
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224645602

Application Performance Management in Virtualized Server Environments

Conference Paper · May 2006

DOI: 10.1109/NOMS.2006.1687567 · Source: IEEE Xplore

CITATIONS

275
READS

1,285

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Manager of Architecture, Cloud Development, Machine Learning team for Watson For Genomics View project

Kirk Beaty

IBM Watson Health

29 PUBLICATIONS 1,273 CITATIONS

SEE PROFILE

Gautam Kar

IBM

37 PUBLICATIONS 1,067 CITATIONS

SEE PROFILE

Andrzej Kochut

IBM

65 PUBLICATIONS 1,844 CITATIONS

SEE PROFILE

All content following this page was uploaded by Kirk Beaty on 29 May 2014.

The user has requested enhancement of the downloaded file.
VMware, Inc. Exhibit 1018 Page 1

https://www.researchgate.net/publication/224645602_Application_Performance_Management_in_Virtualized_Server_Environments?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/224645602_Application_Performance_Management_in_Virtualized_Server_Environments?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Manager-of-Architecture-Cloud-Development-Machine-Learning-team-for-Watson-For-Genomics?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kirk-Beaty?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kirk-Beaty?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kirk-Beaty?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gautam-Kar?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gautam-Kar?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gautam-Kar?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrzej-Kochut?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrzej-Kochut?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrzej-Kochut?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kirk-Beaty?enrichId=rgreq-a4e1f20d0625425f0d286ccf26624d24-XXX&enrichSource=Y292ZXJQYWdlOzIyNDY0NTYwMjtBUzoxMDIyNDAyOTEzOTM1NDlAMTQwMTM4NzM5Mzc3OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Application Performance Management in
Virtualized Server Environments

Gunjan Khanna*
Dept. of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN, USA

gkhanna@purdue.edu

Kirk Beaty, Gautam Kar, Andrzej Kochut
IBM T.J. Watson Research Center,

Hawthorne, NY, USA
(kirkbeaty, gkar, akochut)@us.ibm.com

Abstract — As businesses have grown, so has the need to
deploy I/T applications rapidly to support the expanding
business processes. Often, this growth was achieved in an
unplanned way: each time a new application was needed a new
server along with the application software was deployed and
new storage elements were purchased. In many cases this has
led to what is often referred to as “server sprawl”, resulting in
low server utilization and high system management costs. An
architectural approach that is becoming increasingly popular
to address this problem is known as server virtualization. In
this paper we introduce the concept of server consolidation
using virtualization and point out associated issues that arise
in the area of application performance. We show how some of
these problems can be solved by monitoring key performance
metrics and using the data to trigger migration of Virtual
Machines within physical servers. The algorithms we present
attempt to minimize the cost of migration and maintain
acceptable application performance levels.

Index Terms: Application performance management, virtual
machine migration, virtual server.

I. INTRODUCTION

The guiding principles of distributed computing and

client-server architectures have shaped the typical I/T
environment for the last three decades. Many vendors have

thrived by selling elements of a distributed infrastructure,

such as servers, desktops, storage and networking elements
and, of course, distributed applications, such as email,

CRM, etc.

As businesses have grown, so has the need to deploy I/T
applications rapidly to support the expanding business

processes. Often, this growth was achieved in an unplanned
way: each time a new application was needed a new server

along with the application software was deployed and new

storage elements were purchased. In many cases this has
led to what is often referred to as “server and storage

sprawl”, i.e., many underutilized servers, with
heterogeneous storage elements. A critical problem

associated with “server sprawl” is the difficulty of

managing such an environment. Examples are: average use
of server capacity is only 10-35 %, thus wasting resources

and the bigger staff required to manage large number of

heterogeneous servers, thereby increasing the total cost of
ownership (TCO).

An architectural approach that is becoming increasingly

popular to address this problem is known as virtualization.

Virtualization occurs both at the server and the storage
levels and several papers have recently been published on

this topic [5], [7], [8], [12], [14]. Most of these publications

deal with the design of operating system hypervisors that
enable multiple virtual machines, often heterogeneous guest

operating systems, to exist and operate on one physical
server. In this paper we start with the concept of server

level virtualization and explore how it can be used to

address some of the typical management issues in a small to
medium size data center.

The first system management problem we will look at in
this paper is in the category of configuration management

and is called server consolidation where the goal is to

reduce the number of servers in a data center by grouping
together multiple applications in one server. A very

effective way to do this is by using the concept of server

virtualization as shown in Figure 1. Each application is
packaged to run on its own virtual machine, these are in

turn mapped to physical machines – with storage provided
by a storage area network (SAN). Details of this approach

are given in Section II.

Each application in an I/T environment is usually
associated with a service level agreement (SLA), which in

the simplest case, consists of response time and throughput
requirements. During run time, if the SLA of an application

is violated, it is often because of factors such as high CPU

utilization and high memory usage of the server where it is
hosted. This leads to the main issue that we address in this

paper: how to detect and resolve application performance

problems in a virtual server based data center. Our
approach is based on a novel algorithm for migrating virtual

machines (VMs) within a pool of physical machines (PMs)
when performance problems are detected.

In Section II, we outline a simple procedure to perform

server consolidation using the concept of virtualization.
Related work is presented in Section III. Section IV

describes our algorithm (DMA) for dynamic migration of
virtual machines and Section V presents some experimental

results. We conclude the paper and outline our future

research plans in Section VI.

II. BACKGROUND

The following process, very commonly used by I/T

service organizations [22], provides a simple algorithm for

server consolidation, as represented pictorially in Figure 1: *The work was done while the author was a summer intern at the IBM T. J.

Watson Research Center.

   
VMware, Inc. Exhibit 1018 Page 2

H eterog e n e o u s u n d e ru tilize d s e rv e r en v iro n m e n t (o n e ap p lic a tio n p er s e rv e r)

H yp erv iso r

A p p 1
o n

G u e s t
O S

A pp 2
o n

G u e s t
O S

V M 1 V M 2

S erve r1

H ype rv iso r

A p p 3
o n

G u e s t
O S

A p p 4
o n

G u e s t
O S

V M 3 V M 4

S erve r 2

H yp e rv iso r

A p p m
on

G ue s t
O S

A p p n
o n

G u e s t
O S

V M m V M n

S e rve r m

A pp 1

O S 1

S e rve r 1

A pp 2

O S 2

S e rve r 2

A p p 3 A p p 4 A p p n

O S n

S e rve r n

30 % 40 %

O S 3

S erve r 3

2 5 %

O S 4

S e rve r 4

30 % 5 0 %

H o m o g e n e o u s se rv er e n v iro n m e n t w ith v irtu a l m a c h in es a n d h ig h u tiliza tio n

C o n s o lid a tio n P ro c e ss

A p p 5
o n

G u e s t
O S

A p p 5

V M 5

S e rve r 5

O S 5

35 %

A p p m

S e rve r m

O S m

28 %

Figure 1: A Typical Virtualized I/T Environment

1) For each server to be consolidated, collect measurements

that can be used to compute the average CPU usage, memory
requirements, disk I/O and network bandwidth usage over a

period of time (e.g., several weeks). Let us assume there are
X servers.

2) Choose a target server type with compatible architecture,

associated memory, access to shared disk storage and
network communications.

3) Take each of the X servers, one at a time, and construct a

virtual machine image of it. For instance, if server 1 is an
email application on Windows, create a Windows virtual

machine (e.g., using VMWare [5], [8]). The resource
requirements of the virtual machine will be approximately

the same as the original server which is being virtualized. At

this step we will have X virtual machines.
4) Map the first virtual machine to the first server selected

in step 2. Map the second virtual machine to the same server
if it can accommodate the resource requirements. If not,

introduce a new physical machine (PM) and map the VM to

this new machine. Continue this step until each of the VMs
has been mapped to a PM, introducing a new PM when

required.

5) The set of PMs, at the end of step 4, each with possibly
multiple associated VMs, comprise the new, consolidated

server farm. Readers will surely associate this process with
static bin packing techniques, which yields a sub-optimal

mapping of VMs to physical servers.

In this paper we start with such a mapping of VMs to

physical servers and propose techniques that will provide
two system management functions:

a) Observe the performance of the key metrics of the

operational virtualized systems (VMs) and as necessary
(because of increased workload) or periodically (to

optimize the consolidation when demand is less) move

the virtual machines to maximize the performance;
doing so while using the minimum number of physical

servers.
b) If any of the VMs report an SLA violation (e.g., high

response time) perform dynamic re-allocation of VM(s)

from the hosting PM to another physical machine such
that the SLA is restored.

III. RELATED WORK

Related work is considered in two parts: the first looks at

schemes for virtualization and server management, the
second at the relevant algorithmic approaches of packing

objects into bins, i.e., bin packing.

Virtualization has provided a new dimension for today’s
systems. Classic virtual machine managers (VMM) like

VM/370 [20] have existed for quite some time but VMWare
[8] and dynamic logical partitioning (DLPARs) [19] have

provided an impetus for using virtual machines in new ways.

There have been efforts to build open source virtual machine
managers like Xen [6] which provides an open source

framework to build custom solutions. In addition,
virtualization has provided new avenues for research like

Trusted Virtual Domains [23] and Grid Computing using

VMs [12]. Virtualization at the application level is well
addressed by products from Meiosys [18].

VMWare ESX server (hypervisor) runs on the bare

hardware and provides ability to create VMs and move them
from one PM to another using VMotion [8]. It requires the

PM to have shared storage such as SAN or NAS. The cited
paper [5] provides an overview of the memory management

scheme employed in the ESX server. VMWare has the

Virtual Center which provides a management interface to the
virtual farm. Although some metrics are provided by the

   
VMware, Inc. Exhibit 1018 Page 3

Virtual Center, they are not fine-grained and require

extensive human interaction for use in management.
Resource management of these virtual machines still needs to

be addressed in a cost effective manner whether in a virtual
server farm or in a grid computing environment as pointed

out in [12]. We provide a solution to this problem through a

dynamic management infrastructure to manage the virtual
machine while adhering to the SLA. A wide variety of

approaches exist in the literature to perform load

management, but most of these approaches concentrate on
how to re-direct incoming customer requests to provide a

balanced workload distribution [1] (identical to a front-end
sprayer which selectively directs incoming requests to

servers). An example is Websphere XD [4], which uses a

dynamic algorithm to manage workload and allocate
customer requests. The ODR component of XD is

responsible for load management and for efficiently directing
customer requests to back-end replicas, similar to a sprayer.

Use of replication to tackle high workload and provide fair

allocation with fault-tolerance has been a common practice,
but for a virtual farm where each server is running a different

application, it is not applicable.

The problem of allocating virtual machines to physical
machines falls in the category of vector-packing problems in

theoretical computer science (see survey [16]). It is known
that finding optimal solutions to vector-packing (or its super-

set Bin-packing and class-constrained packing problems) is

NP-hard. Several authors including [9], [11] have proposed
polynomial time approximate solutions (PTAS) to these

problems with a low approximation ratio. Cited paper [10]
gives an algorithm for a restricted job allocation problem

with minimum migration constraint, but the problem does

not allow for multiple jobs being assigned to a single
machine. It is similar to the sprayer approach, developing a

system which sits at the front end and makes decisions as to

where to forward incoming requests. These approaches also
assume that the size of the vectors and bins are fixed, i.e.,

deterministic values are considered. In a virtual server
environment, a VM’s utilization may change, thus making

static allocation techniques unfit, and, instead, requiring

accurate modeling and dynamic re-allocation. In order to
precisely model the changing workload, authors in [13]

propose stochastic load balancing in which probabilistic

bounds on the resources are provided. Stochastic or
deterministic packing solutions have largely looked at a static

initial allocation which is close to the optimal.
It is, however, significantly more challenging to design a

dynamic re-allocation mechanism which performs allocation

of VMs (vectors) at discrete time steps making the system
self-adjusting to workload, without violating the SLA. Also,

it is important to note that the problem of minimizing
migrations among bins (VMs to PMs in our case) during re-

allocation is still an open research problem. Specifically, in

this paper we address the issue of dynamic re-allocation of
VMs, minimizing the migration cost, where cost is defined in

terms of metrics, such as CPU and memory usage.

IV. PROBLEM FORMULATION

We start with the environment described in the previous
section, namely, an I/T environment consisting of a set of

physical servers, each of which hosts one or more virtual

machines (VM). In the interest of simplification of
presentation, we assume that the physical server environment

is homogeneous. Heterogeneous environments where PMs
may have different resource capacities, e.g., CPU, memory,

etc. can be handled by appropriate scaling of the migration

cost matrix. Scaling is a widely used approach (see [11],
[16]) to simplify the problem formulation bringing no change

to the proposed solution (or algorithm). Typically each

virtual machine implements one customer application. Due to
workload changes, resources used by the VMs, (CPU,

memory, disk and Network I/O) will vary, possibly leading
to SLA violations. The objective of our research is to design

algorithms that will be able to resolve SLA violations by

reallocating VMs to PMs, as needed. Metrics representing
CPU and memory utilization, disk usage, etc., are collected

from both the VMs and the PMs hosting them using standard
resource monitoring modules. Thus, from a resource usage

viewpoint, each VM can be represented as a d-dimensional

vector where each dimension represents one of the monitored
resources. We model resource utilization of a virtual machine

VMi as a random process represented by a d-dimensional

utilization vector (Ui(t)) at time t. For a physical machine
PMk the combined system utilization is represented by Lk(t).

Each physical machine, say PMj, has a fixed capacity Cj in d-
dimensional space. Assume that there are a total of n VMs

which reside on m physical machines. The number of PMs

(m) may change dynamically, as the algorithm proceeds, to
meet the increasing workload requirements. At the initial

state (t=0) the system starts with some predefined allocation
(through server consolidation as outlined in Section II). As

the state of the VMs change (due to changes in utilization), it

causes utilization to exceed thresholds in the pre-defined
allocation, leading to possible SLA violations. We propose a

dynamic re-allocation of these stochastic vectors (Ui(t)) on

the PMs to meet the required SLA. This dynamic algorithm
runs at discrete time instances t0, t1,…,tk… to perform re-

allocation when triggered via a resource threshold violation
alert. In our model we assume a mapping of SLA to system

resource utilization and hence thresholds are placed on

utilization, exceeding which, triggers the re-allocation
procedure. Below, we explain the nature of the inputs to the

algorithm and the objective function that we attempt to

optimize.
The input includes a function which maps the individual

resource utilization to the combined utilization of the
physical machine, i.e., Lk(t) = f(U1(t), U2(t)..) for all VMs

located on machine PMk. The combined utilization is usually

considered as a vector sum in traditional vector-packing
literature but it is not generally true for several shared system

resources, like SAN and CPU, because of the overhead
associated with resource sharing among VMs. The latency of

SAN access grows non-linearly w. r. t. the applied load. If

we look at the average response time Ravg(t) for all the VMs
on the same PM, then it grows non-linearly as a function of

the load on the physical machine (Figure 2). Let VMj’s
resource utilization at time t be denoted by the vector:

)]()....(),([)(21 tutututU jdjjj =

We assume that a VM’s resource utilization for a specific
resource is equivalent to the fraction of that resource used by

   
VMware, Inc. Exhibit 1018 Page 4

this VM on the associated PM. If A denotes the set of VMs

allocated to a physical machine PMk then the load on PMk in
the ith dimension (i.e. the ith resource) is given by:

!
∈

=
Aj

jii tutL)()(

In general, it is hard to relate an SLA parameter, e.g.

response time of a customer application, quantitatively to the

utilization of the ith resource. The equation (1) approximates
the non-linear behavior of the response time Ravg(t) as it

relates to the load in the ith dimension on the physical
machine. The ni is the knee of the system beyond which the

response time rises exponentially and approaches infinity

asymptotically. The variable k is a tuning parameter to adjust
the initial slope of the graph. Authors in [1] use a similar

function for customer utility associated with a given

allocation of resources to a specific customer. Their function
yields a linear increase below the knee. In real systems, in

order to model the graph depicted in Figure 2, we need an
asymptotic increase as utilization moves close to 1, which is

yielded by equation (1).

]
)(1

))((
))([(

2

1
)(

2

tL

kntL
ntLtR

i

ii

iiavg
−

+−
+−=

 (1)

Equation (1) is a hyperbola which closely approximates
the graph in Figure 2. One can obtain similar equations for

multiple dimensions. To meet the SLA requirements in terms

of response time, a system should (preferably) operate below
the knee. In each resource dimension the knee could occur at

different points, hence the set of knees can be represented as

a vector. This serves as a threshold vector for triggering
incremental re-allocation to lower the utilizations. The

utilizations are constantly monitored and the algorithm
ensures, through dynamic re-allocation of VMs to physical

servers, that they stay below the threshold (knee). Since the

Li(t) are modeled as random processes, checking for a
threshold violation would be done as a probabilistic

guarantee {P(Li(t)<ni)>!} which means that with probability

! the utilization would remain below ni; this forms a

constraint.

The re-allocation procedure must consider the costs
associated with performing the migration of VMs. These

VMs are logical servers and may be serving real time

requests. Therefore, any delay resulting from the migration
needs to be considered as a cost. Use of a cost function also

helps in designing an algorithm which is stable and does not
cause frequent migration of machines. Let the cost of

migration of one unit vector in d-dimension be denoted by

the row vector Mc. It consists of migration cost coefficients
for each dimension. These cost coefficients depend on the

implementation of the virtual server migration. In this model
we assume that the coefficient of Mc remains the same for all

migrations. Thus the cost of migration of VMj is given by

Mc.Uj(t). The cost of bringing in a new PM during migration
is denoted by NBc which is assumed to be orders of

magnitude larger than migration cost Mc. In short, this is

because, introduction of a new machine incurs hardware,
software, and provisioning costs. Let matrix R(t) denote the

residual capacity of the system:

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 10
0

Load

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e
c

)

Figure 2: Response time VS Applied Load on a system dimension

)](...).........(),(),([)(321 trtrtrtrtR m=

where ri(t) is the residual capacity vector of the ith physical

machine at time t.
Residual capacity for a resource, such as CPU or memory,

in a given machine denotes the unused portion of that

resource that could be allocated to an incoming VM. In order
to keep the response time within acceptable bounds it is

desirable that the physical machine’s utilization be below the
threshold (knee). In some cases, such as batch applications,

throughput rather than response time is the more critical SLA

parameter. In such situations, thresholds can be set
appropriately (from Figure 2) by specifying a higher value

for acceptable response time. We would like to achieve
maximum possible utilization for a given set of machines and

avoid adding new physical machines unless necessary.

The aim is to achieve a new allocation of the VMs, given a
previous allocation, which minimizes the cost of migration

and provides the same throughput. System performance is

monitored consistently for a violation of an SLA, and re-
allocation is triggered when a violation occurs and is

performed at discrete time instances t1, t2… tk. System
monitoring for system metrics can be performed using

standard monitoring tools like IBM Director [24]. Because of

the costs associated with migration and the use of new
physical machines, it is implied that the residual capacity of a

machine should be as low as possible and migrations should
be minimized, thus bringing the new solution close to the

previous one. It is important to note that low values of ri(t)

might not be sufficient to accommodate an incoming VM
during migration. Thus the goal of our algorithm is to keep

the variance of the vector R(t) as high as possible. We will

illustrate the concept behind this principle, using an example.
Let each of the ci(t) be simply CPU utilizations (0 ! ci(t) !

100) of the ith machine. Consider the following two vectors
C(t) : [40, 50, 30] and [90, 0, 30]. The latter vector has a

higher variance of the residual vector ([10, 100, 70]) with

less number of machines having high utilization. Thus, this
state is more likely to be able to accommodate a migrating

VM, or, in some cases a new VM, when a new customer
application is introduced. Alternatively, since PM2’s resource

usage, represented by the second number, is 0, it can

effectively be removed. This provides us with one of the

   
VMware, Inc. Exhibit 1018 Page 5

members of the objective function that we have formulated

i.e. maximizing the variance of the residual vector.
When a resource threshold is violated and the migration

algorithm is set in motion, there are three decisions which it
needs to make, namely:

a. Which physical machine (PM) to remove a VM (i.e.,
migrate) from?

b. Which VM to migrate from the chosen PM (from step
1)?

c. Which new PM to migrate the chosen VM (from step 2)
to?

Since thresholds are set on the utilization at each physical

machine, violation of a threshold triggers the algorithm to
determine which (one or more) of the VMs from the physical

machine (at which the violation took place) needs to be
migrated to another physical machine.

More formally, let Xt be an n x m allocation matrix

containing allocation variables xij equal to 1 if virtual
machine i is allocated to physical machine j. Given an

allocation at time t denoted by Xt we want to compute

another allocation of machines at time t + " i.e. Xt+". The
migrations performed by re-allocation is given by the

migration matrix ZM (n x 1), obtained from the difference
Xt+" - Xt and setting the rows with positive difference to be 1.

The expected migration cost incurred by the new allocation

is given by the scalar value:

])([M

T

c ZtUME ⋅⋅

The problem in its most general form can be represented as
follows:

Max { w
1
Var(R(t))– w

2])([M

T

c ZtUME ⋅⋅ - w
3
n.NBc}

mjnxuP jk

n

i

ijki ≤≤><!
=

1;).(
1

ξ (2)

where n is the number of new physical machines brought in

to accommodate the migrating VM if necessary. For a matrix
M, Var(M) is defined as an L2 norm of the variance vector

obtained by computing sample variances of each row. For

example if M1 is a sample row with values [10 10 20], then
variance of this row is 33.33. For a n x m matrix we first

obtain a variance vector (say A) of size n x 1 such that

element i of the vector A is a sample variance of the values in
the ith row of M. Finally a L2 norm of the vector A gives the

required scalar. Equation (2) expresses the SLA constraint
which forces a physical machine’s total utilization in each

dimension i.e. !
=

⋅
n

i

ijki xu
1

, to stay below the knee (njk).

Here ! is the probability confidence with which the
utilization is below the input capacity knee njk. This equation

is true for all physical machines. Thus the optimization

function in this formulation consists of costs/gains associated
with each of the previously discussed metrics. The

maximization function can be divided into three components,

each with a configurable coefficient wi. The first sub-
component reflects the gain because of Var(R(t)) which

reflects how close the allocation is. The second term is the
migration cost compared to the previous allocation. The last

term is the cost incurred because of adding n new servers.

Each of wi represent the amount of weight the sub-
component has on the objective function, in other words

these weights are used to normalize each component to an

equal scale. These can be specified by the system
administrator and be fine tuned.

Weights also reflect the importance of each cost/gain
function. For example, in a system where it is relatively

cheaper to perform migration of VMs across the physical
servers and more expensive to add a new PM, w2 would be

much lower as compared to w3. If an administrator would
like a fair utilization across physical machines and would not

like to reclaim a physical machine when utilization wanes,

then s/he can reduce the weight w1. The constraint in
Equation (2) represents the amount of load which each PM

can hold without going over the threshold njk) and hence not
violating the SLA.

A. Design Challenges

The general scenario of allocating VMs to physical

machines is conceptually close to the classical vector-

packing problem [11] making it NP-hard. As evident from

the problem formulation, the number of migrations needs to
be minimized and since the number of physical machines is

not fixed, the use of techniques of relaxation to Linear

Programming is not suitable. A solution involving LP would
require re-solving the LP at each discrete time instance and a

new solution might require a whole new re-allocation leading
to a high migration cost. Solutions aiming to minimize the

number of moves across physical machines (analogous to

bin(s)) is still an open research problem. The solution
approach must handle dynamic inclusion and exclusion of

physical machines to satisfy the constraints. Cost to the

customers can be calculated on the basis of usage of these
PMs, providing greater flexibility at the user level.

The general problem, as represented by Equation 2, is NP-
hard. In a practical setting, such as a consolidated server

environment which was introduced in Section II, we would

like to implement a heuristic (PTAS) algorithm that can be
executed online to address SLA problems arising from over

utilization of resources. In the section below we present such
an algorithm which outlines actions that can be performed to

optimize each of the components separately.

B. Algorithm

Assume that PM1, PM2….PMm are the physical machines
and VMij is the jth virtual machine on PMi. An initial

allocation is already provided and the proposed dynamic
management algorithm (DMA) focuses on the dynamic part.

For each VM and its host physical machine the utilizations
are monitored. Here utilization consists of the observed

metrics like CPU, memory, etc. For each physical machine
PMi, we maintain a list of all the virtual machines allocated

to it in non-decreasing utilization order, i.e. the first virtual

machine, VMi1, has the lowest utilization. Since migration
cost is directly calculated based on the utilization, another

way to look at the order is “Virtual Machines are ordered

according to their migration costs within each Physical

Machine”. For each physical machine we calculate and store
its residual capacity ri(t). Additionally, we maintain the list

of residual capacities in non-decreasing order of l2 norm (i.e.,
magnitude of the vector). Without loss of generality we can

represent the VMs as shown in Figure 3.The constraints, as
indicated in equation (2) are constantly monitored and any

violation of these constraints triggers the algorithm to

   
VMware, Inc. Exhibit 1018 Page 6

VM11

VM13

VM12

VM14

PM1

VM21

VM22

VM23

PM1

VMk1

VMk3

VMk2

PMk

……

Height represents
the utilization of a
VM

Mc(V11) <Mc(V12)..<
Mc(V1j)

VM11

VM13

VM12

VM14

PM1

VM11

VM13

VM12

VM14

PM1

VM21

VM22

VM23

PM1

VMk1

VMk3

VMk2

PMk

……

Height represents
the utilization of a
VM

Mc(V11) <Mc(V12)..<
Mc(V1j)

Figure 3: The VMs on each PM are ordered with respect to their
Migration Costs.

perform re-allocation. Because the resource variations are not
predictable, the times at which the algorithm runs is not pre-
determined. Since our problem settings dictate minimum
residual space, we keep lower bounds on utilization as well.

An instance of the utilization falling below a low mark for
one or more physical machines, would trigger the same
algorithm, but for garbage collection, i.e., reclaiming the
physical machine (emptying it of VMs). Assume for physical
machine PMk the constraints are violated. Hence a VM from
the physical machine PMk must be migrated. We use the
residual capacity list to decide the destination physical
machine.

We select the VM from PMk with the lowest utilization

(i.e., the least migration cost) and move it to a physical
machine which has the least residual capacity big enough to

hold this VM.The process of choosing the destination
physical machine is done by searching through the ordered

residual capacity list (requires O(log(m) time). After moving

VMk1 the residual capacities are re-calculated and the list is
re-ordered. Moving VMk1 might not yet satisfy the SLA

constraints on PMk, so we repeat this process for the next
lowest utilization VM i.e. VMk2 until we satisfy the

constraints. Since the destination PM (say PMj) is chosen
only if it has enough residual capacity to hold the VM

(VMk1), allocating VMk1 to PMj does not violate the SLA
constraints on that machine. In case the algorithm is unable

to find a physical machine with big enough residual capacity
to hold this VM, then it instantiates a new physical machine

and allocates the VM to that machine. As a pre-condition to
performing the migration, we compare the sum of residual

capacities with the (extra needed) utilization of physical

machine PMk. If residual capacities are not enough to meet
the required extra need of machine PMk then we introduce a

new physical machine and re-check. This process addresses
the design constraint of having the ability to add new

physical machines as required. It also might happen that the
utilization falls and there is a possibility of re-claiming a

physical machine. Below we describe how the algorithm

reduces the number of physical machines by maximizing the

variance of residual capacity if the PMs are under-utilized.
Select the virtual machine with the lowest utilization

across all the PMs, which can be done in O(m) time by
constructing a heap, i.e. VM11, VM21, VM31….VMm1. It is

important to note that once the heap is constructed, in all
subsequent rounds of the algorithm only O(1) time would be

required since ExtractMin in a Min-heap is a constant order
operation. We move this VM (say VMk1) to another physical

machine which has the minimum residual capacity just big
enough to hold this machine such that it increases the

Variance(R), where R is the residual capacity vector. We
only move a VM if moving it causes the Var(R) to increase,

otherwise we choose the next smallest VM. We repeat this

step until Var(R) starts decreasing; this defines a termination
condition. Also when there is no residual space which can fit

a chosen VM, the algorithm terminates. In every iteration we
pack the VMs as closely as possible thus trying to minimize

the number of physical machines used. If a physical machine
ends up having no VMs left on it then it can be removed by

means of garbage collection.

C. Important Features of the algorithm

• We provide a PTAS which can be used to perform
online dynamic management.

• It builds on an existing allocation and when invoked,
because of an SLA violation, tries to minimize the
number of migrations.

• It minimizes the migration cost by choosing the VM
with minimum utilization.

• It provides mechanism to add and remove physical
machines thus providing dynamic resource management
while satisfying the SLA requirements i.e. meeting the
response time and maintaining the throughput of the
virtual servers.

V. EXPERIMENTS AND RESULTS

A. Test-bed

We have used an IBM BladeCenter environment with

blades as our physical machines. VMWare ESX server
(hypervisor) is deployed on three bare HS-20 Blades (Intel

architecture). We create VMs on top of the hypervisors.

Figure 4 shows the logical topology of the experimental
set-up. Blades in the IBM BladeCenter are the physical

machines of the model. Each of the three blades has the
VMWare ESX hypervisor installed. For each blade, the

Virtual Machines (VMi) are created on top of the ESX server

giving each of them equal shares of the physical CPU. Each
VM has 4 GB hard disk space and 256 MB of RAM. The

BladeCenter is connected to a storage area network (SAN)
which provides shared storage for all the blades. The virtual

machine images are stored in the SAN. The environment is

managed using IBM Director, consisting of agents and a
management server.

IBM Director Agents are installed on each blade (i.e., the

hypervisor) and on the VMs as well. The IBM Director
Server sits on a separate machine and pulls management data

from the director agents. The management data consists of
metrics like CPU, Memory, I/O, etc. The IBM Director

   
VMware, Inc. Exhibit 1018 Page 7

ESX Hypervisor

VM1

DirAgent

VM2

DirAgent

ESX Hypervisor

VM3

DirAgent

VM4

DirAgent

ESX Hypervisor

VM5

DirAgent

VM6

DirAgent

VM7

DirAgent

BladeCenter Work Load
Generator for VMs

SAN

ESX Hypervisor

VM1

DirAgent

VM2

DirAgent

ESX Hypervisor

VM3

DirAgent

VM4

DirAgent

ESX Hypervisor

VM5

DirAgent

VM6

DirAgent

VM7

DirAgent

ESX Hypervisor

VM1

DirAgent

VM2

DirAgent

ESX Hypervisor

VM1

DirAgent

VM1

DirAgent

VM2

DirAgent

VM2

DirAgent

ESX Hypervisor

VM3

DirAgent

VM4

DirAgent

ESX Hypervisor

VM3

DirAgent

VM3

DirAgent

VM4

DirAgent

VM4

DirAgent

ESX Hypervisor

VM5

DirAgent

VM6

DirAgent

VM7

DirAgent

ESX Hypervisor

VM5

DirAgent

VM5

DirAgent

VM6

DirAgent

VM6

DirAgent

VM7

DirAgent

VM7

DirAgent

BladeCenter Work Load
Generator for VMs

IBM Director
Server

V
M
M

IBM Director
Server

V
M
M

IBM Director
Server

V
M
M

SAN

Virtual
Center

ESX Hypervisor

VM1

DirAgent

VM2

DirAgent

ESX Hypervisor

VM3

DirAgent

VM4

DirAgent

ESX Hypervisor

VM5

DirAgent

VM6

DirAgent

VM7

DirAgent

ESX Hypervisor

VM1

DirAgent

VM2

DirAgent

ESX Hypervisor

VM1

DirAgent

VM1

DirAgent

VM2

DirAgent

VM2

DirAgent

ESX Hypervisor

VM3

DirAgent

VM4

DirAgent

ESX Hypervisor

VM3

DirAgent

VM3

DirAgent

VM4

DirAgent

VM4

DirAgent

ESX Hypervisor

VM5

DirAgent

VM6

DirAgent

VM7

DirAgent

ESX Hypervisor

VM5

DirAgent

VM5

DirAgent

VM6

DirAgent

VM6

DirAgent

VM7

DirAgent

VM7

DirAgent

BladeCenter Work Load
Generator for VMs

SAN

ESX Hypervisor

VM1

DirAgent

VM2

DirAgent

ESX Hypervisor

VM1

DirAgent

VM1

DirAgent

VM2

DirAgent

VM2

DirAgent

ESX Hypervisor

VM3

DirAgent

VM4

DirAgent

ESX Hypervisor

VM3

DirAgent

VM3

DirAgent

VM4

DirAgent

VM4

DirAgent

ESX Hypervisor

VM5

DirAgent

VM6

DirAgent

VM7

DirAgent

ESX Hypervisor

VM5

DirAgent

VM5

DirAgent

VM6

DirAgent

VM6

DirAgent

VM7

DirAgent

VM7

DirAgent

ESX Hypervisor

VM1

DirAgent

VM1

DirAgent

VM2

DirAgent

VM2

DirAgent

ESX Hypervisor

VM1

DirAgent

VM1

DirAgent

VM2

DirAgent

VM2

DirAgent

ESX Hypervisor

VM3

DirAgent

VM3

DirAgent

VM4

DirAgent

VM4

DirAgent

ESX Hypervisor

VM3

DirAgent

VM3

DirAgent

VM4

DirAgent

VM4

DirAgent

ESX Hypervisor

VM5

DirAgent

VM5

DirAgent

VM6

DirAgent

VM6

DirAgent

VM7

DirAgent

VM7

DirAgent

ESX Hypervisor

VM5

DirAgent

VM5

DirAgent

VM6

DirAgent

VM6

DirAgent

VM7

DirAgent

VM7

DirAgent

BladeCenter Work Load
Generator for VMs

IBM Director
Server

V
M
M

IBM Director
Server

V
M
M

IBM Director
Server

V
M
M

IBM Director
Server

V
M
M

IBM Director
Server

V
M
M

IBM Director
Server

V
M
M

IBM Director
Server

V
M
M

SAN

Virtual
Center

Figure 4: Test-Bed Logical Topology

Server also contains IBM’s Virtual Machine Manager

(VMM) server. VMM allows exporting virtual machines to
the director console through interaction with VMWare’s

Virtual Center. VMM provides all the actions which one can

perform through the Virtual Center to the Director console
for e.g., migration of a VM from one blade to another blade,
powering on/off a VM, etc. Migration of VMs from one
blade to another is carried out by the Virtual Center through
the tool called VMotion.

Referring to Figure 4, VM1 is a Linux machine running the
Lotus Domino server (IBM’s messaging and collaboration
server). VM2 is a Windows machine which has IBM DB2,
IBM Websphere Application Server (WAS) and the Trade3
application installed. Note VM3 is a clone of VM2. All the
other VMs are Linux machines running little or no load.
Since the blades share the disk and network, we only
consider CPU and memory migration costs, i.e., the
utilization vector consist of only 2 dimensions. We consider
memory migration cost because VMotion transfers the VM’s
RAM (entire hot state) during migration process. We
consider CPU cost because experimental evidence has shown
that delay in migration increases as CPU load increases. We
use Websphere Workload Simulator (WSWS) to generate
workload for the Trade3 and employ Server.Load scripts to
generate workload for the Lotus Domino server.

We create an event filter using the simple event filter
function offered by IBM Director and associate this event

filter with the system metrics (like CPU, memory).
Thresholds are set in the event filter so that an event is

generated whenever the threshold is exceeded. An Event

Action Plan (EAP) is created to contain the actions which
need to be executed if an event is triggered. Our algorithm,

DMA (dynamic management algorithm), becomes a part of

the Event Action Plan and gets executed when an associated
event is triggered. SLA metrics including the response time

and utilization thresholds along with the costs are an input to
the DMA.

To demonstrate proof of concept, we set up a simple

experiment to show how IBM Director might be used to
implement the DMA defined here. We created an IBM

Director based event filter to monitor the CPU of blade 1

hosting VM1 and VM2 (Figure 4), named as CPU_filter. We

created an EAP for migration of one of the VMs (VM1) to the

neighboring blade 2 if the CPU_filter generates an event. We
turned on the workload generators for VM1 and VM2 which

causes the CPU utilization of the blade to increase. The event
filter which is applied to blade 1 generates an event because

CPU utilization exceeds the predefined threshold. Generation

of the event triggers the associated EAP and automatically
migrates VM1 to blade 2. We used this setup to perform

successful dynamic migrations of VMs between the blades

by monitoring the system metrics, CPU utilization and
memory usage.

B. Goodness of the Proposed Algorithm

We measure the goodness of DMA by performing

extensive studies in a simulation environment because it is

not feasible to obtain all the possible conditions in a test-bed.
Our algorithm is used in the simulation study with

utilizations of VMs provided as input.

We compare DMA to an optimal algorithm which
enumerates all the possible permutations of the VMs,

allocated to the physical machines, and finds the allocation
with maximum residual variance, i.e., provides optimally

packed VMs on the given PMs. We measure and compare

the migration cost and residual variance of physical machines
used for optimal allocation with those used by the allocation

yielded by DMA. We use the residual variance instead of
simply the number of physical machines because for a given

number of physical machines residual variance is a good

measure to decide the quality of allocation. Since the optimal
algorithm (for NP-hard problem) searches over the entire

solution space, it has an exponential complexity.

The initial allocation of VMs to PMs is obtained from the
optimal algorithm, which is fed to the DMA. At each

iteration, we randomly choose a PM and change the
utilization of one of its VMs. We perform re-allocation of

VMs using both of the algorithms when an SLA violation (or

under-utilization) occurs. Changing a VM’s utilization may
or may not trigger a re-allocation, depending on whether or

not the set thresholds are violated. At the end of each re-
allocation, costs are calculated relative to the previous

allocation, as provided by DMA. The migration cost vector,

Mc, contains non-zero weights for CPU and memory,
because they are the metrics which affect our test bed during

migrations. Note that, in practice, Mc depends on the

virtualized server environment and the details of how
migration is carried out. We measure the ratio of cost of

migration of DMA with that of the optimal algorithm, thus
nullifying the effect of absolute numbers in vector Mc. For

simplicity we assume each machine has a unit capacity in

each resource dimension. In a real scenario, PMs might have
varying thresholds for utilization depending upon SLA

requirements.
Figure 5 shows the variation of residual variance ratio with

an increasing number of virtual machines. DMA dynamically

increases/decreases the actual number of physical machines
that need to be used. For every run the initial value of PMs is

set to 2. Each data point is averaged over a minimum of 100

re-allocations. Ideally, the ratio of the residual variances
should be close to 1.

1 2 3

   
VMware, Inc. Exhibit 1018 Page 8

0

0.5

1

1.5

2

2.5

2 4 6 8 10 12

Number of Virtua l Machines

R
a

ti
o

 o
f

V
a

r(
R

)
o

f
O

p
ti

m
a

l
to

D

M
A

Figure 5: Comparison of Residual Variance in the Optimal VS the

residual variance of our algorithm (DMA).

2

3

4

5

6

7

8

9

10

2 4 6 8 10 12

Number of Virtual Machines

R
a

ti
o

 o
f

M
ig

ra
ti

o
n

 C
o

s
t

o
f

O
p

ti
m

a
l

to
 D

M
A

Figure 6: Ratio of cost of migration yielded by the optimal algorithm

VS migration cost of the proposed algorithm (DMA) with increasing
number of VMs.

The experiments show that for DMA the ratio stays

between 1.3 and 2.1 for up to 11 VMs. We note that the
performance of DMA degrades, as compared to the optimal,

as the number of VMs in the system increases. This

increasing trend in the ratio can be attributed to the fact that
the optimal algorithm has greater flexibility of searching over

more permutations during reallocation. Additionally, our
proposed solution accounts for migration cost, which the

optimal algorithm does not, further reducing the allocation

choices that it has.
Figure 6 best explains the above notion by plotting the

ratio of the average migration cost incurred by DMA versus
that of the optimal. The optimal algorithm incurs migration

costs which is 3 to 8 times more than DMA. As the number

of VMs increases, the optimal algorithm performs worse
because it tries to form a closely packed allocation, inducing

lots of migrations, starting from the configuration offered by

the prior solution.
In summary, DMA does not perform as well as the optimal

bin packing technique (as implemented by an exhaustive
enumeration) in terms of the residual variance, but does

considerably better in terms of migration costs. Here we

only compare the performance upto eleven VMs because in
practice, even if there are a large number of VMs spread over

a large number of physical machines, migration will
generally not be allowed across the entire set of physical

machines. Rather, migration will be limited within smaller

clusters of physical machines, such as within a department or
within a similar application group. Also, migration across

LAN is neither desirable nor feasible using the current
technology. Thus, we think, that the performance degradation

of DMA with increasing number of VMs is not likely to be a

serious drawback in real life. Being an online algorithm
DMA can be deployed in any management software to help

manage a virtualized environment.

VI. CONCLUSION

Today, many small to medium I/T environments are

reducing their system management costs and total cost of

ownership (TCO) by consolidating their underutilized
servers into a smaller number of homogeneous servers using

virtualization technologies such as VMWare, XEN, etc. In
this paper we have presented a way to solve the problem of

degrading application performance with changing workload

in such virtualized environments. Specifically, changes in
workload may increase CPU utilization or memory usage

above acceptable thresholds, leading to SLA violations. We
show how to detect such problems and, when they occur,

how to resolve them by migrating virtual machines from one

physical machine to another. We have also shown how this
problem, in its most general form, is equivalent to the

classical bin packing problem, and therefore can only be

practically useful if solved using novel heuristics. We have
proposed using migration cost and capacity residue as

parameters for our algorithm. These are practically
important metrics, since, in an I/T environment, one would

like to minimize costs and maximize utilization. We have

provided experimental results to validate the efficacy of our
approach when compared to more expensive techniques

involving exhaustive search for the best solution.

There are several areas that can be identified for
interesting future work:

• use of application workload profiles, e.g., variation of
load during the day, as an input to the migration
algorithms; in general we should avoid putting two
virtual machines together when their workload profiles
make it more likely that resource usage thresholds will be
exceeded because of similar usage patterns,

• predict metric threshold violations based on analysis of
application profiles, leading to a proactive problem
management system,

• characterize migration cost more realistically in terms of
application properties, for example required
communication paths with other applications,

• provide fault tolerance using frozen images of virtual
machines; when a physical machine fails, bring in
another machine quickly (in Blade Center such hardware
level fault tolerance is relatively easy to implement) and
configure it from the frozen VM images.

ACKNOWLEDGMENTS

We would like to acknowledge Michael Frissora, James
Norris and Charles Schulz for their assistance in obtaining
the needed hardware and software under time critical
constraints. We are also thankful to James Norris and Anca

   
VMware, Inc. Exhibit 1018 Page 9

Sailer for lending their expertise during the software
installation phase and to Norman Bobroff for his
contributions to discussions related to the technical content
of this work.

REFERENCES

[1] A. Chandra, W. Gong, and P. Shenoy, “Dynamic Resource Allocation
for Shared Data Centers using Online Measurements,” IWQoS, 2003.

[2] A. Chandra and P. Shenoy, “Effectiveness of dynamic Resource
allocation for handling Internet Flash Crowds,” Technical Report
TR03-37, Department of Computer Science, University of
Massachusetts Amherst, November 2003.

[3] J. Shahabuddin, A. Chrungoo, V. Gupta, S. Juneja, S. Kapoor, and A.
Kumar, “Stream-Packing: Resource Allocation in {Web} Server Farms
with a QoS Guarantee,” Lecture Notes in Computer Science.

[4] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi “Dynamic
application placement under service and memory constraints,” in
Proceedings of WEA 2005, pp. 391-402.

[5] C.A. Waldspurger, “Memory resource management in VMware ESX
server,” Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI'02), 2002.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” Symposium of Operating Systems Principles, 2003.

[7] C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M.
Rosenblum “Optimizing the Migration of Virtual Computers”,
Operating System Design and Implementation, pp 377 - 390, 2002.

[8] http://www.vmware.com/

[9] H. Shachnai and T. Tamir, “Noah’s Bagel-some combinatorial
aspects”, International Conference on FUN with algorithms (FUN),
Isola d’ Elba, June 1998.

[10] T. Kimbrel, B Schieber, and M. Sviridenko, “Minimizing migrations in
Fair Multiprocessor scheduling of persistent Tasks”, Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
2004.

[11] C. Chekuri and S. Khanna, “On Multi dimensional Bin packing
problems,” in Proceedings of the 10th Symposium on Discrete
Algorithms, pp 185-194, 1999.

[12] R. J. Figueredo, P. A. Dinda, and J. A. B. Fortes, “A case for Grid
Computing on Virtual Machines” Proceedings of the 23rd International
Conference on Distributed Computing Systems, 2003.

[13] A. Goel and P. Indyk, “Stochastic Load Balancing and related
Problems” Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, 1999.

[14] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum, “Cellular Disco:
resource management using virtual machines on shared memory
multiprocessors”, 17th ACM Symposium on Operating Systems
designs and principles (SOSP’99), 1999.

[15] A. Awadallah and M. Rosenblum, “The vMatrix: A network of Virtual
Machine Monitors for dynamic content distribution,” IEEE 10th
International Workshop on Future Trends in Distributed Computing
Systems (IEEE FTDCS 2004), Suzhou, China, May 2004.

[16] S. Kashyap and S. Khuller, “Algorithms for Non-uniform Size data
placement on Parallel Disks,” Journal of Algorithms, FST&TCS 2003.

[17] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, “Approximation
Algorithms for Bin Packing: A Survey,” Approximation Algorithms
for NP-Hard Problems, D. Hochbaum (editor), PWS Publ., Boston
(1997), pp.46-93.

[18] www.meiosys.com.

[19] http://www.research.ibm.com/journal/sj/421/jann.html.

[20] http://www.vm.ibm.com/overview/zvm52sum.html.

[21] http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv.

[22] http://www-1.ibm.com/servers/eserver/iseries/scon.

[23] J. L. Griffin, T. Jaeger, R. Perez, R. Sailer, L. van Doorn, and R.
Cáceres, “Trusted Virtual Domains: Toward Secure Distributed
Services,” Proc. of 1st IEEE Workshop on Hot Topics in System
Dependability (HotDep 2005), June 2005.

[24] http://www-1.ibm.com/servers/eserver/xseries/
systems_management/director_4.html.

[25] M. Dahlin, “Interpreting the State Load Information,” 19th
International Conference on Distributed Computing Systems, May-
june, 1999.

[26] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and A.
Youssef, “Performance Management for cluster based Web-Services,”
IBM Technical Report.

   

View publication statsView publication stats

VMware, Inc. Exhibit 1018 Page 10

https://www.researchgate.net/publication/224645602

