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Abstract

This paper introduces a new free-form surface rep-
resentation scheme for the purpose of fast and accu-
rate registration and matching. Accurate registration
of surfaces is a common task in computer vision. The
proposed representation scheme captures the surface
curvature information, seen from certain points and
produces images, called surface signatures, at these
points. Matching signatures of different surfaces en-
ables the recovery of the transformation parameters
between these surfaces. We propose to use template
matching to compare the signature images. To enable
partial matching, another criterion, the overlap ratio,
is used. This representation scheme can be used as a
global representation of the surface as well as a local
one and performs near real-time registration. We show
that the signature representation can be used to match
objects in 3-D scenes in the presence of clutter and oc-
clusion. Applications presented include free-form ob-
ject matching, multimodal medical volumes registra-
tion and dental teeth reconstruction from intra-oral
mages.

I Introduction

The registration process is an integral part of com-
puter and robot vision systems and still presents a
topic of high interest in both fields. The importance
of the registration problem in general comes from the
fact that it is found in different applications including
surface matching[1], 3-D medical imaging[2], [3], pose
estimation[4], object recognition[5], [6], [7] and data
fusion[8].

In order for any surface registration algorithm to
perform accurately and efficiently, appropriate repre-
sentation scheme for the surface is needed. Most of
the surface representation schemes found in literature
have adopted some form of shape parameterization es-
pecially for the purpose of object recognition. One
benefit of the parametric representation is that the
shape of the object is defined everywhere which en-
ables high level tasks such as visualization, segmen-
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tation and shape analysis to be performed. More-
over, such representation allows stable computation of
geometric entities such as curvatures and normal di-
rections. However, parametric representation are not
suitable to present general shapes especially if the ob-
ject is not of planar, cylindrical or toroidal topology.
Free-form surfaces, in general, may not have simple
volumetric shapes that can be expressed in terms of
parametric primitives. Dorai and Jain[5] have defined
a free-form surface to be “a smooth surface, such that
the surface normal is well defined and continuous al-
most everywhere, except at vertices, edges and cusps.”
Discontinuities in the surface normal or curvature, and
consequently in the surface depth, may be present
anywhere in a free-form surface. Some representation
schemes for free-form surfaces found in literature in-
clude the splash representation proposed by Stein and
Medioni[9], the point signature by Chua and Jarvis[10]
and COSMOS by Dorai and Jain[5]. Recently John-
son and Hebert[7] introduced the spin image repre-
sentation. Their surface representation, comprises de-
scriptive images associated with oriented points on the
surface. Using a single point basis, the positions of
the other points on the surface are described by two
parameters. These parameters are accumulated for
many points on the surface and result in an image at
each oriented point which is invariant to rigid trans-
formation.

This paper contributes in the developement of a
similar surface representation with the exception of
using the curvature information rather than the point
density to create the signature image. Furthermore,
we apply a selection process to select feature points on
the surface to be used in the matching process. This
reduction process solves the long registration time re-
ported in the literature, especially for large surfaces.
Our technique starts by generating a signature image
capturing the surface curvature information seen from
each feature point. This image represents a signature
of the surface at that point due to the fact that it is
almost unique for each point location on the surface.
Surface registration is then performed by matching
signature images of different surfaces and hence find-
ing corresponding points in each surface. For rigid
registration, three point correspondences are enough
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to estimate the transformation parameters. This pa-
per is organized as follows. The signature represen-
tation is described in section II. The points selection
process is introduced in section III and the matching
process in section I'V. Results and discussions are given
in section V and the paper concluded in section VI.

II Surface Signature Generation

Our approach for fast registration is to establish a
“surface signature,” for selected points on the surface,
rather than just depending on the 3-D coordinates of
the points. The idea of obtaining a “signature” at each
surface point is not new [9], [10], [7]. The signature,
computed at each point encodes the surface curvature
seen from this point using all other points. This re-
quires an accurate measure of the surface curvature at
the point in focus.

For parametric curves or surfaces, curvature mea-
sures can be obtained using the Frenet Frame values
for the case of a curve or the Weingarten Map for the
case of surfaces[11]. This requires the calculation of
curve or surface derivative which is a complex oper-
ation and may introduce computational errors to the
representation scheme used. Moreover, such measures
are hard to obtain for the case of unstructured free-
form surfaces. Hebert[12] used a simplex angle to de-
scribe changes in a simplex mesh surface. We use the
simplex angle to estimate the curvature value at points
on a free-form surface.

A free-form surface, in its general form, is com-
posed of unstructured triangular patches. There ex-
ists a dual form consisting of unstructured simplex
mesh as shown in Fig. 1(a). A topological transfor-
mation is used to associate a k-simplex mesh to a
k-triangulations or k-manifolds. This transformation
works differently for vertices and edges located at the
boundary of the triangulation from those located in-
side. The outcome of this transformation is a (k-p)-cell
associated with a p-face of a k-triangulation [13]. In
this work, a 2-simplex mesh form is considered in the
curvature calculation. Let P be a vertex of a 2-simplex
mesh and having three neighbors Py, P», P3. The three
neighboring points define a plane with normal Up.
They also lie on a circumscribe circle with radius r
and the four points are circumscribed by a sphere with
center O and radius R as shown in Fig. 1(b). The sim-
plex angle # shown in Fig. 1(c) is defined as [14]:

sin(f) = %sign(P_H -Up) (1)
This definition is made with the assumption that the
three neighbors are linearly independent, thus r # 0.

The simplex angle is related to the mean curvature H
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Fig. 1. (a) Duality between triangulation and simplex mesh. (b)
The circumsphere of radius R that includes the four points.
(c) Cross section of the sphere and the calculation of the
simplex angle.

of the surface at the point P as follows:

sin(6)

H= 2)

The idea is to use this curvature measure and cre-
ate a reduced representation of the surface at certain
points. This reduced representation encodes the cur-
vature values at all other points and creates an image.
This image is called a “signature image” for this point.
This is because the change in curvature values with the
distribution of all points forming the surface relative
to the point in study is unique. This is not true for
surfaces of revolution (SOR).

The signature image is generated as follows: As
shown in Fig. 2, for each point P, defined by its 3-
D coordinates and the normal ﬁp, each other point
P; on the surface can be related to P by two param-
eters: (1) the distance d; = ||P — P;|| and (2) the

Up.(P—P;)
[[P—Pil]

mentation of the signature image and it can be easily
converted into cartesian form. Also we can notice that
there is a missing degree of freedom in this representa-
tion which is the cylindrical angular parameter. This
parameter depends on the surface orientation which
defies the purpose of having an orientation indepen-
dent representation scheme. The size of the image
depends on the object size but for the sake of gener-
alization, each object is normalized to its maximum

angle o; = cos™! ( ) This is a polar imple-
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Signature image at P

Fig. 2. For each point P we generate a signature image where
the image axis are the distance d between P and each other
point on the surface and the angle a between the normal
at P, ij and the vector from P to each other point. The
image encodes the simplex angle 6.
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Fig. 3. Examples of signature images taken at different point
locations. Notice how the image features the curvature in-
formation. The dark intensity in the image represents a
high curvature seen from the point while the light intensity
represents a low curvature.

length. At run-time matching, the scene-image is nor-
malized to the maximum length of the object in study.
At each location in the image the simplex angle 6; is
encoded. Ignoring the cylindrical angular degree re-
sults in the case where the same pixel in the image
can represent more than one 3-D point on the surface.
This usually occurs when the object have surfaces of
revolution around the axis represented by the normal
at the point P. These points have the same d; and «;
and lie on the circle that has a radius d;cos(«;) and is
distant by d;sin(a;) from the point P along the axis
Up. The average of their simplex angles is encoded in
the corresponding pixel location.

Figure 3 shows some signature images taken at dif-
ferent points on a statue and a phone handset. Each
image uniquely defines the location of the point on
the surface due to the encoded curvature information.
In SOR, similar images can be obtained for different
points. This can be expected as the registration of
SOR objects is not unique and has infinite number of
solutions.
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TABLE 1
A AT DIFFERENT ), THEIR % FROM THE TOTAL M POINTS IN
THE MODEL AND THE TIME TAKEN TO OBTAIN THEM ON AN

SGI-02
statue | statue | speaker | speaker
A 0.66 0.1 0.3 0.1
| Al 570 1200 280 1300
M 22541 | 22541 16150 16150
%2 3% | 6% 2% 8%
Time | 30sec | 30sec 20sec 20sec

III Surface Points Selection

The concept of using special points for registration
is not new. Thirion[2] used the same concept to reg-
ister multimodal medical volumes, and he used “ex-
tremal” points on the volume edges (or ridges). Chua
and Jarvis[10] used “seeds” points in their match-
ing approach. Stein and Medioni[9] used only highly
structured regions in their approach.

In many real life objects, the majority of points
forming the surface are of low curvature value. These
points are reduntant and do not serve as landmarks of
the object. In this work, points of low curvature are el-
eminated and signature images are only generated for
the set of remaing points. A test is also performed to
eleminate spike points that have considerable higher
curvature than its neighbors. These points are consid-
ered as noise.

The simplex angle is used as a criterion to reduce
the surface points and use only a subset A C S in the
registration process, where S is the set of the simplex
mesh points.The subset A is defined with respect to a
threshold A such that A contains the landmark regions
of the surface.

A={P eS| |sin(fi)| = A\, A >0} (3)

Figure 4 shows two examples of objects and their
scanned models. Figure 5 shows the reduced set of
points A obtained for each model using different A
and table I summarizes the values obtained. With low
threshold values, more details about the object model
are considered with considerable reduction in the set
cardinality. Even with higher threshold values, most
of the landmarks of the object are still present in the
set A.

There are two cases, however, where the above anal-
ysis will fail. The first is when the surface is a plane
or is a piece-wise defined surface (e.g. a cube). In this
case for any A > 0 the set A will be empty. This can
be deduced from Fig. 1(c) when P falls in the plane
formed by its neighbors. In this case there exists no
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Fig. 4. (Top) Two examples of real objects, a statue and a
speaker. (Bottom) Rendered views of the scanned 3-D
model of the objects. The statue 3-D model consists of
22541 patches and the speaker 3-D model consists of 16150
patches.

(b)

Fig. 5. The reduced set of points obtained for the statue and
speaker models using (a) A = 0.66, (b) A = 0.1, (c) A =0.3
and (d) A =0.1.

sphere circumscribing the four points (i.e. R = 00),
thus H = 0. The second case is when the surface is
part of a spherical, cylindrical or toroidal shape. In
this case the curvature measure will be constant over
the surface. Fortunalty, in either cases, these surfaces
can be easily parameterized and the transformation
parameters can be analytically recovered.

IV Signature Matching

The next step in the registration process is to
match corresponding signature images of two sur-
faces/objects or between a 3-D scene and objects in
a library. The ultimate goal of the matching process
is to find at least three points correspondence to be
able to calculate the transformation parameters. The
benefit of using the signature images to find the corre-
spondence is the use of image processing tools in the
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matching, hence reducing the time taken to find accu-
rate transformation. The developed matching engine
should be simple based on the fact that the signature
images of corresponding points should be identical in
their content. Yet, due to the fact that 3-D scanning
sensors are noisy in nature and that the 3-D scene
may contain clutter or suffer from partial occlusion, a
robust matching criteria is needed. One such criteria
is template matching in which a measure defines how
well a portion of an image matched a template. Let
9(i,7) be one of our scene signature images and ¢(i, j)
one of the library object (or original surface) signature
templates and let D be the domain of definition of the
template. Then a measure of how well a portion of
the scene image matches the template can be defined
as [15]:

M(m,n)zz Z

(4, 1),(i—m,j—n)ED

|g(Z“]) - t(Z - m:j - n)‘
(4)
For surface signature matching, translation is not
needed as the corresponding signature images have
the same origin point at (0,0) which means that only
M(0,0) is calculated. Another more discriminating
measure, based on the standard Euclidean distance,
can be:
Bi= = 3 Y lold) 16 )
D
(4, i)eD
where Np is the total number of pixels in the domain
D. The domain D is defined over the template size.
To enable partial matching, the matching measure is
augmented by adding the overlap ratio O = %’ , where
D, is the domain of the overlapping pixels. Figure 6
shows an example of two objects with known trans-
formation parameters and another example where al-
most half of the object is missing. Table II shows that
reducing the size of the signature image leads to a de-
crease in the number of correct points correspondence
which means that more points are needed. Yet, the
reduction in time with the smaller size is more suit-
able for real-time applications. It should be noticed
that more reduction in the signature image size may
lead to incorrect matching due to the averaging pro-
cess. The end result of the matching process is a list
of groups of likely three point correspondences that
satisfy the geometric consistency constraint. The list
is sorted such that correspondences that are far apart
are at the top of the list. A rigid transformation is
calculated for each group of correspondences and the
verification is performed using a modified ICP tech-
nique[16]. Groups are ranked according to their veri-
fication scores, and the best group is refined using the
modified ICP technique.

Js i
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(a)

(b)

Fig. 6. (a) case 1: Two telephone handsets with known transfor-
mation parameters. Notice how similar are the correspond-
ing signature images. (b) case 2: Part of a telephone hand-
set, almost 50% of the original model, and example of the
corresponding signature images. Partial matching is needed
to establish the correspondence.

TABLE 11
COMPARISON IN MATCHING FOR DIFFERENT SIGNATURE IMAGE
SIZES

case 1 case 2
A1 X As 147X147 147X70
image size 128X128 | 64X64 128X128 | 64X64
# of Correct 67 40 38 30
matching
Reg. time Hdsec 24sec 30sec 10sec

V Results and Discussions

We used the signature implementation in three ap-
plications. The first is object registration, an exam-
ple of which is shown in Fig. 7 where two differently
scanned objects are matched together. The signature
registration was successful in recovering the transfor-
mation parameters. Also the signature representation
was used in matching objects in a 3-D scene with their
corresponding models in a library. The proximity of
the objects in the scene creates large amounts of clut-
ter and occlusion. These contribute to extra and/or
missing parts in the signature images. Using the sig-
nature polar representation, the effect of clutter, for
many points, is only found in the third and/or fourth
quadrant of the image as shown in Fig. 8. Examples of
such application is shown in Fig. 9. Using the signa-
ture matching criterion, all of the models in the scene
are simultaneously matched and localized in their cor-
rect scene positions. The models in the library and
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Fig. 7. The signature matching enabled fast recovery of the
transformation parameter between these two models.

Statue Signature
Template (ST)
Statue ST

B2 o

n
Signature 1[0.008 | 0.9

0.3712 0.899

Signature 2
-HH‘.\‘ "'.r

Speaker Signature

Template (ST)

Spea

er ST
2

E o
n

Signature 31,773

0.01

0.558
1.0

Signature 4

clutter

Signature
Template

Scene
Signature

Fig. 8. Illustration of the effect of scene clutter and occlusion
on the signature matching.

the 3-D scenes are scanned using a Cyberware 3030
laser scanner with a resolution of Imm. Some models
(e.g. the duck, bell and cup) were obtained from a
CAD/CAM library. Table III shows the time needed
to match objects in a scene using their signature tem-
plates. We compared the performance of our approach
with the ICP and the spin image approaches. For the
case of matching the statue object, it took 650 sec-
onds using the ICP and 415 seconds using the spin
image. Applying the feature points selection process
with the spin image, it took 120 seconds to match
the object. This is due to the fact that we needed
more feature points to match the spin image com-
pared to the points needed to match the signature
image. The second application is multimodal medi-
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Fig. 9. Examples of using the signature representation in object
matching. A library of 10 objects is used. Some of these
objects were scanned using a Cyberware 3030 laser scanner
with a resolution of 1mm. Others are obtained from CAD
libraries.

TABLE III
APPROX. MATCHING TIME IN RECOGNITION ON AN SGI-O2

model # points | matching time (sec.)
Statue 22541 102
Speaker 16150 87
Bottle 15303 80
Duck 3807 30
Cup 7494 40
Bell 22800 80
Dino 35571 130
Tiger 21606 73
Tank 8619 48
Pin 2110 21

cal image registration as shown in Fig. 10(a). The red
surface represents the skin model reconstructed from
the MR data and the grey represents the skin model
obtained from the CT. These models where obtained
using a deformable contour algorithm that finds the
outer contour in each slice and reconstructs a 3D mesh
by connecting these contours. As the skin is mod-
eled differently in the two image modalities, surface
registration will only produce an initial registration.
Other techniques like maximizing the mutual informa-
tion (MI) [17] can be used to enhance the result. The
registration using signature and MI was much faster
than using MI alone [18]. The third application, shown
in Fig. 10(b), is in the dental teeth reconsturction[19],
[20]. The overall purpose of this system is to develop a
model-based vision system for orthodontics to replace
traditional approaches that can be used in diagnosis,
treatment planning, surgical simulation and for im-
plant purposes. Image acquisition is obtained using
intra-oral video camera and range data are obtained
using a 3D digitizer arm. A shape from shading tech-
nique is then applied to the intra-oral images. The
required accurate orthodontic measurements cannot
be deduced from the resulting shape, hence the need
of some reference range data to be integrated with the
shape from shading results. An neural network fu-
sion algorithm|[21] is used to integrate the shape from
shading results and the range data. The output of the
integration algorithm to each teeth segment image is
a description of the teeth surface in this segment. The
registration technique is then performed to register the
surfaces from different views together.

VI Conclusions

This paper proposed a new surface representation
of free-form surfaces and objects. The proposed rep-
resentation reduces the complexity of the registration
and matching problems from the 3-D space into the 2-
D image space. This was done by capturing the surface
curvature information seen from feature points on the
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Overlaped CT/MRI
after Registration

Overlaped CT/MRI
before Registration

(a) Multimodal Volume Registration

Output of the
SFS and Data
Fusion Process

Resluting tooth
mesh after
registration

Two Intra-
Oral Images

(b) Registration in Dental Application

Fig. 10. Application of the signature representation for (a) Mut-
limodal medical volume registration and (b) teeth recon-
struction from intra-oral images

surface and encoding it into a signature image. Reg-
istration and matching were performed by matching
corresponding signature images. The signature im-
ages were only generated for selected feature points.
The results show a reduction in the registration and
matching time compared to other known techniques,
a major requirement for real-time applications. Ap-
plications included free-form object matching, multi-
modal medical volumes registration and dental teeth
reconstruction from intra-oral images. Currently, we
are exploiting the use of the signature representation
in scale independent object matching. Regions of same
curvature can be detected and segmented in the sig-
nature image and scale can be recovered by observing
the inter-relationship between segmented curvature re-
gions in different signature images. Future research in-
cludes studying the effect of shape deformation on the
signature representation and modeling the change in
the signature image with a deformation model. This
will enable the signature representation to be used in
non-rigid registration.
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