this type, using 2′-OMe and unmodified (2′-OH) nucle-
otides, were shown to have enhanced serum stability
and single dose in vitro activities similar to those of the
corresponding unmodified blunt-ended duplexes.21 Dur-
ing the course of our studies, we examined siRNAs with
the same 2′-OMe/2′-OH substitution. We found that
duplexes with this motif had in vitro potencies similar
to those of unmodified siRNAs (see Supporting Informa-
tion). As part of our broader SAR studies, however, we
also examined the effect of combining the 2′-OMe
substitution with other chemistries, such as 2′-F, which
has already been shown to be well-tolerated in siRNA.15

This led to the identification of our most potent con-
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struct design, in which both strands were substituted
with alternating 2′-OMe and 2′-F nucleotides (Figure
2). From an eight-point dose-response analysis in HeLa
cells, we were able to estimate IC50 values of each duplex
(Table 1; see also Supporting Information).

At site A, the duplex with alternating 2′-F/2′-OMe
chemistry (7, Figure 2) had biological activity that was
roughly equivalent to that of the parent siRNA (2). At
site B, however, the 2′-F/2′-OMe duplex (10) displayed
dramatically improved potency. Even at the lowest
concentration (2 pM), target reduction was greater than
75% relative to untreated control, minimally reflecting
500-fold improvement in potency over the unmodified
siRNA (5). Throughout these studies, we were cognizant
of the importance of the 5′-phosphates normally present
on Dicer-generated siRNA duplexes. The 5′-phosphate
on the antisense strand has been shown to be critical
for efficient assembly and activation of RISC in mam-
malian systems.29 However, it has been shown that

prephosphorylation is generally unnecessary because
the siRNAs are phosphorylated by endogenous kinases.
Anticipating that chemically modified duplexes might
be less efficiently processed by these kinases,30 we
compared the activities of 2′-F/2′-OMe duplexes with
preestablished 5′-phosphates (Figure 2, 8 and 11). At
site A, addition of a synthetic 5′-phosphate produced

Figure 1. Reduction of endogenous PTEN mRNA in HeLa
cells by siRNAs having 3′-dTdT overhangs or blunt ends. HeLa
cells were transfected with siRNAs at the indicated concentra-
tions in the presence of lipofectin and treated for 20 h followed
by lysis and RT-PCR. Message levels are reported as percent
of PTEN mRNA from untreated cells. The bottom strand of
each duplex is complementary to the target mRNA (mis-
matches to the target site are indicated with an underline).
(A) PTEN mRNA reduction by siRNAs targeted to site A. Cells
were also treated with a duplex containing six mismatches to
the target site as a negative control (3). (B) PTEN mRNA
reduction by siRNAs targeted to site B. Cells were also treated
with a duplex containing six mismatches to the target site as
a negative control (6).

Figure 2. Reduction of endogenous PTEN mRNA in HeLa
cells by unmodified or fully 2′-F/2′-OMe modified 19-base-pair
oligonucleotide duplexes. HeLa cells were transfected with
siRNAs at the indicated concentrations in the presence of
lipofectin and treated for 20 h followed by lysis and RT-PCR.
Message levels are reported as percent of PTEN mRNA from
untreated cells. The bottom strand of each duplex is comple-
mentary to the target mRNA (mismatches to the target site
are indicated with an underline). The 2′-F modification is
indicated in green, the 2′-OMe modification is indicated in
purple, while the presence of a 5′-phosphate is indicated by
the letter “P”. (A) PTEN mRNA reduction by duplexes targeted
to site A. (B) PTEN mRNA reduction by duplexes targeted to
site B.

Table 1. Summary of in Vitro Activity, Plasma Stability, and
Duplex Thermal Stabilitya

duplex site IC50 (nM) plasma half-life (min) Tm (°C)

2 A 0.26 ∼30 72.8
7 A 0.31 nd 93.9
8 A 0.068 >420 nd
5 B 0.81 nd 62.0

10 B <0.002 nd nd
11 B <0.002 >420 82.0

a nd ) not determined.
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modest improvement (5-fold) in potency (Table 1). Given
the already potent activity of 10, we were unable to
resolve any beneficial effect of 5′-phosphorylation at site
B. Similar effects from phosphorylation have been
observed with this motif on other targets, where mod-
estly active duplexes show improvement of in vitro
potency upon addition of the 5′-phosphate, while the
effect on extremely potent duplexes is difficult to resolve
(data not shown). Furthermore, the 5′-phosphate on the
antisense strand appears to be largely responsible for
this improvement in potency, although the magnitude
of the effect may depend on cell type (data not shown).
We also prepared and tested modified duplexes that
contained six mismatches to either of the target sites
(9 and 12). Neither mismatch-containing duplex pro-
duced a significant reduction in PTEN mRNA or total
RNA.

To examine the relative serum stabilities of these
duplexes, we tested unmodified siRNA 2 and 2′-F/2′-
OMe modified duplexes 8 and 11 for their ability to
resist degradation in mouse plasma. Each of the du-
plexes was treated with 25% mouse plasma at 37 °C
for up to 7 h. At various time points, aliquots were
removed and examined for intact duplex by capillary
gel electrophoresis.31,32 From these measurements, we
plotted percent intact duplex against time and assessed
the relative stabilities of the three duplexes (Figure 3A,
Table 1). From this straightforward analysis, the stabil-
ity of the 2′-F/2′-OMe duplexes was striking. Even after
7 h, the duplexes were greater than 60% (8) or 70% (11)
intact. While there was an initial loss of duplex in each
case, this may correspond to rapid loss of imperfectly
annealed strands. Regardless, the remaining duplex
degrades at a rate that suggests a half-life of much
greater than 7 h.

It has previously been shown that the use of 2′-F
modifications can increase the thermal stability of
oligonucleotide duplexes.33 Because duplexes 7, 8, 10,
and 11 each contain a total of 19 2′-F nucleotides, we
anticipated that these duplexes might have much
greater thermal stabilities than their unmodified coun-
terparts. To examine this possibility, we measured the
thermal stabilities of two control duplexes (2 and 5) and
two modified duplexes (7 and 11) (Figure 3B). In each
case we see a roughly 20 °C increase in Tm with the
fully modified duplexes. This corresponds to slightly
more than 1 °C increase in Tm per 2′-F substitution. This
increase in thermal stability is likely to explain in part
the enhanced plasma stability of the modified duplexes
and may improve the interaction between the antisense
strand and the target mRNA.

It is surprising that duplexes with such high thermal
stabilities can function so efficiently and potently rela-
tive to the unmodified siRNAs. Recent studies have
suggested that RISC chooses which strand to retain on
the basis of differences in thermodynamic stability at
the 5′ ends of the strands, with the strand having the
5′ end of lower stability being more likely to load into
RISC.34,35 It is worth noting that one end of the site B
duplex contains three consecutive G-C base pairs.
Although the introduction of 2′-F nucleotides should
raise the thermodynamic stability of both ends of the
duplex, it may increase the already more-stable end
above a critical threshold that the RISC-associated

helicase cannot overcome, shifting the bias for strand-
loading more in favor of the antisense strand. We also
observed that among the unmodified duplexes, the best
activity comes from the duplex having the highest Tm,
whereas the opposite is true for the 2′-F/2′-OMe motif.
Although not definitive, these relationships may hint
at the existence of an optimal thermal stability.

From these observations, the alternating 2′-F/2′-OMe
motif appears to be an attractive design for creating
functionally active and stable RNA duplexes. Clearly,
these duplexes potently reduce levels of endogenous
target mRNA, with the addition of a 5′-phosphate to the
antisense strand further enhancing in vitro potency. The
biophysical properties of this duplex motif, reflected in
its enhanced serum and thermal stability, also favor its
chances at surviving in serum, which will hopefully

Figure 3. Comparison of the biophysical properties of un-
modified blunt-ended siRNAs and 2′-F/2′-OMe modified
duplexes. (A) Stability of duplexes in 25% (v/v) mouse plasma.
Duplexes were treated with 25% mouse plasma at 37 °C for
the indicated times, then examined by capillary gel electro-
phoresis to determine the amount of intact duplex (see
Supporting Information for details). The plots shown are the
result of two independent experiments. (B) Thermal denatur-
ation profiles of both unmodified and modified duplexes in 100
mM NaCl, 10 mM sodium phosphate, pH 7.5, 0.1 mM EDTA,
and 4 µM of each strand. Absorbance at 260 nm was measured
as the temperature was raised from 15 to 85 °C or from 30 to
95 °C. Absorbances were normalized to facilitate graphical
depiction. Melting temperatures (Tm) were calculated from
first-derivative curves of at least two separate experiments and
are summarized in Table 1.
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translate to improved in vivo potency. The identification
of this motif from our SAR analysis highlights the value
of screening oligonucleotides containing multiple chem-
istries and may prove a useful strategy in related areas
such as micro-RNA. Although promising, the utility and
optimal design of this motif for in vivo applications and
a biochemical explanation for the remarkable increase
in potency remain to be determined and are the focus
of ongoing studies. We anticipate that this and other
chemically modified duplex motifs will ultimately prove
useful in the design of clinically active nucleic acids.
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