Autonomic Virtualized Environments

Daniel A. Menascé and Mohamed N. Bennani
Dept. of Computer Science, MS 4AS5, George Mason University
Fairfax, VA 22030, USA
{menasce,mbennani } @cs.gmu.edu

Abstract

Virtualization was invented more than thirty years ago
to allow large expensive mainframes to be easily shared
among different application environments. As hardware
prices went down, the need for virtualization faded away.
More recently, virtualization at all levels (system, storage,
and network) became important again as a way to im-
prove system security, reliability and availability, reduce
costs, and provide greater flexibility. Virtualization is being
used to support server consolidation efforts. In that case,
many virtual machines running different application envi-
ronments share the same hardware resources. This paper
shows how autonomic computing techniques can be used to
dynamically allocate processing resources to various Vir-
tual machines as the workload varies. The goal of the auto-
nomic controller is to optimize a utility function for the vir-
tualized environment. The paper considers dynamic CPU
priority allocation and the allocation of CPU shares to the
various virtual machines. Results obtained through sim-
ulation show that the autonomic controller is capable of
achieving its goal.

1. Introduction

Thirty years ago, system virtualization was a hot topic
of academic and industrial research [10, 15], which saw the
light of day in products such as IBM’s VM/370 [6]. System
virtualization adds a hardware abstraction layer, called the
Virtual Machine Monitor (VMM), on top of the bare hard-
ware. This layer provides an interface that is functionally
equivalent to the actual hardware to a number of virtual ma-
chines. These virtual machines may then run regular oper-
ating systems, which would normally run directly on top of
the actual hardware. There are various virtualization tech-
niques as well as requirements for architectures to be virtu-
alizable [15]. The main motivation for virtualization in the
early 70°s was to increase the level of sharing and utilization
of expensive computing resources such as the mainframes.

The 80’s saw a decrease in hardware costs that caused a
significant portion of the computing needs of an organiza-
tion to be moved away from large centralized mainframes
to a collection of departmental minicomputers. The main
motivation for virtualization disappeared and with it their
commercial embodiments.

The advent of microcomputers in the late 80’s and their
widespread adoption during the 90°s along with ubiquitous
networking brought the distribution of computing to new
grounds. Large number of client machines connected to nu-
merous servers of various types gave rise to new computa-
tional paradigms such as client-server and peer-to-peer sys-
tems. These new environments brought with them several
challenges and problems including reliability, security, in-
creased administration cost and complexity, increased floor
space, power consumption, and thermal dissipation require-
ments. The recent rebirth of the use of virtualization tech-
niques in commodity, inexpensive servers and client ma-
chines is poised to address these problems [9, 17] in a very
elegant way.

Virtualization may be used for server consolidation. In
that case, each Virtual Machine supports the operating sys-
tem and application environments of a server being consoli-
dated in the virtualized environment. Figure 1(a) shows the
typical architecture of an e-commerce site with separate ma-
chines for Web servers, applications servers, and database
servers. Figure 1(b) shows these servers being consolidated
on a single, albeit more powerful, server.

Autonomic computing systems, also known as self-*
systems, can regulate and maintain themselves without hu-
man intervention. Such systems are able to adapt to chang-
ing environments (such as changes in the workload or
failures) in a way that preserves given operational goals
(e.g., performance goals). There has been significant re-
search and attention to autonomic computing in the re-
cent years [1, 3, 4, 5, 8, 11, 12, 13]. In our previous
work [3, 11, 12, 13], we developed a technique to design
self-organizing and self-tuning computer systems. This
technique is based on the combined use of combinatorial
search techniques and analytic queuing network models.

VMware, Inc. Exhibit 1019 Page 1

HTTP App. DB
Server Server Server
0OS 1 OS2 0S3
Hardware Hardware Hardware
(a)

Virtual Virtual Virtual
Machine 1 Machine 2 Machine 3
HTTP App. DB
Server Server Server
OS 1 OS2 0S 3
Virtual Machine Monitor(VMM)
Hardware

(b)

Figure 1. Server consolidation scenario.

In that work we defined the cost function to be optimized
as a weighted average of the deviations of response time,
throughput, and probability of rejection metrics relative to
their Service Level Agreements (SLAs). Others have used
a control-theoretic approach to design self-configuring sys-
tems [7] while others have used machine-learning meth-
ods [18].

In this paper, we show how our autonomic computing
techniques can be used to dynamically allocate CPU re-
sources in virtualized environments with the goal of opti-
mizing a global utility function, U, under varying work-
load levels. We consider priority-based allocation and CPU-
share based allocation. This paper investigates through sim-
ulation how an autonomic controller may achieve the goal
of optimizing U or finding a close-to-optimal solution. The
results of the paper are quite encouraging and pave the way
to implementations of the ideas reported here in actual vir-
tual machine monitors such as Xen and VMWare.

The ideas presented in this paper can also be used to im-
plement autonomic schedulers for operating systems, since
the issue of scheduling virtual machines at the virtual ma-
chine monitor level is akin to scheduling processes by an
operating system. There is a vast literature on schedul-
ing algorithms for operating systems, however, what makes
our work different from previous scheduling work is that it
presents a method for automatically changing the scheduler
parameters (e.g., priority assignment or CPU share alloca-
tion) in a way that dynamically optimizes a global utility

function in an environment in which the workloads change
dynamically and unpredictably.

The rest of this paper is organized as follows. Section
two provides some background and formally defines the
problem. Section three discusses the analytic models used
by the controller. The following section describes the ap-
proach taken by the controller. Section five presents the re-
sults of the experiments. Finally, section six presents some
concluding remarks.

2. Background

We consider a virtualized environment with M virtual
machines (VM). Each VM ¢ may run .S; different workload
classes. We consider in this paper the problem of dynami-
cally allocating the CPU to the various virtual machines in
response to changes in the workload intensity. The work-
load intensity level for workload class s at VM i is speci-
fied by the average arrival rate \; s of transactions of class
s at VM i. We define a workload vector w; for VM i as
Wi = (Nij1, 5 Aiss,)-

We consider in this study that the relevant performance
metric for the workload classes are the average response
times R; s for each class s of VM 4. Including through-
put as a performance metric of interested is straightfor-
vga.rd. We define a response time vector, ﬁi, for VM ¢ as
Ri = (Riy, -, Ris,).

These performance metrics can be obtained by solving
an analytic performance model, M;, for VM <. The value
of these metrics is a function of the workload w; and of the
CPU allocation, a;, to VM 4. Thus, ﬁi = M;(W;,a;). We
investigate two approaches for assigning the CPU allocation
a; to each VM.

e Priority allocation: Each VM 7 has a dispatching prior-
ity, p; (p; = 1, ..., P), at the CPU. We assume preemp-
tive resume priorities with priority 1 being the highest
and priority P being the lowest. The priority changes
dynamically according to the autonomic controller.

e CPU share allocation: Each VM 1 is allocated a
share f; of the CPU (XM, f; = 1). VMWare al-
lows CPU shares to be allocated to different virtual
machines in order to influence their processing rate
(www.vmware.com). For example, if VM1 has 1,000
CPU shares and VM2 and VM3 have 500 CPU shares
each, then VM1 will execute at a rate twice as high as
VM2 and VM3, which will execute at the same rate. In
the case of VMWare, the allocation of CPU shares can
be changed by an administrator. In this paper we show
how this can be done by the autonomic controller.

Each VM ¢ has a utility function U; that is a function of
the set of performance metrics for the classes of that VM.

VMware, Inc. Exhibit 1019 Page 2

So, U, = f (ﬁz) The global utility function, Uy, of the en-
tire virtualized environment is a function of the utility func-
tions of each VM. Thus,

Ug:h(Ulv"'aUM)' (1)

The utility function, U; ,, for class s at VM ¢ is defined
as the relative deviation of the response time R; ; of that
class with respect to its service level agreement (SLA), 3; ;.

Hence,
ﬁi,s - Ri,s
max{ﬁi,sa Ri,s} '

If the average response time I?; ; meets the SLA, U; , is
equalto zero. If R; ¢ > 3; s,then —1 < U; , < 0. If R; 5 <
Bis, then 0 < U, s < 1. Thus, the utility function U; s is a
dimensionless number in the (—1, 1) interval. Other utility
functions can be defined. See [2, 19] for examples.

The utility function for VM i, U;, is a weighted sum of
the class utility functions. So,

Ui,s = @)

Si
U= ;s x Ui 3)
s=1

where 0 < ;s < 1 and 255:1 a;s = 1. U;is also a
number in the (—1, 1) interval.

The resource allocation problem in question is how to
dynamically allocate the CPU among VMs with the goal
of maximizing the global utility function U,. The dynamic
CPU allocation is achieved through an autonomic controller
of the white box type; i.e., a controller that knows the inter-
nal details of the system being controlled and can use this
knowledge to build a model that relates the output with the
input for a given value of the controllable parameter. Our
previous work [2, 3, 11, 12, 13] falls in the category of white
box controllers. We developed a technique to design self-
organizing and self-tuning computer systems based on the
combined use of combinatorial search techniques and ana-
lytic queuing network models [14]. In the current paper, we
adapt these techniques to the design of an autonomic con-
troller for virtualized environments .

3. The Autonomic Controller

The goal of the autonomic controller is to find an optimal
CPU allocation @ = (ay,---,an) to the set of M virtual
machines that optimizes the global utilization function Uj.
Let S be the space of all possible allocations. In the case in
which the CPU allocation is priority-based, the cardinality
of Sis PM. If P = M = 10, there are 10 billion possible
CPU allocations.

In the case of CPU-share allocations, we discretize S by
assuming that the total number of shares is 7" and thata VM
is given a number of shares n;, n; = 1,2,---,T such that

Zﬁl n; = T. Thus f; = n;/T. Tt is not difficult to see,
using combinatorial arguments, that the cardinality of S in
the CPU share case is given by

T+M—2
T+M-1 .
|8|< Mo) > @)

j=T+1

which can be written as

(") -

For T = 100 and M = 10, the number of possible alloca-
tions is a very large number in the order of 1013,

As it can be seen, the space of possible allocations &
can be extremely large depending on the values of P, M,
and T. The autonomic controller uses heuristic combinato-
rial search techniques [16]—beam-search in our case—to
explore a subset of S in which a solution close to the opti-
mal may be found. Clearly, if the size of S is small enough,
an exhaustive search should be conducted by the controller.
The utility function associated with each point in S is com-
puted using the performance models discussed in Section 4.

At regular time intervals, called controller intervals (CI),
the controller runs the controller algorithm, which searches
through a subset of S, as explained above, and determines
the best allocation @, which is communicated to the CPU
scheduler module of the VMM.

More specifically, the controller algorithm searches the
space of CPU allocations @ = (aq, - - -, apr) using a beam-
search algorithm. Beam search is a combinatorial search
procedure that works as follows [16]. Starting from the cur-
rent allocation dj, the global utility function, Uy, is com-
puted for all the “neighbors” of that allocation. The £ allo-
cations with the highest values of U, are kept to continue
the search. The value of k is called the beam. Then, the
“neighbors” of each of the k selected points are evaluated
and, again, the k£ highest values among all these points are
kept for further consideration. This process repeats itself
until a given number of levels, d, is reached.

The following definitions are in order to more formally
define the concept of neighbor of an allocation. Let v =
(v1, v, -, var) be a neighbor of an allocation vector @ =
(a1, az,- -+, apr). Inthe priority case, ¥ and @ represent pri-
orities of the M VMs in the range 1, - - -, P. The allocation
vector ¥ is a neighbor of @ if the priority of one of the VMs
in ¥ differs from the priority of the same machine in @ by
£ 1 in the sequence 1,---, P. Adding one to priority P
should result in priority 1 and subtracting one from priority
1 should result in priority P.

In the case of CPU-share allocations, the allocation vec-
tor 'is a neighborof @ if v; = a;+1/T andv; = a; —1/T
for some i # j and vy, = ay, forall k # ¢ and k # j.

The controller algorithm is specified more precisely in
Figure 2. The following notation is in order:

Q@T+M-1). (5

VMware, Inc. Exhibit 1019 Page 3

e V(d): set of neighbors of allocation vector @.

e LevelList;: set of allocation vectors examined at level
1 of the beam search tree.

e CandidateList: set of all allocation vectors selected as
the & best at all levels of the beam search tree.

e Top (k, £): set of allocation vectors with the & highest
utility function values from the set L.

e {y: current allocation vector.

4. The Analytic Models

The queuing network models used here fall into the cate-
gory of open multiclass queuing network models [14]. Each
queue in the queuing network (QN) represents a resource
(e.g., CPU, disk). There may be multiple classes of transac-
tions depending on their use of the resources and their work-
load intensities. The total time spent by a transaction class
s using a resource k is called the service demand, Dy .
Note that the service demand does not include any queu-
ing time spent at the resource. We consider in this paper
that all workloads are open workloads whose intensities are
specified by their arrival rates.

The response time, R; s, for class s of VM ¢ is given
by [14]:

K
Dk s
Ri,s = S, :
IEES SIS

(6)

where K is the number of resources used by transaction of
VM i.

Equation (6) does not cover the case of priority-based
scheduling nor the case of CPU shares. In the next subsec-
tions we show how we adapt the results of Eq. (6) to these
situations.

LevelListq < dp;
CandidateList < LevelListq;
Fori=1todDo
Begin
LevelList; < 0;
For each @ € LevelList;_1 Do
LevelList; < LevelList; U V(q);
LevelList; < Top (k, LevelList;);
CandidateList < CandidateList ULevelList;;
End;
@opt < max (CandidateList)

Figure 2. Controller Algorithm.

4.1. Priority Based Model

To model CPU preemptive resume dispatching priorities,
we use the shadow CPU approximation in [14]. All the
workloads of the same VM have the same priority in the
model, since the VMM assigns dispatching priorities to the
VM as a whole and not to its individual workloads.

In this approach, the open QN model is solved incre-
mentally in P steps, one per priority class, from the highest
priority class 1 to the lowest priority class P. At step p,
only classes of priority ¢ < p are included and the open QN
model is solved. This partial model at step p has p shadow
CPUs instead of one. Each shadow CPU is dedicated to all
workloads that have the same priority. Let D%PU,S be the
CPU service demand for workload class s at the shadow
CPU associated to priority p. For a workload s of priority
q # p, D%PU’S = 0 since workload s only uses the CPU
associated to priority ¢q. For a workload s of priority p, one
has to inflate the service demand at the dedicated CPU for
that class to account for the fact that class s only sees the
amount of CPU not used by all workloads of higher prior-
ity, i.e., priorities ¢ < p. Thus,

Dcpu,s
DZC)JPU s = -1 ')
7 1- 22:1 Zreﬂ(q) Ar X Dopu,r

where D’éPU’S is the inflated CPU service demand for class
s at the shadow CPU associated to priority p, Dcpu, s is the
original CPU service demand of workload s, and (q) is
the set of workloads with priority q. The summation in the
denominator of Eq. (7) is the sum of the CPU utilizations
due to all workloads of priority ¢ < p. Even though Eq. (7)
does not explicitly indicate a VM, the workload designation
s is assumed to be associated with a specific VM.

The disk service demands do not need to be changed be-
cause priorities only apply to the CPU. The final response
time is obtained with the solution of the complete QN model
at step P.

4.2. CPU Share Model

The CPU share model is built by having M shadow
CPUs, one per VM. The CPU service demands have to be
adjusted to account for the share allocation of each VM.
This is done by setting

D; cpy, = Dicpu./fi ®)

where Df py;_ is the elongated CPU demand of class s at
the shadow CPU for VM i and D;,cpu, is the original CPU
demand of class s of VM . Equation (8) can be understood
by interpreting f; as the rate at which workloads of VM
i execute. For example, if f; = 0.25, then any workload
of that VM will execute at a rate equal to 0.25 seconds of

VMware, Inc. Exhibit 1019 Page 4

work per second of real time, assuming that a workload that
receives a 100% allocation of the CPU executes at a rate of
1 second of work per second of real time. Thus, the average
amount of time needed to execute one second of work is
1/0.25 = 4 seconds in this example.

5. Results

We used simulation to evaluate the controller for the two
different cases discussed before: priority and CPU shares.
A CSIM (www.mesquite.com) model was built to simulate
the virtualized environment in each case. The controller was
implemented in a separate machine from the one used to
run the simulation and used a controller interval equal to
2 minutes. For the simulation of the priority based case,
we used a preemptive resume scheduling discipline at the
CPU with a time slice equal to 0.001 sec. For the CPU
share case, we used a round-robin scheduling discipline at
the CPU with a time slice of 0.001 sec. In both cases, the
disk scheduling discipline is FCFS.

The experiments reported in what follows assume two
virtual machines 1 and 2 with one workload class each.
The methodology described above can be easily applied to a
large number of virtual machines and workloads given that
the utility function is computed using a very fast analytic
model and the beam-search algorithm can be tuned by set-
ting its breadth and depth parameters in order to limit the
subset of S examined at each control interval.

The service demands assumed in the experiments re-
ported here are given in Table 1. As it can be seen, the I/O
service demands were set at a very low value since the con-
troller is acting on CPU allocation only. For this reason, we
did not want the I/O activity to mask the results obtained in
the experiments. The values shown in Table 1 are the aver-
age values used to generate the resource consumption in the
experiments. However, the controller was implemented in
the simulation in the same way as it would have been imple-
mented in an actual system. In other words, CPU and disk
utilizations as well as workload throughputs were measured
during each control interval and used to compute the ser-
vice demand values, according to the service demand law,
and used by the performance model.

Table 1. Service demands (in sec)

Class
1 2
CPU | 0.020 | 0.010
10 0.0005 | 0.0005

We assume in the simulation experiments that CPU
shares can only vary in increments of 5%. The global util-

ity function for the virtualized environment is computed as
Uy = 0.4 x Uy + 0.6 x Ua. All experiments reported here
include a 95% confidence interval illustrated by the bars in
each point in the graphs.

5.1. Results for the Priority Allocation

The variation of the workload intensity, in transactions
per second (tps), for each of the workloads in each VM is
shown in Fig. 3. The workload intensities show peaks and
valleys, which are out of phase for the two VMs to force an
exchange of CPU allocation between the two VMs. Work-
load 1 has its peaks at CIs 7 and 8 and then again at 19 and
20. Workload 2 has three peaks: at 1-3, 12, and 24.

70

Arrival Rate (tps)

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Control Interval

[-»—Workload 1 -s-Workload 2 |

Figure 3. Variation of the workload intensity,
in tps, for the two workloads as a function of
time, in Cls, for the priority case.

Figures 4 and 5 show the variation of the utility func-
tions Uy and U during the 60 minute experiment, using the
variation of the workload intensity shown in Fig. 3. Each
curve shows the variation of the utility function when the
autonomic controller is used and when it is not used.

The graph of Fig 4 shows that (1) there is very little dif-
ference between the controller and non-controller results,
(2) the non-controller results seem to be slightly better in
some cases especially when the workload of VM 2 has its
peaks; this is due to the fact that the controller is provid-
ing more CPU resources to workload 2, which has a higher
weight in the global utility function U,,.

Figure 5 shows a marked difference between the con-
troller and non-controller cases. The utility function for U,
remains in the positive territory from CI = 2 onwards.

Figure 6 shows the the variation of the global utility
function U, during the 60 minute experiment. The figure

VMware, Inc. Exhibit 1019 Page 5

°
o

VM1 Utility

o

12 3 4 5 6|7 8 10 11 12 13 14 15 16 17 18 20 22 23 24 25 26 27 28 29 30

0.5

Control Interval

‘4} U1 (no controller) —e— U1 (controller) ‘

Figure 4. Variation of U; as a function of time,
measured in Cls, for the priority case.

shows that the controller is able to maintain a significantly
higher global utility for the virtualized environment even at
periods in which the two workloads go through their peaks
in workload intensity.

Figure 7 shows the variation of the priorities of VMs 1
and 2 during the 60-minute experiment. Both VMs start
with the same priority (i.e., priority 2). The priority of
VM1 remains unchanged throughout the experiment. How-
ever, VM2 receives an immediate priority boost to prior-
ity 1 (the highest) because this workload is at its workload
peak. However, the controller reduces VM 2’s priority to
2 (i..e., now both VMs have the same priority) when VM
1 goes through workload peaks. This demonstrates that the
autonomic controller is able to react to changes in workload
intensity in order to improve the global utility function.

Figures 8 and 9 show the variation of the response time
for VMs 1 and 2, respectively, for the controller and non-
controller cases, as well as the SLA (dashed line) for each
case. For VM1, the response time for both cases (controller
and non-controller) stays below the SLA of 0.8 sec except
when the workload for VM 1 goes through its peak period.
In these intervals, the controller and non-controller results
have very little statistical difference as can be seen by the
confidence intervals.

For the case of VM 2, Fig. 9 shows that as soon as the
controller starts to operate (at CI = 2), the response time
goes below its SLA of 0.035 sec because of the immedi-
ate boost in the priority level. The figure also shows that
without the controller, this workload always exceed its SLA
target.

VM2 Utility
o

Control Interval

‘4} U2 (no controller) —e— U2 (controller) ‘

Figure 5. Variation of U, as a function of time,
measured in Cls, for the priority case.

5.2. Results for the CPU Share Allocation

The variation of the workload intensity, in tps, for each
of the workloads in each VM is shown in Fig. 10. As before,
the workload intensities show peaks and valleys, which are
out of phase for the two VMs to force an exchange of CPU
allocation between them. Workload 1 has its peaks at CIs
7-8, 19-20, and then again at 27-30. Workload 2 has three
peaks: at 1-3, 12, and 24. Please note that although the
shape of the curves in Fig. 10 is similar to those of Fig. 3,
the workload intensity values in this former case is lower
than in the latter.

Figures 11 and 12 show the variation of the utility func-
tions U7 and Us during the 60-minute experiment, using the
variation of the workload intensity shown in Fig. 10. Each
curve shows the variation of the utility function when the
autonomic controller is used and when it is disabled. Fig-
ure 11 shows that U; is higher for VM 1 when the controller
is not used. This is due to the fact the controller forces a
higher level for Us, as seen in Fig. 12, because VM 2 has a
higher weight (0.6 versus 0.4) in the global utility function
U
Figure 13 shows the the variation of the global utility
function U, during the 60-minute experiment. The figure
shows that in most cases the global utility function for the
controller is significantly higher when the controller is en-
abled than when it is not. It should be noted that U, for the
controller case remains positive for CI > 2, i.e., as soon as
the controller’s effects start to be felt, while U, goes to neg-
ative territory at CI = 12 and CI =24 for the non-controller
case, when VM 2’s workload has high peaks in workload
intensity.

VMware, Inc. Exhibit 1019 Page 6

08

°
>

o
=

22 23 24 25 26 27 28 29 30

Virtual Environment Global Utility
o
N

1.2 3 4 5 6|7 10 11 12 13 14 15 16 17 18 (19

0.2

——]

0.4

0.6

Control Interval

‘% Ug (no controller) —e— Ug (controller) ‘

Figure 6. Variation of U, as a function of time,
measured in Cls, for the priority case.

Figure 14 shows the variation of the CPU shares of VMs
1 and 2 during the 60-minute experiment. They both start
with the same number of CPU shares each, i.e., 50%. As
CPU resources need to be shifted between VMs, the con-
troller changes the share allocation automatically. For ex-
ample, at CI =7, VM 1 sees a peak in the number of shares
and VM 2 a valley, which coincides with the peaks and val-
leys seen in the workload intensity of Fig. 10. The same
happens at CI = 19.

Figures 15 and 16 show the variation of the response

»

Priority

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Control Interval

‘+ VM1 Priority (controller) - VM2 Priority (controller) ‘

Figure 7. Variation of priorities of VMs 1 and
2 as a function of time, measured in Cls.

VM1 Resp. Time (sec)

Control Interval

‘+ R1 (no controller) —e— R1 (controller) --—- SLA ‘

Figure 8. Variation of response time for VM 1
as a function of time, in Cls, for the priority
case.

time for VMs 1 and 2, respectively, for the controller and
non-controller cases, as well as the SLA (dashed line) for
each case. For VM1, the response time stays below the SLA
of 0.5 sec in both cases, controller and non-controller, ex-
cept when the workload for VM 1 goes through its peak
period. In these intervals, the response time under the con-
troller case is significantly higher than when the controller
is not used. The fact that VM 1 has a lower weight in the

VM2 Resp. Time (sec)

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Control Interval

‘+ R2 (no controller) —e— R2 (controller) -—- SLA ‘

Figure 9. Variation of response time for VM 2
as a function of time, in Cls, for the priority
case.

VMware, Inc. Exhibit 1019 Page 7

Arrival Rate (tps)

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Control Interval

‘+Workl0ad 1 —= Workload 2 ‘

Figure 10. Variation of the workload intensity,
in tps, for the two workloads as a function of
time, in Cls, for the CPU share case.

global utility function U, causes the controller to tolerate
temporary violations of SLA for VM 1. It should be noted
that VM 1 received more shares during these peak periods.
If that had not been done, the peaks in response time would
have been higher. It should be noted also that in the non-
controller case, VM 1 uses 50% of the CPU all the time
while with the controller it never goes above 40%.

For the case of VM 2, Fig. 16 shows that as soon as the
controller starts to operate (i.e., at CI = 2), the response

0.8
0.6

0.4

SR 1 1

22 23 24 25 26 |27 Aa

VM1 Utility

—e

12 3 4|5 91}1\12131415\5171 2|
0.2
0.4

0.6

0.8

Control Interval

‘4} U1 (no controller) —e— U1 (controller) ‘

Figure 11. Variation of U; as a function of
time, in Cls, for the CPU shares case.

VM2 Utility

Control Interval

‘4} U2 (no controller) —e— U2 (controller) ‘

Figure 12. Variation of U, as a function of
time, in Cls, for the CPU shares case.

time goes below its SLA of 0.030 sec and stays at that value
throughout the entire experiment, except at CI = 24, when
it goes only slightly above.The figure also shows that with-
out the controller, this workload exceeds its SLA target by
a significant margin at the peak periods for VM 2.

6. Concluding Remarks

Virtualized environments can bring interesting benefits
to data centers that want to consolidate smaller servers into

Virtual Environment Global Utility

= T
123L5 slj[s amn12131L1515\7|B|L%21222324252527252930

Control Interval

‘% Ug (no controller) —e— Ug (controller) ‘

Figure 13. Variation of U, as a function of
time, in Cls, for the CPU shares case.

VMware, Inc. Exhibit 1019 Page 8

CPU_SHARE (in %)

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Control Interval

‘%VM1 CPU_SHARE (controller) -a- VM2 CPU_SHARE (controller) ‘

Figure 14. Variation of the CPU shares of VMs
1 and 2 as a function of time, in Cls.

higher capacity ones. An important challenge is that of
managing the physical resources so that each virtual envi-
ronment receives an appropriate share of these resources as
the workload varies with time. This paper examined the is-
sue of autonomic allocation of the CPU to several virtual
machines. Two approaches were studied: dynamic prior-
ity setting and dynamic allocation of CPU shares. The for-
mer approach provides a less granular way of differentiat-
ing among the several virtual machines. Allocation of CPU

VM1 Resp. Time (sec)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Control Interval

‘+ R1 (no controller) —e— R1 (controller) - —- SLA ‘

Figure 15. Variation of response time for VM
1 as a function of time, in Cls, for the CPU
shares case.

0.25

VM2 Resp. Time (sec)

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Control Interval

‘% R2 (no controller) —e— R2 (controller) -—- SLA ‘

Figure 16. Variation of response time for VM
2 as a function of time, in Cls, for the CPU
shares case.

shares is a mechanism that allows a finer granularity for re-
source allocation.

The paper showed through simulation experiments that
the autonomic controller is capable to dynamically shift
CPU resources among virtual machines in a way that op-
timizes a global utility function for the virtualized envi-
ronment. The results reported here indicate that carrying
out these ideas to existing VMMs (e.g., Xen and VM Ware)
would be quite attractive.

Acknowledgements

This work is partially supported by grant NMAS501-
03-1-2022 from the US National Geospatial-Intelligence
Agency.

References

[1] Babaoglu, O., Jelasity, M., Montresor, A.: Grass-
roots Approach to Self-Management in Large-Scale Dis-
tributed Systems. In Proc. EU-NSF Strategic Research
Workshop on Unconventional Programming Paradigms,
Mont Saint-Michel, France, 15-17 September (2004)

[2] M.N. Bennani and D.A. Menascé, “Resource Allocation
for Autonomic Data Centers Using Analytic Performance
Models,” Proc. 2005 IEEE International Conference on
Autonomic Computing, Seattle, WA, June 13-16, 2005.

[3] M.N. Bennani and D.A. Menascé, “Assessing the Ro-
bustness of Self-managing Computer Systems under
Variable Workloads, Proc. IEEE Intl. Conf. Autonomic

VMware, Inc. Exhibit 1019 Page 9

(4]

(3]

(]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

Computing (ICAC’04), New York, NY, May 17-18,
2004.

J. Chase, M. Goldszmidt, and J. Kephart. eds., Proc. First
ACM Workshop on Algorithms and Architectures for
Self-Managing Systems, San Diego, CA, June 11, 2003.

J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R.
Doyle, “Managing Energy and Server Resources in Host-
ing Centers,” 18th Symp. Operating Systems Principles,
Oct. 2001.

R.J. Creasy, “The Origin of the VM/370 Time-Sharing
System,” IBM J. Research and Development, Sept. 1981,
pp- 483—490.

Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D.
M. Tilbury, “Using MIMO Feedback Control to Enforce
Policies for Interrelated Metrics With Application to the
Apache Web Server,” Proc. IEEE/IFIP Network Opera-
tions and Management Symp., Florence, Italy, April 15-
19, 2002.

R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat,
“Model-Based Resource Provisioning in a Web Service
Utility,” Fourth USENIX Symposium on Internet Tech-
nologies and Systems, March 2003.

R. Figueiredo, P.A. Dinda, and J. Fortes, “Resource Vir-
tualization Renaissance,” IEEE Internet Computing, May
2005, Vol. 38, No. 5.

R.P. Goldberg, “Survey of Virtual Machine Research,”
IEEE Computer, June 1974, pp.34-45.

D. A. Menascé and M.N. Bennani, “On the Use of Perfor-
mance Models to Design Self-Managing Computer Sys-
tems,” Proc. 2003 Computer Measurement Group Conf.,
Dallas, TX, Dec. 7-12, 2003.

D. A. Menascé, “Automatic QoS Control,” IEEE Internet
Computing, Jan./Febr. 2003, Vol. 7, No. 1.

D. A. Menascé, R. Dodge, and D. Barbar4, “Preserving
QoS of E-commerce Sites through Self-Tuning: A Per-
formance Model Approach,” Proc. 2001 ACM Conf. E-
commerce, Tampa, FL, Oct. 14-17, 2001.

Menascé, D. A., V. A. F. Almeida, and L. W. Dowdy, Per-
formance by Design: Computer Capacity Planning by
Example, Prentice Hall, Upper Saddle River, NJ, 2004.

G.J. Popek and R.P. Goldberg, “Formal Requirements for
Virtualizable Third-Generation Architectures,” Comm.
ACM, July 1974, pp. 412-421.

V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, eds,
Modern Heuristic Search Methods, John Wiley & Sons,
Dec. 1996.

M. Rosenblum and T. Garfinkel, “Virtual Machine Mon-
itors: Current Technology and Future Trends,” IEEE In-
ternet Computing, May 2005, Vol. 38, No. 5.

G. Tesauro, “Online Resource Allocation Using De-
compositional Reinforcement Learning,” Proc. AAAI-05,
Pittsburgh, PA, July 9-13, 2005.

[19] W.E. Walsh, G. Tesauro, J.O. Kephart, and R. Das, “Util-

ity Functions in Autonomic Computing,” Proc. IEEE
International Conf. Autonomic Computing (ICAC’04),
New York, NY, May 17-18, 2004.

VMware, Inc. Exhibit 1019 Page 10

https://www.researchgate.net/publication/221039857

