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Abstract — As businesses have grown, so has the need to 
deploy I/T applications rapidly to support the expanding 
business processes. Often, this growth was achieved in an 
unplanned way: each time a new application was needed a new 
server along with the application software was deployed and 
new storage elements were purchased.  In many cases this has 
led to what is often referred to as “server sprawl”, resulting in 
low server utilization and high system management costs.  An 
architectural approach that is becoming increasingly popular 
to address this problem is known as server virtualization. In 
this paper we introduce the concept of server consolidation 
using virtualization and point out associated issues that arise 
in the area of application performance.  We show how some of 
these problems can be solved by monitoring key performance 
metrics and using the data to trigger migration of Virtual 
Machines within physical servers. The algorithms we present 
attempt to minimize the cost of migration and maintain 
acceptable application performance levels. 

Index Terms: Application performance management, virtual 
machine migration, virtual server. 

 

I. INTRODUCTION  

The guiding principles of distributed computing and 

client-server architectures have shaped the typical I/T 
environment for the last three decades.  Many vendors have 

thrived by selling elements of a distributed infrastructure, 

such as servers, desktops, storage and networking elements 
and, of course, distributed applications, such as email, 

CRM, etc. 

As businesses have grown, so has the need to deploy I/T 
applications rapidly to support the expanding business 

processes.  Often, this growth was achieved in an unplanned 
way: each time a new application was needed a new server 

along with the application software was deployed and new 

storage elements were purchased.  In many cases this has 
led to what is often referred to as “server and storage 

sprawl”, i.e., many underutilized servers, with 
heterogeneous storage elements. A critical problem 

associated with “server sprawl” is the difficulty of 

managing such an environment. Examples are:   average use 
of server capacity is only 10-35 %, thus wasting resources 

and the bigger staff required to manage large number of 

heterogeneous servers, thereby increasing the total cost of 
ownership (TCO). 

An architectural approach that is becoming increasingly 

popular to address this problem is known as virtualization. 

Virtualization occurs both at the server and the storage 
levels and several papers have recently been published on 

this topic [5], [7], [8], [12], [14].  Most of these publications 

deal with the design of operating system hypervisors that 
enable multiple virtual machines, often heterogeneous guest 

operating systems, to exist and operate on one physical 
server.  In this paper we start with the concept of server 

level virtualization and explore how it can be used to 

address some of the typical management issues in a small to 
medium size data center.  

The first system management problem we will look at in 
this paper is in the category of configuration management 

and is called server consolidation where the goal is to 

reduce the number of servers in a data center by grouping 
together multiple applications in one server.  A very 

effective way to do this is by using the concept of server 

virtualization as shown in Figure 1.  Each application is 
packaged to run on its own virtual machine, these are in 

turn mapped to physical machines – with storage provided 
by a storage area network (SAN).  Details of this approach 

are given in Section II.  

Each application in an I/T environment is usually 
associated with a service level agreement (SLA), which in 

the simplest case, consists of response time and throughput 
requirements.  During run time, if the SLA of an application 

is violated, it is often because of factors such as high CPU 

utilization and high memory usage of the server where it is 
hosted.  This leads to the main issue that we address in this 

paper: how to detect and resolve application performance 

problems in a virtual server based data center.  Our 
approach is based on a novel algorithm for migrating virtual 

machines (VMs) within a pool of physical machines (PMs) 
when performance problems are detected.  

In Section II, we outline a simple procedure to perform 

server consolidation using the concept of virtualization.  
Related work is presented in Section III.  Section IV 

describes our algorithm (DMA) for dynamic migration of 
virtual machines and Section V presents some experimental 

results.  We conclude the paper and outline our future 

research plans in Section VI. 

II. BACKGROUND 

The following process, very commonly used by I/T 

service organizations [22], provides a simple algorithm for 

server consolidation, as represented pictorially in Figure 1: *The work was done while the author was a summer intern at the IBM T. J. 

Watson Research Center. 
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Figure 1: A Typical Virtualized I/T Environment 

 
1) For each server to be consolidated, collect measurements 

that can be used to compute the average CPU usage, memory 
requirements, disk I/O and network bandwidth usage over a 

period of time (e.g., several weeks).  Let us assume there are 
X servers.   

2) Choose a target server type with compatible architecture, 

associated memory, access to shared disk storage and 
network communications. 

3) Take each of the X servers, one at a time, and construct a 

virtual machine image of it.  For instance, if server 1 is an 
email application on Windows, create a Windows virtual 

machine (e.g., using VMWare [5], [8]).  The resource 
requirements of the virtual machine will be approximately 

the same as the original server which is being virtualized.  At 

this step we will have X virtual machines. 
4) Map the first virtual machine to the first server selected 

in step 2. Map the second virtual machine to the same server 
if it can accommodate the resource requirements.  If not, 

introduce a new physical machine (PM) and map the VM to 

this new machine.  Continue this step until each of the VMs 
has been mapped to a PM, introducing a new PM when 

required. 

5) The set of PMs, at the end of step 4, each with possibly 
multiple associated VMs, comprise the new, consolidated 

server farm.  Readers will surely associate this process with 
static bin packing techniques, which yields a sub-optimal 

mapping of VMs to physical servers. 

 
In this paper we start with such a mapping of VMs to 

physical servers and propose techniques that will provide 
two system management functions: 

a) Observe the performance of the key metrics of the 

operational virtualized systems (VMs) and as necessary 
(because of increased workload) or periodically (to 

optimize the consolidation when demand is less) move 

the virtual machines to maximize the performance; 
doing so while using the minimum number of physical 

servers. 
b) If any of the VMs report an SLA violation (e.g., high 

response time) perform dynamic re-allocation of VM(s) 

from the hosting PM to another physical machine such 
that the SLA is restored. 

III. RELATED WORK 

Related work is considered in two parts: the first looks at 

schemes for virtualization and server management, the 
second at the relevant algorithmic approaches of packing 

objects into bins, i.e., bin packing.  

Virtualization has provided a new dimension for today’s 
systems.  Classic virtual machine managers (VMM) like 

VM/370 [20] have existed for quite some time but VMWare 
[8] and dynamic logical partitioning (DLPARs) [19] have 

provided an impetus for using virtual machines in new ways.  

There have been efforts to build open source virtual machine 
managers like Xen [6] which provides an open source 

framework to build custom solutions. In addition, 
virtualization has provided new avenues for research like 

Trusted Virtual Domains [23] and Grid Computing using 

VMs [12]. Virtualization at the application level is well 
addressed by products from Meiosys [18].  

VMWare ESX server (hypervisor) runs on the bare 

hardware and provides ability to create VMs and move them 
from one PM to another using VMotion [8]. It requires the 

PM to have shared storage such as SAN or NAS. The cited 
paper [5] provides an overview of the memory management 

scheme employed in the ESX server. VMWare has the 

Virtual Center which provides a management interface to the 
virtual farm. Although some metrics are provided by the 

   
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Virtual Center, they are not fine-grained and require 

extensive human interaction for use in management. 
Resource management of these virtual machines still needs to 

be addressed in a cost effective manner whether in a virtual 
server farm or in a grid computing environment as pointed 

out in [12].  We provide a solution to this problem through a 

dynamic management infrastructure to manage the virtual 
machine while adhering to the SLA. A wide variety of 

approaches exist in the literature to perform load 

management, but most of these approaches concentrate on 
how to re-direct incoming customer requests to provide a 

balanced workload distribution [1] (identical to a front-end 
sprayer which selectively directs incoming requests to 

servers). An example is Websphere XD [4], which uses a 

dynamic algorithm to manage workload and allocate 
customer requests. The ODR component of XD is 

responsible for load management and for efficiently directing 
customer requests to back-end replicas, similar to a sprayer. 

Use of replication to tackle high workload and provide fair 

allocation with fault-tolerance has been a common practice, 
but for a virtual farm where each server is running a different 

application, it is not applicable.  

The problem of allocating virtual machines to physical 
machines falls in the category of vector-packing problems in 

theoretical computer science (see survey [16]). It is known 
that finding optimal solutions to vector-packing (or its super-

set Bin-packing and class-constrained packing problems) is 

NP-hard. Several authors including [9], [11] have proposed 
polynomial time approximate solutions (PTAS) to these 

problems with a low approximation ratio. Cited paper [10] 
gives an algorithm for a restricted job allocation problem 

with minimum migration constraint, but the problem does 

not allow for multiple jobs being assigned to a single 
machine. It is similar to the sprayer approach, developing a 

system which sits at the front end and makes decisions as to 

where to forward incoming requests. These approaches also 
assume that the size of the vectors and bins are fixed, i.e., 

deterministic values are considered.  In a virtual server 
environment, a VM’s utilization may change, thus making 

static allocation techniques unfit, and, instead, requiring 

accurate modeling and dynamic re-allocation. In order to 
precisely model the changing workload, authors in [13] 

propose stochastic load balancing in which probabilistic 

bounds on the resources are provided. Stochastic or 
deterministic packing solutions have largely looked at a static 

initial allocation which is close to the optimal.  
It is, however, significantly more challenging to design a 

dynamic re-allocation mechanism which performs allocation 

of VMs (vectors) at discrete time steps making the system 
self-adjusting to workload, without violating the SLA. Also, 

it is important to note that the problem of minimizing 
migrations among bins (VMs to PMs in our case) during re-

allocation is still an open research problem. Specifically, in 

this paper we address the issue of dynamic re-allocation of 
VMs, minimizing the migration cost, where cost is defined in 

terms of metrics, such as CPU and memory usage.  

IV. PROBLEM FORMULATION 

We start with the environment described in the previous 
section, namely, an I/T environment consisting of a set of 

physical servers, each of which hosts one or more virtual 

machines (VM). In the interest of simplification of 
presentation, we assume that the physical server environment 

is homogeneous.  Heterogeneous environments where PMs 
may have different resource capacities, e.g., CPU, memory, 

etc. can be handled by appropriate scaling of the migration 

cost matrix. Scaling is a widely used approach (see [11], 
[16]) to simplify the problem formulation bringing no change 

to the proposed solution (or algorithm). Typically each 

virtual machine implements one customer application. Due to 
workload changes, resources used by the VMs, (CPU, 

memory, disk and Network I/O) will vary, possibly leading 
to SLA violations. The objective of our research is to design 

algorithms that will be able to resolve SLA violations by 

reallocating VMs to PMs, as needed. Metrics representing 
CPU and memory utilization, disk usage, etc., are collected 

from both the VMs and the PMs hosting them using standard 
resource monitoring modules. Thus, from a resource usage 

viewpoint, each VM can be represented as a d-dimensional 

vector where each dimension represents one of the monitored 
resources. We model resource utilization of a virtual machine 

VMi as a random process represented by a d-dimensional 

utilization vector (Ui(t)) at time t. For a physical machine 
PMk the combined system utilization is represented by Lk(t). 

Each physical machine, say PMj, has a fixed capacity Cj in d-
dimensional space. Assume that there are a total of n VMs 

which reside on m physical machines. The number of PMs 

(m) may change dynamically, as the algorithm proceeds, to 
meet the increasing workload requirements. At the initial 

state (t=0) the system starts with some predefined allocation 
(through server consolidation as outlined in Section II). As 

the state of the VMs change (due to changes in utilization), it 

causes utilization to exceed thresholds in the pre-defined 
allocation, leading to possible SLA violations. We propose a 

dynamic re-allocation of these stochastic vectors (Ui(t)) on 

the PMs to meet the required SLA. This dynamic algorithm 
runs at discrete time instances t0, t1,…,tk… to perform re-

allocation when triggered via a resource threshold violation 
alert. In our model we assume a mapping of SLA to system 

resource utilization and hence thresholds are placed on 

utilization, exceeding which, triggers the re-allocation 
procedure. Below, we explain the nature of the inputs to the 

algorithm and the objective function that we attempt to 

optimize.   
The input includes a function which maps the individual 

resource utilization to the combined utilization of the 
physical machine, i.e., Lk(t) = f(U1(t), U2(t)..) for all VMs 

located on machine PMk. The combined utilization is usually 

considered as a vector sum in traditional vector-packing 
literature but it is not generally true for several shared system 

resources, like SAN and CPU, because of the overhead 
associated with resource sharing among VMs. The latency of 

SAN access grows non-linearly w. r. t. the applied load. If 

we look at the average response time Ravg(t) for all the VMs 
on the same PM, then it grows non-linearly as a function of 

the load on the physical machine (Figure 2). Let VMj’s 
resource utilization at time t be denoted by the vector: 

)]()....(),([)( 21 tutututU jdjjj =  

We assume that a VM’s resource utilization for a specific 
resource is equivalent to the fraction of that resource used by 
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this VM on the associated PM.  If A denotes the set of VMs 

allocated to a physical machine PMk then the load on PMk in 
the ith dimension (i.e. the ith resource) is given by: 

!
∈

=
Aj

jii tutL )()(  

In general, it is hard to relate an SLA parameter, e.g. 

response time of a customer application, quantitatively to the 

utilization of the ith resource.  The equation (1) approximates 
the non-linear behavior of the response time Ravg(t) as it 

relates to the load in the ith dimension on the physical 
machine. The ni is the knee of the system beyond which the 

response time rises exponentially and approaches infinity 

asymptotically. The variable k is a tuning parameter to adjust 
the initial slope of the graph. Authors in [1] use a similar 

function for customer utility associated with a given 

allocation of resources to a specific customer. Their function 
yields a linear increase below the knee. In real systems, in 

order to model the graph depicted in Figure 2, we need an 
asymptotic increase as utilization moves close to 1, which is 

yielded by equation (1). 
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Equation (1) is a hyperbola which closely approximates 
the graph in Figure 2. One can obtain similar equations for 

multiple dimensions. To meet the SLA requirements in terms 

of response time, a system should (preferably) operate below 
the knee. In each resource dimension the knee could occur at 

different points, hence the set of knees can be represented as 

a vector. This serves as a threshold vector for triggering 
incremental re-allocation to lower the utilizations. The 

utilizations are constantly monitored and the algorithm 
ensures, through dynamic re-allocation of VMs to physical 

servers, that they stay below the threshold (knee). Since the 

Li(t) are modeled as random processes, checking for a 
threshold violation would be done as a probabilistic 

guarantee {P(Li(t)<ni)>!} which means that with probability 

! the utilization would remain below ni;  this forms a 

constraint.  

The re-allocation procedure must consider the costs 
associated with performing the migration of VMs.  These 

VMs are logical servers and may be serving real time 

requests. Therefore, any delay resulting from the migration 
needs to be considered as a cost. Use of a cost function also 

helps in designing an algorithm which is stable and does not 
cause frequent migration of machines. Let the cost of 

migration of one unit vector in d-dimension be denoted by 

the row vector Mc. It consists of migration cost coefficients 
for each dimension. These cost coefficients depend on the 

implementation of the virtual server migration. In this model 
we assume that the coefficient of Mc remains the same for all 

migrations. Thus the cost of migration of VMj is given by 

Mc.Uj(t).  The cost of bringing in a new PM during migration 
is denoted by NBc which is assumed to be orders of 

magnitude larger than migration cost Mc.  In short, this is 

because, introduction of a new machine incurs hardware, 
software, and provisioning costs. Let matrix R(t) denote the 

residual capacity of the system: 
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Figure 2: Response time VS Applied Load on a system dimension 
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where ri(t) is the residual capacity vector of the ith physical 

machine at time t. 
Residual capacity for a resource, such as CPU or memory, 

in a given machine denotes the unused portion of that 

resource that could be allocated to an incoming VM. In order 
to keep the response time within acceptable bounds it is 

desirable that the physical machine’s utilization be below the 
threshold (knee). In some cases, such as batch applications, 

throughput rather than response time is the more critical SLA 

parameter.  In such situations, thresholds can be set 
appropriately (from Figure 2) by specifying a higher value 

for acceptable response time. We would like to achieve 
maximum possible utilization for a given set of machines and 

avoid adding new physical machines unless necessary. 

The aim is to achieve a new allocation of the VMs, given a 
previous allocation, which minimizes the cost of migration 

and provides the same throughput. System performance is 

monitored consistently for a violation of an SLA, and re-
allocation is triggered when a violation occurs and is 

performed at discrete time instances t1, t2… tk.  System 
monitoring for system metrics can be performed using 

standard monitoring tools like IBM Director [24]. Because of 

the costs associated with migration and the use of new 
physical machines, it is implied that the residual capacity of a 

machine should be as low as possible and migrations should 
be minimized, thus bringing the new solution close to the 

previous one. It is important to note that low values of ri(t) 

might not be sufficient to accommodate an incoming VM 
during migration. Thus the goal of our algorithm is to keep 

the variance of the vector R(t) as high as possible. We will 

illustrate the concept behind this principle, using an example. 
Let each of the ci(t) be simply CPU utilizations (0 ! ci(t) ! 

100) of the ith machine.  Consider the following two vectors 
C(t) : [40, 50, 30] and [90, 0, 30]. The latter vector has a 

higher variance of the residual vector ([10, 100, 70]) with 

less number of machines having high utilization. Thus, this 
state is more likely to be able to accommodate a migrating 

VM, or, in some cases a new VM, when a new customer 
application is introduced. Alternatively, since PM2’s resource 

usage, represented by the second number, is 0, it can 

effectively be removed. This provides us with one of the 
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members of the objective function that we have formulated 

i.e. maximizing the variance of the residual vector. 
When a resource threshold is violated and the migration 

algorithm is set in motion, there are three decisions which it 
needs to make, namely: 

a. Which physical machine (PM) to remove a VM (i.e., 
migrate) from? 

b. Which VM to migrate from the chosen PM (from step 
1)?    

c. Which new PM to migrate the chosen VM (from step 2) 
to?  

Since thresholds are set on the utilization at each physical 

machine, violation of a threshold triggers the algorithm to 
determine which (one or more) of the VMs from the physical 

machine (at which the violation took place) needs to be 
migrated to another physical machine.    

More formally, let Xt be an n x m allocation matrix 

containing allocation variables xij equal to 1 if virtual 
machine i is allocated to physical machine j. Given an 

allocation at time t denoted by Xt we want to compute 

another allocation of machines at time t + " i.e. Xt+". The 
migrations performed by re-allocation is given by the 

migration matrix ZM (n x 1), obtained from the difference 
Xt+" - Xt  and setting the rows with positive difference to be 1. 

The expected migration cost incurred by the new allocation 

is given by the scalar value: 

])([ M

T

c ZtUME ⋅⋅  

The problem in its most general form can be represented as 
follows: 

Max { w
1
Var(R(t))– w

2 ])([ M

T

c ZtUME ⋅⋅ - w
3
n.NBc} 

mjnxuP jk

n

i

ijki ≤≤><!
=

1;).(
1

ξ             ( 2) 

where n is the number of new physical machines brought in 

to accommodate the migrating VM if necessary. For a matrix 
M, Var(M) is defined as an L2 norm of the variance vector 

obtained by computing sample variances of each row. For 

example if M1 is a sample row with values [10 10 20], then 
variance of this row is 33.33. For a n x m matrix we first 

obtain a variance vector (say A) of size n x 1 such that 

element i of the vector A is a sample variance of the values in 
the ith row of M. Finally a L2 norm of the vector A gives the 

required scalar. Equation (2) expresses the SLA constraint 
which forces a physical machine’s total utilization in each 

dimension i.e. !
=

⋅
n

i

ijki xu
1

, to stay below the knee (njk). 

Here ! is the probability confidence with which the 
utilization is below the input capacity knee njk. This equation 

is true for all physical machines. Thus the optimization 

function in this formulation consists of costs/gains associated 
with each of the previously discussed metrics. The 

maximization function can be divided into three components, 

each with a configurable coefficient wi. The first sub-
component reflects the gain because of Var(R(t)) which 

reflects how close the allocation is. The second term is the 
migration cost compared to the previous allocation. The last 

term is the cost incurred because of adding n new servers. 

Each of wi represent the amount of weight the sub-
component has on the objective function, in other words 

these weights are used to normalize each component to an 

equal scale. These can be specified by the system 
administrator and be fine tuned. 

Weights also reflect the importance of each cost/gain 
function.  For example, in a system where it is relatively 

cheaper to perform migration of VMs across the physical 
servers and more expensive to add a new PM, w2 would be 

much lower as compared to w3. If an administrator would 
like a fair utilization across physical machines and would not 

like to reclaim a physical machine when utilization wanes, 

then s/he can reduce the weight w1. The constraint in 
Equation (2) represents the amount of load which each PM 

can hold without going over the threshold njk) and hence not 
violating the SLA. 

A. Design Challenges 

The general scenario of allocating VMs to physical 

machines is conceptually close to the classical vector-

packing problem [11] making it NP-hard. As evident from 

the problem formulation, the number of migrations needs to 
be minimized and since the number of physical machines is 

not fixed, the use of techniques of relaxation to Linear 

Programming is not suitable. A solution involving LP would 
require re-solving the LP at each discrete time instance and a 

new solution might require a whole new re-allocation leading 
to a high migration cost. Solutions aiming to minimize the 

number of moves across physical machines (analogous to 

bin(s)) is still an open research problem. The solution 
approach must handle dynamic inclusion and exclusion of 

physical machines to satisfy the constraints. Cost to the 

customers can be calculated on the basis of usage of these 
PMs, providing greater flexibility at the user level.  

The general problem, as represented by Equation 2, is NP-
hard.  In a practical setting, such as a consolidated server 

environment which was introduced in Section II,  we would 

like to implement a heuristic (PTAS) algorithm that can be 
executed online to address SLA problems arising from over 

utilization of resources.  In the section below we present such 
an algorithm which outlines actions that can be performed to 

optimize each of the components separately.  

B. Algorithm 

Assume that PM1, PM2….PMm are the physical machines 
and VMij is the jth virtual machine on PMi. An initial 

allocation is already provided and the proposed dynamic 
management algorithm (DMA) focuses on the dynamic part. 

For each VM and its host physical machine the utilizations 
are monitored. Here utilization consists of the observed 

metrics like CPU, memory, etc. For each physical machine 
PMi, we maintain a list of all the virtual machines allocated 

to it in non-decreasing utilization order, i.e. the first virtual 

machine, VMi1, has the lowest utilization. Since migration 
cost is directly calculated based on the utilization, another 

way to look at the order is “Virtual Machines are ordered 

according to their migration costs within each Physical 

Machine”. For each physical machine we calculate and store 
its residual capacity ri(t). Additionally, we maintain the list 

of residual capacities in non-decreasing order of l2 norm (i.e., 
magnitude of the vector). Without loss of generality we can 

represent the VMs as shown in Figure 3.The constraints, as 
indicated in equation (2) are constantly monitored and any 

violation of these constraints triggers the algorithm to  
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Figure 3: The VMs on each PM are ordered with respect to their 
Migration Costs. 

perform re-allocation. Because the resource variations are not 
predictable, the times at which the algorithm runs is not pre-
determined. Since our problem settings dictate minimum 
residual space, we keep lower bounds on utilization as well.  

An instance of the utilization falling below a low mark for 
one or more physical machines, would trigger the same 
algorithm, but for garbage collection, i.e., reclaiming the 
physical machine (emptying it of VMs). Assume for physical 
machine PMk the constraints are violated. Hence a VM from 
the physical machine PMk must be migrated. We use the 
residual capacity list to decide the destination physical 
machine. 

We select the VM from PMk with the lowest utilization 

(i.e., the least migration cost) and move it to a physical 
machine which has the least residual capacity big enough to 

hold this VM.The process of choosing the destination 
physical machine is done by searching through the ordered 

residual capacity list (requires O(log(m) time). After moving 

VMk1 the residual capacities are re-calculated and the list is 
re-ordered. Moving VMk1 might not yet satisfy the SLA 

constraints on PMk, so we repeat this process for the next 
lowest utilization VM i.e. VMk2 until we satisfy the 

constraints. Since the destination PM (say PMj) is chosen 
only if it has enough residual capacity to hold the VM 

(VMk1), allocating VMk1 to PMj does not violate the SLA 
constraints on that machine. In case the algorithm is unable 

to find a physical machine with big enough residual capacity 
to hold this VM, then it instantiates a new physical machine 

and allocates the VM to that machine. As a pre-condition to 
performing the migration, we compare the sum of residual 

capacities with the (extra needed) utilization of physical 

machine PMk. If residual capacities are not enough to meet 
the required extra need of machine PMk then we introduce a 

new physical machine and re-check. This process addresses 
the design constraint of having the ability to add new 

physical machines as required.  It also might happen that the 
utilization falls and there is a possibility of re-claiming a 

physical machine. Below we describe how the algorithm 

reduces the number of physical machines by maximizing the 

variance of residual capacity if the PMs are under-utilized.  
Select the virtual machine with the lowest utilization 

across all the PMs, which can be done in O(m) time by 
constructing a heap, i.e. VM11, VM21, VM31….VMm1.  It is 

important to note that once the heap is constructed, in all 
subsequent rounds of the algorithm only O(1) time would be 

required since ExtractMin in a Min-heap is a constant order 
operation.  We move this VM (say VMk1) to another physical 

machine which has the minimum residual capacity just big 
enough to hold this machine such that it increases the 

Variance(R), where R is the residual capacity vector. We 
only move a VM if moving it causes the Var(R) to increase, 

otherwise we choose the next smallest VM. We repeat this 

step until Var(R) starts decreasing; this defines a termination 
condition. Also when there is no residual space which can fit 

a chosen VM, the algorithm terminates. In every iteration we 
pack the VMs as closely as possible thus trying to minimize 

the number of physical machines used. If a physical machine 
ends up having no VMs left on it then it can be removed by 

means of garbage collection.  

C. Important Features of the algorithm 
 

• We provide a PTAS which can be used to perform 
online dynamic management.  

• It builds on an existing allocation and when invoked, 
because of an SLA violation, tries to minimize the 
number of migrations.  

• It minimizes the migration cost by choosing the VM 
with minimum utilization.  

• It provides mechanism to add and remove physical 
machines thus providing dynamic resource management 
while satisfying the SLA requirements i.e. meeting the 
response time and maintaining the throughput of the 
virtual servers.  

 

V. EXPERIMENTS AND RESULTS 

A. Test-bed 

We have used an IBM BladeCenter environment with 

blades as our physical machines. VMWare ESX server 
(hypervisor) is deployed on three bare HS-20 Blades (Intel 

architecture). We create VMs on top of the hypervisors.   

Figure 4 shows the logical topology of the experimental 
set-up. Blades in the IBM BladeCenter are the physical 

machines of the model. Each of the three blades has the 
VMWare ESX hypervisor installed. For each blade, the 

Virtual Machines (VMi) are created on top of the ESX server 

giving each of them equal shares of the physical CPU. Each 
VM has 4 GB hard disk space and 256 MB of RAM. The 

BladeCenter is connected to a storage area network (SAN) 
which provides shared storage for all the blades. The virtual 

machine images are stored in the SAN.   The environment is 

managed using IBM Director, consisting of agents and a 
management server. 

IBM Director Agents are installed on each blade (i.e., the 

hypervisor) and on the VMs as well. The IBM Director 
Server sits on a separate machine and pulls management data 

from the director agents. The management data consists of 
metrics like CPU, Memory, I/O, etc. The IBM Director  
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Figure 4: Test-Bed Logical Topology 

Server also contains IBM’s Virtual Machine Manager 

(VMM) server. VMM allows exporting virtual machines to 
the director console through interaction with VMWare’s 

Virtual Center. VMM provides all the actions which one can 

perform through the Virtual Center to the Director console  
for e.g., migration of a VM from one blade to another blade, 
powering on/off a VM, etc. Migration of VMs from one 
blade to another is carried out by the Virtual Center through 
the tool called VMotion. 

Referring to Figure 4, VM1 is a Linux machine running the 
Lotus Domino server (IBM’s messaging and collaboration 
server). VM2 is a Windows machine which has IBM DB2,  
IBM Websphere Application Server (WAS) and the Trade3 
application installed. Note VM3 is a clone of VM2.  All the 
other VMs are Linux machines running little or no load. 
Since the blades share the disk and network, we only 
consider CPU and memory migration costs, i.e., the 
utilization vector consist of only 2 dimensions. We consider 
memory migration cost because VMotion transfers the VM’s 
RAM (entire hot state) during migration process. We 
consider CPU cost because experimental evidence has shown 
that delay in migration increases as CPU load increases. We 
use Websphere Workload Simulator (WSWS) to generate 
workload for the Trade3 and employ Server.Load scripts to 
generate workload for the Lotus Domino server.  

We create an event filter using the simple event filter 
function offered by IBM Director and associate this event 

filter with the system metrics (like CPU, memory). 
Thresholds are set in the event filter so that an event is 

generated whenever the threshold is exceeded. An Event 

Action Plan (EAP) is created to contain the actions which 
need to be executed if an event is triggered. Our algorithm, 

DMA (dynamic management algorithm), becomes a part of 

the Event Action Plan and gets executed when an associated 
event is triggered. SLA metrics including the response time 

and utilization thresholds along with the costs are an input to 
the DMA.  

To demonstrate proof of concept, we set up a simple 

experiment to show how IBM Director might be used to 
implement the DMA defined here.  We created an IBM 

Director based event filter to monitor the CPU of blade 1 

hosting VM1 and VM2 (Figure 4), named as CPU_filter. We 

created an EAP for migration of one of the VMs (VM1) to the 

neighboring blade 2 if the CPU_filter generates an event. We 
turned on the workload generators for VM1 and VM2 which 

causes the CPU utilization of the blade to increase. The event 
filter which is applied to blade 1 generates an event because 

CPU utilization exceeds the predefined threshold. Generation 

of the event triggers the associated EAP and automatically 
migrates VM1 to blade 2. We used this setup to perform 

successful dynamic migrations of VMs between the blades 

by monitoring the system metrics, CPU utilization and 
memory usage.   

 

B. Goodness of the Proposed Algorithm 

We measure the goodness of DMA by performing 

extensive studies in a simulation environment because it is 

not feasible to obtain all the possible conditions in a test-bed. 
Our algorithm is used in the simulation study with 

utilizations of VMs provided as input.   

We compare DMA to an optimal algorithm which 
enumerates all the possible permutations of the VMs, 

allocated to the physical machines, and finds the allocation 
with maximum residual variance, i.e., provides optimally 

packed VMs on the given PMs.  We measure and compare 

the migration cost and residual variance of physical machines 
used for optimal allocation with those used by the allocation 

yielded by DMA.  We use the residual variance instead of 
simply the number of physical machines because for a given 

number of physical machines residual variance is a good 

measure to decide the quality of allocation. Since the optimal 
algorithm (for NP-hard problem) searches over the entire 

solution space, it has an exponential complexity.  

The initial allocation of VMs to PMs is obtained from the 
optimal algorithm, which is fed to the DMA. At each 

iteration, we randomly choose a PM and change the 
utilization of one of its VMs. We perform re-allocation of 

VMs using both of the algorithms when an SLA violation (or 

under-utilization) occurs. Changing a VM’s utilization may 
or may not trigger a re-allocation, depending on whether or 

not the set thresholds are violated. At the end of each re-
allocation, costs are calculated relative to the previous 

allocation, as provided by DMA. The migration cost vector, 

Mc, contains non-zero weights for CPU and memory, 
because they are the metrics which affect our test bed during 

migrations. Note that, in practice, Mc depends on the 

virtualized server environment and the details of how 
migration is carried out. We measure the ratio of cost of 

migration of DMA with that of the optimal algorithm, thus 
nullifying the effect of absolute numbers in vector Mc. For 

simplicity we assume each machine has a unit capacity in 

each resource dimension. In a real scenario, PMs might have 
varying thresholds for utilization depending upon SLA 

requirements.   
Figure 5 shows the variation of residual variance ratio with 

an increasing number of virtual machines. DMA dynamically 

increases/decreases the actual number of physical machines 
that need to be used. For every run the initial value of PMs is 

set to 2.  Each data point is averaged over a minimum of 100 

re-allocations. Ideally, the ratio of the residual variances 
should be close to 1. 

1 2 3
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Figure 5: Comparison of Residual Variance in the Optimal VS the 

residual variance of our algorithm (DMA). 
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Figure 6: Ratio of cost of migration yielded by the optimal algorithm 

VS migration cost of the proposed algorithm (DMA) with increasing 
number of VMs. 

The experiments show that for DMA the ratio stays 

between 1.3 and 2.1 for up to 11 VMs.  We note that the 
performance of DMA degrades, as compared to the optimal, 

as the number of VMs in the system increases.  This 

increasing trend in the ratio can be attributed to the fact that 
the optimal algorithm has greater flexibility of searching over 

more permutations during reallocation. Additionally, our 
proposed solution accounts for migration cost, which the 

optimal algorithm does not, further reducing the allocation 

choices that it has.   
Figure 6 best explains the above notion by plotting the 

ratio of the average migration cost incurred by DMA versus 
that of the optimal. The optimal algorithm incurs migration 

costs which is 3 to 8 times more than DMA. As the number 

of VMs increases, the optimal algorithm performs worse 
because it tries to form a closely packed allocation, inducing 

lots of migrations, starting from the configuration offered by 

the prior solution.  
In summary, DMA does not perform as well as the optimal 

bin packing technique (as implemented by an exhaustive 
enumeration) in terms of the residual variance, but does 

considerably better in terms of migration costs.  Here we 

only compare the performance upto eleven VMs because in 
practice, even if there are a large number of VMs spread over 

a large number of physical machines, migration will 
generally not be allowed across the entire set of physical 

machines.  Rather, migration will be limited within smaller 

clusters of physical machines, such as within a department or 
within a similar application group. Also, migration across 

LAN is neither desirable nor feasible using the current 
technology. Thus, we think, that the performance degradation 

of DMA with increasing number of VMs is not likely to be a 

serious drawback in real life. Being an online algorithm 
DMA can be deployed in any management software to help 

manage a virtualized environment.    

 

VI. CONCLUSION 

Today, many small to medium I/T environments are 

reducing their system management costs and total cost of 

ownership (TCO) by consolidating their underutilized 
servers into a smaller number of homogeneous servers using 

virtualization technologies such as VMWare, XEN, etc.  In 
this paper we have presented a way to solve the problem of 

degrading application performance with changing workload 

in such virtualized environments.  Specifically, changes in 
workload may increase CPU utilization or memory usage 

above acceptable thresholds, leading to SLA violations.  We 
show how to detect such problems and, when they occur, 

how to resolve them by migrating virtual machines from one 

physical machine to another.   We have also shown how this 
problem, in its most general form, is equivalent to the 

classical bin packing problem, and therefore can only be 

practically useful if solved using novel heuristics.  We have 
proposed using migration cost and capacity residue as 

parameters for our algorithm.  These are practically 
important metrics, since, in an I/T environment, one would 

like to minimize costs and maximize utilization.  We have 

provided experimental results to validate the efficacy of our 
approach when compared to more expensive techniques 

involving exhaustive search for the best solution. 

There are several areas that can be identified for 
interesting future work: 

• use of application workload profiles, e.g., variation of 
load during the day, as an input to the migration 
algorithms; in general we should avoid putting two 
virtual machines together when their workload profiles 
make it more likely that resource usage thresholds will be 
exceeded because of similar usage patterns, 

• predict metric threshold violations  based on analysis of 
application profiles, leading to a proactive problem 
management system, 

• characterize migration cost more realistically in terms of 
application properties, for example required 
communication paths with other applications, 

• provide fault tolerance using frozen images of virtual 
machines; when a physical machine fails, bring in 
another machine quickly (in Blade Center such hardware 
level fault tolerance is relatively easy to implement) and 
configure it from the frozen VM images. 
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