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The extraordinary versatility of proteins in catalyzing
chemical reactions and building cellular structures
was featured in the previous chapter. In this
chapter we consider the nucleic acids, the molecules that
(1) contain the information prescribing amino acid
sequence in proteins and (2) serve in the several cellular
structures that choose, and then link into the correct order,
the amino acids of a protein chain. Deoxyribonucleic acid
(DNA) is the storehouse, or cellular library, that contains
all the information required to build the cells and tissues
of an organism. The exact duplication of this information
in any species from generation to generation assures the
genetic continuity of that species. The information is
arranged in units identified by classical geneticists from
Gregor Mendel through Thomas Hunt Morgan, and
known now as genes, hereditary units controlling
identifiable traits of an organism. In the process of
transcription, the information stored in DNA is copied
into ribonucleic acid (RNA), which has three distinct roles
in protein synthesis. Messenger RNA (mRNA) carries the
instructions from DNA that specify the correct order of
amino acids during protein synthesis. The remarkably

accurate, stepwise assembly of amino acids into proteins occurs by translation
of mRNA. In this process, the information in mRNA is interpreted by a

second type of RNA called transfer RNA (tRNA) with the aid of a third type
of RNA, ribosomal RNA (rRNA), and its associated proteins. As the correct
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Jino acids are brought into sequence b
fi?lked by peptide bonds to make proteins)f RNAs, e
Discovery of the structure of DNA in 1953 ang th

cubsequent elucitflation of the steps in the synthesis of DIE\TA
RNA, and protein are the monumental achievements of thc;
carly days of molecular biology. To understand how DNA
directs synthesis of RNA, which then directs assembly of
roteins—the so-called central dogma of molecular biology
~_we first discuss the building blocks composing DNA
and RNA, the cell’s two primary nucleic acids, and thejr
general structures. We then introduce the basic mechanisms
of DNA and RNA chain synthesis, including a brief
discussion of gene structure, which reveals why molecular
processing is required to make functional RNA molecules,
Next we outline the roles of mRNA, tRNA, and rRNA in
protein synthesis. The chapter closes with a detailed
description of the components and biochemical steps in the
formation of proteins. Since the events of macromolecular
synthesis are so central to all biological functions—growth
control, differentiation, and the specialized chemical and
physical properties of cells—they will arise again and
again in later chapters. A firm grasp of the fundamentals
of DNA, RNA, and protein synthesis is necessary to
follow the subsequent discussions without difficulty.

41 Structure of Nucleic Acids

DNA and RNA have great chemical similarities. In their pri-
mary structures both are linear polymers (multiple chemical
units) composed of monomers (single chemical units), called
nucleotides. Cellular RNAs range in length from less than
one hundred to many thousands of nucleotides. Cellular
DNA molecules can be as long as several hundred million
nucleotides. These large DNA units in association with pro-
teins can be stained with dyes and visualized in the light mi-
croscope as chromosomes.

Polymerization of Nucleotides
Forms Nucleic Acids

DNA and RNA each consists of only four different nucleo-
tides. All nucleotides have a common structure: a phosphate
group linked by a phosphoester bond to a pentose {a five-
carbon sugar molecule) that in turn is linked to an organic
fva_se (Figure 4-1a). In RNA, the pentose is ribose; in DNA,
tis deoxyribose (Figure 4-1b). The only other difference in
the nucleotides of DNA and RNA is that one of the four or-
ganic bases differs between the two polymers. The bases ade-
line, guanine, and cytosine are found in both DNA and
A; thymine is found only in DNA, and uracil is found
only in RNA. The bases are often abbreviated A, G, C, T,
and U, respectively. For convenience the single letters are also
used when long sequences of nucleotides are written out.
he base components of nucleic acids are heterocyclic com-
Pounds with the rings containing nitrogen and carbon. Adenine
and guanine are purines, which contain a pair of fused rings;
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A FIGURE 4-1 All nucleotides have a common structure.

{a) Chemical structure of adenosine 5'-monophosphate (AMP), a
nucleotide that is present in RNA. All nucleotides are composed
of a phosphate moiety, containing up to three phosphate groups,
linked to the 5' hydroxyl of a pentose sugar, whose 1’ carbon is
linked to an organic base. By convention, the carbon atoms of
the pentoses are numbered with primes. In natural nuclectides,
the 1’ carbon is joined by a B linkage to the base, which is in the
plane above the furanose ring, as is the phosphate. (b} Haworth
projections of ribose and deoxyribose, the pentoses in nucleic
acids.

cytosine, thymine, and uracil are pyrimidines, which contain
a single ring (Figure 4-2). The acidic character of nucleotides
is due to the presence of phosphate, which dissociates at the
pH found inside cells, freeing hydrogen ions and leaving the
phosphate negatively charged (see Figure 2-22). Because these
charges attract proteins, most nucleic acids in cells are asso-
ciated with proteins. In nucleotides, the 1’ carbon atom of the
sugar (ribose or deoxyribose) is attached to the nitrogen at po-
sition 9 of a purine (Ng) or at position 1 of a pyrimidine (Ny).

Cells and extracellular fluids in organisms contain small
concentrations of nucleosides, combinations of a base and a
sugar without a phosphate. Nucleotides are nucleosides that
have one, two, or three phosphate groups esterified at the 5’
hydroxyl. Nucleoside monophosphates have a single esteri-
fied phosphate (see Figure 4-1a), diphosphates contain a
prophosphate group
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A FIGURE 4-2 The chemical structures of the principal bases
in nucleic acids. In nucleic acids and nucleotides, nitrogen 9 of
purines and nitrogen 1 of pyrimidines (red) are bonded to the 1’
caruon of ribose or deoxyribose.

and triphosphates have a third phosphate. Table 4-1 lists the
names of the nucleosides and nucleotides in nucleic acids
and the various forms of nucleoside phosphates. As we will
see later, the nucleoside triphosphates are used in the syn-
thesis of nucleic acids. However, these compounds also serve
many other functions in the cell: ATP, for example, is the
most widely used energy carrier in the cell (see Figure 2-25),
and GTP plays crucial roles in intracellular signaling and
acts as an energy reservoir, particularly in protein synthesis.

When nucleotides polymerize to form nucleic acids, the
hydroxyl group attached to the 3’ carbon of a sugar of one
nucleotide forms an ester bond to the phosphate of another
nucleotide, eliminating a molecule of water:

(Base), O (Base),
{Sugar)—OH + HO~II’I——O—(Sugar) =k
(!)_
(l{?vase,'r1 (]:]) (Base),
(Sugar)—0¥ll’ﬁ0—(5ugar} + H,0
o-

This condensation reaction is similar to that in which a pep-
tide bond is formed berween two amino acids (Chapter 3).
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Thus a single nucleic acid strand is a phﬂsphate-pentmc
polymer (a polyester) with purine and pyrimidine bases 4
side groups. The links between the nucleotides are calleg
phosphodiester bonds. Like a polypeptide, a nucleic acid
strand has an end-to-end chemical orientation: the 57 ¢y
has a free hydroxyl or phosphate group on the 5" carbop o
its terminal sugar; the 3 end has a free hydroxyl group op
the 3’ carbon of its terminal sugar (Figure 4-3). This direc.
tionality, plus the fact that synthesis proceeds 5’ to 3", by

3’ end OH H

A FIGURE 4-3 Alternative ways of representing nucleic acid
chains, in this case a single strand of DNA containing only
three bases: cytosine (C), adenine (A), and guanine (G).

(a) Chemical structure of the trinucleotide CAG. Note the free
hydroxyl group at the 3’ end and free phosphate group at the
5 end. (b) Two common simplified methods of representing
polynucleotides. In the “stick” diagram fleft), the sugars are ind*
cated as vertical lines and the phosphodiester bonds as slanting
lines; the bases are denoted by their single-letter abbreviations.
In the simplest representation (right), the bases are indicated
by single letters. By convention, a polynuclectide sequence is
always written in the 5’ — 3’ direction (left to right).
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e r- ML Naming Nucleosides and Nucleotides

Bases
e ?_‘f_"if‘_ﬁ? _________________________ Pyrimidines L
. Uracil (U)
Adenine (A) Guanine (G) Cytosine (C) Thyinine [T]
Nucleosides _in Ili:,: Adenosine . Guanosine . Cytidine - Uridine
m I'{\ \ D'»‘[”-“,\"-‘dt‘ﬂ“ﬁlnt‘ Deoxypguanosine Deoxycytidine Deoxythymidine
s m I/ "\( L-ﬂ\'l&'lte (‘.u»“-lvl-'ln_\ C\’tid\'lqte Urid\'l t
leotides { . ) : wanvl; vtidyl: ylate
Nuc in DNA Deoxyadenylate Deoxyguanylate Deoxycytidylate Thymidylate
Nucleoside monophosphates AMP GMP CMP UMP
Nucleoside diphosphates ADP GDP CDP UDP
Nucleoside triphosphates ATP GTP CTP UTP

Deoxynucleoside mono-,

di-, and triphosphates dAMP, ete.

given rise to the convention that polynucleotide sequences
are written and read in the 5’ — 3’ direction (from left to
right); for example, the sequence AUG is assumed to be
(5")AUG(3"). (Although, strictly speaking, the letters A, G,
C, T, and U stand for bases, they are also often used in di-
agrams to represent the whole nucleotides containing these
bases.) The 5" — 3’ directionality of a nucleic acid strand
is an extremely important property of the molecule.

The linear sequence of nucleotides linked by phospho-
diester bonds constitutes the primary structure of nucleic
acids. As we discuss in the next section, polynucleotides can
twist and fold into three-dimensional conformations stabi-
lized by noncovalent bonds; in this respect, they are similar
to polypeptides. Although the primary structures of DNA
and RNA are generally similar, their conformations are quite
different. Unlike RNA, which commonly exists as a single
polynucleotide chain, or strand, DNA contains two inter-
twined polynucleotide strands. This structural difference is

critical to the different functions of the two types of nucleic
acids.

Native DNA Is a Double Helix of
Complementary Antiparallel Chains

The modern era of molecular biology began in 1953 when
James D. Watson and Francis H. C. Crick proposed cor-
rectly the double-helical structure of DNA, based on the
analysis of x-ray diffraction patterns coupled with careful
model building. A closer look at the “thread of life,” as the
DNA molecule is sometimes called, shows why the discov-
¢ty of its basic structure suggests its function.

DNA consists of two associated polynucleotide strands
that wind rogezher through space to form a structure often
described as a double helix. The two sugar-phosphate back-

ones are on the outside of the double helix, and the bases

project into the interior. The adjoining bases in each strand
stack on top of one another in parallel planes (Figure 4-4a).
The orientation of the two strands is antiparallel; that is,
their 5’ — 3' directions are opposite. The strands are held
in precise register by a regular base-pairing between the two
strands: A is paired with T through two hydrogen bonds; G
is paired with C through three hydrogen bonds (Figure
4-4b). This base-pair complementarity is a consequence of
the size, shape, and chemical composition of the bases. The
presence of thousands of such hydrogen bonds in 2 DNA
molecule contributes greatly to the stability of the double
helix. Hydrophobic and van der Waals interactions between
the stacked adjacent base pairs also contribute to the sta-
bility of the DNA structure.

To maintain the geometry of the double-helical structure
shown in Figure 4-4a, a larger purine (A or G) must pair
with a smaller pyrimidine (C or T). In natural DNA, A al-
most always hydrogen bonds with T and G with C, form-
ing A'T and G-C base pairs often called Watson-Crick base
pairs. Two polynucleotide strands, or regions thereof, in
which all the nucleotides form such base pairs are said to
be complementary. However, in theory and in synthetic
DNAs other interactions can occur. For example, a guanine
(a purine) could theoretically form hydrogen bonds with a
thymine (a pyrimidine), causing only a minor distortion in
the helix. The space available in the helix also would allow
pairing between the two pyrimidines cytosine and thymine.
Although the nonstandard G-T and C-T base pairs are nor-
mally not found in DNA, G-U base pairs are quite common
in double-helical regions that form within otherwise single-
stranded RNA.

Two polynucleotide strands can, in principle, form ei-
ther a right-handed or a left-handed helix (Figure 4-5). Be-
cause the geometry of the sugar-phosphate backbone is more
compatible with the former, natural DNA is a right-handed
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(a)

Minor
groove

Normal B DNA

A FIGURE 4-4 Two representations of contacts within the
DNA double helix. (a) Space-filling model of B DNA, the most
common form of DNA in cells. The sugar and phosphate
residues (gray) in each strand form the backbone, which is traced
by a red line, showing the helical twist of the overall molecule.
The bases project inward, but are accessible through major and
minor grooves; a pair of bases from opposite strands in the ma-
jor groove are highlighted in light and dark blue. The hydrogen
bonds between the bases are in the center of the structure.

(b) Stick diagram of the chemical structure of double-helical DNA,
unraveled to show the sugar-phosphate backbones (sugar rings
in green), base-paired bases (light blue and light red), and hydro-
gen bonds between the bases (dark red dotted lines). The back-
bones run in opposite directions; the 5’ and 3’ ends are named
for the orientation of the 5 and 3’ carbon atoms of the sugar
rings. Each base pair has one purine base—adenine (A) or
guanine (G)—and one pyrimidine base—thymine (T) or

helix. The x-ray diffraction pattern of DNA indicates that
the stacked bases are regularly spaced 0.34 nm apart along
the helix axis. The helix makes a complete turn every
3.4 nm; thus there are about 10 pairs per turn, This is re-
ferred to as the B form of DNA, the normal form present
in most DNA stretches in cells (Figure 4-6a). On the
outside of B-form DNA, the spaces between the inter-
twined strands form two helical grooves of different
widths described as the major groove and the minor
groove (see Figure 4-4a). Consequently, part of each base
is accessible from outside the helix to both small and large
molecules that bind to the DNA by contacting chemical
groups within the grooves. These two binding surfaces of
the DNA molecule are used by different classes of DNA-
binding proteins.

In addition to the major B form of DNA, three addi-
tional structures have been described. In very low humidity,
the crystallographic structure of B DNA changes to the A
form; RNA-DNA and RNA-RNA helices also exist in
this form. The A form is more compact than the B form,
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(b) 3

cytosine (C)—connected by hydrogen bonds. In this diagram,
carbon atoms occur at the junction of every line with another line
and na hydrogen atoms are shown. [Part (a) courtesy of A. Rich; part
(b) from R. E. Dickerson, 1983, Sci. Am. 249(6):94.]
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Left-handed

Right-handed
double helix

double helix

A FIGURE 4-5 Two possible helical forms of DNA are mirrof
images of each other, The geometry of the sugar-phosphate
backbone of DNA causes natural DNA to be right-handed. (Right
handed and left-handed are defined by convention.)
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having 11 bases per turn, and the stacked bases are tilted
(Figure 4-6b). Short DNA molecules composed of alternat-
ing purine-pyrimidine nucleotides (especially Gs and Cs)
adopt an alternative left-handed configuration instead of the
normal right-handed helix. This structure is called Z DNA
because the bases seem to zigzag when viewed from the side
(Figure 4-6¢). It is entirely possible that both A-form and
Z-form stretches of DNA exist in cells.

Finally, a triple-stranded DNA structure can also exist
at least in the test tube, and possibly during recombination
and DNA repair. For example, when synthetic polymers of
poly(A) and polydeoxy(U) are mixed, a three-stranded struc-
ture is formed (Figure 4-6d). Further, long homopolymeric
stretches of DNA composed of C and T residues in one
strand and A and G residues in the other can be targeted by
short matching lengths of poly(C+T). The synthetic oligonu-
cleotide can insert as a third strand, binding in a
sequence-specific manner by so-called Hoogsteen base paits.
Specific cleavage of the DNA at the site where the triple he-
lix ends can be achieved by attaching a chemical cleaving
agent (e.g., Fe’*-EDTA) to the short oligodeoxynucleotide
that makes up the third strand. Such reactions may be use-
ful in studying site-specific DNA damage in cells.

By far the most important modifications in standard
B-form DNA come about as a result of protein binding
to specific DNA sequences. Although the multitude of
hydrogen and hydrophobic bonds between the polynu-
f:leotide strands provide stability to DNA, the double helix
1s somewhat flexible about its long axis. Unlike the « helix
In proteins (see Figure 3-6), there are no hydrogen bonds

(d) Triple-Helical DNA
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<4 FIGURE 4-6 Models of various DNA
structures that are known to exist. The
sugar-phosphate backbone of each chain is
on the outside in all structures (one red and
one blue) with the bases (silver) oriented
inward. Side views are shown at the top,

and views along the helical axis at the bot-
tom. (a) The B form of DNA, the usual form
in cells, is characterized by a helical turn every
10 base pairs (3.4 nm); adjacent stacked base
pairs are 0.34 nm apart. The major and minor
grooves are also visible. (b) The more com-
pact A form of DNA has 11 base pairs per
turn and exhibits a large tilt of the base pairs
with respect to the helix axis. In addition, the
A form has a central hole (bottom). This helical
form is adopted by RNA-DNA and RNA-RNA
helices. (c) Z DNA is a left-handed helix and
has a zig-zag (hence “Z") appearance. (d) A
triple-helical structure can occur in stretches
of DNA where all purines (A, G) in one strand
are matched by all pyrimidines (T, C) in the
other strand. Such stretches can accommo-
date a third polypyrimidine strand (yellow).
[Courtesy of C. Kielkopf and P. B. Dervan.]

between successive residues in a DNA strand. This prop-
erty allows DNA to bend when complexed with a DNA-
binding protein. Crystallographic analyses of proteins bound
to particular regions of DNA have conclusively demon-
strated departures from the standard B-DNA structure in
protein-DNA complexes. Two examples of DNA deformed
by contact with proteins are shown in Figure 4-7. The
specific DNA-protein contacts that occur in these tightly
bound complexes have the ability both to untwist the DNA
and to bend the axis of the helix. Although DNA in cells
likely exists in the B form most of the time, particular re-
gions bound to protein clearly depart from the standard
conformation.

DNA Can Undergo Reversible Strand Separation

In DNA replication and in the copying of RNA from DNA,
the strands of the helix must separate at least temporarily.
As we discuss later, during DNA synthesis two new strands
are made (one copied from each of the original strands), re-
sulting in two double helices identical with the original one.
In the case of copying the DNA template to make RNA, the
RNA is released and the two DNA strands reassociate with
each other.

The unwinding and separation of DNA strands, referred
to as denaturation, or “melting,” can be induced experi-
mentally. For example, if a solution of DNA is heated, the
thermal energy increases molecular motion, eventually
breaking the hydrogen bonds and other forces that stabilize
the double helix, and the strands separate (Figure 4-8). This
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(a)

A FIGURE 4-7 Bending of DNA resuiting from protein binding.
(a) A linear DNA (left) is shown binding a repressor protein
encoded by bacteriophage 434 (center); the resulting bend in

the DNA (right) is easily seen by comparisen with the linear
molecule. Binding of this repressor to the viral genome prevents
its transcription by bacterial host-cell enzymes. (b) Binding of
TATA box-binding protein (TBP) to DNA causes a complete
change in the winding and direction of the double helix. Tran-
scription of most eukaryotic genes reguires participation of TBP.
({Inset) Copper pipe bent to mimic the path of the DNA backbone
in the DNA-TBP complex. [Part (a) from A. K. Aggarwal et al., 1988,
Science 242:899; courtesy of 5. C. Harrison. Part (b) fram D. B. Nicolov
and S. K. Burley, 1997, Proc. Natl Acad. Sci. USA 94:15; courtesy of

S. K. Burley.)

melting of DNA changes its absorption of ultraviolet (UV)
light (in the 260-nm range), which is routinely used to mea-
sure DNA concentration because of the high absorbance
of UV light by nucleic acid bases. Native double-stranded
DNA absorbs about one-half as much light at 260 nm
as does the equivalent amount of single-stranded DNA

3 5' 3 5" 5 3
A-T— T— —A
A-T— A— -7
— —T-A— G— ~C
T} “—-T-A¥ Heat, OH- C— —G
3 F ———3 C— -G
' G— —C
— ~G-C— i - 8
[—C-G— T A

S

[ <

[}

3l 5' 3! 5I 3I 5!
Native state

Single-stranded denatured state

Nucleic Acids, the Genetic Codg, and the Synthesis of Macromolecules

(b)

(Figure 4-9a). Thus, as DNA denatures, its absorption of
UV light increases. Near the denaturation temperature, 2
small increase in temperature causes an abrupt, near simul-
taneous, loss of the multiple, weak, cooperative interactions
holding the two strands together, so that denaturation
rapidly occurs throughout the entire length of the DNA.

5 3 3 5 3 5
—A —T  Renaturation ¢ -T-A- i 'A'{r‘___
—A —T  (special A-T— = a
—T —A  conditions -G-C— %T}_g
-7 —A  required) —_'C‘C# < g
-G —C 2 =~
—C —G o

-6 —C =S

7 7
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i & ’? = 3 5
Renatured state

A FIGURE 4-8 The denaturation and renaturation of double-stranded DNA molecules.
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A FIGURE 4-9 Light absorption and temperature in DNA
denaturation. (a) Melting of doubled-stranded DNA can be
monitored by the absorption of ultraviolet light at 260 nm. As
regions of double-stranded DNA unpair, the absorption of light
by those regions increases almost twofold. The temperature at
which half the bases in a double-stranded DNA sample have

The melting temperature, T, at which the strands of DNA
will separate depends on several factors. Molecules that con-
tain a greater proportion of G-C pairs require higher temper-
atures to denature because the three hydrogen bonds in G-C
pairs make them more stable than A-T pairs with two hydro-
gen bonds (see Figure 4-4b). Indeed, the percentage of G-C
base pairs in a DNA sample can be estimated from its Ty,
(Figure 4-9b). In addition to heat, solutions of low ion con-
centration destabilize the double helix, causing it to melt at
lower temperatures. DNA is also denatured by exposure to
other agents that destabilize hydrogen bonds, such as alkaline
solutions and concentrated solutions of formamide or urea:

0 0
HC—NH, H,N—C—NH,
Formamide Urea

The single-stranded DNA molecules that result from de-
naturation form random coils without a regular structure.
Lowering the temperature or increasing the ion concentra-
tion causes the two complementary strands to reassociate
into a perfect double helix (see Figure 4-8). The extent of
such renaturation is dependent on time, the DNA concen-
tration, and the ionic content of the solution. Two DNA
strands not related in sequence will remain as random
coils and will not renature and, most important, will not
greatly inhibit complementary DNA partner strands from
finding each other. Denaturation and renaturation of
DNA are the basis of nucleic acid hybridization, a power-
ful technique used to study the relatedness of two DNA sam-
ples and to detect and isolate specific DNA molecules in a

Percentage of G+C pairs k
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denatured is denoted T, (for temperature of melting). Light
absorption by single-stranded DNA changes much less as the
temperature is increased. (b) The T, is a function of the G- C
content of the DNA; the higher the G+ C percentage, the greater
the T

mixture containing numerous different DNA sequences
(Chapter 7).

Many DNA Molecules Are Circular

All prokaryotic genomic DNAs and many viral DNAs are
circular molecules. Circular DNA molecules also occur in
mitochondria, which are present in almost all eukaryotic
cells, and in chloroplasts, which are present in plants and
some unicellular eukaryotes.

Each of the two strands in a circular DNA molecule
forms a closed structure without free ends. Just as is the
case for linear DNA, elevated temperatures or alkaline pH
destroy the hydrogen bonds and other interactions that
stabilize double-helical circular DNA molecules. Unlike lin-
ear DNA, however, the two strands of circular DNA can-
not unwind and separate; attempts to melt such DNA re-
sult in an interlocked, tangled mass of single-stranded DNA
(Figure 4-10a).

Only if a native circular DNA is nicked (i.e., one of the
strands is cut), will the two strands unwind and separate
when the molecule is denatured. In this case, one of the sep-
arated strands is circular, and the other is linear (Figure
4-10b). Nicking of circular DNA occurs naturally during
DNA replication and can be induced experimentally with a
low concentration of deoxyribonuclease (a DNA-degrading
enzyme), so that only a single phosphodiester bond in the
molecule is cleaved. The study of circular DNA molecules
lacking free ends first uncovered the complicated geometric
shape changes that the double-stranded DNA molecule must
undergo when the strands are not free to separate.
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Tangled linked strands

Double-stranded
native molecule

Strands competely separated

Nick in one strand

A FIGURE 4-10 Denaturation of circular DNA. (a) If both
strands are closed circles, denaturation disrupts the double helix,
but the two single strands become tangled about each other and
cannot separate. (b) If one or both strands are nicked, however,
the two strands will separate on thermal denaturation.

Local Unwinding of DNA Induces Supercoiling

So far we have described DNA as a long regular helical struc-
ture that can have local perturbations, especially due to pro-
tein binding. In addition, when the two ends of a DNA mol-
ecule are fixed, the molecule exhibits a superstructure under
certain conditions. This occurs when the base pairing is in-
terrupted and a local region unwinds. The stress induced by
unwinding is relieved by twisting of the double helix on it-
self, forming supercoils (Figure 4-11). Unwinding and sub-
sequent supercoiling occurs during replication, transcrip-
tion, and binding of many proteins to circular DNAs or to
long DNA loops whose ends are fixed within eukaryotic
chromosomes. Supercoiling is recognized and regulated by
enzymes called topoisomerases. As discussed in later chap-
ters, these enzymes have an important role in both DNA
replication and the transcription of DNA into RNA.
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RNA Molecules Exhibit Varied
Conformations and Functions

As noted earlier, the primary structure of RNA is generally
similar to that of DNA; however, the sugar component (ti-
bose) of RNA has an additional hydroxyl group at the 2 Po-
sition (see Figure 4-1b), and thymine in DNA is replaced by
uracil in RNA (see Figure 4-2). The hydroxyl group on C,
of ribose makes RNA more chemically labile than DNA 354
provides a chemically reactive group that takes part in RNA.
mediated enzymatic events. As a result of this lability, RNj
is cleaved into mononucleotides by alkaline solution, whereag
DNA is not. Like DNA, RNA is a long polynucleotide that
can be double-stranded or single-stranded, linear or circylar
It can also participate in a hybrid helix composed of one RNA
strand and one DNA strand; this hybrid has a slightly dif.
ferent conformation than the common B form of DNA,

Unlike DNA, which exists primarily in a single, very long
three-dimensional structure, the double helix, the various
types of RNA exhibit different conformations. Differences
in the sizes and conformations of the various types of RNA
permit them to carry out specific functions in a cell. The
simplest secondary structures in single-stranded RNAs are
formed by pairing of complementary bases. “Hairpins” are
formed by pairing of bases within =5-10 nucleotides of
each other, and “stem-loops” by pairing of bases that are
separated by =50 to several hundred nucleotides (Figure
4-12a). These simple folds can cooperate to form more com-
plicated tertiary structures, one of which is termed a
“pseudoknot” (Figure 4-12b).

As discussed in detail later, tRNA molecules adopt a well-
defined three-dimensional architecture in solution that is
crucial in protein synthesis. Larger rRNA molecules also
have locally well defined three-dimensional structures, with
more flexible links in between. Secondary and tertiary struc-
tures also have been recognized in mRNA, particularly near
the ends of molecules. These recently discovered structures
are under active study. Clearly, then, RNA molecules are like
proteins in that they have structured domains connected by
less structured, flexible stretches.

The folded domains of RNA molecules not only are
structurally analogous to the a helices and B strands found
in proteins, but in some cases also have catalytic capacities.
Such catalytic RNAs, called ribozymes, can cut RNA chains.
Some RNA domains also can catalyze RNA splicing, a ré-
markable process in which an internal RNA sequence, 3
intron, is cut and removed and the two resulting chains, the
exons, are sealed together. This process occurs during for-
mation of the majority of functional mRNA molecules in
eukaryotic cells, and also occurs in bacteria and archaea:
Remarkably, some RNAs carry out self-splicing, with the
caralytic activity residing in the intron sequence. The mec}_l'
anisms of splicing and self-splicing are discussed in derail it
Chapter 11. As noted later in this chapter, rRNA is thought
to play a catalytic role in the formation of peptide bonds
during protein synthesis.
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A FIGURE 4-12 RNA secondary and tertiary structures.

(a) Stem-loops, hairpins, and other secondary structures can
form by base pairing between distant complementary segments
of an RNA molecule. In stem-loops, the single-stranded loop
(dark red) between the base-paired helical stem (light red) may
be hundreds or even thousands of nucleotides long, whereas in
hairpins, the short turn may contain as few as 6-8 nucleotides.
b) Interactions between the flexible loops may result in further
fo!ding to form tertiary structures such as the pseudoknot. This
tertiary structure resembles a figure-eight knot, but the free
ends do not pass through the loops, so no knot is actually
formed, [Part (b) adapted from C. W. A, Pleij et al., 1985, Nucl. Acids
Res, 1311717

Structure of Nucleic Acids | 109

<4 FIGURE 4-11 Supercoiling in electron
micrographs of DNA isolated from the SV40
virus. When isolated SV40 DNA is separated
from its associated protein, the DNA duplex is
underwound and assumes the supercoiled
configuration (form 1). If one strand is nicked,
the strands can rewind, producing the relaxed-
circle configuration (form 1), which lacks super-
coils. Only a few of the possible supercoils are
visualized in the left photograph.

In this chapter, we focus on the functions of mRNA,
tRNA, and rRNA in gene expression—the process of get-
ting the information in DNA converted into proteins. In later
chapters we will encounter other RNAs, often associated
with proteins, that participate in other cell functions.

SUMMARY Structure of Nucleic Acids

* Deoxyribonucleic acid (DNA), the genetic material,
carries information to specify the amino acid sequences
of proteins, It is transcribed into several types of ribo-
nucleic acid (RNA) including messenger RNA (mRNA),

- transfer RNA (tRNA), and ribosomal RNA (rRNA),
which function in protein synthesis.

* Both DNA and RNA are long, unbranched polymers
of nucleotides. Each nucleotide consists of a heterocyclic
base linked via a five-carbon sugar (deoxyribose or
ribose) to a phosphate group (see Figure 4-1).

* DNA and RNA each contain four different bases
(see Figure 4-2). The purines adenine (A) and guanine
(G) and the pyrimidine cytosine (C) are present in both
DNA and RNA. The pyrimidine thymine (T) present in
DNA is replaced by the pyrimidine uracil (U) in RNA.

® The bases in nucleic acids can interact via hydrogen
bonds. The standard Watson-Crick base pairs are G-C,
AT (in DNA), and A-U (in RNA). Base pairing stabi-
lizes the native three-dimensional structures of DNA
and RNA.

¢ Adjacent nucleotides in a polynucleotide are linked
by phosphodiester bonds. The entire strand has a chem-
ical directionality: the 5’ end with a free hydroxyl or
phosphate group on the 5’ carbon of the sugar, and the
3" end with a free hydroxyl group on the 3’ carbon of
the sugar (see Figure 4-3). Polynucleotide sequences are
always written in the 5' — 3’ direction (left to right).
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e Natural DNA (B DNA) contains two complementary
polynucleotide strands wound together into a regular
right-handed double helix with the bases on the inside
and the two sugar-phosphate backbones on the outside
(see Figure 4-6a). Base pairing (AT and G-C) and
hydrophobic interactions between adjacent bases in the
same strand stabilize this native structure.

* Binding of protein to DNA can deform its helical

structure, causing local bending or unwinding of the
DNA molecule.

* Heat causes the DNA strands to separate (denature).
The melting temperature of DNA increases with the per-
centage of G-C base pairs. Under suitable conditions, sep-
arated complementary nucleic acid strands will renature.

* Local unwinding of the DNA helix induces stress,

which is relieved by twisting of the molecule on itself,
forming supercoils. This process is regulated by topo-
isomerases, which can add or remove supercoils.

¢ Natural RNAs are single-stranded polynucleotides
that form well-defined secondary and tertiary structures
(see Figure 4-12). Some RNAs, called ribozymes, have
catalytic activity.

4.2 Synthesis of Biopolymers:
Rules of Macromolecular
Carpentry

According to the central dogma of molecular biology,
DNA directs the synthesis of RNA, and RNA then directs
the synthesis of proteins. However, the one-way flow of
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information posited by the central dogma—that is, DNy -
RNA — protein—does not reflect the role of proteins iy fa.
cilitating the information flow. A more accurate way of re,,
resenting the relationship between the synthesis of DNA,
RNA, and proteins in all cells would look like

DNA — RNA — protein
(i t |

indicating that special proteins catalyze the synthesis of both
RNA and DNA.

Interestingly, although the primary and higher-order stry.
tures of nucleic acids and proteins differ radically, several com-
mon principles apply to the synthesis of both types of macro-
molecules. Research over the past 30 years has revealed tha
giant molecular machines, composed largely of proteins, as-
semble nucleotides into RNA and DNA and amino acids intp
proteins. Later in this chapter and in subsequent chapters, we
examine in detail the molecular machines that synthesize nu-
cleic acids and proteins. To set the stage for these more de-
tailed discussions, we review four general rules that govem
the synthesis of both polypeptide and polynucleotide chains:

® Proteins and nucleic acids are made up of a limited
number of different monomeric building blocks.
Although the number of amino acids is theoretically
limitless, and several dozen have been identified as
metabolic products in various organisms, only 20
different amino acids are used in making proteins.
Likewise, only five nitrogenous bases are used to
construct RNA and DNA in cells. Cell-free enzyme
preparations and cells in culture can be “fooled” into
incorporating chemical relatives of the five bases or 20
amino acids, but this almost never happens in nature.

Growth of a polypeptide
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» FIGURE 4-13 Chain elongation e <3 ‘ .
in the in vivo SynthGSis of both pro- HHOHUHGOHUHTOUHIUHDGOH (5]
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sequential addition of monomeric - H_N‘?*C—N_?*C—N—'(II-—C-—N—-(IS—C—N—?—C—OH + Hy
units—amino acids and nucleotides, R, R, Ry R, Rs

respectively. Elongation of a polypep-
tide chain proceeds from the N-termi-
nus to the C-terminus. (R,, Rz, etc., N, N,
denote side chains of amino acids.)
Elongation of a polynucleotide chain
proceeds from the 5' end to the 3’
end. As each nucleotide is added, a
pyrophosphate group (PP) is released,
but the 5" end of the first nucleotide in
the chain retains its triphosphate
group. (N;, N2, etc., denote purine
and pynmidine bases.)

Growth of a nucleic acid
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OH + OH
PP P—5 PPP— 5
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A FIGURE 4-14 Proteins and nucleic acids typically undergo
one or more modifications after the basic polymeric chains
are formed. RNA, DNA, and protein can be cleaved; DNA pieces
must be ligated dunng synthesis. Splicing, the removal of an
internal sequence and reunicn of the end pieces, often occurs in
RNA synthesis; a similar reaction (intein removal) occurs in the

* The monomers are added one at a time. Biological
polymers theoretically could be built by aligning their
component monomeric units in the correct order on a
template, or mold, and simultaneously fusing them all.
But cells do not use this mechanism. Rather, the assembly
of proteins and nucleic acids occurs through the step-by-
step addition of monomers.

¢ Each polypeptide and polynucleotide chain bas a
specific starting point, and growth proceeds in one
direction to a fixed terminus. Synthesis of chains begins
and ends at well-defined “start” and “stop” signals.
Monomer addition proceeds from the amino (NH,-)
terminus to the carboxyl (COOH-) terminus in proteins,
and from the 5’ end to the 3’ end in nucleic acids
(Figure 4-13).

* The primary synthetic product is often modified. The
initially synthesized form of a polypeptide or polynucleo-
tide chain is often inactive or incomplete and undergoes
modification to yield an active molecule (Figure 4-14).
Protein chains are often shortened, and RNA chains
almost always are; DNA chains are made in pieces and
then linked together, Distant segments of long RNA
chains may be spliced together, eliminating the interven-
ing sequence (intron). A similar process occurs in some
proteins (see Figure 3-17). Polypeptide chains sometimes
are cross-linked by covalent bonds to form a functional
Protein. Finally, certain chemical groups may be added
either during the formation of the chain or after its
synthesis is complete: e.g., methyl groups to specific sites
in DNA, RNA, and proteins; phosphate groups and a
wide variety of oligosaccharides to proteins. The dertails

of this macromolecular carpentry are discussed in later
chapters,

|
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formation of some proteins. Covalent chemical cross-linking
between protein chains is common, but cross-linking is rare in
nucleic acids. Besides the modifications to the polymeric chains
illustrated here, individual chemical groups (e.g., phosphate, nitrate,
sulfate, methyl, and acetyl groups) may be added. Various types
of postpolymerization changes are discussed in later chapters.

43 Nucleic Acid Synthesis

The ordered assembly of deoxyribonucleotides into DNA
and of ribonucleotides into RNA involves somewhat sim-
pler cellular mechanisms than the correct assembly of the
amino acids in a protein chain. Here we consider a few gen-
eral principles governing the formation of polynucleotide
chains in cells and briefly discuss some properties of the en-
zymes that carry out such synthesis. We also describe the
steps in the production of mRNA and examine how and
why this process differs in bacteria and eukaryotes. Later
chapters cover the mechanism of DNA replication and its
control during cell growth and division, and the mechanism
and the control of the synthesis of specific mRNAs during
differentiation (Chapters 10 and 12).

Both DNA and RNA Chains Are Produced
by Copying of Template DNA Strands

The regular pairing of bases in the double-helical DNA struc-
ture suggested to Watson and Crick a mechanism of DNA
synthesis. Their proposal that new strands of DNA are syn-
thesized by copying of parental strands of DNA has proved
to be correct.

The DNA strand that is copied to form a new strand is
called a template. The information in the template is pre-
served: although the first copy has a complementary se-
quence, not an identical one, a copy of the copy produces
the original (template) sequence again. In the replication of
a double-stranded, or duplex, DNA molecule, both original
(parental) DNA strands are copied. When copying is fin-
ished, the two new duplexes, each consisting of one of the
two original strands plus its copy, separate from each other.
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In some viruses, single-stranded RNA molecules function as
templates for synthesis of complementary RNA or DNA
chains (Chapter 7). However, the vast majority of RNA and
DNA in cells is synthesized from preexisting duplex DNA.

Nucleic Acid Strands Grow
in the 5 - 3’ Direction

All RNA and DNA synthesis, both cellular and viral, pro-
ceeds in the same chemical direction: from the 5’ (phos-
phate) end to the 3’ (hydroxyl) end (see Figure 4-13). Nu-
cleic acid chains are assembled from 5’ triphosphates of
ribonucleosides or deoxyribonucleosides. Strand growth is
energetically unfavorable but is driven by the energy avail-
able in the triphosphates. The a phosphate of the incoming
nucleotide attaches to the 3' hydroxyl of the ribose (or de-
oxyribose) of the preceding residue to form a phosphodi-
ester bond, releasing a pyrophosphate (PP;). The equilibrium
of the reaction is driven further toward chain elongation by
pyrophosphatase, which catalyzes the cleavage of PP, into
two molecules of inorganic phosphate (see Table 2-7).

RNA polymerase

(@) Binding of RNA
polymerase

@ Separation of DNA

Basic Transcriptional Mechanism

MEDIA CONNECTIONS

(3) Base pairing of first

é‘"‘k nucleoside
(l‘ triphosphate to
|_ starting base in DNA

(4) Binding of second
nucleoside
triphosphate and
formation of phosphodiester
bond between its 5’ phosphate
and the 3' hydroxyl on
previous nucleotide

pCt

@ Binding and VW\ a0

addition of third - A oR

nucleoside triphosphate;

continuation of process with each

successive nucleoside triphosphate,

as RNA polymerase moves along

template DNA

ARTDPA
UpA;
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RNA Polymerases Can Initiate Strand Growth
but DNA Polymerases Cannot

The enzymes that copy (replicate) DNA to make moye DNp
are DNA polymerases; those that copy (transcribe) DNA
form RNA are RNA polymerases. Because the twq DNE
strands are complementary, rather than identical, transcryy,
tion of a particular DNA segment theoretically could yieﬁj
two mRNAs with different sequences and hence differep
protein-coding potentials. Generally, only one strand of the
duplex in a particular DNA segment gives rise to usable in-
formation when transcribed into mRNA. In unusya] Cases
though, limited sections of DNA encode proteins on both
strands.

An RNA polymerase can find an appropriate initiatjq
site on duplex DNA; bind the DNA; temporarily “Ielt,”
or separate, the two strands in that region; and begin gen-
erating a new RNA strand (Figure 4-15). As discusseq
in Chapter 10, the location and regulated use of trap.
scription start sites to produce mRNA requires many
dozens of proteins in eukaryotes and several proteins

4 FIGURE 4-15 Transcription
of DNA into RNA is catalyzed
by RNA polymerase, which
can initiate the synthesis of
strands de novo on DNA

PTp ;
9%",‘%_ 3 ApG ) templates. The nucleotide &t

the 5’ end of an RNA strand
retains all three of its phosphate
groups; all subsequent nucled-

PPPAoH | Pyrophos- tides release pyrophosphaté
phatase (PP) when added to the chain
and retain only their a phos-
Pg, 2P phate (red). The released PP; Is
% Pp Lr subsequently hydrolyzed by

. pyrophosphatase to P; driving
the equilibrium of the overall_
reaction toward chain elongation:
In most cases, only one DNA

strand is transcribed into RNA:




even in bacteria. The nucleotide at the 5’ terminus of a
growing RNA strand is chemically distinct from the nu-
cleotides within the strand in that it retains all three phos-
phate groups. When an additional nucleotide is added to
the 3’ end of the growing strand, only the a-phosphate is
retained; the Band y phosphates are lost as pyrophosphate,
which is subsequently hydrolyzed to yield 2 molecules of
inorganic phosphate.

Unlike RNA polymerases, DNA polymerases cannot ini-
tiate chain synthesis de novo; instead, they require a short,
preexisting RNA or DNA strand, called a primer, to begin
chain growth. With a primer base-paired to the template
strand, a DNA polymerase adds nucleotides to the free hy-
droxyl group at the 3’ end of the primer:

Template strand

/

Primer

If RNA is the primer, the polynucleotide copied from the
template is RNA at the 5" end and DNA at the 3’ end.

Both prokaryotic and eukaryotic cells have several dif-
ferent types of DNA polymerases. Some polymerases par-
ticipate in making new DNA to prepare for cell division;
other polymerases serve in the repair and recombination of
DNA molecules. The structure, mechanism, and physiolog-
ical role of these enzymes are described in Chapter 12.

Replication of Duplex DNA Requires Assembly
of Many Proteins at a Growing Fork

Because duplex DNA consists of two intertwined strands,
the base-pair copying of each strand requires unwinding of
the original duplex, which is accomplished by specific “un-
winding proteins” called helicases. As noted earlier, local
unwinding of duplex DNA produces torsional stress, leading
to formation of supercoils, which are removed by topoisom-
erases. The action of all these proteins produces a moving,
highly specialized region of the DNA called the growing
fork, at which DNA polymerase carries out nucleotide ad-
dition. In order for DNA polymerase to move along and
copy a duplex DNA, helicase must sequentially unwind
the duplex and topoisomerase must remove the supercoils
that form,

DNA replication begins with creation of a growing
fork by a protein or proteins that have helicase activity
and unwind a short section of parental DNA. A special-
ized RNA polymerase then forms short RNA primers com-
plementary to the unwound template strands. Each such
primer, still bound to its complementary DNA strand, is
then elongated by DNA polymerase, thereby forming a
new daughter strand. One final major complication in the
operation of a DNA growing fork is that although the two
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strands of the parental duplex are antiparallel, nucleo-
tides can be added to the growing new strands only in the
5" — 3’ direction. As diagrammed in Figure 4-16, synthesis
of one daughter strand, called the leading strand, proceeds
continuously from a single RNA primer in the 5" — 3/
direction, the same direction as movement of the growing
fork. Because growth of the other daughter strand, called
the lagging strand, also must occur in the 5" — 3" direc-
tion, copying of its template strand must somehow occur
in the opposite direction from the movement of the
growing fork. A cell accomplishes this feat by producing
additional short RNA primers every 1000 bases or so on
the second parental strand, as more of the strand is ex-
posed by unwinding. Each of these primers, base-paired
to their template strand, is elongated in the 5’ — 3
direction, forming discontinuous segments called Okazaki
fragments after their discoverer Reiji Okazaki. The RNA
primer of each Okazaki fragment is removed and replaced
by DNA chain growth from the neighboring Okazaki
fragment; finally an enzyme called DNA ligase joins the
adjacent fragments. At least 30 proteins participate in
the formation and operation of a DNA growing fork;
this DNA-replication machine is discussed in detail in
Chapter 12.

Leading strand

Parental DNA duplex

3 ) W Short RNA primer
— .
Direction of fork W Okazaki fragment

movement
Lagging strand
— Point of joining

b

A FIGURE 4-16 Schematic diagram of DNA replication at a
growing fork. Nucleotides are added by DNA polymerase to
each daughter strand in the 5" — 3’ direction (indicated by
arrowheads). Synthesis of the leading strand occurs continuously
from a single RNA primer at its 5’ end (not shown). Synthesis of
the other new strand—the lagging strand—proceeds discontinu-
ously, initially forming Okazaki fragments, from multiple RNA
primers that are formed on the parental strand as each new
region of DNA is exposed at the growing fork. The RNA primers
are elongated by DNA polymerase. As each growing fragment
approaches the previous primer, that primer is removed by an-
other enzyme and the fragments are joined by DNA ligase to
form a continuous DNA strand. By repetition of this process, the
entire lagging strand eventually is completed.
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Organization of Genes in DNA Differs
in Prokaryotes and Eukaryotes

Having outlined the principles governing the stepwise as-
sembly of polynucleotides, we now focus briefly on the large-
scale arrangement of information in DNA and how this
arrangement dictates the requirements for RNA manufac-
ture so that information transfer goes smoothly. The sim-
plest definition of a gene is a “unit of DNA that contains
the information to specify synthesis of a single polypeptide
chain.” The number of genes in cells varies widely, with the
simpler non-nucleated prokaryotic cells having far fewer
genes than eukaryotic cells. The vast majority of genes carry
information to build protein molecules, and it is the RNA
copies of such protein-coding genes that are the mRNA mol-
ecules of cells. In recent years, the entire sequence of the
DNA genome of several organisms has been determined,
providing direct evidence for large differences in their
protein-coding capacity (Chapter 7).

The most common arrangement of protein-coding genes
in all prokaryotes has a powerful and appealing logic: genes

{(a) Prokaryotes
trp operon

4IKELDICIBIN

Start site
for trp mRNA
synthesis

E. coli
genome

Transcription
trpo mRNA
5!
R

Start sites for
protein synthesis

3!
JLTransfation

Proteins

A FIGURE 4-17 Comparison of gene organization, transcrip-
tion, and translation in prokaryotes and eukaryotes. (a) The
tryptophan (trp) operon is a continuous segment of the E. coli
chromesome, containing five genes (blue) that encode the en-
zymes necessary for the stepwise synthesis of tryptophan. The
entire operon is transcribed from one start site (blue arrow) into
one long continuous trp MRNA (red). Translation of this mRNA
begins at five different start sites, yielding five proteins (green),
Proteins E and D associate to form the first enzyme in the tryp-
tophan biosynthetic pathway; protein C catalyzes the intermediate
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devoted to a single metabolic goal, say, the synthesis of t,
amino acid tryptophan, are most often found in a Contigyc, :
array in the DNA. This gene order makes it possible ¢ Pro.
duce a continuous strand of mRNA that carries the me
for a related series of enzymes devoted to making tryptopha,
(Figure 4-17a). Each section of the mRNA represents the nig
(or gene) that instructs the protein-synthesizing apparat;, f
make a particular protein. Such an arrangement of genes ing
functional group is called an operon, because it operates a3
unit from a single transcription start site. In prokaryotic DNA
the genes are closely packed with very few noncoding gaps,
and the DNA is transcribed directly into colinear m
which then is translated into protein, even while stretches of
the mRNA closer to the 3’ end are still being produced,
This economic clustering of genes devoted to a single
metabolic function does not occur in eukaryotes, even sim.
ple ones like yeasts that can be metabolically similar to b
teria. Rather, eukaryotic genes, even those devoted to 2 sip-
gle pathway, are most often physically separated in the DNj,
sometimes even being located on different chromosomes,

(b) Eukaryotes

Yeast chromosomes

trp1 trp4 kb
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trp2
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x| ] ] e
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step; and proteins A and B form tryptophan synthetase, the final
enzyme. Thus the order of the genes in the bacterial genome
parallels the sequential function of the encoded proteins in the
tryptophan pathway. (b) The five genes encoding the enzymes
required for tryptophan synthesis in yeast (Saccharomyces
cerevisiae) are carried on four different chromosomes. Each gené
is transcribed from its own start site to yield a primary transcfipt
that is processed into a functional mRNA encoding a single prote
(see Figure 4-19). The length of the yeast chromosomes is give"
in kilobases (10* bases), with all drawn to the same length.



Each gene is transcribed from its own start site, producing
one mRNA, which generally is translated to yield a single
protein (Figure 4-17b). Moreover, when researchers first
compared the nucleotide sequences of eukaryotic mRNAs
with the DNAs encoding them, they were astounded to find
that the uninterrupted protein-coding sequence of a given
mRNA was broken up (discontinuous) in its corresponding
section of DNA. They concluded that the eukaryotic gene
existed in pieces of coding sequence, the exons, separated by
non-protein-coding segments, the introns. This astonishing
finding, first discovered in viruses that infect eukaryotic cells,
implied that the long initial RNA copy, called the primary
transcript, the entire copied DNA sequence, had to be clipped
apart to remove the introns and then carefully stitched back
together to produce many mRNAs of eukaryortic cells.

Fukaryotic Primary RNA Transcripts Are
Processed to Form Functional mRNAs

In prokaryotic cells, which have no nuclei, translation of
an mRNA into protein can begin from the 5’ end of the
mRNA even while the 3’ end is still being copied from DNA.
Thus, transcription and translation can occur concurrently.

75‘% 7-Methylguanylate

o
o K "
I H
O*IT‘*_“O |3 ]21
6 OH OH
-0*‘|’=0 5' —> &' linkage
i
-
6 A FIGURE 4-18 Structure of

the 5' methylated cap of
eukaryotic mRNA, The distin-
guishing chemical features are
the 5’ — 5’ linkage of 7-methyl-
guanylate to the initial nucleotide
of the mRNA molecule and the
methyl group on the 2 hydroxyl
of tne ribose of the first nucleo-
tide (base 1). Both these features
occur in all animal cells and in cells
of higher plants; yeasts lack the
methyl group on base 1. The
ribose of the second nucleotide
(base 2) also is methylated in ver-
tebrates. [See A. J. Shatkin, 1976,
Cell 9:645.]
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A FIGURE 4-19 Overview of RNA processing in eukaryotes
using B-globin gene as an example. The S-globin gene contains
three protein-coding exons (red) and two intervening noncoding
introns (blue). The introns interrupt the protein-coding seguence
between the codons for amino acids 31 and 32 and 105 and 106.
Transcription of this and many other genes starts slightly upstream
of the B’ exon and extends downstream of the 3’ exon, resulting
in noncoding regions (gray) at the ends of the primary transcript.
These regions, referred to as untranslated regions (UTRs), are
retained during processing. The 5' 7-methylguanylate cap (m’Gppp;
green dot) is added during formation of the primary RNA transcript,
which extends beyond the poly(A) site. After cleavage at the
poly(A) site and addition of multiple A residues to the 3' end,
splicing removes the introns and joins the exons. The small
numbers refer to positions in the 147-aa sequence of B-globin.

In eukaryotic cells, however, not only is the nucleus sepa-
rated from the cytoplasm where protein synthesis occurs,
but the primary RNA transcript of a protein-coding gene
must undergo several modifications, collectively termed
RNA processing, that yield a functional mRNA. This mRNA
then must be transported to the cytoplasm before it can be
translated into protein. Thus, transcription and translation
cannot occur concurrently in eukaryotic cells.

The initial steps in processing of all eukaryotic primary
RNA transcripts occur at the two ends, and these modifi-
cations are retained in mRNAs. To the initiating (5') nucleo-
tide of the primary transcript is added the 5 cap, which
may serve to protect mRNA from enzymatic degradation
(Figure 4-18). This modification occurs before transcription
is complete, so the 5' cap is present in the primary transcript.
Processing at the 3’ end of the primary transcript involves
cleavage by an endonuclease to yield a free 3'-hydroxyl
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group to which a string of adenylic acid residues is added
by an enzyme called poly(A) polymerase. The resulting
poly(A) tail contains 100-250 bases, being shorter in yeasts
and invertebrates than in vertebrates. Poly(A) polymerase is
part of a complex of proteins that adds the poly(A) tail. This
complex does not require a template and can determine the
correct number of A residues to add in each species.

The final step in the processing of many different eu-
karyotic mRNA molecules is splicing: the internal cleavage
of the RNA transcript to excise the introns, followed by lig-
ation of the coding exons. Many eukaryotic mRNAs also
contain noncoding regions at each end; these are referred to
as the §' and 3" untranslated regions (UTRs). Figure 4-19
summarizes the basic steps in RNA processing. We examine
the cellular machinery for carrying out processing of mRNA,
as well as tRNA and rRNA, in Chapter 11.

SUMMARY Nucleic Acid Synthesis

* The transfer of information from genes to proteins is

assisted by proteins that participate in the synthesis of
DNA and RNA.

* Polynucleotide and polypeptide chains are assembled
from a limited number of monomeric units that are
added one at a time, beginning at the §' end in nucleic
acids and the amino-terminal end in proteins (see Figure
4-13). In both cases, the initial polymeric product gener-
ally is modified in some fashion to produce a functional
molecule.

* A polynucleotide chain is synthesized by copying of a
complementary template strand (usually DNA), In this
process, the duplex DNA is locally unwound, revealing
the unpaired template strand, and nucleotides are added
to the 3’-hydroxyl end of the growing strand by RNA
or DNA polymerase.

* RNA polymerase can initiate transcription of DNA
into RNA by binding to a specific start site and un-
winding the duplex. As the enzyme moves along the
DNA, it unwinds sequential segments of the DNA and
adds nucleotides to the growing RNA strand (see Figure
4-15). Most commonly, only one DNA strand in any
one locus is transcribed into RNA,

* Replication of DNA requires the assistance of heli-
case to unwind the duplex, topoisomerase to remove su-
percoils, and a specialized RNA polymerase to form
RNA primers because DNA polymerase cannot start
chains. Nucleotide addition at the growing fork, a mov-
ing region of strand separation produced by sequential

unwinding of the duplex, is catalyzed by one type of
DNA polymerase.

* During DNA replication, the two new daughter
strands are assembled somewhat differently because DNA
polymerase can add nucleotides only in the 5' — 3’

direction (see Figure 4-16). One new strand, the leading
strand, is elongated continuously from a single primey
The other new strand, the lagging strand, is synthesizeg
discontinuously as a series of short segments, called
Okazaki fragments, initiated from multiple RNA
primers. After removal of the intervening primer, adj,.
cent Okazaki fragments are joined by DNA ligase,

* In prokaryotic DNA, related protein-coding genes are
clustered into a functional region, an operon, which js
transcribed from a single start site into one mRNA en-
coding multiple proteins (see Figure 4-17a). Translation
of a mRNA can begin before synthesis of the mRNA js
complete.

* In eukaryotic DNA, each protein-coding gene is tran-
scribed from its own start site, and very often the cod-
ing regions (exons) are separated by noncoding regions
(introns). The primary RNA transcript produced from
such a gene must undergo processing to yield a func-
tional mRNA. During processing, the ends of all pri-
mary transcripts are modified by addition of a §’ cap
and 3’ poly(A) tail; many transcripts also undergo
splicing—removal of the introns and joining of the
exons (see Figure 4-19).

44 The Three Roles of RNA
in Protein Synthesis

Although DNA stores the information for protein synthesis
and RNA carries out the instructions encoded in DNA, most
biological activities are carried out by proteins. The accu-
rate synthesis of proteins thus is critical to the proper func-
tioning of cells and organisms. We saw in Chapter 3 that
the linear order of amino acids in each protein determines
its three-dimensional structure and activity. For this reason,
assembly of amino acids in their correct order, as encoded
in DNA, is the key to production of functional proteins.
Three kinds of RNA molecules perform different but co-
operative functions in protein synthesis (Figure 4-20):

1. Messenger RNA (mRNA) carries the genetic information
copied from DNA in the form of a series of three-base code
“words,” each of which specifies a particular amino acid.

2. Transfer RNA (tRNA) is the key to deciphering the code
words in mRNA. Each type of amino acid has its own type
of tRNA, which binds it and carries it to the growing end
of a polypeptide chain if the next code word on mRNA calls
for it. The correct tRNA with its attached amino acid is se-
lected at each step because each specific tRNA molecule con-
tains a three-base sequence that can base-pair with its com-
plementary code word in the mRNA.

3. Ribosomal RNA (rRNA) associates with a set of protein_s
to form ribosomes. These complex structures, which physi-
cally move along an mRNA molecule, catalyze the assembly
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A FIGURE 4-20 The three roies of RNA in protein

synthesis. Messenger RNA (mRNA) is translated into protein by
the joint action of transfer RNA (tRNA) and the ribosome, which
is composed of numerous proteins and two major ribosomal
RNA (rBNA) molecules. [Adapted from A. J. . Griffiths et al., 1993,
An Introduction to Genetics Analysis, 5th ed., W. H. Freeman.|

of amino acids into protein chains. They also bind tRNAs
and various accessory molecules necessary for protein syn-
thesis, Ribosomes are composed of a large and small subunit,
each of which contains its own rRNA molecule or molecules.

Translation is the whole process by which the base sequence
of an mRNA is used to order and to join the amino acids
in a protein. The three types of RNA participate in this es-
sential protein-synthesizing pathway in all cells; in fact, the
development of the three distinct functions of RNA was
probably the molecular key to the origin of life. How each
RNA carries out its specific task is discussed in this section,
while the biochemical events in protein synthesis and the re-

quired protein factors are described in the final section of
the chapter.

Messenger RNA Carries Information
from DNA in a Three-Letter Genetic Code

RNA contains ribonucleotides of adenine, cytidine, guanine,
and uracil; DNA contains deoxyribonucleotides of adenine,
*_CYtidine, guanine, and thymine. Because 4 nucleotides, taken
Individually, could represent only 4 of the 20 possible amino
acids in coding the linear arrangement in proteins, a group
of nucleotides is required to represent each amino acid. The
code employed must be capable of specifying at least 20
Wwords (i.e., amino acids).

If two nucleotides were used to code for one amino acid,
then only 16 (or 42) different code words could be formed,
Which would be an insufficient number. However, if a group
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of three nucleotides is used for each code word, then 64 (or
4%) code words can be formed. Any code using groups of
three or more nucleotides will have more than enough units
to encode 20 amino acids. Many such coding systems are
mathematically possible. However, the actual genetic code
used by cells is a triplet code, with every three nucleotides
being “read” from a specified starting point in the mRNA.
Each triplet is called a codon. Of the 64 possible codons in
the genetic code, 61 specify individual amino acids and three
are stop codons. Table 4-2 shows that most amino acids are
encoded by more than one codon. Only two—methionine
and tryptophan—have a single codon; at the other extreme,
leucine, serine, and arginine are each specified by six differ-
ent codons. The different codons for a given amino acid are
said to be synonymous. The code itself is termed degenerate,
which means that it contains redundancies.

Synthesis of all protein chains in prokaryotic and eu-
karyotic cells begins with the amino acid methionine. In most
mRNAs, the start (initiator) codon specifying this amino-
terminal methionine is AUG. In a few bacterial mRNAs, GUG
is used as the initiator codon, and CUG occasionally is used
as an initiator codon for methionine in eukaryotes. The three
codons UAA, UGA, and UAG do not specify amino acids but
constitute stop (terminator) signals that mark the carboxyl
terminus of protein chains in almost all cells. The sequence
of codons that runs from a specific start site to a terminating
codon is called a reading frame. This precise linear array of
ribonucleotides in groups of three in mRNA specifies the pre-
cise linear sequence of amino acids in a protein and also sig-
nals where synthesis of the protein chain starts and stops.

Because the genetic code is a commaless, overlapping
triplet code, a particular mRNA theoretically could be trans-
lated in three different reading frames. Indeed some mRNAs
have been shown to contain overlapping information that
can be translated in different reading frames, yielding dif-
ferent polypeptides (Figure 4-21). The vast majority of

%" —{GCU][UGU][UUA] [CGA][AUUJA- mRNA
[ lle — Polypeptide

5" —g[cuu][GUU] [UAC] [GAA][UUA}—

A FIGURE 4-21 Example of how the genetic code—an over-
lapping, commaless triplet code—can be read in two different
frames. If translation of the mRNA sequence shown begins at
two different upstream start sites (not shown), then two over-
lapping reading frames are possible; in this case, the codons are
shifted ene base to the right in the lower frame. As a result, dif-
ferent amino acids are encoded by the same nucleotide sequence.
Many instances of such overlaps have been discovered in viral
and cellular genes of prokaryotes and eukaryotes, It is theoretically
possible for the mRNA to have a third reading frame.
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b7 IHSE Wl The Genetic Code (RNA to Amino Acids)* ~
. e
First Third
Position Positiop
(5" end) Second Position (3' end)

U C A G

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser Stop (och) Stop A

Leu Ser Stop (amb) Trp G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu (Met) Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser &
A

Ile Thr Lys Arg A

Met (start) Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly G
G

Val Ala Glu Gly A

Val (Met) Ala Glu Gly G

*“Stop (och)” stands for the ochre termination triplet, and “Stop (amb)” for the amber, named after the bacterial strains in which they were identi-
fied. AUG is the most common initiator codon; GUG usually codes for valine, and CUG for leucine, but, rarely, these codons can also code for

methionine to initiate an mRNA chain.

mRNAs, however, can be read in only one frame because
stop codons encountered in the other two possible reading
frames terminate translation before a functional protein is
produced. Another unusual coding arrangement occurs be-
cause of frameshifting. In this case the protein-synthesizing
machinery may read four nucleotides as one amino acid and
then continue reading triplets, or it may back up one base
and read all succeeding triplets in the new frame
until termination of the chain occurs. These frameshifts are

not common events, but a few dozen such instances are
known.

The meaning of each codon is the same in most known
organisms—a strong argument that life on earth evolved
only once. Recently the genetic code has been found to dif-
fer for a few codons in many mitochondria, in ciliated pro-
tozoans, and in Acetabularia, a single-celled plant. As shown
in Table 4-3, most of these changes involve reading of nor-
mal stop codons as amino acids, not an exchange of one

—

—

Xzt =26l Unusual Codon Usage in Nuclear and Mitochondrial Genes
Universal Unusual
Codon Code Code Occurrence*
UGA Stop Trp Mycoplasma, Spiroplasma, mitochondria of many species
CUG Leu Thr Mitochondria in yeasts
UAA, UAG Stop Gln Acetabularia, Tetrabymena, Paramecium, etc.
UGA Stop Cys Euplotes

*“Unusual code” is used in nuclear genes of the listed organisms and in mitochondrial genes as indicated.

SOURCE: S. Osawa et al., 1992, Microbiol. Rev. 56:229.



amino acid for another. It is now thought that these excep-
tions to the general code are later evolutionary develop-
ments; that is, at no single time was the code immutably
fixed, although massive changes were not tolerated once a
general code began to function early in evolution.

Experiments with Synthetic mRNAs and
Trinucleotides Broke the Genetic Code

Having described the genetic code, we briefly recount how
it was deciphered—one of the great triumphs of modern
biochemistry. The underlying experimental work was car-
ried out largely with cell-free bacterial extracts containing
all the necessary components for protein synthesis except
mRNA (i.e., tRNAs, ribosomes, amino acids, and the energy-
rich nucleotides ATP and GTP).

Initially, researchers added synthetic mRNAs containing
a single type of nucleotide to such extracts and then deter-
mined the amino acid incorporated into the polypeptide that
was formed. In the first successful experiment, synthetic
mRNA composed only of U residues [poly(U)] yielded
polypeptides made up only of phenylalanine. Thus it was
concluded that a codon for phenylalanine consisted entirely
of Us. Likewise, experiments with poly(C) and poly(A)
showed that a codon for proline contained only C’s and a
codon for lysine only A’s (Figure 4-22). [Poly(G) did not work
in this type of experiment because it assumes an unusable
stacked structure that is not translated well.] Next, synthetic
mRNAs composed of alternating bases were used. The re-
sults of these experiments not only revealed more codons but
also demonstrated that codons are three bases long. The ex-
ample of this approach illustrated in Figure 4-23 led to iden-
tification of ACA as the codon for threonine and CAC for
histidine. Similar experiments with many such mixed polynu-
cleotides revealed a substantial part of the genetic code.

Bacterial
extract

(000 [000] [909] —— [Fee

+|AAA|AAAHAAA|-=#>"
\_J+[(eee] [ece][ccc] ——> [Pro}HProj—{Pre]

Synthetic mRNA Polypeptide

A FIGURE 4-22 Assigning codans using synthetic mRNAs
containing a single ribonucleotide. Addition of such a syn-
thetic mRNA to a bacterial extract that contained all the compo-
nents necessary for protein synthesis except mRNA resulte_d in
synthesis of polypeptides composed of a single type of amino
acid as indicated. [See M. W. Nirenberg and J. H. Matthei, 1961, Proc.
Nat'l. Acad, Sci. USA 47:1588.]
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(a)

[ReA] [cAc] [AcA] [cac] [Ac] [CAC] [ACA]

|
[ ] (s (T ] (s ) (T (s ] (]

R[ACAI=@

|ACA| = | Thr]

[cac] = [His |

(b)

(R ) (] [ [ [ )
[Asn][Asn|[Asn][Asn][Asn]|[Asn][Asn]

A[ACA|[ACA][ACA][ACA][ACA][ACA][ACA]|
[he] [Fhe] (The ) (The] (T

A [CAR] [CAA] [CAR] [CAA] [CA] [CAA][cAA]
[Gin] [Gin) [T [Gin] (1] [Gin | [Gin]

A FIGURE 4-23 Assigning codons using mixed polynucleo-
tides. (a) When a synthetic mRNA with alternating A and C
residues was added to a protein-synthesizing bacterial extract, the
resulting polypeptide contained alternating threonine and histidine
residues. This finding is compatible with the two alternative
codon assignments shown. (Note that alternating residues yield
the same sequence of triplets regardless of which reading frame
is chosen.) (b) To determine which codon assignment shown in

{a) is correct, a second mRNA consisting of AAC repeats was
tested. This mRNA, which can be read in three frames, yielded
the three types of polypeptides shown. Since only the ACA
codon was common to both experiments, it must encode
threonine; thus CAC must encode histidine in (a). The assignments
AAC = asparagine (Asn) and CAA = glutamine (GIn) were derived
from additional experiments. [See H. G. Korana, 1968, reprinted in Nobel
Lectures: Physiology or Medicine (1963-1870), Elsevier (1973), p. 341.]

The entire genetic code was finally worked out by a sec-
ond type of experiment conducted by Marshall Nirenberg
and his collaborators. In this approach, all the possible trinu-
cleotides were tested for their ability to attract tRNAs
attached to the 20 different amino acids found in natural pro-
teins (Figure 4-24). In all, 61 of the 64 possible trinucleotides
were found to code for a specific amino acid; the trinu-
cleotides UAA, UGA, and UAG did not encode amino acids.

Although synthetic mRNAs were useful in deciphering
the genetic code, in vitro protein synthesis from these
mRNAs is very inefficient and yields polypeptides of vari-
able size. Successful in vitro synthesis of a naturally occur-
ring protein was achieved first when mRNA from bacterio-
phage F2 (a virus) was added to bacterial extracts, leading
to formation of the coat, or capsid, protein (the “packag-
ing” protein that covers the virus particle). Studies with such
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Aminoacyl~

tRNAs
\?“°

Trinucleotide

uuu
Cg\\fea\l

b

%

Trinucleotide and all tRNAs
pass through filter

A FIGURE 4-24 Breaking the entire genetic code by use of
chemically synthesized trinucleotides. Marshall Nirenberg and
his collaborators prepared 20 ribosome-free bacterial extracts
containing all possible aminoacyl-tRNAs (tRNAs with an amino
acid attached). In each sample, a different amino acid was radio-
actively labeled (green); the other 19 amino acids were bound to
tRNAs but were unlabeled. Aminoacyl-tRNAs and trinucleotides
passed through a nitrocellulose filter (left), but ribosomes were
retained by the filter {center) and would bind trinucleotides and

* ‘their cognate tRNAs (right). Each possible trinucleotide was tested

natural mRNAs established that AUG encodes methionine
at the start of almost all proteins and is required for effi-
cient initiation of protein synthesis, while the three trinu-
cleotides (UAA, UGA, and UAG) that do not encode any
amino acid act as stop codons, necessary for precise termi-
nation of synthesis.

The Folded Structure of tRNA
Promotes Its Decoding Functions

The next step in understanding the flow of genetic infor-
mation from DNA to protein was to determine how the nu-
cleotide sequence of mRNA is converted into the amino acid
sequence of protein. This decoding process requires two
types of adapter molecules: tRNAs and enzymes called
aminoacyl-tRNA synthetases. First we describe the role of
tRNAs in decoding mRNA codons, and then examine how
synthetases recognize tRNAs.

All tRNAs have two functions: to be chemically linked
to a particular amino acid and to base-pair with a codon in
mRNA so that the amino acid can be added to a growing
peptide chain. Each tRNA molecule is recognized by one
and only one of the 20 aminoacyl-tRNA synthetases. Like-
wise, each of these enzymes links one and only one of the

Ribosomes

Ribosomes stick to filter
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Complex of ribosome, UUU,
and Phe-tRNA sticks to filter

separately for its ability to attract a specific tRNA by adding it
with ribosomes to samples from each of the 20 aminoacy-tRNA
mixtures. The sample was then filtered. If the added trinucleotide
caused the radiolabeled aminoacy-tRNA to bind to the ribosome,
then radioactivity would be detected on the filter (a positive test);
otherwise, the label would pass through the filter (a negative
test). By synthesizing and testing all possible trinuclectides, the
researchers were able to match all 20 amino acids with one or
more codons (e.g., phenylalanine with UUU as shown here). [See
M. W, Nirenberg and P. Leder, 1964, Science 145:1399.]

20 amino acids to a particular tRNA, forming an amino-
acyl-tRNA. Once its correct amino acid is attached, a tRNA
then recognizes a codon in mRNA, thereby delivering its
amino acid to the growing polypeptide (Figure 4-25).

As studies on tRNA proceeded, 30-40 different tRNAs
were identified in bacterial cells and as many as 50-100 in
animal and plant cells. Thus the number of tRNAs in most
cells is more than the number of amino acids found in pro-
teins (20) and also differs from the number of codons in the
genetic code (61). Consequently, many amino acids have
more than one tRNA to which they can attach (explaining
how there can be more tRNAs than amino acids); in addi-
tion, many tRNAs can attach to more than one codon (ex-
plaining how there can be more codons than tRNAS).
As noted previously, most amino acids are encoded by
more than one codon, requiring some tRNAs to recog
nize more than one codon.

The function of tRNA molecules, which are 70-80 nu-
cleotides long, depends on their precise three-dimensional
structures. In solution, all tRNA molecules fold into a sim-
ilar stem-loop arrangement that resembles a cloverleaf when
drawn in two dimensions (Figure 4-26a). The four stems ar¢
short double helices stabilized by Watson-Crick base pair-
ing; three of the four stems have loops containing seven of
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phenyialeninel &L on L !
N —C—C— HaN—C—C—OH H =R —%—0H
. CH
Z ’ CH, CHy
tRNA specific for
phenylalanine (tRNAPTe)
Aminoac‘/L AAA .
{RNA synthetase . Linkage of phenylalanine AAA N ind
specific for phenylalanine to tRNAFPhe the UUU codon &' ERSUUGEE 3
mRNA

Net Result: Phenylalanine Is Selected by Its Codon

A FIGURE 4-25 Translation of nucleic acid sequences in
mRNA into amino acid sequences in proteins requires a two-
step decoding process. First, an aminoacyl-tRNA synthetase
couples a specific amino acid to its corresponding tRNA. Second,

{a)

Amino acid
(alanine)

Acceptor stem

Anticodon

Codon

A FIGURE 4-26 Structure of tRNAs. (a) The primary structure
of yeast alanine tRNA (tRNAA?), the first such sequence deter-
Mined. This molecule is synthesized from the nucleotides A, C, G,
and U, but some of the nucleotides, shown in red, are modified
after synthesis: D = dihydrouridine, | = inosine, T = thymine,

= Pseudouridine, and m = methyl group. Although the exact
S8quence varies among tRNAs, they all fold into four base-paired
S1ems and three loops. The partially unfolded molecule is com-
Monly depicted as a cloverleaf. Dihydrouridine is nearly always

a three-base sequence in the tRNA (the anticodon) base-pairs
with a codon in the mRNA specifying the attached amino acid.
If an error occurs in either step, the wrong amino acid may be
incorporated into a2 polypeptide chain.

(b)

TYCG loop Acceptor stem

Anticodon loop

present in the D loop; likewise, thymidylate, pseudouridylate,
cytidylate, and guanylate are almost always present in the T¥CG
loop. The triplet at the tip of the anticodon loop base-pairs with
the corresponding codon in mMRNA. Attachment of an amino acid
to the acceptor arm yields an aminoacyl-tRNA. (b) Computer-
generated three-dimensional model of the generalized backbone
of all tRNAs. Note the L shape of the molecule. [Part (a) see R. W.
Holly et al., 1965, Science 147:1462; part (b) from J. G. Arnez and D. Moras,
1997, Trends Biochem. Sci. 22:211.)]
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eight bases at their ends, while the remaining, unlooped stem
contains the free 3' and §' ends of the chain. Three nu-
cleotides termed the anticodon, located at the center of one
loop, can form base pairs with the three complementary nu-
cleotides forming a codon in mRNA. As discussed later, spe-
cific aminoacyl-tRNA synthetases recognize the surface
structure of each tRNA for a specific amino acid and cova-
lently attach the proper amino acid to the unlooped amino
acid acceptor stem. The 3' end of all tRNAs has the se-
quence CCA, which in most cases is added after synthesis
and processing of the tRNA are complete. Viewed in three
dimensions, the folded tRNA molecule has an L shape with
the anticodon loop and acceptor stem forming the ends of
the two arms (Figure 4-26b).

Besides addition of CCA at the 3’ terminus after a tRNA
molecule is synthesized, several of its nucleic acid bases typ-
ically are modified. For example, most tRNAs are synthe-
sized with a four-base sequence of UUCG near the middle
of the molecule. The first uridylate is methylated to become
a thymidylate; the second is rearranged into a pseudouridy-
late (abbreviated W), in which the ribose is attached to car-
bon 5 instead of to nitrogen 1 of the uracil. These modifi-
cations produce a characteristic T¥CG loop in an unpaired
region at approximately the same position in nearly all
tRNAs (see Figure 4-26a).

Nonstandard Base Pairing Often Occurs
hetween Codons and Anticodons

If perfect Watson-Crick base pairing were demanded be-
tween codons and anticodons, cells would have to contain
exactly 61 different tRNA species, one for each codon that
specifies an amino acid. As noted above, however, many cells
contain fewer than 61 tRNAs. The explanation for the
smaller number lies in the capability of a single tRNA anti-
codon to recognize more than one, but not necessarily every,
codon corresponding to a given amino acid. This broader
recognition can occur because of nonstandard pairing be-
tween bases in the so-called “wobble” position: the third
base in a mRNA codon and the corresponding first base
in its tRNA anticodon. Although the first and second bases
of a codon form standard Watson-Crick base pairs with
the third and second bases of the corresponding anticodon,
four nonstandard interactions can occur between bases in
the wobble position. Particularly important is the G-U base
pair, which structurally fits almost as well as the standard
G-C pair. Thus, a given anticodon in tRNA with G in the
first (wobble) position can base-pair with the two corre-
sponding codons that have either pyrimidine (C or U) in the
third position (Figure 4-27), For example, the phenylalanine
codons UUU and UUC (5’ — 3') are both recognized by
the tRNA that has GAA (5" — 3') as the anticodon. In fact,
any two codons of the type NNPyr (N =any base;
Pyr = pyrimidine) encode a single amino acid and are de-
coded by a single tRNA with G in the first (wobble) posi-
tion of the anticodon.
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tRNA
3:
5!
If these bases are in
first, or wobble, position of
anticodon
321 lclale|u|1]
123 G|U|C|A|C |thenthe tRNA may
5 mRNA 3’ U [ G | A | recognize codons in
U [ mRNA having these
bases in third position
If these bases are in
third, or wobble, position
5 mRNA 3’ of codon of an mRNA
123 [c[alcu]
321 G|U| C| A |thenthe codon may
I {1 | U] G| berecognized by a
| | tRNA having these
bases in first position
of anticodon
5
3}
tRNA

A FIGURE 4-27 The first and second bases in an mRNA
codon form Watson-Crick base pairs with the third and
secand bases, respectively, of a tRNA anticodon. However,
the base in the third (or wobble) position of an mRNA codon
often forms a nonstandard base pair with the base in the first
(or wobble) position of a tRNA anticodon. Wobble pairing allows
a tRNA to recognize more than one mRNA codon (top); conversely,
it allows a codon to be recognized by more than one kind of tRNA
{bottom), although each tRNA will bear the same amino acid. Note
that a tRNA with | {inosine) in the wobble position can “read”
(become paired with) three different codons (see Figure 4-28),
and a tRNA with G or U in the wobble position can read two
codons. Although A is theoretically possible in the wobble position
of the anticodon, it is almost never found in nature.

Although adenine rarely is found in the anticodon wob-
ble position, many tRNAs in plants and animals contain i-
osine (I), a deaminated product of adenine, at this position.
Inosine can form nonstandard base pairs with A, C, and U
(Figure 4-28). A tRNA with inosine in the wobble position
thus can recognize the corresponding mRNA codons with
A, C, or U in the third (wobble) position (see Figure 4-27).
For this reason, inosine-containing tRNAs are heavily em-
ployed in translation of the synonymous codons that spec-
ify a single amino acid. For example, four of the six codons
for leucine have a 3’ A, C, or U (see Table 4-2); these four
codons are all recognized by the same tRNA (3'-GAI-5'),
which has inosine in the wobble position of the anticodon
(and thus recognizes CUA, CUC, and CUU), and uses a G'U
pair in position 1 to recognize the UUA codon.
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Aminoacyl-tRNA Synthetases Activate
Amino Acids by Linking Them to tRNAs

Recognition of the codon or codons specifying a given amino
acid by a particular tRNA is actually the second step in de-
coding the genetic message. The first step, attachment of the
appropriate amino acid to a tRNA, is catalyzed by a spe-
cific aminoacyl-tRNA synthetase (see Figure 4-25). Each of
the 20 different synthetases recognizes one amino acid and
all its compatible, or cognate, tRNAs. These coupling en-
zymes link an amino acid to the free 2’ or 3’ hydroxyl of
the adenosine at the 3’ terminus of tRNA molecules by a
two-step ATP-requiring reaction (Figure 4-29). About half
the aminoacyl-tRNA synthetases transfer the aminoacyl
group to the 2’ hydroxyl of the terminal adenosine (class I),

» FIGURE 4-29 Aminoacylation of tRNA.
Amino acids are covalently linked to tRNAs
by aminoacyl-tRNA synthetases. Each of
these enzymes recognizes one kind of amino
acid and all the cognate tRNAs that recognize
codons for that amino acid. The two-step
aminoacylation reaction requires energy from
the hydrolysis of ATP. The equilibrium of the
overall reaction favors the indicated products
because the pyrophosphate (PP) released in
Step @ is converted to inorganic phosphate (P)
by a pyrophosphatase. The 3 end of all tRNAs,
1o which the amino acid attaches, has the
Sequence CCA. Class | synthetases (purple)
attach the amino acid to the 2' hydroxyl of

the terminal adenylate in tRNA; class Il syn-
thetases (green) attach the amino acid to the
3" hydroxyl. (Ad = adenine; Cyt = cytosine.)

and about half to the 3’ hydroxyl (class II). In this reacticn,
the amino acid is linked to the tRNA by a high-energy bond
and thus is said to be activated. The energy of this bond
subsequently drives the formation of peptide bonds between
adjacent amino acids in a growing polypeptide chain. The

Aminoacyl-tRNA
synthetase

@j&) PP, Pyrophosphatase_> 2P,

Synthetase complexed
with aminoacyl-AMP 5’

Cyt Cyt 2

OH O
CCA end of tRNA

Aminoacyl-tRNA

synthetase + AMP

Class Il
synthetase

Class |
synthetase
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CCAend

tRNAAP

AspRS
(class II)

ArgRS
(class 1)

A FIGURE 4-30 Recognition of a tRNA by aminoacyl syn-
thetases. Aspartyl-tRNA synthetase (AspRS) is a class Il
enzyme, and arginyl-tRNA synthetase (ArgRS) is a class |
enzyme. Shown here are the outlines of the three-dimensional
structures of the two synthetases. The tRNA shown between
them as a ribbon diagram will bind to either and is a slightly
modified version of tRNA*P_ |t is used as an illustration of
common surface interactions between tRNA and class | and Il
enzymes. Sites on the opposite sides of this modified tRNA®SP
make contacts with the two enzymes: the blue balls show con-
tacts with the class Il AspRS; those that make contact with class
I ArgRS are indicated by yellow balls. The synthetases are shown
. positioned away from the tRNA for clarity, but the fit of the
surfaces at close range is obvious. The abiiity of ArgRS to inter-
act with the noncognate tRNA**® is lost when residue G37 in
tRNA®P is methylated, a normal modification that ocours in vivo.
However, the shape and binding sites of this modified tRNA

are characteristic of class | and class Il interactions with tRNAs.
This molecular graphic picture was produced using the DRAWNA
program. [Adapted from M. Sissler et al., 1997, Nucl. Acids Res.
25:4899; courtesy of R. Giegé.]

equilibrium of the aminoacylation reaction is driven further
toward activation of the amino acid by hydrolysis of the
high-energy phosphoanhydride bond in pyrophosphate. The
overall reaction is

Amino acid + ATP + tRNA 2272,
aminoacyl-tRNA + AMP + 2 P,

The amino acid sequences of the aminoacyl-tRNA syn-
thetases (ARSs) from many organisms are now known, and
the three-dimensional structures of over a dozen enzymes of
both classes have been solved. Each of these enzymes has a
rather precise binding site for ATP (GTP is not admitted and
CTP and UTP are too small) and binding pockets for its
specific amino acid. Class I and class II enzymes bind to
opposite faces of the incoming tRNAs. The binding surfaces
of class I enzymes tend to be somewhat complementary

to those of class Il enzymes. These different binding Surface
and the consequent alignment of bound tRNAs probably 5
count in part for the difference in the hydroxyl groyy ,.
which the aminoacyl group is transferred (Figure 4-30), B,.
cause some amino acids are so similar structurally, aminoacy]
tRNA synthetases sometimes make mistakes. These are cor.
rected, however, by the enzymes themselves, which check
the fit in the binding pockets and facilitate deacylatiog of
any misacylated tRNAs. This crucial function helps guar.
antee that a tRNA delivers the correct amino acid to the
protein-synthesizing machinery.

Each tRNA Molecule Is Recognized by
a Specific Aminoacyl-tRNA Synthetase

The ability of aminoacyl-tRNA synthetases to recognize
their correct cognate tRNAs is just as important to the ac.
curate translation of the genetic code as codon-anticodoy
pairing. Once a tRNA is loaded with an amino acid, codop-
anticodon pairing directs the tRNA into the proper ribo-
some site; if the wrong amino acid is attached to the tRNA,
an error in protein synthesis results.

As noted already, each aminoacyl-tRNA synthetase can
aminoacylate all the different tRNAs whose anticodons cor-
respond to the same amino acid. Therefore, all these cog-
nate tRNAs must have a similar binding site, or “identity
element,” that is recognized by the synthetase. One approach
for studying the identity elements in tRNAs that are recog-
nized by aminoacyl-tRNA synthetases is to produce syn-
thetic genes that encode tRNAs with normal and various
mutant sequences by techniques discussed in Chapter 7. The
normal and mutant tRNAs produced from such synthetic
genes then can be tested for their ability to bind purified
synthetases.

Very probably no single structure or sequence completely
determines a specific tRNA identity. However, some impor-
tant structural features of several E. coli tRNAs that allow
their cognate synthetases to recognize them are known.
Perhaps the most logical identity element in a tRNA mole-
cule is the anticodon itself. Experiments in which the
anticodons of methionine tRNA (tRNAM<") and valine
tRNA (tRNAY) were interchanged showed that the anti
codon is of major importance in determining the identity of
these two tRNAs. In addition, x-ray crystallographic analy-
sis of the complex between glutamine aminoacyl-tRNA syn-
thetase (GInRS) and glutamine tRNA (tRNASIn) showed
that each of the anticodon bases neatly fits into a separaté;
specific “pocket” in the three-dimensional structure of
GInRS. Thus this synthetase specifically recognizes the cor-
rect anticodon.

However, the anticodon may not be the principal ider
tity element in other tRNAs (see Figure 4-30). Figure 4-31‘
shows the extent of base sequence conservation in E. colf
tRNAs that become linked to the same amino acid. Identity
elements are found in several regions, particularly the Eﬁ‘:j
of the acceptor arm. A simple case is presented by tRNA™™
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A FIGURE 4-31 Identity elements in tRNA involved in recog-
nition by aminoacyl-tRNA synthetases, as demonstrated by
both conservation and experimentation. The 67 known tRNA
sequences in E. coli were compared by computer analysis. The
conserved nucleotides in different tRNAs that recognize the same
amino acid are shown as yellow circles in the left drawing, with
the tRNA chain in blue. Increasing size indicates increasing con-
servation of a base at a given position. It is clear that nucleotides
in the anticodon loop and in the acceptor stem are most often

a single G-U base pair (G3-U70) in the acceptor stem is
necessary and sufficient for recognition of this tRNA by
its cognate aminoacyl-tRNA synthetase. Solution of the
three-dimensional structure of additional complexes be-
tween aminoacyl-tRNA synthetases and their cognate
tRNAs should provide a clear understanding of the
rules governing the recognition of tRNAs by specific
synthetases.

Ribosomes Are Protein-Synthesizing Machines

If the many components that participate in translating
mRNA had to interact in free solution, the likelihood of si-
multaneous collisions occurring would be so low that the
fate of amino acid polymerization would be very slow. The
efficiency of translation is greatly increased by the binding
of the mRNA and the individual aminoacyl-tRNAs to the
most abundant RNA-protein complex in the cell—the ri-
bosome. This two-part machine directs the elongation of
2 polypeptide at a rate of three to five amino acids added
per second. Small proteins of 100-200 amino acids are
therefore made in a minute or less. On the other hand, it
takes 2 to 3 hours to make the largest known protein, titin,
which is found in muscle and contains 30,000 amino acid
fesidues. The machine that accomplishes this task must be
Precise and persistent.

similar when a particular amino acid must be recognized. This
appreciation is heightened by results shown in the right drawing.
Here, nucleotides that have been experimentally demonstrated
to have a role in identity (selection of an amino acid by an
ARS-tRNA complex) are shown as yellow circles. In this case,
the circle size indicates the relative frequency that a given posi-
tion acts as an identity element. ([From W. H. McClain, 1993, J. Mol.
Biol, 234:257; also see L. D. H. Schulman and J. Abelson, 1988, Science
240:1590.]

With the aid of the electron microscope, ribosomes were
first discovered as discrete, rounded structures prominent in
animal tissues secreting large amounts of protein; initially,
however, they were not known to play a role in protein syn-
thesis. Once reasonably pure ribosome preparations were
obtained, radiolabeling experiments showed that radioactive
amino acids first were incorporated into growing polypep-
tide chains associated with ribosomes before appearing in
finished chains.

A ribosome is composed of several different ribosomal
RNA (rRNA) molecules and more than 50 proteins,
organized into a large subunit and a small subunit. The pro-
teins in the two subunits differ, as do the molecules of rRNA.
The small ribosomal subunit contains a single rRNA mole-
cule, referred to as small rRNA; the large subunit contains
a molecule of large rRNA and one molecule each of two
much smaller rfRNAs in eukaryotes (Figure 4-32). The
ribosomal subunits and the rRNA molecules are commonly
designated in svedbergs (S), a measure of the sedimentation
rate of suspended particles centrifuged under standard con-
ditions (Chapter 3). The lengths of the rRNA molecules,
the quantity of proteins in each subunit, and consequently
the sizes of the subunits differ in prokaryotic and eu-
karyotic cells. (The small and large rRNAs are about
1500 and 3000 nucleotides long in bacteria and about 1800
and 5000 nucleotides long in humans.) Perhaps of more
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A FIGURE 4-32 The general structure of ribosomes in
prokaryotes and eukaryotes. |n all cells, each ribosome con-
sists of a large and a small subunit. The two subunits contain
rRNAs of different lengths, as well as a different set of proteins.
All ribosomes contain two major rRNA molecules (dark red)—23S

interest than these differences are the great structural and
functional similarities among ribosomes from all species.
This consistency is another reflection of the common
evolutionary origin of the most basic constituents of living
cells.

The sequences of the small and large rRNAs from sev-
eral thousand organisms are now known. Although the
primary nucleotide sequences of these rRNAs vary consid-
erably, the same parts of each type of rRNA theoretically
can form base-paired stem-loops, generating a similar three-
dimensional structure for each rRNA in all organisms.
Evidence that such stem-loops occur in rRNA was obtained
by treating rRNA with chemical agents thar cross-link paired
bases; the samples then were digested with enzymes that
destroy single-stranded rRNA, but not any cross-linked
(base-paired) regions. Finally, the intact, cross-linked rRNA
that remained was collected and sequenced, thus identifying
the stem-loops in the original rRNA. Experiments of this
type have located about 45 stem-loops at similar positions
in small rRNAs from many different prokaryotes and

and 16S rBNA in bacteria, 28S and 18S rRNA in eukaryotes—and
one or two small RNAs (light red). The proteins are named L1,
L2, etc., and S1, S2, etc., depending on whether they are found
in the large or the small subunit.

eukaryotes (Figure 4-33). An even larger number of
regularly positioned stem-loops have been demonstrated i.n
large rRNAs. All the ribosomal proteins have been identi
fied and their sequences determined, and many have been
shown to bind specific regions of rRNA. It seems clear that
the fundamental protein-synthesizing machinery in ‘al
present-day cells arose only once and has been modified
about a common plan during evolution.

During protein synthesis, a ribosome moves along at
mRNA chain, interacting with various protein factors and
tRNA and very likely even undergoes shape changes:
Despite the complexity of the ribosome, great progress has
been made in determining both the overall structure ©
bacterial ribosomes and in identifying reactive sites tf‘?t
bind specific proteins, mRNA, and tRNA and that partic"
pate in important steps in protein synthesis. Quite deraile
models of the large and small ribosomal subunits [:'mﬂl
E. coli have been constructed based on cryoelectron micro”
scope and neutron-scattering studies (Figure 4-34). Thes®
studies not only have determined the dimensions a0
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A FIGURE 4-33 Two-dimensional map of the secondary
structure of the small (16S) rRNA from bacteria, showing
the location of base-paired stems and loops. In general, the
length and position of the stem-loops are very similar in &ll
species, although the exact sequence varies from species 1o
species. The most highly conserved regions are represented as
red lines, and the numbered stem-loops unique to prokaryotes
are preceded by a P. Eukaryotic small (18S) rRNAs exhibit a
generally similar pattern of stem-loops, although, as with
prokaryotes, a few are unique. [Adapted from E. Huysmans and

R. DeWachter, 1987, Nucl. Acids Res. 14:73].

overall shape of the ribosomal subunits, but also have
localized the positions of tRNAs bound to the ribosom.e
during protein chain elongation. Powerful chemical experi-
ments have also helped unravel the complex interactions ‘be-
tween proteins and RNAs. In a technique called footprint-
ing, for example, ribosomes are treated with chemical
reagents that modify single-stranded RNA unprotected by
binding either to protein or to another RNA. If the total
sequence of the RNA is known, then the location of the
modified nucleotides can be located within the moleculle.
(This technique, which is also useful for locating protein-
binding sites in DNA, is described in Chapter 10.) Thus the
overall structure and function of ribosomes during protein
synthesis is finally, after 40 years, yielding to su:l:cessful
experiments, How these results aid in understanding the
specific steps in protein synthesis is described in the next
section,
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SUMMARY The Three Roles of RNA
in Protein Synthesis

* Genetic information is copied into mRNA in the
form of a commaless, overlapping, degenerate triplet
code. Each amino acid is encoded by one or more
three-base sequences, or codons, in mRNA. Each codon
specifies one amino acid, but most amino acids are
encoded by multiple codons (see Table 4-2).

® The AUG codon for methionine is the most
common start codon, specifying the amino acid at the
NH;-terminus of a protein chain. Three codons
function as stop codons and specify no amino acids.

* A reading frame, the uninterrupted sequence of
codons in mRNA from a specific start codon to a stop
codon, is translated into the linear sequence of amino
acids in a protein.

¢ Decoding of the nucleotide sequence in mRNA
into the amino acid sequence of proteins depends on
transfer RNAs and amino-acyl tRNA synthetases
(see Figure 4-25).

e All tRNAs have a similar three-dimensional structure
that includes an acceptor arm for attachment of a
specific amino acid and a stem-loop with a three-base
anticodon sequence at its ends (see Figure 4-26). The
anticodon can base-pair with its corresponding codon
or codons in mRNA.

* Because of nonstandard interactions, a tRNA may
base-pair with more than one mRNA codon, and con-
versely, a particular codon may base-pair with multiple
tRNAs.

e Each of the 20 aminoacyl-tRNA synthetases
recognizes a single amino acid and covalently links it
to a cognate tRNA, forming an aminoacyl-tRNA
(see Figure 4-29). This reaction activates the amino
acid, so it can participate in peptide-bond formation.

e The composition of ribosomes—the large
ribonucleoprotein complexes on which proteins are
synthesized—is quite similar in all organisms (see Figure
4-32). All ribosomes are composed of a small and a
large subunit. Each contains numerous different proteins
and one rRNA (small or large). The large subunit also
contains one accessory RNA (55).

o Analogous rRNAs from many different species

fold into quite similar three-dimensional structures
containing numerous stem-loops and binding sites for
proteins, mRNA, and tRNAs. As a ribosome moves
along an mRNA, a region of the large rRNA mole-
cule in each ribosome sequentially binds the aminoacyl-
ated ends of incoming tRNAs and probably catalyzes
peptide-bond formation (see Figure 4-34).
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(a)

45 Stepwise Formation of
Proteins on Ribosomes

The previous sections have introduced the major participants
in protein synthesis—mRNA, aminoacylated tRNAs, and
ribosomes containing large and small rRNAs. Here, we take a
detailed look at how these components are brought together
to carry out the biochemical events leading to formation of pro-
teins on ribosomes. The complex process of translating mRNA
into protein can be divided into three stages—initiation, elon-
gation, and termination—which we consider in order.

The AUG Start Codon Is Recognized
by Methionyl-tR NAM<t

As noted earlier, the AUG codon for methionine functions as
the start codon in the vast majority of mRNAs. A critical
aspect of initiation is to begin protein synthesis at the start

Nucleic Acids, the Genetic Code and the Synthesis of Macromolecules

4 FIGURE 4-34 Overall structyre of
the E. coli ribosome at 25-A resolution,
inferred from cryoelectron microsgop
and three-dimensional reconstructiop
based on the analysis of 4300 indivj
projections. (a) This model shows th
shapes of the large (blue) and sma|
lyellow) subunits of the ribosome with
three aminoacyl-tRNAs (pink, green,
yellow) superimposed at the A, P. ang E
sites. The roles of these tF{NA-binding Sites
during protein synthesis are discusseq
later. Chemical cross-linking experiments
have demonstrated that the mRNA
(orange beads) passes close to the anti.
codon loops of the tRNAs and that the
nascent polypeptide chain is buried in the
tunnel in the large ribosomal subunit that
begins within 1016 A of the 3' amino-
acylated end of the tRNAs. The tunnel
termination site on the ribosome surface
708 has also been accurately mapped. (b) Large
panel shows a field of 70S ribosomes.
Small panels (left) show cryoelectron mi-
croscopy images of a single 70S ribosome,
small (30S) subunit, and large (50S) sub-
unit. Small panels (right) show computer-
derived averages of many dozens of im-
ages in the same orientation. Cryo-
electron microscopy is carried out on
unstained samples of ribosomes or
subunits flash frozen as “vitreous ices”
(without ice crystals) in a very thin layer of
water (Chapter 5). Individual images are
analyzed by computer projections. [See
R. K. Agrawal et al., Call, in press: J. Frank, 19%.
508 Nature 356:441; J. Frank et al., 1995, Biochem.
Cell Biol. 73:757. Courtesy of J. Frank.]

dua)
e

codon, thereby setting the stage for the correct in-frame trans
lation of the entire mRNA. Both prokaryotes and eukaryotes
contain two different methionine tRNAs: tRNAM can l
tiate protein synthesis, and tRNAM®® can incorporate methio
nine only into a growing protein chain (Figure 4-35). The samé
aminoacyl-tRNA synthetase (MetRS) charges both tRINAS
with methionine. But only Met-tRNAM (i e., activated m¢”
thionine attached to tRNAM) can bind at the appropriaf®
site on the small ribosomal subunit (the P site; see discussio
below) to begin synthesis of a protein chain. (The regular
tRNAM®* binds only to another ribosomal site, the A sité; 8
described later.) In bacteria, but not in archaeans or cukﬁ‘i‘t
yotes, the amino group of the methionine of Met-tRNA;
is modified by addition of a formyl group and is sometime®
designated fMet-tRNAMe:, However, Met-tRNAM is com™
monly used to designate the initiator tRNA in all cells. ‘
During the initial stage of protein synthesis in all cellss
a ribosome assembles, complexed with a mRNA and a7
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Met [ tRNA Mot

<4 FIGURE 4-35 Two types of methionine
tRNA are found in all cells. One, designated

—
ltRNAiM“. + | Methionine # Archaeans

Bacteria 4 cho @_ tRNAM!

==> Initiation 1RNAM®!, is used exclusively to start protein
chains, and the other, designated tRNAM®,

T . All cells
tRNAT | + Methionine | ——=> | Met

activated inttiator tRNA, which is correctly positioned at the
start codon. Because the details of initiation and the mech-
anism for locating the translation start site differ in bacte-
ria and eukaryotes, we discuss the two systems separately,

Bacterial Initiation of Protein Synthesis Begins
Near a Shine-Dalgarno Sequence in mRNA

To begin the assembly of a bacterial translation complex,
sequential interactions occur between specific proteins re-
ferred to as initiation factors (IFs) and the small (30S) ri-
bosomal subunit. The resulting preinitiation complex to-
gether with fMet-tRNAM then binds to the mRNA at a
specific site usually located quite near the AUG initiation
codon. This binding, assisted by IF1 and IF3, yields the 30§
initiation complex (Figure 4-36).

In most bacteria, the small ribosomal subunit identifies
start codons through interaction of the small (16S) rRNA
with an eight-nucleotide sequence in mRNA called the
Shine-Dalgarno sequence after its discoverers. This se-
quence, located near the AUG start codon, base-pairs to a
sequence at or very near the 3’ end of 16S rRNA, thereby
binding the mRNA and small ribosomal subunit to each
other. Although the Shine-Dalgarno sequence varies some at
different initiation sites, on average six out of eight nu-
cleotides are complementary to the 3'-end sequence of 165
rRNA. Thus bacterial rRNA plays a direct role in reF:ruit-
ing the small ribosomal subunit to a translation start site on
the mRNA. The long mRNAs produced from bacterial oper-
ons contain multiple internal Shine-Dalgarno sequences

P FIGURE 4-36 Bacterial initiation of protein synthesis.

The three initiation factors (IF1, IF2, and IF3) bind to the small
subunit of the ribosome. The 30S preinitiation complex, together
with the fMet-tRNAMSt, binds the mRNA, guided by the Shiﬂe«
Dalgarno seguence, which is complementary to the 3' terminus
of the 16S rRNA. The AUG sequence is then located, from which
protein initiation will begin. Addition of the large (50S) ribosomal
subunit is accompanied by release of the protein factors and hy-
drolysis of IF2-GTP to yield the complete 70S initiation complex.
The charged initiator tRNA (fMet-tRNA[M®) is positioned in the

P site. The ribosome now is ready for entry of the next amino-
acyltRNA at the A site, which will lead to the formation of the
first peptide bond. The initiation process is similar in archaeans,
except there js no formylation of the Met-tRNAM.

tRNAM® | —35 Elongation

delivers methionine to internal sites in a
growing protein chain. In bacteria, a formyl
group (CHO) is added to methionyl-tRNA Met,
forming fMet-tRNAMst,

located near the start sites for each of the encoded proteins
(see Figure 4-17a). Because a small ribosomal subunit can
bind to each Shine-Dalgarno sequence, synthesis of the dif-
ferent proteins can occur independently and simultaneously
from the multiple start sites on these long mRNAs.
Assembly of a complete 708 initiation complex is
achieved by the recruitment of the large ribosomal subunit,

30S subunit

Initiation
factors (IFs)

O & &_crr

Preinitiation complex
mMRNA + fMet — tRNA;Met

IF3
Met
Shine-Dalgarno
sequence
mRNA
5' 3
30S initiation complex
50S subunit
IF1, IF2-GDP, and P;
5I 3!

70S initiation complex
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an energy-requiring step that is powered by hydrolysis of
GTP bound to IF2; in the process IF1, [F2-GDP, and P; are
discharged. In the completed initiation complex, the charged
initiator tRNA is positioned at the P site on the ribosome.
As discussed later, during elongation the growing peptide
chain remains attached to the tRNA located at this site.

Eukaryortic Initiation of Protein
Synthesis Occurs at the 5' End
and Internal Sites in mRNA

Initiation of protein synthesis in eukaryotic cells, as in bac-
teria, begins with formation of a preinitiation complex prior
to mRNA binding. However, the process differs significantly
from initiation in bacteria. Two eukaryotic factors, elF3 (a
large multimeric protein with about eight subunits) and elF6,
serve to keep the ribosomal subunits apart after they have
previously finished synthesizing a protein chain so that they
can participate again in starting a new chain. To assemble
a eukaryotic preinitiation complex, an active “ternary com-
plex” of elF2 bound to a GTP molecule and Met-tRNAM®
associates with a small (40S) ribosomal subunit complexed
with two other factors, elF3 and elF1A, which stabilize bind-
ing of the ternary complex (Figure 4-37). Cells can regulate
protein synthesis by phosphorylating a serine residue on the
elF2 bound to GDP; this complex is then unable to bind
Met-tRNAM, thus inhibiting protein synthesis.
Recognition of the translation start site by the small ribo-
somal subunit in the eukaryotic preinitiation complex re-
quires different types of factors than in prokaryotic cells. Most
eukaryotic mRNAs have a single start site near the 5" capped
end of the mRNA (see Figure 4-19). Interaction of the small
ribosomal subunit with the methylated 5'-cap structure

P FIGURE 4-37 Eukaryotic initiation of protein synthesis. Establish-
ment of the initiation complex must follow a precise sequence of events,
and the large and small ribosomal subunits must be kept apart until late in
the process. Two eukaryotic factors, elF3 (a large multimeric protein with
about eight subunits) and elF6 fulfill this role. A 43S preinitiation complex is
formed when a ternary complex of elF2 bound to GTP and Met-tRNAMe!
associates with the small (40S) ribosomal subunit, which is complexed with
two other factors, elF3 and elF1A, that stabilize binding of the ternary com-
plex. (The inactive elF2-GDP fails to bind Met-tRNAM®'; it also can be
phosphorylated, thereby inhibiting protein initiation.) The 5° cap (m’G) of
the mRNA to be translated is guided to the preinitiation complex by a
subunit of the multiprotein elF4 complex, which also unwinds any secondary
structure at the 5" end of the mRNA. Subsequent scanning by the small
ribosomal subunit, assisted by elF3 and elF4G, positions the initiator tRNA
at the AUG start codon, yielding the 40S initiation complex and releasing
elF1A, elF3, and elF4. With the Met-tRNAM®! properly positioned at the
start codon, another factor, elF5, assists union of the 40S complex with

the 60S subunit. Hydrolysis of GTP in elF2-GTP provides the energy for this
step. Factors elF5 and elF2-GDP are then released, yielding the final 80S
initiation complex, with MettRNAM®! at the P site. The complex can now

accept the second aminoacyl-tRNA (see Figure 4-40).
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present on all eukaryotic mRNAs re

' quires a set of proteins
collectively called elF4. After the methylated cap structure is

recognized by elF4F, any secondary structure at the 5" end is
removed by an associated helicase activity. The bound preini-
tiation complex, which contains the eIF3 group of proteins
then probably slides along the mRNA, most often stopping,
at the first AUG. However, selection of the mitiating AUG is
facilitated by specific surrounding sequences called Kozak se-
quences (for Marilyn Kozak, who defined them):

mRNA 5'-ACCAUGG-

The A preceding the AUG seems to be the most important
nucleotide affecting initiation efficiency. During the selection
of the starting AUG, there is a proven interaction between
the elF3 complex, the 40S ribosomal subunit, and the eIF4G
component of the elF4 complex. Scanning of the mRNA by
the preinitiation complex eventually yields a 408 initiation
complex in which Met-tRNAM¢* ig correctly positioned at
the translation start site.

Once the small ribosomal subunit with its bound Met-
tRNAM® is correctly positioned at the start codon, union
with the large (60S) ribosomal subunit completes formation
of the 808 initiation complex (see Figure 4-37).

Initiation of translation of most mRNAs by the eukary-
otic protein-synthesizing machinery begins near the 5
capped end as just described. However, some viral mRNAs,
which are translated by the host-cell machinery in infected
eukaryotic cells, lack a 5’ cap; translation of these mRNAs
is initiated at internal ribosome entry sites (IRESs). It is now
known that some cellular mRNAs also can be translated be-
ginning at IRESs (Figure 4-38). Many of the same protein
factors that assist in ribosome scanning from a 5' cap are

1A 3 &b
(eIF& F-A-B)

43S preinitiation
complex

5 mig

AUG = ~{IRES == AUG == 3
[ 100 NTs —>| i

I(%— Can be thousands of NTs ——'—)1

A FIGURE 4.38 Eukaryotic initiation of protein synthesis can
occur near the 5' capped end and at internal ribosome entry
Sites (IRESs) of a MRNA. In the first case, the 43S preinitiation
omplex binds to the 5'-cap structure (m’G) and then slides
3long the mARNA until it reaches an acceptable AUG start codon,
{:s“a"v within about 100 nucleotides (see Figure 4-39). Much

t 8 frequently, the preinitiation complex binds to an IRES within
© MRANA sequence, far downstream of the 5' end, and then

*%ns downstream for an AUG start codon. (Nts = nucleotides.)
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required for locating an internal AUG start codon, but
exactly how an IRES is recognized is less clear.

During Chain Elongation Each
Incoming Aminoacyl-tRNA Moves
through Three Ribosomal Sites

The correctly positioned bacterial 70S or eukaryotic 80S
ribosome-Met-tRNAM* complex is now ready to begin the
task of stepwise addition of amino acids by the in-frame
translation of the mRNA. As is the case with initiation, a
set of special proteins, termed elongation factors (EFs), are
required to carry out the process. The key steps in elonga-
tion are entry of each succeeding aminoacyl-tRNA, forma-
tion of a peptide bond, and the movement, or transloca-
tion, of the ribosome with respect to the mRNA. For
example, the second aminoacyl-tRNA is brought into the
ribosome as a ternary complex in association with an EF1 a-
GTP in eukaryotes (EF-Tu—GTP in bacteria) and becomes
bound to the A site on the ribosome (Figure 4-39). Recall
that the initiating Met-tRNAM® is bound at the P site and
base-paired with the AUG start codon. If the anticodon of
the incoming (second) aminoacyl-tRNA correctly matches
the second codon of the mRNA, a tight binding ensues at
the A site, If this second codon does not match the incom-
ing aminoacyl-tRNA, it diffuses away. The choice of the
correct aminoacyl-tRNA and its tight binding at the A site
requires energy that is supplied by hydrolysis of the EF1 a-
GTP (or EF-Tu-GTP) complex.

With the initiating Met-tRNAM* at the P site and the
second aminoacyl-tRNA tightly bound at the A site, the a
amino group of the second amino acid reacts with the “ac-
tivated” (aminoacylated) methionine on the initiator tRNA,
forming a peptide bond. A revolutionary piece of biochem-
istry has provided insight about this critical peptidyltrans-
ferase reaction, which actually effects the transfer of the
growing peptide chain on the peptidyl-tRNA at the P site to
the activated amino acid on the incoming aminoacyl-tRNA.
In bacterial protein synthesis, the 23S rRNA in the large ri-
bosomal subunit itself may carry out the peptidyltransferase
function. Supporting this catalytic role for 23S rRNA is the
finding that when the vast majority of the protein is care-
fully removed from the large ribosomal subunit and the re-
maining rRNA, or even a pure segment of 23S rRNA, is
mixed with analogs of aminoacylated-tRNA and peptidyl-
tRNA, the peptidyltransferase reaction still occurs.

During the process of peptide synthesis and tRNA site
changes, the ribosome is moved along the mRNA a distance
equal to one codon with the addition of each amino acid.
This translocation step is catalyzed by eukaryotic EF2-GTP
(bacterial EF-G-GTP), which is hydrolyzed to provide the
required energy. Referring again to Figure 4-39, we can see
that after peptide linkage tRNAM®, now without its acti-
vated methionine, is moved to an exit (E) site on the ribo-
some and is soon discharged. Concurrently, another ternary
complex, carrying the next amino acid to be added, enters
the ribosome, and the cycle continues.
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A FIGURE 4-39 The elongation cycle in protein synthesis
visuzlized for E. coli ribosomes. The models of the E. coli
ribosome associated with tRNAs in various states are based on
cryoelectron microscopy studies and cross-linking experiments
(see Figure 4-34). (a) Elongation begins on the 70S initiation
complex with MettRNAMe! (green) in the P site, assembled as
depicted for the eukaryotic system in Figure 4-37. Both ribosomal
subunits are shown in blue. (b) A ternary complex consisting of
elongation factor EF-Tu bound to GTP (orange and red) plus the
correct aminoacyl-tRNA (purple) to decode the second codon
then enters the ribosome. (c) Hydrolysis of EF-Tu-GTP to EF-Tu-
GDP and P; brings aa;-tRNA3? to the A site (purple). (d, e) After
binding of EF-G—GTP (dark blue), the peptidy! synthesis and
translocation steps occur; Met-tRNAM®t (now yellow and moving
out of the P site) donates its methionine to the aa,tRNAZ? {now
green and in the P site), producing aa,-tRNA3?-Met. Hydrolysis
of the bound EF-G-GTP furnishes energy for translocation, and
the products are released. (f) tRNAM® (now brown) moves
completely to the E site and is ejected; a new ternary complex
containing aastRNAS? arrives and the cycle can continue

(c = d — e — 1). [Adapted from R. K. Agrawal et al., Cell, in press.]

Protein Synthesis Is Terminated by Release
Factors When a Stop Codon Is Reached

The final phase of protein synthesis, like initiation and elon-
gation, requires highly specific molecular signals that decide
the fate of the mRNA-ribosome-tRNA-peptidyl complex.
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A

Recent research has uncovered two types of specific term;
tion (release) factors in bacteria and their eukaryoy, Col !
terparts. Bacterial RF1 and RF2 (and eukaryotic eRF1) Whu :
shape is thought to be similar to that of tRNAs («m(;]ecu‘;ﬂe
mimicry”), apparently act by recognizing the StOp cog ar
themselves. RF1 recognizes UAG, and RF2 recognizeg Ué‘ns
both these factors recognize UAA. Like some of the injti,,: *
factors and the elongation factors discussed previous]y, tin
third release factor, RF3 (and its eukaryotic coumel-par’t) e
a GTP-binding protein. RF3 acts in concert with the ¢, d;n!s
recognizing factors to promote cleavage of the peptidyl-tRN :
thus releasing the completed protein chain (Figure 4-40),
Folding of a newly released protein into its native three.

dimensional conformation is facilitated by other Droteing

+RF, 10r 2 plus
RF3-GTP

S

GDP + p Peptidyl-tRNA cleavage

—

A FIGURE 4-40 Termination of translation. When a ribos™
bearing a nascent protein chain reaches a stop codon (UAA
UGA, UAG), release factors (RFs) enter the ribosomal compleX
probably at or near the A site. In bacteria, RF1 or RF2 first 8%
ognizes a stop codon. RF3-GTP then catalyzes cleavage of the
peptide chain from the tRNA and release of the two riboso™?
subunits, reactions that require hydrolysis of GTP.
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Stepwise Formation of Proteins on Ribosomes
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A FIGURE 4-41 Formation of circular eukaryotic mRNA by
protein-protein interactions bridging the 5’ and 3’ ends.

&) Poly(A)-binding protein | (PABI) binds both to the 3’ poly(A) tail
on a eukaryotic mRNA and to subunits of the initiation factor
elF4, which are bound to the m’G cap at the 5' end of the mRNA.
{b) Force-field electron micrographs of mRNA circles held together
by interactions between the three purified proteins described in
Part (a). [Part (a) adapted from A. Sachs et al., 1997, Cell 89:841; part (b)
tourtesy of A. Sachs.]

called chaperones (Chapter 3). Additional release factors
then promote dissociation of the ribosome, freeing the
subunits, mRNA, and terminal tRNA for another round of
Protein synthesis.

Simultancous Translation by Multiple
Ribosomes and Their Rapid Recycling )
fcrease the Efficiency of Protein Synthesis

As noted earlier, translation of a single eukaryotic mRNA
Molecule to yield a typical-sized protein takes 30-60 sec-
onds. Two phenomena significantly increase the overall rate
at which cells can synthesize a protein: the simultaneous

A FIGURE 4-42 Model of protein synthesis on circular
polysomes and recycling of ribosomal subunits. Muitiple
individual ribosomes can simultaneously translate a eukaryotic
mARNA, shown here in circular form stabilized by interactions
between proteins bound at the 3’ and &' ends. When a ribo-
some completes translation and dissociates from the 3’ end,
the separated subunits can readily find the nearby 5’ cap (m’G)
and initiate another round of synthesis, This rapid recycling of
subunits on the same mRNA contributes to the formation of
polysomes and increases the efficiency of translation.

translation of a single mRNA molecule by multiple ribo-
somes and rapid recycling of ribosomal subunits after they
disengage from the 3’ end of a mRNA. Simultaneous trans-
lation of an mRNA by multiple ribosomes is readily ob-
servable in electron micrographs and by sedimentation
analysis, revealing mRNA attached to multiple ribosomes
bearing nascent growing peptide chains. These structures
are referred to as polyribosomes or polysomes. However,
the second phenomenon—rapid recycling of ribosomal
subunits—was not discovered so easily.

Polysomes in some tissues were seen in electron micro-
graphs to be circular. It was not until recently that studies
with yeast cells explained the circular shape of polyribosomes
and suggested the mode by which ribosomes recycle efficiently.

Researchers initially found that the poly(A) tail at the 3"
end of eukaryotic mRNA stimulates in vitro translation by
yeast protein-synthesizing components. This observation at
first seems puzzling, since translation is begun upstream
(usually near the S’ end) of the mRNA, at a great distance
from the poly(A) tail. A cytosolic protein found in all eu-
karyotic cells, poly(A)-binding protein 1 (PABI), proved lit-
erally to be a missing link in explaining the relationship of
the poly(A) tail to translation. In earlier studies, yeast cells
that had mutations in the gene encoding PABI were found
to translate mRNA poorly. The role of PABI in improving
efficiency of protein synthesis was demonstrated by the
recent finding that PABI and two components of yeast elF4
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(4G and 4E) can interact on mRNA to circularize the mol-
ecule (Figure 4-41). By linking the poly(A) tail to the 5" end,
PABI positions recently disengaged ribosomal subunits near
the start site for protein synthesis, thus enhancing their reen-
try into the process and improving efficiency. Thus in many
eukaryotic cells, ribosomal subunits may follow the circular
pathway depicted in Figure 4-42, providing another exam-
ple of the merger of form and function.

SUMMARY Stepwise Formation
of Proteins on Ribosomes

e Of the two methionine tRNAs found in all cells, only
one (tRNAM) functions in initiation of protein synthesis.

e During initiation, the large and small ribosomal sub-
units assemble at the translation start site in an mRNA
molecule, and the tRNA carrying the amino-terminal
methionine (Met-tRNAM') base-pairs with the start
codon, forming a 70S (bacterial) or 80S (eukaryotic)
initiation complex (see Figures 4-36 and 4-37).

e The mechanism by which the small ribosomal subunit
locates the start codon differs somewhat in bacteria and
eukaryotes. In all cells, however, it depends on specific
initiation factors and requires energy supplied by hydro-
lysis of GTP.

* Elongation of a protein chain entails three steps, which
occur over and over (see Figure 4-39). First, an amino-
acyl-tRNA binds tightly to the A site on the ribosome
and base-pairs with its corresponding codon in the mRNA.
Second, a peptide bond is formed between the incoming
amino acid and the growing chain at the P site, transfer-
ring the peptidyl chain to the incoming tRNA. Peptide-
bond formation is accompanied by movement of the

~ incoming tRNA to the P site and of the now unloaded
tRNA to the E site. Finally, the ribosome translocates to
the next codon, and the old tRNA is discharged from
the ribosome. As with initiation, elongation requires
specific protein factors and GTP hydrolysis.

. @ The large rRNA in a ribosome most likely catalyzes
the peptidyltransferase reaction in which peptide bonds
between adjacent amino acids are formed.

® Termination is carried out by two types of termination
factors: those that recognize stop codons and those that
promote hydrolysis of peptidyl-tRNA (see Figure 4-40).

. ® In eukaryotic cells, multiple ribosomes commonly are
bound to a single mRNA, forming a circular polysome;
all the bound ribosomes translate the mRNA concur-

| rently. As each ribosome completes translation and is re-

. leased from the 3' end of the mRNA, the subunits prob-

. ably reassemble quickly at the 5’ end (see Figure 4-42),

| This circular ribosome pathway greatly increases the ef-

. ficiency of protein synthesis.
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PERSPECTIVES for the Future

In this chapter we first considered the basic chemical make,
of DNA and RNA and some elementary principles aboy
their two- and three-dimensional structures. We then de.
scribed the elementary properties of RNA and DNA poly.
merases, which catalyze the synthesis of nucleic acids in celj;
The large-scale protein machines that make RNA and DNA.
according to regulated plans are examined in detail in |y,
chapters. Finally, we discussed the genetic code and the py;.
ticipation of tRNA and the protein-synthesizing machine
the ribosome, in decoding the information in mRNA to 311
low accurate assembly of protein chains.

These facts form the bedrock principles of molecular cg|
biology and are not likely to change. Nevertheless, impor-
tant extensions of these principles are now being made, and
these will form a new generation of fundamental principles,
For example, sequencing of the entire genomes of many dif-
ferent bacteria and archaea has been completed, and dozens
more are under way. The genomic sequence of baker’s yeast,
a simple eukaryote, also has been determined, as has that
of the nematode worm C. elegans. The genome of
Drosophila melanogaster may well be finished by the time
this book is released, and early in the next century, the hu-
man genome will yield its complete sequence to researchers,
As discussed in Chapter 7, once the genomic sequence of an
organism is known, all the possible encoded proteins can be
deduced with the aid of computer programs.

Paralleling the work on genomic analysis, biochemists
and structural biologists are collaborating to determine
through structural studies all the possible folds that protein
domains assume in order to expand our knowledge of the
interactions between the cell’s principal macromolecules,
namely, protein-protein, protein-RNA, and protein-DNA in-
teractions. The fundamental principles of interaction and 2
catalogue of typical macromolecular interactions will be in
the hands of scientists early in the twenty-first century.

Much of current biological research, and that in the next
few years, is focused on discovering how these molecular in-
teractions endow cells with decision-making capacity 2t
their special properties. For this reason several of the fol-
lowing chapters describe current knowledge about how such
interactions regulate RNA and DNA synthesis and how such
regulation endows cells with the capacity to become P&
cialized and grow into complicated organs. Other chapte?®
deal with how protein-protein interactions underlie the co™
struction of specialized organelles in cells, how cells and ce
organelles move, and how these properties of mobility €O
pled with regulated growth lead to construction of bod
plans of correct size and shape.

One frontier, neurobiology, will benefit from all these mok
ecular and cellular advances but will require a new Jevel of in”
tegrated research for ultimate solutions. Future advances in the
molecular biology of the specialized cell types that compos¢
the brain will, no doubt, contribute to understanding brai"
function. It is clear, however, that neurobiology poses a new




challenge in understanding how numerous functions within
and between brain cells are integrated. Such integration,
which exists at a vastly more complicated level in the brain
than elsewhere, is critical to brain functioning.

PERSPECTIVES in the Literature

Macromolecular synthesis is carried out by multiprotein ma-
chines. Compare the machines for making RNA, DNA, and
protein. What are the similarities and differences among
them that seem most cogent to their individual tasks? As we
acquire ever deeper knowledge of these machines, this will
be a worthwhile project for every student, and indeed for
every practicing biologist. Start your exploration of the lit-
erature in this broad topic with the following references:

Ban, N., et al. 1998. A 9A resolution X-ray crystallographic
map of the large ribosomal subunit. Cell 93:1105-
1115.

Holstege, F. C. P, and R. A. Young. 1999. Transcriptional
regulation: contending with complexity. Proc. Nai'l
Acad. Sci. USA 96:2-4.

Holstege, E. C. P, and R. A. Young. 1998. Review Issue,
Macromolecular Machines. Cell 92:291-423.

Testing Yourself on the Concepts

1. What are the minimal components needed for informa-
tion flow from DNA to protein?

2. Investigators use the PCR (polymerase chain reaction) to
amplify regions of DNA contained between two single-
stranded oligonucleotide primers that anneal to opposite
strands of a DNA template. In designing primers, it is im-
portant to consider sequence information, Ty, and direc-
tionality of the primers. Why?

3. Mutations that alter DNA can alter the function of an
expressed protein. A mutation is characterized in a gene
from a model organism and found to contain a single base
change relative to the wild-type gene, yet the encoded pro-
tein still functions in this organism. How is this possible?

MCAT/GRE-Style Questions

Key Concept Please read the sections titled “Messen-
ger RNA Carries Information from DNA in a Three-Letter
Genetic Code” (p. 117) and “Experiments with Synthetic
MRNAs and Trinucleotides Broke the Genetic Code”
(p. 119) and answer the following questions. Where relevant,
refer to the following RNA sequences, which are coding-
Strand sequences derived from genes within the nuclear
Mammalian genome:
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I. GUGCUCUUGCAAGACA
II. AGUAUUGUUGCAGGAUU
II. UAGUUCUUUUACAGGAC

1. Using Table 4-2, determine which of the above sequences
has the potential to encode the following protein sequence:
Val-Leu-Leu-Gln-Asp.

a. Tonly

b. I and II only.

¢. I and III only.

d. 1, 11, and III,

2. Which of the following occurs when the eukaryotic trans-
lational machinery encounters the UAG codon:

a. The bound preinitiation complex stops scanning and
positions the Met-tRNAM"at this site.

b. The termination factors recognize this codon and
translation ends.

¢. This codon is recognized by the corresponding anti-
codon of an empty tRNA molecule that is not linked

to an amino acid.

d. This codon is not recognized by any factors that ulti-
mately cause the translational machinery to stop.

3. In which of the following would translation of sequence
I yield a novel polypeptide compared with mammals:
a. Rice.
~b. Acetabularia.
c. Yeast.
d. None of the above.

4. A naturally occurring coding strand composed of alter-
nating C and U residues would result in the formation of

a. A polypeptide containing alternating Leu and Ser
residues.

b. A polypeptide containing either Leu or Ser residues.

b. A polypeptide containing only Leu residues.

c. A polypeptide containing only Ser residues.

Key Experiment Please read the section titled “DNA
Can Undergo Reversible Strand Separation® (p. 105) and
use Figure 4-9 to answer the following questions:

5. An investigator would be able to distinguish a solution
containing RNA from one containing DNA by

a. Heating the solutions to 82.5 °C and measuring the
absorption of light at 260 nm.

b. Comparing the Ty, of each solution.

c. Monitoring the change in absorption of light at
260 nm while elevating the temperature.

d. Measuring the absorption of light at 260 nm.

6. The percentage of G-C base pairs in a DNA molecule is
related to the T, because
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a. The stability of G-C and AT base pairs is intrinsically
different.

b. A-T base pairs require a higher temperature for de-
naturation,

c. The triple bonds of G-C base pairs are less stable than
the double bonds of A'T base pairs.

d. The G-C content equals the A-T content.

7. A circular DNA molecule will give rise to data as in Fig-
ure 4-9 only

If one of the strands is cut first.

If protein is bound to the DNA.

If replication is taking place.

If renaturation is allowed to take place.

oD o

Key Application Plant ribosome-inactivating proteins
(RIPs) are toxins that inhibit eukaryotic translation. RIPs
can be used to control viruses in both humans and plants,
if they can be targeted specifically to virally infected cells.
Catalytically, the RIPs act to remove an adenine residue from
a conserved stem loop of the 60S rRNA, thereby prevent-
ing the binding of the eEF2-GTP complex during protein
elongation. Please refer to the section titled “Eukaryotic Ini-
tiation of Protein Synthesis Occurs at the 5’ End and Inter-
nal Sites in mRNA” (p. 130) and answer the following ques-
tions:

8. Which of the following is not present in cells treated with
an RIP:

a. The 43S preinitiation complex.
b. The ternary complex.

c. The 808 initiation complex.

d. The 40S initiation complex.

9. A mutant RIP, when added to eukaryotic cells, can be
judged to be inactive by
a. Lack of depurination of rRNA.
b. Lack of union of the 40S and 60S ribosomal subunits.
c. Lack of viral growth.
d. Cytotoxicity.

10. RIPs do not inhibit prokaryotic translation, because
a. They do not recognize the 30S initiation complex.
b. They do not depurinate the 165 rRNA.
c. They do not recognize the Shine-Dalgarno sequence.
d. They do not recognize the large ribosomal subunit of
prokaryotes.

11. Recognition of viral mRNAs by the eukaryotic machin-
ery always involves

a. Initiation at the 5’ capped end of the mRNA.

b. Initiation at an internal ribosome entry site.

c. Protein factors that assist in ribosome scanning.

d. Initial binding of the 60S rRNA.
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