
Argonaute proteins are key players in all small-RNA-
guided gene-silencing processes that have been identi-
fied and characterized so far. They are highly conserved, 
and family members are found in all eukaryotes, with the  
exception of Saccharomyces cerevisiae, which has lost  
the small RNA machinery1. Also, some bacteria and 
archaea contain Argonaute genes2: their specific functions,  
however, remain elusive.

Argonaute proteins are the direct binding partners 
of small RNAs. The eukaryotic Argonaute family can be 
divided into AGO proteins (also referred to as the AGO 
clade), which are similar to Arabidopsis thaliana AGO1, 
and PIWI proteins (also referred to as the PIWI clade), 
which are homologous to Drosophila melanogaster 
Piwi. AGO proteins mainly interact with microRNAs  
(miRNAs) or short interfering RNAs (siRNAs) and 
are involved in cytoplasmic post-transcriptional 
gene-silencing processes3,4. PIWI proteins are mainly 
expressed in germline cells, where these proteins bind 
to PIWI-interacting RNAs (piRNAs) and function 
in the silencing of transposable genetic elements5. In 
Caenorhabditis elegans, in which 26 different Argonaute 
genes exist, a third clade (known as WAGO) has evolved 
that is equally distant from the AGO and PIWI clades. 
These proteins mainly serve as secondary Argonaute 
proteins and acquire their small RNA load through  
‘primary’ Argonaute proteins or through small RNA 
amplification processes6. Plant Argonaute proteins clus-
ter to the AGO clade2. However, some of these proteins 
are exclusively expressed in the germ line and have plant-
specific functions7. The biogenesis of small RNA classes 
is summarized in BOXES 1,2.

In the past few years, novel insights into the func-
tion of Argonaute proteins have been reported. Among 
them are additional mechanistic details that improve 
our understanding of known aspects, such as structural 
information on human Argonaute proteins, the mecha-
nism of small RNA loading, Argonaute post-translational  
modifications and Argonaute protein function in germ 
cells. In addition, novel cellular Argonaute functions 
are emerging, including roles for Argonaute in tran-
scription, alternative splicing and even DNA repair. 
This Review focuses on the recent literature of the 
diverse aspects of Argonaute protein function with an 
emphasis on AGO clade proteins. The first part dis-
cusses insights into known functions, and the second 
part addresses novel pathways in which Argonaute  
proteins have been implicated.

Structural insights
Structural studies have revealed how Argonaute pro-
teins act as highly specialized small-RNA-binding 
modules. They are characterized by amino-terminal 
(N), PAZ (PIWI–ARGONAUTE–ZWILLE), MID 
(middle) and PIWI domains. Initial structural studies 
on bacterial and archaeal Argonaute proteins revealed 
that Argonaute proteins consist of two lobes compris-
ing the N–PAZ and the MID–PIWI domains, respec-
tively. A hinge connects the two lobes, and structural 
rearrangements occur during RNA binding. The PAZ 
domain anchors the 3′ end of the small RNA by bend-
ing it into a specific binding pocket8. PAZ domains of 
the PIWI subfamily members specifically accommo-
date methylated piRNA 3′ ends9. The MID domain 
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Abstract | Small-RNA-guided gene regulation has emerged as one of the fundamental 
principles in cell function, and the major protein players in this process are members of the 
Argonaute protein family. Argonaute proteins are highly specialized binding modules that 
accommodate the small RNA component — such as microRNAs (miRNAs), short interfering 
RNAs (siRNAs) or PIWI-associated RNAs (piRNAs) — and coordinate downstream 
gene-silencing events by interacting with other protein factors. Recent work has made 
progress in our understanding of classical Argonaute-mediated gene-silencing principles, 
such as the effects on mRNA translation and decay, but has also implicated Argonaute 
proteins in several other cellular processes, such as transcriptional regulation and splicing.
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Box 1 | Biogenesis of miRNAs and siRNAs

Most microRNAs (miRNAs) are transcribed as primary transcripts (pri-miRNAs) by RNA polymerase II (RNA Pol II; see the 
upper left panel of the figure). Such transcripts contain one or more hairpins, and the miRNAs lie in their double-stranded 
stem. Processing by the nuclear microprocessor complex, which contains the RNase III enzyme Drosha, releases the 
hairpin: this part is referred to as the precursor miRNA (pre-miRNA)70. Pre-miRNAs can also be generated from short 
introns, which are referred to as mirtrons154 (see the upper right panel of the figure). Mirtrons are Drosha-independent  
and are liberated during splicing by the spliceosome. Some classes of small nucleolar RNAs (snoRNAs) can also produce 
miRNAs155 (see the upper centre panel of the figure); how these are processed is unclear. After export to the cytoplasm by 
exportin 5, Dicer (another RNase III enzyme) cleaves off the loop of the hairpin and generates a double-stranded RNA.  
The mature miRNA strand is subsequently incorporated into the RNA-induced silencing complex (RISC, or miRISC for 
miRNA-containing RISC or miRNP for microribonucleoprotein), where it directly binds to a member of the AGO protein 
family. The other strand is referred to as miRNA* and is normally degraded. In some cases, miRNAs* can be functional as 
well70. It has also been shown that miRNAs can be processed independently of Dicer. AGO2, for example, can cleave miRNA 
precursors and produce mature miRNAs67,156–159.

Small interfering RNAs (siRNAs) are very similar to miRNAs and are widely used as research tools for sequence-specific 
gene inactivation. Depending on the organism, siRNAs are either introduced as short double-stranded RNAs (dsRNAs)  
by transfection or long dsRNAs, which are processed to siRNAs by Dicer73 (see the lower right panel of the figure). The 
so-called guide strand is incorporated into RISC (or siRISC for siRNA-containing RISC), and the other strand (known as  
the passenger strand) is destabilized. In many organisms, siRNAs from endogenous transcripts have been identified. In 
Drosophila melanogaster gonadal and somatic tissues, as well as cultured S2 cells, endogenous siRNAs mainly correspond 
to a subset of retrotransposons or stem–loop-structured RNAs160–162. In mouse oocytes, endogenous siRNAs derive from 
different dsRNA sources, including inverted repeat structures, bidirectional transcription or antisense transcription163,164. 
Pseudogenes seem to be sources for endogenous siRNAs as well. It is currently unclear, however, whether such 
endogenous siRNAs exist in mammalian somatic cells as well. NPC, nuclear pore complex.
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anchors the 5′ end of the small RNA by providing a 
binding pocket in which the 5′ terminal base engages 
in stacking interactions with a conserved tyrosine. In 
addition, several hydrogen bonds coordinate correct 
5′ end binding8. The N domain is required for small 
RNA loading and assists in unwinding the small RNA 
duplex10.

The PIWI domain is structurally similar to RNase H, 
and it has indeed been shown that Argonaute proteins 
can function as endonucleases and cleave target RNA that  
is fully complementary to the bound small RNA8. The 
PIWI domain contains a catalytic triad composed of 
DDX (where X is D or H). Recent structural work on 
an Argonaute protein from yeast revealed that a fourth 
residue is also essential turning the catalytic centre 
into a tetrad of DEDX11. Generally, only a subset of 
Argonaute proteins possesses cleavage activity. In mam-
mals, for example, only AGO2 of the AGO subfamily is 
catalytically active and functions as an endonuclease12,13. 
Besides the PIWI domain, an unstructured loop in the 
N domain is also important for cleavage14.

Recently, crystal structures of human AGO2 have 
been reported15,16. Overall, their structure is strikingly 
similar to known bacterial and archaeal Argonaute pro-
teins, underlining the high conservation of the basic 
principles of small RNA pathways.

Mechanisms of Argonaute loading
The AGO subfamily and the PIWI subfamily use differ-
ent mechanisms for small RNA loading, and they will 
be discussed separately with an emphasis on AGO clade 
proteins.

Loading AGO clade members. Dicer processing gener-
ates a short double-stranded RNA of about 20–24 nt 
in length. However, only one strand associates with 
the AGO protein and becomes the guide strand. How 
is the correct strand selected, and how is it loaded into 
AGO proteins? One important determinant for strand 
selection lies in the small RNA duplex itself: both in the 
miRNA pathway and the siRNA pathway, the strand 
with the less stably paired 5′ end is preferentially loaded 
into AGO proteins. These thermodynamic differ-
ences between the small RNA ends are known as the  
asymmetry rule17,18.

In various organisms, Dicer proteins directly inter-
act with AGO proteins and strand selection, and load-
ing is achieved within such complexes19–21. In addition, 
Dicer proteins partner with various different dsRNA-
binding proteins, which have been most extensively 
studied in D. melanogaster. In flies, two Dicer proteins 
exist: Dcr1 processes precursor miRNAs (pre-miRNAs) 
and loads Ago1 for miRNA-guided gene silencing, 
whereas Dcr2 cleaves perfectly paired long dsRNA 
and loads siRNAs into Ago2. Dcr1 interacts with 
loquacious (Loqs), which is essential for the miRNA 
pathway22. Dcr2 requires R2d2, which is important for 
the siRNA pathway. R2d2 functions as a sensor for the 
thermodynamic asymmetry within an siRNA duplex 
and positions Dcr2 for correct strand selection23,24. In 
mammals, the dsRNA-binding domain proteins TRBP 
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Box 2 | piRNA biogenesis and function

Mobile genetic elements such as transposons are a constant threat for the genome. 
PIWI-interacting RNAs (piRNAs) protect germline cells from transposons in organisms as 
diverse as flies, fish or mammals. piRNAs are 25 to 33 nt in length, depending on the PIWI 
clade protein that they bind to. piRNAs derive from distinct transposons that are referred 
to as piRNA clusters, but the piRNAs from each locus are characterized by a complex 
mixture of sequences spanning large portions of the transposon5. piRNA clusters are 
transcribed in the sense or antisense direction, and the long single-stranded RNA serves 
as the basis for piRNA production.

The biogenesis of piRNAs is independent of Dicer165 and requires other nucleases. Two 
biogenesis pathways are important for piRNA production. First, a primary processing 
pathway generates primary piRNAs, and these are then amplified by an amplification 
cycle referred to as the ping-pong loop5. In the primary biogenesis pathway, the long 
transposon transcript is initially cleaved by the nuclease zucchini (Zuc; see the 
figure)166–168, which probably generates the 5′ ends of primary piRNAs. The other steps of 
primary piRNA maturation are not understood5.

In the ping-pong cycle (see the lower right panel of the figure), mature sense primary 
piRNAs guide PIWI clade proteins to complementary sequences on antisense transcripts 
from the same piRNA cluster. PIWI proteins use their slicer activity to cleave the target 
antisense transcript to generate a new 5′ end. This 5′ end is bound by another PIWI 
protein. In subsequent steps, the 3′ end is trimmed to the length of the mature piRNA, 
leading to a mature antisense secondary piRNA, which can now target sense transcripts 
transcribed from the piRNA cluster. In Drosophila melanogaster, the two Piwi proteins 
Aubergine and Ago3 cooperate in secondary piRNA production to generate sense and 
antisense piRNAs. However, antisense piRNAs dominate, and a protein called Qin, which 
contains E3 ligase and Tudor domains, seems to modulate such a heterotypic ping-pong 
cycle169. In the mouse germ line, the PIWI proteins MILI and MIWI collaborate in piRNA 
generation. After trimming, piRNAs receive a methyl group at the 3′ end by the 
methyltransferase HEN1. Primary piRNAs carry such modifications as well5. In 
Caenorhabditis elegans, an additional piRNA production pathway exists. Short and 
capped RNA polymerase II transcripts are decapped, processed and directly loaded into 
PIWI proteins170.

piRNAs guide PIWI proteins to complementary RNAs derived from transposable 
elements. Similarly to in RNA interference, PIWI proteins cleave the transposon RNA, 
leading to silencing. In flies, mutations in piwi, aub and Ago3 (which encode the Piwi 
proteins in ) are required for transposon silencing in the germ line5. 
Similar observations were made when the mouse PIWI proteins MILI and MIWI were 
genetically inactivated171. Here, long interspersed nuclear elements (LINE) and long 
terminal repeat (LTR) retrotransposons accumulated172.
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(also known as TARBP2) and PACT (also known as 
PRKRA) interact with Dicer and have been implicated 
in miRNA biogenesis25–27.

Novel insights into how loading events might func-
tion in humans have come from recent biochemical 
studies28. First, it was confirmed that human TRBP is 
an asymmetry sensor and functions similarly to R2d2 
in D. melanogaster. Furthermore, Dicer contains two 
different RNA-binding sites: one that positions long 
dsRNA for cleavage, and one that rebinds the cleaved 
siRNA after cleavage with the help of TRBP. During 
this second step, asymmetry sensing occurs (FIG. 1a). 
Within a minimal RNA-induced silencing complex-loading  

complex (RISC-loading complex) containing Dicer, 
TRBP and an AGO protein, the double-stranded 
siRNA or miRNA is loaded onto AGO. The transfer 
of the double-stranded siRNA or miRNA to the Ago 
protein is mediated by the multi-protein chaperone 
complex Hsc70–Hsp90 (heat shock cognate protein 
70 kDa–heat shock protein 90) in D. melanogaster or 
HSP90 in plants and humans; this complex hydrolyses 
ATP to keep AGO proteins in an open state, allowing 
them to accommodate the RNA duplex29–31 (FIG. 1b). 
Heat shock proteins are often assisted by co-chaperones.  
Indeed, a recent mass spectrometry study found that 
the co-chaperone FKBP5 associated with mouse AGO2 
(REF. 32). Whether it is required for RISC loading  
remains to be shown.

In the next step, the duplex is unwound, and the pas-
senger strand of the siRNA or the miRNA* strand of the 
miRNA is removed. There is recent evidence that the N 
domain of AGO proteins supports this step10. ‘Wedging’ 
of the N domain, in which there are conformational 
changes in the AGO protein that drive the N domain 
between the two duplex strands, leads to duplex open-
ing and further unwinding. How unwinding occurs, and 
whether additional factors are needed, remains unclear. 
It has also been reported that AGO proteins themselves 
might possess strand dissociation activity to remove 
one of the strands33. Putative helicases, such as RNA 
helicase A (RHA), MOV10 or Armitage, have also been 
implicated in duplex unwinding in human and D. mela-
nogaster cells19,34–36. Strand removal correlates with the 
overall thermodynamic stability of the duplex, possibly 
arguing against the action of additional helicases, which 
might act independently of sequence35,37. Further studies 
are required to solve this controversy.

Perfectly paired siRNA or miRNA duplexes are 
cleaved by catalytically active AGO proteins, such as 
AGO2 (REFS 38–40); this leads to efficient loading of 
catalytically active AGO proteins. AGO proteins that 
lack catalytic activity are loaded as well but require 
more time to remove the passenger strand. In flies 
and humans, the passenger strand nicked by AGO2 is 
removed from the RISC-loading complex by the endo-
nuclease C3PO (also known as translin). C3PO interacts 
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Figure 1 | A model for loading of small RNAs into AGO clade proteins. a | Dicer binds long double-stranded RNAs 
(dsRNAs) or precursor microRNAs (pre-miRNAs) and uses its two RNase III domains to cleave both strands (indicated  
by the two arrows), generating a ~21 nt dsRNA. This short dsRNA dissociates from and reassociates with Dicer at a 
different position. During this step, a dsRNA-binding protein (here, TRBP) senses the asymmetry and positions the 
RNA in an orientation, allowing correct strand selection and loading. In the next step, the dsRNA is transferred  
to a bound Argonaute protein that is kept in an open conformation by heat shock protein 90 (HSP90). 
Cleavage-competent AGO proteins cleave the passenger strand (indicated by an arrow), allowing for rapid strand 
displacement. Cleavage-incompetent AGO proteins displace the passenger strand through a much slower process 
without prior cleavage. See REF. 28 for further details. b | An HSP90 dimer binds unloaded Argonaute proteins and 
holds them in an open conformation. Co-chaperones support HSP90 in this process. After small RNA binding, the 
passenger strand is removed, HSP90 hydrolyses ATP, and the AGO protein loaded with the single-stranded RNA 
transitions into a closed conformation. HSP90 and potential co-chaperones leave the complex.
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with AGO2 and activates RISC, which is now ready to 
fully cleave complementary target RNAs41,42. It remains 
unknown whether C3PO also functions in conjunction 
with non-catalytic AGO proteins. A minimal RISC-
loading complex requires Dicer, a dsRNA-binding pro-
tein, the HSC70–HSP90 system and an AGO protein. 
However, it is likely that additional species-specific or 
even sequence-specific factors influence RISC loading.

Loading PIWI clade members. Loading PIWI proteins 
with piRNAs is tightly linked to piRNA biogenesis, 
which is summarized in BOX 2. Although the piRNA-
loading mechanisms are largely unknown, several 
recent reports shed some light on this process. In 
D. melanogaster, genetic studies found that loss of the 
putative helicase Armitage reduced the levels of PIWI, 
suggesting that is has a role in PIWI–RISC formation 
or stabilization43. Interestingly, the Armitage orthologue 
in mice, MOV10L1, is also required for piRNA produc-
tion44,45. The detailed mechanisms, however, remain 
unclear. Recent genetic data in D. melanogaster revealed 
that all piRNA classes are lost when the gene encod-
ing the co-chaperone shutdown (Shu) is mutated46; Shu 
interacts with Hsp90 (REFS 46,47). In mice, the co-chap-
erone FKBP6 seems to be required for the delivery of 
piRNAs to the PIWI protein MIWI2 (REF. 48). Therefore, 
it is likely that piRNA loading uses similar chaperone-
assisted mechanisms to miRNA and siRNA loading in 
somatic cells.

Distinct AGO clade proteins
Biochemical isolation of Argonaute proteins followed 
by deep sequencing of the associated small RNAs has 
revealed that different classes of small RNAs can asso-
ciate with distinct Argonaute proteins. In this section, 
examples for such associations in various organisms are 
discussed.

Drosophila melanogaster. Sorting small RNAs into 
various Ago clade proteins has been extensively stud-
ied in D. melanogaster. In flies, precursor RNAs with a 
near-perfect complementarity in the dsRNA are pro-
cessed by Dcr2 and are specifically loaded into Ago2. 
By contrast, miRNA precursors, which are usually not 
fully paired, are processed by Dcr1 and loaded into Ago1 
(REFS 49–52). However, there are also exceptions to these 
rules: miR-277, for example, is processed by Dcr1 but is 
loaded into Ago2. This process seems to involve rebind-
ing to Dcr2, which loads miR-277 into Ago2 (REF. 50). 
In addition, endogenous siRNAs (endo-siRNAs), which 
derive from mismatched precursors, are found in 
Ago2. These findings highlight that there are additional 
mechanisms that influence loading of small RNAs in 
D. melanogaster53,54.

Arabidopsis thaliana. In A. thaliana, ten different AGO 
proteins exist, and they also show preferences for dis-
tinct classes of small RNAs. In addition, four different 
Dicer variants, DCL1–4, are required for the produc-
tion and loading of AGO proteins. For example, DCL1 
generates 18–21 nt-long miRNAs and loads them into 

AGO1 (REF. 55). DCL2–4 produces slightly longer small 
RNAs, which are loaded into other Argonaute proteins. 
The mechanistic details, however, remain elusive55. 
AGO4 contains a specific class of small RNAs termed 
heterochromatic siRNAs, which are involved in small 
RNA-directed DNA methylation (RdDM) processes. 
AGO6 is similar to AGO4 and also interacts with  
heterochromatic siRNAs. It is involved in RdDM in the 
growing points of shoots and roots56. AGO2 is mainly 
loaded with trans-acting siRNAs (ta-siRNAs) and repeat-

associated siRNAs. In addition, AGO7 has been sug-
gested to function in ta-siRNA generation57,58. AGO5 
contains various siRNAs that originate from intergenic 
regions59. The small RNA content of the remaining 
A. thaliana AGO proteins has not yet been analysed 
in detail, mainly owing to the highly specific expres-
sion patterns in germ cells. Interestingly, AGO9 is 
expressed in somatic companion cells of female gam-
etes and preferentially interacts with siRNAs derived 
from transposable elements. It is required for trans-
posable element silencing in the gametes, most prob-
ably owing to transport processes between the two cell 
types60. Finally, AGO10 seems to sequester miR-166 
and miR-165 specifically and thus regulates shoot apical  

meristem development61.

Mammals. In mammals, only one Dicer exists. All four 
human AGO proteins bind miRNAs and deep-sequenc-
ing analysis has shown that distinct miRNA subpopu-
lations might preferentially bind to AGO proteins62. 
However, it has also been reported that miRNAs bind 
randomly to AGO clade proteins63,64. It is possible that 
the non-catalytic AGO proteins — AGO1, AGO3 and 
AGO4 — might be at least partially redundant. AGO1 
and AGO3 are expressed in many cell lines and tissues, 
whereas AGO4 expression seems to be less broad37. 
Recent genetic inactivation of mouse AGO4 revealed 
that it is required for spermatogenesis65 and that it 
regulates entry into meiosis. Furthermore, AGO3 has 
been implicated in Alu RNA-guided mRNA decay dur-
ing stem cell proliferation66, thus suggesting that non-
catalytic mammalian AGO proteins are not redundant. 
Genetic studies on AGO1 and AGO3 will help to eluci-
date potential specific functions of these AGO proteins 
as well. AGO2, which is the only catalytic AGO protein in  
mammals, is essential for early embryonic development. 
Its cleavage activity, however, is required only soon after 
birth, where it processes the highly specialized miRNA 
miR-451 (REF. 67). In addition to its slicer function, 
AGO2 binds miRNAs that are partially complementary 
to target RNAs and engages in gene silencing in a similar 
manner to AGO1, AGO3 or AGO4.

Many small RNA classes possess specific sequence 
biases at the 5′ end, and it has become clear that 
Argonaute proteins are able to sense the 5′-terminal 
nucleotide of the small RNA. A rigid loop in the MID 
domain of human AGO2 allows specific contacts to a 
5′-terminal uridine or adenine. Small RNAs with Gs or 
Cs at the 5′ end bind to human AGO2 with low affini-
ties68. Similar small-RNA-binding strategies have been 
found for plant and D. melanogaster AGO proteins54,69.
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Argonaute-binding partners
Small RNAs guide Argonaute proteins to target RNAs, 
and Argonautes serve as platforms for interacting pro-
teins that facilitate the major downstream events of gene 
silencing. Briefly, miRNAs guide AGO clade members to 
mRNAs, often to binding sites located in the 3′ untrans-
lated region (UTR; for detailed reviews on miRNA func-
tion, see REFS 70–72). In cases in which there is perfect 
complementarity between the miRNA and the target, 
and if the AGO is catalytic, the mRNA target is cleaved73. 
This process is rare in mammals but is frequently found 
in plants. In mammals, miRNAs usually bind to partially 
complementary sites. The so-called ‘seed sequence’ of the 
miRNA, comprising nucleotides 2 to 7 or 8, is often fully 
paired and essential for the interaction. As a consequence 
of miRNA binding, the mRNA is translationally silenced 
or degraded71. Recently, the dynamics of miRNA-guided 
gene silencing was investigated in different model 
systems, and it was found that translational inhibi-
tion is the dominant form of repression at early time 
points, whereas mRNA decay is the major contributor  
at later time points74–77.

GW proteins. miRNA-guided gene repression is medi-
ated by and assisted by many additional proteins. For 
target mRNA repression, AGO proteins directly inter-
act with a member of the GW protein family19,78–81. GW 
proteins are characterized by an N domain containing 
multiple glycine–tryptophan (GW) repeats. This domain 
directly interacts with AGO proteins and is therefore 
referred to as the AGO-binding domain71. The recent 
structure of human AGO2 crystallized in the presence 
of free tryptophan amino acids, identified two bind-
ing pockets for tryptophans on the surface of the PIWI 
domain, suggesting that GW proteins use only two of 
their numerous tryptophans for AGO binding16. The 
many GW repeats in the GW proteins suggest that more 
than one AGO molecule could simultaneously bind to 
a single GW protein. However, the stoichiometry is 
unclear, and further biochemical and biophysical studies  
are required.

The carboxy-terminal half of each GW protein con-
tains several domains and short binding motifs, including 
an RNA recognition motif (RRM) and a poly(A)-binding 

protein-interacting motif 2 (PAM2) motif. Both of these 
motifs interact with poly(A)-binding protein C (PABPC) 
on the poly(A) tail of the mRNA. It has been proposed 
that GW binding to PABPC inhibits its interaction with 
the cap-binding complex and prevents the mRNA from 
circularization, which is a prerequisite for efficient trans-
lational initiation82,83. Alternatively, a more direct role of 
PABPC in miRNA-guided gene silencing has recently 
been proposed84. PABPC and the poly(A) tail stimulate 
the association of AGO–GW protein complexes to the 
mRNA, which explains why silencing efficiency corre-
lates with the length of the poly(A) tail and thus with the 
number of PABPC molecules that are bound to it84.

Interestingly, the C-terminal silencing domain of GW 
proteins also contains a short stretch that is enriched in 
GW repeats. This motif interacts with NOT1, which 
is a part of the deadenylase CCR4–NOT complex, 

and recruits it to the mRNA, leading to removal of the 
poly(A) tail85,86,87. A short poly(A) tail leads to decap-
ping of the mRNA and subsequent decay by the abun-
dant 5′ to 3′ exonuclease XRN1 (REF. 71). However, the 
interaction of miRNA-containing RISC with PABPC is 
also required for translational repression, supporting a 
model in which PABPC recruits miRISC to the mRNA 
without the immediate removal of the poly(A) tail by the 
deadenylation machinery88.

Additional AGO interaction partners. Several proteom-
ics studies have sought to identify cellular interaction 
partners of AGO proteins19,32,89–92. In addition to the pro-
teins that are required for RISC loading (for example, 
HSP90), many proteins with RNA-binding activity are  
among the binding partners. Many of these proteins  
are indirectly associated with AGO proteins by binding 
to the same RNAs. Nevertheless, such proteins can influ-
ence the efficiency of miRNA-guided gene silencing. 
For example, the RNA-binding protein Pumilio (Pum) 
binds to the 3′ UTR of the E2F3 mRNA and enhances 
the activity of several miRNAs that regulate E2F3 
(REF. 93). It is possible that RNA-binding proteins such 
as Pumilio help to establish a stable interaction of the 
miRNA with the mRNA89. AGO proteins do not directly 
touch the mRNA, and the base pairing via the short seed 
region of the miRNA might not be sufficient for stable 
binding of miRISC to the target mRNA. Other pro-
teins found in biochemical studies, such as importin 8  
(IPO8) or UPF1, seem to support AGO complexes in 
target association90,94. In addition, it has been proposed 
that LIM domain proteins help to stabilize the silenced 
complex by simultaneously interacting with the 5′ cap-
binding complex and AGO proteins 95, and the mam-
malian hyperplastic disc homologue EDD (also known 
as UBR5) helps in the recruitment of downstream factors 
by binding to GW proteins96. A protein that is associated 
with the 40S ribosomal subunit — namely, receptor for 
activated C kinase 1 (RACK1) — interacts with AGO 
proteins and recruits miRISC to sites of translation97.

Proteins that guide RNA-independent recruitment 
of AGO proteins. It has been found in Dicer knock-
out mouse embryonic stem cells (ESCs) and in Dicer-
deficient mouse embryonic fibroblasts (MEFs), in which 
mature miRNAs are not produced, that AGO proteins 
can still associate with mRNA targets32,98. These observa-
tions suggest that AGO proteins can reach mRNA targets 
without the guidance of miRNAs. Indeed, it has been 
observed in Caenorhabditis elegans and in human cells 
that the RNA-binding protein Pumilio/FBF (PUF) helps 
to recruit AGO proteins to mRNA and a stable complex 
of PUM, an AGO protein and eukaryotic elongation fac-
tor 1α (EF1α1; also known as eEF1A) inhibits translation 
elongation99. In D. melanogaster, it was reported that the 
RNA-binding protein recruits Ago1 to mRNAs inde-
pendently of miRNAs, leading to silencing of the target 
mRNA nanos100. In a speculative model, Ago proteins 
are recruited to mRNAs by mRNA-binding proteins, and 
this process is miRNA-independent (FIG. 2). Such a model 
might also help to explain the many orphan binding sites 
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found in Ago crosslinking immunoprecipitation experiments 
(CLIP experiments) that do not match to an miRNA. 
However, how widespread miRNA-independent Ago 
targets are has yet to be revealed.

Proteins that associate with PIWI proteins. Owing to 
their expression mainly in germ cells, few biochemi-
cal studies on PIWI clade protein interactors have 
been carried out. Biochemical purification showed 
that PIWI proteins interact with the protein arginine 
N-methyltransferase 5 (PRMT5), which symmetrically 
dimethylates arginine side chains. Indeed, conserved 
consensus motifs for methylation (the motif GRG) are 
found in the N domain of PIWI proteins in many organ-
isms, and these are methylated by PRMT5 (REF. 101). It is 
known from work on splicing that symmetrical methyla-
tion of arginines generates a binding platform for Tudor 

domains102, and indeed several Tudor domain proteins 
have been found to associate with dimethylated PIWI 
proteins5,103.

Similarly to mouse PIWI proteins, Tudor-domain-
containing proteins (TDRDs) exhibit distinct expression 
patterns during spermatogenesis. The Tudor proteins 
TDRD1, TDRD2, TDRD4, TDRD6, TDRD7 and 
TDRD9 are found in mouse germ cells5. Many of them 
might have broader roles in ribonucleoprotein forma-
tion or remodelling of such structures in germ cells104. 
Genetic inactivation of TDRD1 and TDRD9 suggests 
that they have a role during the ping-pong cycle5, but 
detailed mechanisms have yet to be unravelled.

In D. melanogaster, the Tudor domain proteins 
Tud, spindle E (SpnE), female sterile (1) Yb (Fs(1)Yb), 
krimper (Krimp), vreteno (Vret) and tejas (Tej) have also 
been implicated in Piwi protein binding and function5,105, 
but their molecular functions remain elusive. Tud is a 
large protein containing multiple Tudor domains, and 
it has been suggested that such proteins might func-
tion as platforms that allow for the assembly of higher-
order protein–RNA structures. Whether this is true for 
all Tudor domain proteins, however, is unknown. The 
main validated direct Argonaute interaction partners are  
summarized in TABLE 1.

Regulation of Argonaute function
Like most proteins, Argonaute proteins are post- 
translationally modified, and various types of modifi-
cation affect Argonaute function (FIG. 3). For example, 
using mass spectrometry analysis of purified tagged 
human AGO2, the type I collagen prolyl-4-hydroxylase 
was found to be an interactor. This enzyme hydroxylates 
AGO2, and this modification is important for AGO sta-
bility106. Under cellular stress conditions, human AGO 
proteins are modified by poly(ADP-ribose), and this 
modification relieves miRNA-guided repression107.

Ubiquitylation. AGO proteins are also ubiquitylated. 
The ubiquitylation identified so far is a degradation sig-
nal and is probably more important for AGO turnover 
than for regulation. TRIM71 (also known as LIN41) 
has been reported as a potential E3 ubiquitin ligase for 
AGO2 turnover108. Interestingly, a recent report suggests 
that TRIM71 can function as a direct translational regu-
lator independently of AGO proteins109. In addition, in 
C. elegans, a TRIM–NHL family protein called NHL-2 
modulates the efficiency of miRISC–mRNA target inter-
action110. In mouse cells, another TRIM–NHL protein, 
TRIM32, seems to interact with AGO1 and stimulates 
miRNA activities111. Therefore, several TRIM–NHL 
proteins are linked to the Argonaute machinery, but 
the mechanisms by which these proteins contribute to 
Argonaute function are currently unknown.

Polyubiquitylated AGO2 interacts with the autophagy 
receptor NDP52 (REF. 112). Interestingly, two of the first 
AGO protein interaction partners to have been iden-
tified were GEMIN3 and GEMIN4 (REFS 19,113,114), 
and these seem to function as adaptor molecules for 
NDP52 and AGO2 binding112. By targeting AGO2, 
autophagy — which targets cytoplasmic material for 
destruction — seems to contribute to the homeostasis of  
miRNA-guided gene silencing112.

Phosphorylation. Two studies have identified several 
phosphorylation sites on human Argonaute proteins115,116. 
The phosphorylation events have been implicated in 
Argonaute protein localization115 or regulation of small 
RNA binding116. However, clear in vivo evidence for the 
modulation of Argonaute protein function by phospho-
rylation is still lacking. Signalling cascades that sense 
intra- or extracellular signals and translate them into 
gene expression programmes are mainly based on protein 
phosphorylation. Argonaute proteins are a part of such 

Figure 2 | A model for the recruitment of AGO proteins to target RNAs.  
a | MicroRNAs (miRNAs) function as guides to bring AGO proteins to partially 
complementary sequences located on mRNAs. A member of the GW protein family 
interacts with the AGO protein and coordinates all of the downstream silencing steps. 
b | AGO proteins can be recruited to target RNAs by protein–protein interaction with 
RNA-binding proteins (RBPs). In subsequent steps, AGO proteins interact with a 
member of the GW protein family, which facilitates all downstream silencing processes. 
Whether binding of small RNAs to AGO proteins is required in such a model is unclear.
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programmes, and it is therefore likely that they are embed-
ded into such signalling pathways. In agreement with such 
a model, it has been reported that AGO2 expression can 
be controlled through MAP kinase signalling117. Detailed 
analysis of the interplay between signalling networks 
and small RNA function will clearly be one of the major 
future research directions in the gene-silencing field.

Unexpected functions of AGO clade proteins
Using biochemical fractionation and some immuno-
fluorescence staining, AGO clade proteins have been 
found in the nucleus as well the cytoplasm90,118–121. 
Although increasing amounts of data suggest that  
AGO clade proteins engage in nuclear processes, 
nuclear AGO functions in human somatic cells  
remain unclear. Here, I summarize recent reports on 
possible nuclear AGO functions (FIG. 4).

AGO clade proteins and transcriptional regulation. In 
Schizosaccharomyces pombe, small RNAs derive from cen-
tromeric repeats and associate with the only AGO protein, 

AGO1, to form the RNA-induced initiation of transcrip-
tional gene silencing complex (RITS)122. RITS recruits 
methyltransferases to specific genomic regions, leading 
to methylation of histone H3 at lysine 9 (H3K9) and 
subsequent establishment of silenced heterochromatin  
(reviewed in REF. 123).

It is also well established that plant AGO proteins, 
such as AGO4, associate with nascent transcripts and 
guide small-RNA-directed DNA methylation or chro-
matin modifications124–126. A. thaliana AGO4 is found 
in nuclear foci associated with the nucleolus called Cajal 
bodies; these bodies are sites of RNP assembly in the 
nucleus. It has been proposed that a large DNA methyla-
tion complex that contains AGO4, siRNAs and possibly 
many other factors is assembled in Cajal bodies127,128. 
For a detailed review on RNA-mediated chromatin  
regulation, see REF. 129.

In C. elegans, several Argonaute proteins mediate 
nuclear silencing processes. Early genetic studies revealed 
that the RNA interference (RNAi) machinery protects 
the C. elegans germ line against transposons130–132. More 

Table 1 | Examples of direct Argonaute protein interactors

Interaction partner Domains or functions Function in gene silencing Refs

AGO clade proteins

Dicer RNase III enzyme Small RNA generation and 
RISC loading

54

HSP90 Chaperone RISC loading 54

C3PO (also known as Translin) Exonuclease complex RISC activation 41

RHA Putative helicase Duplex unwinding 34

MOV10 (mammals) Putative helicase Unknown 19

Armitage (Drosophila melanogaster) Putative helicase RISC formation 36

GW proteins: TNRC6A, TNRC6B and TNRC6C 
(mammals); Gw182 ( ); AIN-1 
and AIN-2 (Caenorhabditis elegans)

Glycine–tryptophan repeats, 
PAM2 motif, RRM

Coordination of downstream 
silencing events

71

LIM domain proteins (for example, LIMD1, Ajuba 
and WTIP)

LIM domain Stabilization of silencing 
complexes

95

RACK1 Seven-bladed β-propeller Ribosome association 97

IPO8 Import receptor Stabilization of AGO–mRNA 
interactions

90

UPF1 Helicase, 
nonsense-mediated decay

Stabilization of AGO–mRNA 
interactions

94

PUM RNA-binding protein AGO recruitment to mRNAs 99

Smg ( ) RNA-binding protein AGO recruitment to mRNAs 100

GEMIN3 Putative helicase Link AGO proteins to 
autophagy

112

GEMIN4 GEMIN3 binding partner

PIWI clade proteins

Shutdown (D. melanogaster) Co-chaperone piRNA loading 46

FKBP6 (mouse) Co-chaperone piRNA loading 48

PRMT5 Arginine methyltransferase PIWI protein dimethylation 5

Tudor domain proteins: TDRD1, TDRD 2, TDRD4, 
TDRD6, TDRD7 and TDRD9 (mouse); Tud, SpnE, 
Fs(1)Yb, Vret, Krimp and Tej (D. melanogaster)

Tudor domain, 
dimethyl-arginine 
interaction

Various functions in the germ 
line

5

Fs(1)Yb, female sterile (1) Yb; HSP90, heat shock protein 90; IPO8, importin 8; Krimp, krimper; PRMT5, protein arginine 
N-methyltransferase 5; PUM, Pumilio; RACK1, receptor of activated C kinase 1; RHA, RNA helicase A; Smg, smaug; SpnE, spindle E; 
Tej, tejas; TNRC6A, trinucleotide repeat-containing gene 6A protein; Vret, vreteno.
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recent work has identified C. elegans AGO proteins with 
distinct nuclear functions. For example, a genetic screen 
for factors required for nuclear RNAi identified nuclear 
RNAi-defective 3 (NRDE-3). NRDE-3 is an Argonaute 
protein that contains a nuclear localization signal (NLS). It 
is loaded with small RNA in the cytoplasm and transports 
it into the nucleus, where the complex binds nascent tran-
scripts133. Subsequently, NRDE-2, which does not belong 
to the Argonaute protein family, is recruited and inhibits 
RNA polymerase II (RNA Pol II) during elongation134. 
Recent work135 has also implicated an Argonaute protein 
— heritable RNAi-defective 1 (HRDE-1) — in transmit-
ting the nuclear RNAi signal from parent to progeny in 
C. elegans. HRDE-1 associates with siRNAs in the nucleus 
of germ cells and directs trimethylation of H3K9. In hrde-1 
mutants, germline silencing is lost over generations. Thus, 
HRDE-1 and the nuclear RNAi machinery are used  
to transmit epigenetic information across generations135.

In D. melanogaster, it is also known that hetero-
chromatic silencing and heterochromatin protein 1 
(Hp1) localization is dependent on the RNAi machin-
ery, including Ago clade proteins136,137. In addition, a 
recent study found that Ago2 and Dcr2 could associate 
with transcriptionally active euchromatin and the core 
transcription machinery. In this study, deep sequencing 
of Ago2-asociated small RNAs showed that, after heat 
shock induction, Ago2 is enriched in small RNAs that 
encompass promoters and other regions of heat shock 
genes. Ago2-null mutants have impaired global RNA 
Pol II dynamics after heat shock, suggesting a role for 
Ago2 in controlling RNA Pol II activity120. Another 
study used chromatin immunoprecipitation followed 

by high-throughput sequencing (ChIP–seq) and con-
firmed that Ago2 is mainly associated with euchromatin. 
However, this association is independent of small RNA 
guides. Ago2 is directly recruited by the chromatin-asso-
ciated insulator proteins Ctcf and Cf190, and mutations 
in the genes encoding these proteins lead to a global loss 
of Ago2 chromatin association138. Unlike the situation in 
S. pombe, where RNAi triggers heterochromatin nuclea-
tion, D. melanogaster nuclear RNAi seems to affect RNA 
Pol activity at transcriptionally active regions.

RNAi has also been linked to transcriptional silenc-
ing in mammals. However, mainly owing to the lack of 
clear genetic data, AGO-clade-mediated transcriptional 
gene silencing remains unclear. AGO proteins are found 
in the nucleus of human cells, and a recent study has sug-
gested that trinucleotide repeat-containing gene 6A pro-
tein (TNRC6A), which is a GW protein that is required 
for miRNA function in the cytoplasm, seems to navigate 
AGO proteins into the nucleus using its NLS139. Early stud-
ies showed that AGO proteins interact with the transcrip-
tion machinery and mediate transcriptional silencing, 
including chromatin modification121,140,141. Subsequently, it 
was demonstrated that Argonaute-associated small RNAs 
that are directed against promoter sequences in fact tar-
get large sense or antisense transcripts that span the pro-
moter region of distinct genes142,143. Such large transcripts 
are very common and can have activating or inhibiting 
effects on gene expression. These data suggested a classi-
cal RNAi function rather than transcriptional silencing by 
chromatin modification.

Another interesting twist on nuclear AGO func-
tion in human cells came from the analysis of cellular 
senescence. AGO2 and retinoblastoma 1 (RB1) interact 
to repress RB1 target genes in senescence; this process 
has been termed senescence-associated transcriptional 
gene silencing (SA-TGS). The underlying mechanisms 
seem to involve silent-state chromatin modifications at 
the target promoters144.

AGO clade proteins and alternative splicing. The RNAi 
machinery has also been implicated in alternative splic-
ing processes in human cells. siRNAs that are directed 
against exonic or intronic sequences close to an alterna-
tive exon regulate alternative splicing145, and this effect 
seems to depend on AGO1. Why only this specific AGO 
protein is required is unknown.

A recent study also found that human AGO1 and 
AGO2 interact with chromatin modifiers and splicing 
factors146. This work showed that AGO proteins affect 
RNA polymerase II (RNA Pol II) elongation rates and 
recruit the spliceosome to splice sites. The mechanism 
seems to include methylation of H3K9, which slows 
RNA Pol II, allowing spliceosome assembly146. Very 
recently, D. melanogaster Ago2 has also been implicated 
in alternative splicing events147.

Although spliceosome composition and dynamics 
have been characterized in molecular detail148, Ago pro-
teins or other components of the silencing machinery 
have not yet been identified in any of the spliceosome 
preparations. More biochemical work will be required to 
solidify the model of Ago-mediated alternative splicing.

Figure 3 | Post-translational AGO protein modifications. AGO proteins can be 
hydroxylated by the type I collagen prolyl-4-hydroxylase (C-P4H(I)), which affects  
AGO protein stability. Poly(ADP-ribose) modification on stress leads to the relief of 
miRNA-guided repression. This modification is added by specific poly(ADP-ribose) 
polymerases, such as PARP13. Like many other proteins, AGO proteins can be 
ubiquitylated, resulting in AGO protein degradation. One reported example for a 
potential AGO-specific E3 ligase is TRIM71. Finally, several phosphorylation sites have 
been identified on AGO proteins. Phosphorylation at distinct sites seems to be 
important for correct AGO protein localization or efficient small RNA binding. 
Mitogen-activated protein kinase (MAPK) signalling has been associated with AGO 
function. AGO-specific kinases, however, have not yet been reported.
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AGO clade proteins and double-strand break repair 
mechanisms. DNA double-strand breaks frequently 
occur in eukaryotic cells, and various mechanisms have 
evolved to repair the DNA breaks. In A. thaliana, small 
RNAs are produced from the vicinity of the double- 
strand breaks and are referred to as double-strand-
break-induced small RNAs (diRNAs). Interestingly, 
such small RNAs are also found in human HeLa cells, 
and in both plants and humans, they are associated 
with AGO2. Both Dicer and AGO2 affect double-
strand break repair efficiency, suggesting an active role 

of these factors in this process149. Supporting this idea, 
deep sequencing from D. melanogaster cells in which 
a double-strand break has been induced in a reporter 
construct identified small RNAs originating from 
regions flanking the break150. Another study found that 
double-strand break repair requires Dicer and Drosha 
in human cells but does not require GW proteins. The 
requirement of AGO proteins was not tested in this 
study151. Many questions remain about this intriguing 
link between AGO proteins and double-strand break 
repair. Not least, it is not known how small RNAs are 
generated from the break locus.

Conclusions
Intensive research over the past 10 years has elucidated 
the main principles of Argonaute protein function. 
However, there are still major gaps in our understanding 
of Argonaute function on the molecular level. For exam-
ple, more structural work will be required to understand 
how loading of Argonaute proteins is facilitated. How 
do Argonaute proteins find their target RNAs, and  
how are Argonaute proteins removed from their targets 
when repression is relieved? Furthermore, are there 
specific Argonaute-unloading pathways? Experimental 
work into this direction has just been started152.

Another emerging area that has not yet been studied 
in depth is the crosstalk between signalling pathways 
and gene-silencing processes. Argonaute proteins and 
other factors that are required for small RNA function 
might be a part of phosphorylation cascades leading to 
increased or reduced activities. It is becoming increas-
ingly apparent that Argonaute proteins are parts of 
large regulatory networks. The networks themselves 
and the dynamics of such networks during cell differ-
entiation or signal transduction are poorly understood. 
Subtle changes in these networks might lead to mild 
but chronic effects on gene expression that might ulti-
mately lead to diseases such as cancer. Furthermore, 
long non-coding RNAs can be a part of these networks 
as well. Competition of coding and non-coding RNAs 
for Argonaute binding can influence gene silencing153. 
Therefore, a detailed understanding of Argonaute pro-
teins on both the molecular and cellular levels will help 
to unravel the principles and causes of diseases.
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Figure 4 | Potential nuclear functions of AGO clade proteins. a | Cleavage- 
competent AGO proteins can localize to the nucleus, where they can cleave 
complementary target RNAs in a classical RNA interference (RNAi) mechanisms. In case 
such RNAs are long non-coding RNAs that regulate gene transcription, cleavage of 
these RNAs might lead to activation or repression of genes, depending on the function 
of non-coding RNAs. b | One report has recently implicated nuclear AGO clade proteins 
in alternative splicing processes. c | In many organisms, nuclear AGO clade proteins 
engage in chromatin modification processes, leading to transcriptional silencing.  
d | Small RNAs originating from double-strand break regions have been reported. It has 
been shown that AGO proteins seem to influence double-strand break repair processes.
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