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The informational nature of oligonucleotide drugs1 (i.e., drugs 
designed on the basis on sequence information) promised to lend 
itself well to the postgenomic era of medicine. Researchers were 
drawn by the promise of rapid and rational design of drugs against 
virtually any genetic target. However, it has taken more than three 
decades for these therapies to reach clinical maturity.

As with any therapeutic modality, the success of an oligonucleotide 
drug is defined both by its ability to affect a target and its pharma-
cokinetic behavior, including absorption, distribution, metabolism, 
and excretion (ADME). Oligonucleotide therapeutics comprise a 
diverse class of drugs, including small interfering RNAs (siRNAs)2,  
antisense oligonucleotides (ASOs)3, microRNAs4, aptamers5, and 
others6. As these all work by different mechanisms, the activity and 
pharmacokinetic properties can to some extent7 be optimized inde-
pendently (Fig. 1). In contrast, these are inseparable for traditional 
small molecule drugs, necessitating a unique, iterative process of 
optimization for each.

A drug’s pharmacokinetic properties depend on a set of molecular 
features we refer to as the dianophore, from the Greek dianomi, which 
means distribution or delivery. For oligonucleotide drugs, the diano-
phore is defined largely by chemical and structural architecture, such 
as chemical modifications of sugars, bases, and phosphate backbone, 
single strand or duplex structure, and the presence or absence of a 
targeting ligand. In contrast, the pharmacophore (the ensemble of 

molecular features that determine target regulation) is defined by its 
nucleotide sequence.

Although base sequence and the precise pattern of chemical modi-
fications can affect the global properties of an oligonucleotide and its 
trafficking, cellular uptake, and other behaviors7, the ability to sepa-
rately optimize the pharmacophore and dianophore, at least to some 
extent, is a key advantage of oligonucleotide drugs. Development of 
an optimized dianophore, a chemical architecture enabling effec-
tive delivery to a certain tissue, enables rapid progression of drugs  
with predictable ADME profiles for multiple indications, as long 
as the same tissue and cell type are involved in disease progression  
(for example, siRNAs formulated in lipid nanoparticles for the liver 
or N-acetylgalactosamine (GalNAc)-conjugated ASOs and siRNAs 
for hepatocytes).

Early on, unmodified or minimally modified compounds 
were rushed to the clinic without conjugates or delivery vehicles.  
Massive dose requirements and limited clinical efficacy created a dra-
matically negative view of the technology, damaging the reputation 
of the field of oligonucleotide therapeutics for years. A consequent 
decrease in available funding delayed progress. But advances in oli-
gonucleotide chemistry and an understanding of fundamental princi-
ples that define the in vivo behavior of oligonucleotides have enabled 
oligonucleotide therapeutics to approach clinical productivity (at least 
in some tissues).

As a result, the current pipeline of oligonucleotide drugs is broad 
and includes a variety of molecules with different mechanisms of 
action. In hepatitis B virus (HBV) treatment, for example, four oli-
gonucleotide drugs are currently undergoing human testing. Two are 
siRNAs (Arbutus is using a lipid nanoparticle (LNP) and Alnylam 
a GalNAc conjugate) whereas Ionis is developing both naked and 
GalNAc-conjugated ASOs. The fact that four platforms are being 
tested simultaneously allows several shots on goal, and the clinical 
comparison of these four platforms for the same tissue and disease 
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will surely inform the direction of future clinical development of  
oligonucleotide drugs in the liver.

In this review we describe current aspects of the evolution of the 
chemistry of both antisense oligonucleotides and siRNAs that have 
opened the way for clinical utility. We place particular emphasis on 
ASO and siRNA conjugates currently in human testing. Advances in 
nucleic acid chemistry that are earlier in the preclinical pipeline have 
been reviewed elsewhere8–11.

Chemical evolution of ASOs
In 1978, Zamecnik and Stephenson demonstrated that an oligonu-
cleotide that is antisense (i.e., complementary) to a viral RNA could 
reduce protein translation and viral replication12,13. It is now clear that 
ASOs can make use of multiple mechanisms to reduce or modulate 
gene expression14. Nonetheless, all ASOs require chemical modifica-
tion to be sufficiently active in vivo.

The first chemical modification applied to antisense technology  
is still the most widely used—the phosphorothioate backbone15  
(Fig. 2). Although originally incorporated to provide nuclease stabil-
ity, the major impact of phosphorothioate modification has been on 
oligonucleotide trafficking and uptake15–18. ASOs bearing phospho-
rothioate linkages are compatible with recruitment of RNase H, which 
cleaves the targets of ASOs.

Although they improve oligonucleotide stability, phosphorothio-
ates alone do not fully protect ASOs from nucleases and the in vivo 
efficacy of first-generation ASOs (which comprised phosphorothioate 
(PS) DNA; Fig. 3) required repeated administration at high doses. 
Moreover, phosphorothioates reduce the binding affinity of an oli-
gonucleotide toward its RNA target. Improved stability and increased 
affinity have been achieved through the use of nucleotides with sugar 
modifications, including 2 -modified and conformationally con-
strained nucleotides (Fig. 2).

The 2 -O-methyl (2 -OMe) modification of RNA (2 -OMe-RNA), 
which occurs in nature, improves binding affinity and nuclease resist-
ance19–21 and reduces immune stimulation22. Using 2 -O-methyl as a 
starting point, medicinal chemists worked to find an ideal 2 -O-alkyl 
substituent23–27. Among dozens of variants tested, 2 -O-methoxyethyl 
(2 -MOE)28 emerged as one of the most useful analogs, providing a 
further increase in nuclease resistance and a jump in binding affinity 
( Tm) 0.9 °C to 1.7 °C per modified nucleotide. The approved anti-
sense drug Kynamro, as well as numerous oligonucleotide drugs cur-
rently in clinical trials, carry the 2 -MOE modification. ASO affinity  

can also be increased with 2 -fluoro (2 -F) modification of RNA (2 -F-
RNA, Tm ~2.5 °C per modified nucleotide).

Reducing the conformational flexibility of nucleotides can increase 
their binding affinity29,30. Locked nucleic acid (LNA), which links the 
2 -oxygen and 4 -carbon of ribose, shows unprecedented increases 
in binding affinity ( Tm 4 °C to 8 °C per modification when binding 
RNA)31–33. The very high binding affinity of LNA and its methyl-
ated analog, known as ‘constrained ethyl’ (cEt) (Fig. 2), has opened 
new doors in nucleic acid chemical biology and therapeutics34  
(Fig. 3). Tricyclo-DNA (tcDNA) is another constrained nucle-
otide based on a very different three-ring scaffold35. Its binding 
affinity ( Tm ~2 °C) is smaller than that of LNA, but it has shown  
much promise in splice-switching applications, for reasons that are 
not fully understood36.

This variety of sugar modifications can be used to make chimeric 
oligonucleotides with very high binding affinities or help offset nega-
tive effects caused by another modification. For example, fully LNA-
modified oligomers longer than ~8 nucleotides tend to aggregate,  
so LNA and cEt modifications are often used in chimeric oligo-
nucleotides containing multiple types of modified nucleotides  
(for example, mixtures of LNA and DNA or LNA, 2 -OMe, and  
MOE-RNA). Although MOE and tcDNA have lower binding affinities 
per modification than LNA, they can both be used to make longer, 
fully modified oligomers.

An ASO that simply binds and blocks its RNA target requires rela-
tively few constraints on chemistry besides nuclease resistance and 
high binding affinity. If an enzyme such as RNase H or Argonaute is 
required, the constraints on chemical modification are more complex. 
Below, we describe the two most common categories of ASO.

RNase H–dependent ASOs 
RNase H cleaves the RNA strand of a DNA–RNA hybrid; as such, 
the sugar-modified RNA-like nucleotides described above do not 
elicit RNase H cleavage of complementary RNA. The most common  
solution, called a ‘gapmer’ ASO, consists of a central window (i.e., 
a gap) of PS DNA, which recruits RNase H, flanked by modified  
RNA-like nucleotides (Fig. 2).

There are no hard-and-fast rules about gapmer symmetry. 
Asymmetric ASOs with high-affinity modifications on one end of the 
oligonucleotide can also be used, sometimes with a cap or ligand on 
the other end to help prevent nucleolytic decay37. The overall affinity  
of an oligomer for its target needs to be high enough to displace RNA 
secondary structure or compete with RNA-binding proteins. But 
cleaved target RNA fragments must be released before an ASO can 
find, bind, and cleave the next target, so overly high binding affinity 
can actually reduce potency in vivo38.

Short (12–15 nt) gapmer ASOs built with LNA and cEt nucleotides 
tend to be more potent than longer oligonucleotides built with lower-
affinity chemistry39,40. Thus, the high binding affinity of the con-
strained ribose allows shorter oligomers to bind their RNA targets 
with sufficient affinity to be functional. The improved potency  means 
that a wider range of tissues can be accessed by systemic administra-
tion of naked ASOs17.

LNA and cEt ASOs have been associated with liver toxicity41.  
The risk of toxicity seems to apply equally to LNA and cEt, despite 
previous reports to the contrary, and is sequence dependent. In 
the past year, three groups independently demonstrated that LNA 
and cEt gapmer ASOs induce liver toxicity by directing off-target  
RNase H cleavage of mismatched transcripts, particularly within 
introns42–44. Armed with this information, computational methods  

Dianophore Pharmacophore

Traditional, small-molecule drug Informational drug

Chemical structure

Dianophore Pharmacophore

Chemistry of the
backbone and ligand Sequence

Figure 1 The key advantage of an informational drug is that the 

pharmacophore (molecular features that determine target specificity) and 

the dianophore (molecular features that determine tissue distribution 

and metabolism) can be optimized separately. When a dianophore for a 

particular tissue or cell type is defined, it can be applied to a range of  

pharmacophores that are rationally designed based on sequence information. 
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can be used to select ASOs with minimal complementarity to  
off-target transcripts (including introns).

Chemistry can be used to improve ASO specificity. Gapmer ASOs 
that are highly selective for single-nucleotide polymorphisms (SNPs) 
have been developed using combinations of modifications—including  

2-thiothymidine, 3 -fluorohexitol nucleic acid (FHNA), cEt, a 5-modified  
pyrimidine base, and an analog called , -constrained nucleic acid 
( , −CNA) in which the phosphate is included in a ring structure 
(Fig. 2)—in combination with shorter gaps45,46. These gapmers mini-
mize the region that can be cleaved by RNase H without reducing  
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cleavage of the desired site (for example, a disease allele), but a  
mismatch near the desired cleavage site (i.e., normal allele) incurs 
a major loss of cleavage activity47. SNP-selective ASOs to treat 
Huntington’s disease are expected to be the first to enter the clinic. It 
remains to be seen how readily the principles used for SNP selectivity 
can be applied to the more general problem of target selectivity.

As an alternative to the gapmer approach, modifications that adopt 
a DNA-like conformation can also be used to improve the affinity 
and stability of RNase H–compatible ASOs. Fluoroarabinonucleic acid  
(2 -F-ANA) is the paradigmatic example of this approach48,49.  
Although 2 -F-ANA modification at every position of an ASO 
increases stability and affinity, the RNase H cleavage rate drops sub-
stantially. But rapid kinetics of cleavage can be restored by combining 
2 -F-ANA with DNA50,51. 2 -F-ANA and other DNA mimics are thus  
valuable tools for tuning the thermodynamic properties of RNase 
H–dependent ASOs.

Steric blocker ASOs
The second major class of ASOs does not seek to recruit RNase H, and 
therefore a DNA-like gap in the oligonucleotide is unnecessary. This 
class of ASOs has seen two major clinical uses to date: splice switching 
and microRNA (miRNA) inhibition.

In the past year, two splice-switching oligonucleotides have achieved 
clinical success. Last August, the US Food and Drug Administration 
(FDA) approved Exondys 51 (eteplirsen, made by Sarepta 
Therapeutics), a 30-mer phosphorodiamidate morpholino oligomer 
(PMO; Fig. 2) for treatment of Duchenne muscular dystrophy52. 
The molecule was approved, despite controversy over the levels of 
Exondys 51 that actually reached muscle tissue and the degree of splice  
switching attained. Four months later, Spinraza (nusinersen), a fully 
MOE-modified 18-mer ASO that redirects the splicing of the SMN2 
gene53, was approved for treatment of spinal muscular atrophy54.

Several chemical approaches have been used for oligomer-mediated  
miRNA inhibition55. A direct comparison of anti-miRNAs (anti-
miRs) showed that chimeric LNA–2 -OMe-RNA oligomers with  
phosphorothioate backbones are the most potent56. Researchers gen-
erally design anti-miRs to be complementary to the mature miRNA 
sequence and thereby inhibit them directly, but in some cases, anti-
miRs can also target or disrupt the precursor miRNA structures and 
inhibit miRNA maturation57. A family of miRNAs that shares a com-
mon seed sequence can be inhibited by a single, short (8-nt) oligomer 
that is fully modified with LNA58. These ultra-short oligomers some-
times show enhanced distribution in some tissues compared with 
longer anti-miRs.
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Other ASO developments
The length of an ASO contributes to its dianophore, affecting distribu-
tion and tissue uptake. Shorter ASOs tend to distribute more to the 
kidney, and longer oligomers to the liver59. Shorter ASOs bind plasma 
protein poorly and consequently have a short half-life in plasma, but 
they can be assembled into multimers using cleavable linkers60.

Idera Pharmaceuticals has found that connecting two first-generation  
phosphorothioate-modified ASOs by their 5  ends (leaving the  
3  ends exposed) substantially increases the potency of gene silencing 
and reduces innate immune activation61. This approach may provide 
an independent way to increase potency and specificity.

The phosphorothioate linkage introduces a stereocenter at phos-
phorus, and oligonucleotides are normally a mixture of 2n–1 diaster-
eomers (for example, an 18-mer phosphorothioate oligonucleotide 
has 217 diastereomers). The Sp and Rp diastereomeric linkages (Fig. 2)  
have different properties: the Rp diastereomer is less resistant to nucle-
ases than the Sp diastereomer, but it binds with higher affinity and 
elicits RNase H more effectively62–64. Overall, uniformly stereopure 
phosphorothioate ASOs (i.e., all Sp or Rp) are inferior to the ster-
eorandom phosphorothioate ASOs. Precise patterns of alternating 
stereochemistry at phosphorus (for example, RpRpSp and SpSpRp) may 
improve mismatch discrimination and RNase H activity compared 
with stereorandom or stereopure oligonucletides65. On the basis of 
this principle, WaVe Life Sciences is planning to advance a stereo-
defined SNP-selective ASO drug to treat Huntington s disease to 
clinical trials. Because specificity and mismatch discrimination are 
becoming increasingly important in ASO therapeutics, the increased 
specificity of stereoselective phosphorothioate ASOs may find wide 
application in improving other drug candidates.

Chemical evolution of siRNAs
RNAi was discovered in 1998 (ref. 66), and RNAi silencing of 
gene expression in mammalian cells was first described in 2001  
(ref. 67), roughly coincident with the completion of the human 
genome sequence. This resulted in an explosion of interest in, and 
funding for, RNAi. The original hope was that siRNAs (the double-
stranded oligonucleotide triggers of RNAi) could be used to silence 
any gene in any cell. Several biotech companies, including the flag-
ship RNAi company Alynlam, and many major pharmaceutical  
companies entered the fray (Fig. 4). Confident in the power of 
RNAi, in which an siRNA becomes associated with Argonaute and 
other proteins to form the RNA-induced silencing complex (RISC)  
and cleave complementary RNA, programs moved rapidly 
toward the clinic, most using local delivery by eye injection or  
intranasal spray68,69.

In many of these early programs, completely unmodified or slightly 
modified compounds were administered in the hope that a small 
but sufficient amount of oligonucleotide would be taken up by the  
appropriate cells and silence the target. Ultimately, most of these 
attempts showed limited clinical efficacy and unacceptable toxicity, 
primarily from induction of the innate immune response by non-
modified duplex RNAs. Thus, chemical modification of siRNA is 
absolutely necessary to achieve clinical utility.

The significant legacy of nucleic acid chemistry developed for 
ASO therapeutics sped up the evolution of RNAi technology tre-
mendously70. Nevertheless, the molecular requirements for effective 
recruitment of the RNAi enzymatic machinery and the double-
stranded nature of RNAi imposed a unique set of limitations on the 
chemical modification of siRNAs, which took years of investigation 
to overcome.

Metabolic stabilization
When injected into the bloodstream, naked siRNAs are degraded 
within minutes71. Studies quickly revealed, however, that relatively 
few chemical modifications are sufficient to increase stability, prevent  
innate immune activation72 and reduce off-target effects73. Extensive 
modification of siRNAs (to ~50% of nucleotides) does not signifi-
cantly increase the duration of silencing in vivo when siRNAs are 
delivered by lipid nanoparticles or hydrodynamic injection71,74. 
Moreover, the RNAi machinery can efficiently bind heavily modi-
fied siRNAs (i.e., those with most or all ribose content removed)75–78,  
but extensive modification can negatively affect efficacy. Consequently, 
the idea that a minimal number of modifications could improve stabil-
ity and activity in vivo was viewed as a key advantage of RNAi technol-
ogy over antisense technology for years. (This minimal modification 
was more recently shown to be inadequate for conjugate-mediated  
delivery, as discussed below.)
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Initial siRNA compounds were therefore modified at only a few 
positions. Many different chemical configurations have been used 
to stabilize siRNAs, particularly combinations of 2 -OMe, 2 -F, and 
phosphorothioate72,79,80. Modifications that increase or decrease 
sugar flexibility have also been explored, including LNA and unlocked 
nucleic acid (UNA)81, but they are used mainly to introduce chemical 
asymmetry into duplex siRNAs. That is, they block passenger strand 
entry and promote RISC loading of the guide strand, which can also 
be easily achieved by 2 -OMe modification of the two nucleotides at 
the 5  end of the passenger strand73.

The most common configurations include modification of ter-
minal nucleotides82, of every second sugar with 2 -OMe83, or of all  
pyrimidines. The popularity of the last stemmed from the high cost 
and low availability of 2 -F-modified purines, which only recently 
became widely accessible. The guide strand must bind efficiently 
to the RNAi machinery and is therefore more sensitive to chemical 
modification. 2 -F, which is the best mimic of the 2 -OH group by size 
and charge, is generally well tolerated and has been used extensively 
as a primary guide strand modification84. Often, the guide strand is 
modified with 2 -F and the sense strand with 2 -OMe85.

Modifications typically interfere with silencing activity by making 
the duplex too stable, which prevents removal of the passenger strand 
and interferes with proper loading of guide strand, or by forcing the 
nucleic acid into a suboptimal geometry86. The 2-F and 2-OMe modi-
fications favor the C3 -endo ribose conformation and support the  
A-form helical structure of the guide strand, which positions the 
target mRNA into the cleavage center of RISC87. But both modifi-
cations introduce slight structural distortions. 2 -F-RNA slightly 
overwinds the duplex (leading to more stacking and higher Tm),  
and 2 -OMe-RNA slightly underwinds the duplex (less stacking). 
Either modification is tolerated in any individual position of an 
siRNA76, but a fully modified 2 -OMe guide strand is completely 
inactive, and a fully modified 2 -F guide strand often has substan-
tially reduced activity78. When 2 -OMe and 2 -F modifications are 
alternated, however, the combination creates a compound ideally 
suited for RISC assembly and function75.

Thermodynamic or structural tuning88 may further enhance the 
efficacy of modified siRNAs. Many of the advanced clinical com-
pounds carry additional stretches of 2 -OMe and 2 -F (for example, 
three of either modification in a row, or sometimes longer stretches of 
2 -OMe)89 in the context of the alternating 2 -F–2 -OMe-RNA pattern 
(Fig. 3). The pattern was designed to chemically mimic the sinusoidal 
thermodynamic stability described for highly functional siRNAs90. 
An ideal guide strand has a more flexible 5  end, which can be easily 
introduced by structural and chemical modifications73; a high-affinity  

‘seed’ region, which drives the initial base pairing between the guide 
strand and target; and a lower-affinity 3  region required for product 
release. This profile was initially derived by comparing active and 
inactive siRNAs90, but recent single-molecule RISC studies provide a 
clear mechanistic explanation91. Structures of fully modified siRNAs 
bound to the Argonaute protein Ago2 will also enable more precise 
tuning of modification patterns to optimize RISC binding and activ-
ity92.

Additional nuclease stability is conferred by backbone modi-
fications14. Limited phosphorothioates are tolerated by Ago2, and 
phosphorothioate modifications at both ends of both strands of 
an siRNA duplex are incorporated into many of the leading clini-
cal candidates. This simple combination of backbone and sugar  
modification provides additional resistance to exonucleases—the 
primary effectors of RNA degradation—and an order-of-magnitude 
increase in oligonucleotide accumulation in vivo. Methylation of 
the 5 -carbon to give (S)-5 -C-methyl-RNA93 has also been used to 
enhance 3  exonuclease resistance.

5 -phosphate stabilization 
The 5 -phosphate of a siRNA guide strand is essential for recognition 
by RISC94–96. siRNAs with a 5 -hydroxyl are efficiently phosphor-
ylated and loaded onto Ago2 inside cells97. Blocking phosphorylation 
of the 5 -hydroxyl in siRNA prevents RISC loading and activity98. 
Chemical modification (e.g., 2 -OMe or 2 -F) of the 5 -ribose of the 
guide strand can interfere with intracellular phosphorylation but the  
activity of these 5 -modified guide strands can be restored if a 5 -phosphate  
is introduced chemically75,99. Chemical phosphorylation does not 
significantly increase the cost or complexity of chemical synthesis, 
and most commercial sources of modified siRNAs add a 5 -phosphate 
chemically. However, when dosed systemically, the 5 -phosphate is 
quickly removed by phosphatases, resulting in an accumulation of 
biologically inactive siRNAs. Within 2 h after intravenous administra-
tion, at least 90% of fully modified siRNAs are dephosphorylated, and 
within 24 h the phosphorylated guide strand is essentially undetect-
able (R. Haraszti, L. Roux, and A. Khvorova, unpublished data).

Phosphatase-resistant analogs of the 5 -phosphate can improve  
in vivo efficacy100. Ionis modified the 5  end of single-stranded siRNA 
(ss-siRNA) with E-vinyl phosphonate (5 -E-VP), which substitutes the 
bridging oxygen with carbon in the context of a double bond101,102 
(Fig. 2). The 5 -E-VP is in a suitable conformation for RISC binding, 
whereas the other stereoisomer (5 -Z-VP) shows reduced activity due 
to inappropriate positioning of the phosphonate92,103. In this con-
text, 5  chemical stabilization was absolutely essential for the in vivo  
efficacy of ss-siRNAs101,102.

Table 1 Clinical programs based on GalNAc conjugates
Drug Company Mechanism and chemistry Target Disease Development

Revusiran Alnylam siRNAa Transthyretin (mutant and wild type) Hereditary ATTR amyloidosis Withdrawn

Fitusiran Alnylam siRNAb Antithrombin Hemophilia Phase 2

Inclisiran Alnylam siRNAb PCSK9 Hypercholesterolemia Phase 2

IONIS-APO(a)-LRx Ionis ASOc Apolipoprotein A Very high apolipoprotein a Phase 2

IONIS-ANGPTL3-lRx Ionis ASOc Angiopoietin-like 3 Mixed dyslipidemias Phase 2

RG-101 Regulus anti-miRd miR-122 Hepatitis C virus infection Phase 2

ALN-CC5 Alnylam siRNAb Complement component C5 Complement-mediated diseases Phase 1/2

ALN-AS1 Alnylam siRNAb Aminolevulinic acid synthase Hepatic porphyrias, including acute  

intermittent porphyria

Phase 1

IONIS-HBV-LRx Ionis ASOc HBV genome HBV infection Phase 1

RG-125 Regulus anti-miRd miR-103 and miR-107 Nonalcoholic steatohepatitis; type 2  

diabetes and pre-diabetes

Phase 1

aGalNAc-conjugated ‘standard template chemistry’ siRNA. bGalNAc-conjugated ‘enhanced stabilization chemistry’ siRNA. The main difference between standard template chemistry and  

enhanced stabilization chemistry, as used by Alnylam, appears to be the inclusion of additional phosphorothioate linkages on the 5  termini of both strands. Inclisiran includes 73% of  

2 -OMe-RNA and 25% of 2 -F-RNA, while fitusiran and revusiran each contain ~50% of each modification137,138. cGalNAc-conjugated MOE gapmer ASO. dGalNAc-conjugated anti-miR  

(Regulus’s backbone chemistry is based on combinations of MOE and cEt).
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5 -E-VP has a major impact on the in vivo efficacy of GalNAc-
conjugated siRNAs100, discussed below. The effect is not specific to 
GalNAc: phosphate stabilization of hydrophobically modified siRNAs 
significantly enhances the distribution, accumulation, and retention of 
intact oligonucleotide in primary and secondary tissues, and extends 
the duration of effect beyond a month after injection (R. Haraszti,  
L. Roux, and A.K., unpublished data). In the absence of lipid formula-
tion, therefore, metabolic stabilization of the 5 -phosphate is essential 
for stability, biodistribution, activity, and duration of effect of therapeu-
tic siRNAs in vivo. Notably, phosphate stabilization also increases the 
accumulation of guide strand in tissues, probably because it provides 
additional protection from XRN1-mediated hydrolysis. XRN1 is the 
primary cellular nuclease that rapidly degrades 5 -phosphorylated RNA  
and DNA, but it does not recognize metabolically stable 5 -phosphate 
analogs (R. Haraszti, L. Roux, and A.K., unpublished data).

Chemical stabilization of the 5 -phosphate without interfering 
with RISC recognition can be accomplished in multiple ways (Fig. 2).  
Though 5 -E-VP has been explored extensively, 5 -methyl phos-
phonate, a 5 -C-methyl analog, and phosphorothioate all increase 
siRNA stability and are well tolerated by RISC103, similarly to  
5 -E-VP102. Many are simpler modifications from a synthetic chem-
istry perspective, and it remains to be seen which approach will gain 
wide acceptance.

Conjugate-mediated delivery
The in vivo efficacy of oligonucleotides is defined by blood flow, tissue 
structure, receptor-mediated cellular uptake, and endosomal escape. 
It is not surprising, therefore, that simple injection of a large amount 
of unmodified or partially modified siRNA was so ineffective. Lipid 
formulation of siRNAs has been a mainstay of siRNA delivery since 
the first demonstration of RNAi in human cells104,105, and advances 
in lipid chemistry have substantially enhanced the efficacy and  
therapeutic index of formulated siRNAs66,103,104. Indeed, several  
lipid-formulated siRNAs have moved ahead clinically, including pati-
siran (made by Alnylam), which targets the TTR gene and is in a  
phase 3 clinical trial to treat hereditary transthyretin amyloidosis.

Apart from lipids, conjugate-mediated delivery is also emerging 
as an important component of the delivery toolbox106. Indeed, the 
development of oligonucleotide drugs conjugated to GalNAc can 
be applied to all types of oligonucleotide therapeutics to treat liver 
diseases (Table 1). GalNAc is the ligand for the asialoglycoprotein 
receptor (ASGPR), which is abundant in hepatocytes (~0.5 million– 
1 million copies per cell) and quickly recycled (15 min). The concept 
of using trivalent GalNAc clusters for drug delivery to hepatocytes 
was first shown in 1987 (ref. 106), and for oligonucleotide delivery 
in 1995 (ref. 107), but it took almost two decades of development 
for GalNAc-conjugated oligonucleotides to reach the current level of 
clinical excitement107.

For best results, GalNAc conjugation requires a metabolically stable  
oligonucleotide scaffold; that is, modification of every nucleotide  
to remove all ribose moieties and metabolic stabilization of the  
5 -phosphate108. The resulting GalNAc-conjugated siRNA and ASO 
compounds show exceptional stability and duration of effect, allowing 
monthly or even semiannual subcutaneous injections.

GalNAc modification underscores the important role of the inter-
play between ligand and oligonucleotide backbone. In the context 
of metabolically stabilized siRNAs, GalNAc preferentially delivers 
to liver. In the context of fully phosphorothioate ASOs, the GalNAc 
conjugate enhances delivery to and efficacy in liver, but a signifi-
cant fraction distributes to kidneys as well, with the latter uptake 
mediated by the phosphorothioate oligonucleotide backbone rather 

than the GalNAc moiety. Tuning the number of GalNAc moieties 
per oligonucleotide influences this distribution (i.e., more than three 
GalNAc molecules per ASO drives preferential delivery to liver)109. 
Interestingly, the presence of phosphorothioate bonds enhances the 
potency of GalNAc-delivered siRNAs108. Thus, tuning chemistry and 
structure is therefore a complex and multidimensional process.

The most clinically advanced GalNAc–siRNA conjugate, revusiran, 
showed limited metabolic stability and was withdrawn from clinical  
development in October 2016. The drug was in phase 3 clinical  
trials for transthyretin amyloidosis with cardiomyopathy, and the 
data-monitoring committee indicated that the benefit–risk profile 
for revusiran no longer supported continued dosing. Will this setback 
affect other GalNAc conjugates in the pipeline? It is too early to say, 
but the use of a conjugate with limited metabolic stability and the 
focus on patients with highly advanced disease were probably major 
contributing factors to revusiran’s failure. Revusiran was given at high 
doses (~2 g loading dose followed by 400 mg per week, correspond-
ing to a yearly exposure of 20–25 g). In contrast, siRNA conjugates 
based on next-generation technology are more extensively stabi-
lized; for example, recent data from inclisiran (an siRNA targeting 
PCSK9) shows clinical efficacy of 6–9 months with a single injection 
of 300 mg110. In addition, inclisiran has approximately twofold lower 
2 -F-RNA content than revusiran, which might reduce exposure to 
potentially toxic 2 -fluororibonucleotide metabolites. There is some 
evidence that phosphorothioate 2 -F-RNA-modified oligonucleotides 
might cause non-sequence-specific loss of some cellular proteins111, 
though the extent of in vitro toxicity is heavily dependent on structure 
(double- versus single-stranded) and method of delivery112.

The development of GalNAc siRNA107,113–115 and ASO116–118 
conjugates may have a big role in defining a useful dianophore for 
therapeutic oligonucleotides for silencing in hepatocytes. Blood flow 
to the liver, discontinuous endothelium, and high receptor expression 
level all work together to achieve sufficient uptake and support multi-
month efficacy with a single injection. In the long term, trivalent 
GalNAc conjugates will likely be the clinically dominant approach for 
delivery to hepatocytes, given the wide therapeutic index and excel-
lent safety profile of these compounds. It is possible that monthly 
or quarterly subcutaneous injections of oligonucleotides might be 
preferred over a daily oral regimen, a concept unforeseeable only a 
decade ago.

Beyond the liver
Hydrophobic modification of siRNAs with fatty acids or choles-
terol has been explored as a delivery strategy. Cholesterol con-
jugated to partially modified siRNAs supports only marginal 
systemic efficacy, requiring doses of at least 100 mg/kg of the con-
jugate82,119. When combined with asymmetric siRNA structure 
(see below), the hybrid compounds induce potent gene silencing  
in vitro in many cell types and support robust efficacy in vivo by 
local injection120,121. One of these compounds, RXI-109 (made by 
RXi Pharmaceuticals), which targets connective tissue growth factor 
(CTGF), has progressed toward phase 2 clinical trials for the treat-
ment of hypertrophic scarring.

Whereas partially modified siRNAs with hydrophobic conjugates 
show limited systemic efficacy, fully metabolically stabilized com-
pounds show robust systemic distribution (M. Hassler, A. Turanov, 
J. Alterman, A. Coles, and A.K., unpublished data). Modulating 
the identity of the hydrophobic conjugate can be used to alter 
the tissue distribution profile and the rate of diffusion for the site 
of injection122. Notably, changing the hydrophobic moiety to a  
polyunsaturated fatty acid derivative supports a wider therapeutic 
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index, thus enabling another direction in systemic conjugate-based 
gene modulation122.

Kidney will probably be the next tissue clinically targetable by sys-
temically delivered RNAi. Like liver, spleen, and bone marrow, kid-
ney has a discontinuous endothelium and natural filtration function, 
which is being exploited in an ongoing clinical trial involving Quark 
Pharmaceuticals’ QPI-1002, a partially 2 -OMe-modified siRNA that 
targets p53, is cleared rapidly123 but retains sufficient clinical efficacy 
to justify moving to phase 3 clinical trials. The conjugation of poly-
unsaturated fatty acids to fully metabolically stable siRNAs further 
supports delivery to kidney (M. Hassler, A. Turanov, J. Alterman,  
A. Coles, and A.K., unpublished data) and potent and persistent efficacy 
in vivo, which may make the kidney accessible to robust gene silenc-
ing. Conjugate-mediated delivery of oligonucleotides to non-primary 
tissues, including heart, pancreas, lung, and tumor, will require further  
advances in chemistry to take advantage of mechanisms driving 
oligonucleotide clearance, tissue distribution, cellular uptake, and 
endosomal escape.

Different designs for different tasks
It is tempting to think of the different families of oligonucleotides 
as redundant or parallel options for gene silencing. The reality is  
more complex.

The first parameter to consider is related to the different biophysical 
properties of single-stranded and double-stranded oligonucleotides. 
The flexible, amphiphilic nature of single-stranded oligonucleotides 
favors binding to a range of proteins because the bases and phosphates 
can flex and align with appropriate amino acids. Heparin-binding 
proteins are one of the highest-affinity targets for phosphorothioate 
oligonucleotides124. Serum proteins, such as albumin, and cell-surface 
proteins, such as trafficking proteins and scavenger receptors, pro-
mote the effective cellular uptake of single-stranded oligomers.

The different biophysical properties of single-stranded and double-
stranded oligonucleotides have consequences in terms of the clinical 
pipeline. Both single-stranded and double-stranded oligomers can be 
effectively targeted to the liver by GalNAc modification, and both are 
actively in development (Table 1). But for other tissues (for example, 
the brain or spinal cord), single-stranded character provides a big 
delivery advantage121,122, with three ASOs in clinical trials for central 
nervous system (CNS) indications125.

The pharmacologic properties of single-stranded siRNAs  
(ss-siRNAs)102 are similar to those of ssASOs, but ss-siRNAs in gen-
eral are at least an order of magnitude less effective in RISC engage-
ment than conventional siRNAs. We and others have been exploring 
the use of partially double-stranded or asymmetric siRNAs with a 
19- to 21-nt guide strand that is duplexed to an 11- to 15-nt sense 
strand. These asymmetric compounds are as effective in RISC loading 
as duplex siRNAs120,121. The single-stranded fully phosphorothioate 
tail resembles ssASOs and in part confers pharmacokinetic and phar-
macodynamic behavior characteristic of conventional ASOs. The fully 
phosphorothioate single-stranded region works in combination with 
different conjugates to enhance in vivo delivery and cellular uptake, 
demonstrating properties that cannot be achieved with the conjugate 
alone, including promising activity in CNS tissues121,122.

Oligonucleotide duplexes may allow a more complete separation 
of the optimization of pharmacophore and dianophore than single-
stranded oligonucleotides. This is because RNA duplexes consistently 
adopt an A-form helix with a relatively small range of structures and 
protein targets. In contrast, single-stranded oligonucleotides can adopt 
a much larger variety of structures, including partially self-comple-
mentary and aptameric structures, and their inherent flexibility and 

amphiphilicity allow them to bind a much larger variety of proteins. 
Thus, even in the context of a robust dianophore, the distribution profile 
of an ASO will maintain a certain dependence on the base sequence.

The second parameter to consider is mechanism of action. What 
cellular factors partner with oligonucleotides to carry out the desired 
activity? The RNAi machinery, RNase H, or no protein at all? In some 
cases, the choice is simple (for example, for miRNA inhibition, most 
researchers use single-stranded steric blocker oligonucleotides).  
For long noncoding RNA (lncRNA) inhibition, the choice is more 
complex. For silencing nuclear transcripts, ASOs that recruit RNase 
H are a safe option, whereas predominantly cytoplasmic transcripts 
tend to be more readily targeted by siRNAs126. For mRNA and cyto-
plasmic ncRNA silencing, making use of the RNAi pathway often 
provides increased potency and duration of effect, because association  
with RISC protects the siRNA guide strand from degradation. In 
some cases, there are other advantages from using one pathway over 
another; for example, greater selectivity in inhibiting the expanded 
CAG repeats characteristic of Huntington’s disease can be achieved 
using molecules that engage the RNAi pathway than simple steric 
blocker ASOs101,127.

An advantage of RNAi is that it invokes a natural pathway, in which 
RISC binds the guide strand, protects it from nucleases, unwinds  
self-structure in the target RNA, and helps scan for target sites91.  
For these reasons, as few as 100–500 loaded RISC complexes per cell 
are believed to be sufficient for potent, durable silencing128,129. But 
the chemical modification of siRNA must maintain an A-form helix 
and of course be compatible with RISC loading and target recogni-
tion and cleavage.

Continued progress in understanding the interplay between chemi-
cal architecture and oligonucleotide properties enables a constantly 
expanding spectrum of applications. For example, gene silencing 
remains a mainstay of the clinical oligonucleotide pipeline, but gene 
activation is also an increasingly attractive possibility. Gene activa-
tion can be achieved either by miRNA inhibition55 or using ASOs or 
siRNAs to bind130, cleave131, or sterically block132 lncRNAs. Recently, 
researchers also used ASOs to activate gene expression by disrupt-
ing R-loop formation133, inhibiting nonsense-mediated decay134,  
or blocking an upstream open reading frame135.

Conclusions
Ionis CEO Stan Crooke called the FDA approval of Kynamro (mipom-
ersen) in 2013 “the end of the beginning” for antisense136. Although 
Kynamro failed to become a major commercial success, we are indeed 
witnessing the end of the beginning for the broader field of oligonu-
cleotide therapeutics. Chemistry and delivery technologies have yet 
to reach maturity, and many of the most promising approaches in 
early clinical or preclinical development are showing substantially 
improved clinical performance relative to their predecessors.

Several promising dianophores are now in clinical trials, including 
naked ASOs for targets in the CNS, and GalNAc-conjugated oligom-
ers for targets in liver. Additional clinical data on these and other 
approaches will confirm which dianophores lead to robust clinical 
results across multiple sequences. At that point, the long-term goals 
of reducing the time and cost of drug development and tackling  
targets and diseases once seen as undruggable or impractical may be 
within reach.
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