US006898288B2

a» United States Patent (10) Patent No.: US 6,898,288 B2
Chui @#5) Date of Patent: May 24, 2005
(549) METHOD AND SYSTEM FOR SECURE KEY 6,223,287 B1 * 4/2001 Douglas et al. 713/178
EXCHANGE 6,351,536 B1 * 2/2002 Sasaki 380/44
6,389,532 B1 5/2002 Gupta et al. ... 713/60
(75) Inventor: Charles K. Chui, Menlo Park, CA 6,425,081 B1 * 7/2002 Iwamura 713/176
(US) 6,732,101 B1 * 5/2004 Cook ...cccccovvnvirviinnnnn. 707/10
OTHER PUBLICATIONS
(73) Assignee: Telesecura Corporation, Menlo Park,
CA (US) Bruce Schneier, Applied Cryptography Second Edition: pro-
tocols, algorithms, and source code in C, 1996, Wiley &
(*) Notice: Subject to any disclaimer, the term of this Sons, p., 516-517.*
patent is extended or adjusted under 35))
U.S.C. 154(b) by 41 days. * cited by examiner
) Primary Examiner—Kim Vu
(21 Appl. No.: 10/154,795 Assistant Examiner—Monplaisir Hamilton
ed: 74) Attorney, Agent, or Firm—Morgan, Lewis & Bockius
(22) Filed: May 23, 2002 1P Y, Ag g
(65) Prior Publication Data
57 ABSTRACT
US 2003/0076959 Al Apr. 24, 2003
A method for secure transmission of a data message locks,
Related U.S. Application Data at the sender, the data message using a first lock. The locked
(60) Provisional application No. 60/344,842, filed on Oct. 22, data message is transmitted to the receiver. Next, the locked
2001. data message is double-locked, at the receiver, using a
(51) Inte CL7 oo HO04L 9/00 second lock. Then, this double-locked data message is
167 T VTN ¢/ U 380/278; 380/40 transmitted back to the sender. The first lock of the double-
(58) Field of Search 380 /2,83 277 locked data message is then unlocked, at the sender, using a
380/27837713/176168 705 /5’1 71’ first key, leaving the data message single-locked by the
> ? ? ? second lock. The single-locked data message is transmitted
(56) References Cited back to the receiver, where the second lock of the single-
locked data message is unlocked, using a second key, to
U.S. PATENT DOCUMENTS generate the data message, completing the secure transmis-
4322577 A * 3/1982 Brandstrom 3g037 OO
5365580 A * 11/1994 Gutowitz 380/43
6,115,699 A * 9/2000 Hardjono 705/51 43 Claims, 25 Drawing Sheets
Encoded block € 1106
Memory 1100 € Cy C3 ¢4 I
Sets of lock-key pairs
(e,.a,)
randomly
chosen from
1102 | memory 1100
CA
TCH—E‘“ /‘1 104 /\1 108
e, a,q a‘} Encryption (by sender) -l
h=ac +a,¢, +a,c +a,c,

h,=a,e +ac, ta,cy +a,

hy=ay¢ +a,c, +ac, +a,

h,=a,c +ta;0, +asc, +a

Encrypted +—
codeword

treated as a plaintext
sentence to be sent
to intended receiver

SAMSUNG 1021

U.S. Patent May 24, 2005 Sheet 1 of 25 US 6,898,288 B2

e
Key k for delivery Public/Private
key pair, (e, d)
{
—P
E,(k)=1 D,()=k
Sender Intended Receiver
FIG. 1
(Prior Art)
Intended
Receiver 2
Public/Private
key pair (e,, d,)
D d; (E 2) =k
e, | ¢,
h 4
Public/ e, Key k& for delivery 23 Public/
Private ————— > ——4¢————— Private
key pair key pair
(es’ds) L EeJ (k)=lj L (el»dl)
— . S —
j=123
D,(¢,)=k D, (2,)=%
Intended Sender Intended
Receiver 3 Receiver 1
FIG. 2
(Prior Art)

U.S. Patent May 24, 2005 Sheet 2 of 25 US 6,898,288 B2

Adversary
Public/Private key pair (f, g)

D)=k, E(k)=1

(Adversary receives k)

1
| e
Key k for f :: Public/Private
delivery < E key pair (e, d)
’ Lo
E (k)= I D,(6)=k
Sender Intended
Receiver
FIG. 3
(Prior Art)

U.S. Patent

May 24, 2005 Sheet 3 of 25
Secret key k Private lock-key
for delivery pair {e,, d, }
Private lock-key —fp—_
pair {e,, d, } E (f)=g
E (k)=f
____________ 2
Dd, (8)=h B <
>— D, W)=k
Sender Intended
Receiver
FIG. 4A
Secret key & Private lock-key
_for delivery __ pair {e,,d, }
Private lock-key f P
pair {es’d:} Ee,,(f)zg
E (K)=f
I;a_ss_\;o_rg ______ & + password
verification —
h ____________
D, (g)=h > D, (hy=k
Sender Intended
Receiver
FIG. 4B

US 6,898,288 B2

U.S. Patent May 24, 2005 Sheet 4 of 25 US 6,898,288 B2

Intended
Receiver 2

Decrypts h,
with private
key to
receive k

Decrypts Decrypts
h, with key k h, with
private g _ £ private
key to ’ for delivery < key to
receive receive
k k

hég_ —hl.’__
Intended Sender Intended
Receiver 3 Receiver 1

FIG. 5A

U.S. Patent May 24, 2005 Sheet 5 of 25 US 6,898,288 B2
Intended
Receiver 2
Decrypts h,
with private
key to
receive k
A
f E2 ?hz
+
psw
\ 4
J < S
Decrypts - Decrypts
h, with key k h, with
private | g, 1 psw _ g, +psw | private
key to for delivery «= key to
receive receive
k A k
it -
Intended Sender Intended
Receiver 3 Receiver 1
FIG. 5B

U.S. Patent May 24, 2005 Sheet 6 of 25 US 6,898,288 B2

Intended
Receiver 2
Decrypts h,
to
receive k
|
A [
f &> hz}
I
i
i
Adversary i |
h, v f
Decrypts |——<4—+ —P- Decrypts
h, to g key k g h, to
receive ’ — for delivery — receive
g e " k
v ___b—
Does not ‘F—/ Initiates Roll Call +
L A——————~ D | S — >
Receive &
Intended Sender Intended
Receiver 3 Receiver 1
FIG. 5C

U.S. Patent May 24, 2005 Sheet 7 of 25 US 6,898,288 B2
4x4 Lock Matrix 600 4x4 Key Matrix 602
A\ A
a1 az a3 a4 bi bz b3 by
ag a1 a2 a3 bg b1 b2 b3
azg a4 a1 ap b3 bg b1 b2
a2 a3z a4 a b2 b3 b4 by
FIG. 6A
6x6 Lock Matrix 610 6x6 Key Matrix 612
A A
a1 a2 a3z a4 a5 ap b1 b2 b3 bsg bz bg
ag a1 a2 a3 a4 a5 bg b1 b2 b3z bg bs
as ag a1 a2 a3 a4 bs bsg b1 bz b3 bsg
ag a5 ag a1 ap a3 bg bs bg b1 by b3
a3 a4 a5 ag a1 a2 b3 bg bs bg b1 b
a2 a3 a4 as ap af b b3 b4 bs bg b1

FIG. 6B

U.S. Patent May 24, 2005 Sheet 8 of 25 US 6,898,288 B2

712
[\

a Ay oo A L

[720 l [na g
& UNIT A 5 M\
' (preliminary computation) g. 710
g o
3 8
-9 716 @
& [=
S ¢ UNITB -~
= ey
2 Y (for verification of N S
— .
g encryption lock) ———p ¥
3 S
=TTy l “
< o
: Y 718 =
8 [p
- UNIT C o
g (for computing
% . < decryption key)
g 2
A
FIG.7

U.S. Patent

May 24, 2005 Sheet 9 of 25

Compute:

A1=a]—a2+a3—a4

4, =(a1 - 03)2 + (az _04)2

FIG.7A
(UNIT A in FIG. 7 for k = 4)

Areboth 4 #0 and 4, #0 ?
If no, ask generator to replace
4, 4y, a3, 4,
one at a time in this order.

If yes, output a,,q,, a,,a, to Memory 720
and UNIT C (718), and 4,, 4, to UNIT C also.

FIG. 7B
(UNIT B in FIG. 7 for k =4)

US 6,898,288 B2

Compute:
do = 1 ; dl :_1_
4(a1+a2 +a, +a4) 44
d22a1~a3 ; d3=(12—a4
24, 24,

b=d,+d+d,; b=d,~d - d,
by=d,+d - d,; b=d,—d+4d

3

Output b5, 5,,5,,b, to Memory 720.

FIG. 7C
(UNIT Cin FIG. 7 for k=4)

10

U.S. Patent May 24, 2005 Sheet 10 of 25 US 6,898,288 B2

Compute :

g=a,+ a,— a; —a, ; h=a2—- a, + a; —a

FIG. 7D
(UNIT A in FIG. 7 for % = 6)

Ensure all of the following are satisfied :

1) ¢, 2d,,
(1) ¢, #d, or g#0 ,and
(i) ¢, #—d, or h#0,

If at least one of (i), (ii), and (iii) fails, regenerate
Q;, @y, a3, 44, A5, Ag ONE at a time till all (i), (ii), and
(1i1) hold.

Then output ay, a,, a,, a,, a;, a; to Memory 114, and
a,, a3, 45, Ag, ¢y, dy,), d,, g, h to UNIT C, 113,

FIG. 7E
(UNIT Cin FIG. 7 for £ =6)

11

U.S. Patent

May 24, 2005 Sheet 11 of 25

US 6,898,288 B2

Compute :

—-d
o Ao 4
—cl“dl; f;=€1+d1
e,=¢,—d,; f,=c¢,+d,

ey =c¢; —dy ; f;;"c;; +d,

A1=§(e +3g A:z-ii(ffwh‘*)

b =e, + &,

4 4
A1A2

€,
by=e,+ =+
1

>
Output 4

D b=fo- S L

') ;

i

4,
b—-e-!—%—f—i;b“:ﬁ_i_;_i

Loy o 2

bibef-2e L

by, by, by, b, b to Memory 114.

FIG. 7F
(UNIT C in FIG. 7 for k= 6)

12

U.S. Patent

May 24, 2005 Sheet 12 of 25

MEMORY 720
(k=4)

Private security lock-key pairs
{eli’d] }’ {ezadz}’ s {en’dn}
as generated in FIGS. 7A-C

Typical notation: {e,d }, with
€= {al a, d, a4}

d= {bl by b, b4}

FIG. 8A

MEMORY 720
(k£=6)

Private security lock-key pairs

{el’dl}’ {ez:dz}: B {ert’dn}

as generated in FIGs. 7D-F with k =6

Typical notation: {e,d}, with
€= {al a4, a4, 4 aa}

d= {bx b, by b, b, bs}

FIG. 8B

13

US 6,898,288 B2

U.S. Patent May 24, 2005 Sheet 13 of 25 US 6,898,288 B2

CODE TABLE
for pre-encryption fork = 4

(a, b distinct non-negative integers)

ab <«<—>abab
aab<«<—>aabb
aaabe——> abba
a €«<——> a -] a -
aa €<—> a2 a2
aaa<€<——>3a-3a-3
aaaa€e——>3-4a-4

FIG. %A

Example of
Pre-encryption coding
(sentences with k = 4)

Partitioned blocks 900 Encoded blocks 902

65001,887,2223, 6565,0011,8877,
34,95,6666,67,10, 23323434,9595,
0000,43,333 6 464,6767,1010
040-44343,3 33 -3

FIG. 9B

14

U.S. Patent May 24, 2005 Sheet 14 of 25 US 6,898,288 B2

Preparation for pre-encryption coding for k = 6
(1) When all 5 numbers are the same

aaaaa—>aagaa-1-1

(2) When there are less than 5 numbers in the last

block (at the end of the number sequence) to be
coded

x,>%,-1000
Xy X, >x,, x,-100
xn—2 xn—] xn —_>xn-2 xn—l xn_l O

xn-3 xn-—2 xn—] xn -_)xn—S xn—2 xn—l xn -1

FIG. 10A

CODE TABLE
for pre-encryption for k=6

Xy Xy X3 Xy Xg —> Xy Xy X3 X Xg X,

with

Xg =X =X, + Xy — X, + X,

Fig. 10B

15

U.S. Patent May 24, 2005 Sheet 15 of 25 US 6,898,288 B2

Example of
Pre-encryption coding
(sentences with k = 6)

Partitioned blocks 1000 Encoded blocks 1002

——

65001,88722,23349, [650012,887227,233497
66666,71000, 666-1-16,7100006,
00433,33 004334,33-100-1

3

FIG. 10C

16

U.S. Patent May 24, 2005 Sheet 16 of 25 US 6,898,288 B2

c Encoded block € 1106
Memory 1100 €6 GG, e
Sets of lock-key pairs
(e,.4,)
randomly
chosen from
/\ 1102 | memory 1100
CACHE 1104 1108
d /- [
e, =13, a, a, a,} Encryption (by sender)

[L, h=ac +a,¢, +a,¢, +a,c,

» hy=a,e, +a,c; +a,c, +a,

hy=asc, +a,c, +ac, +a,

R\IHO hy=a,c, +a;¢, +a,c; +a
Encrypted ~ ¢——m— k= b bk I
codeword {hl 2 h4}
treated as a plaintext
sentence to be sent
to intended receiver

FIG. 11A

(k=4)

17

U.S. Patent May 24, 2005 Sheet 17 of 25 US 6,898,288 B2

Sender-encrypted
codeword A 1110

CYCYOY S

Memory 1122

Sets of lock-key pairs

/\1124 (e,,d,)
randomly
Cache {¢&— chosen from
d

’ memory 1122

1126 1128

P

o e, ={iii,i 4} Encryption (by receiver)

» /= Wiy ik, ik +ih,
Py =i +ihy + Lk +ih,
Py =k +ihy +i +ih,
Py =hh+ishy +ih +ih,

/1130

coe-encrpted o | p={p, p, s Ps} l—
to be returned
to sender, treated as
plaintext
FIG. 11B
(k=4)

18

U.S. Patent

May 24, 2005 Sheet 18 of 25 US 6,898,288 B2
Double-encrypted
codeword p 1130
P1 Dy P3Py |
From 1102
Cache
dS
/ 1142 / 1144
| d, = {bl b, b, b4} —P| Decryption (by sender)

Recetver-encrypted
codeword to be
sent to receiver,
treated as plaintext

> g, = b4P1 +bp, + b,p;y + b,p,

g, =bp +b,p, + byp, + b,p,

a—

/‘l 146

q, = b3pl +b4p2 + b1p3 + bzp4
g, =b,p, +b,p, +bypy + bp,

=149, 9,9,} |«

FIG.11C
(k=4)

19

U.S. Patent May 24, 2005 Sheet 19 of 25 US 6,898,288 B2

Receiver-encrypted
codeword ¢ 1146

919,959, |«
From 1124
Cache
d,
/ 1162 / 1164
—P d = { JiJa Js j4} ——P| Decryption (by receiver)
¢ =0+ Jaq, + Jiqs + g,
€2 =J4dy +)19, + J2q5 + Jaq,
Cs = J3dy + Juqy + Jigs + /a4,
Co?el(;rgable €y = Jogh + B39y + Jugs + /g,

l /1 166

1170 | Deeode le—— c={c ¢, ¢, ¢}

I

eg {2223}

FIG. 11D
(k=4)

20

U.S. Patent May 24, 2005 Sheet 20 of 25 US 6,898,288 B2

Encrypted block € 1106a
C1CyCCuCsCy |

Memory 1100a
Sets of lock-key pairs
(11023 (e,.d,)

randomly

Cache l«— chosen from

d, memory 1100a

1108a
/‘ 1104a Encryption (by Sender)
Ly €, = {al a,a,a,a, as} I 4,6 Ta,¢, tase, +a,c, +ases +agc,

h, =agc, + ac, +a,c, +a,c, +a,c5 +ase
hy =asc, +age, +ac, +a,c, +a,e; +aeq

b, =a,c, +asc, +asc, +a,c, +ae, + a,c,

hy = ase, +a,c, + ase, +age, +acg + a,cq

hy = ae, + ayc, + a,c; +ase, +age, +ac,

/ 1110a
Encrypted

codeword treated as a | h= {hl h, h3 h4 h5 ks}
plaintext sentence to be

sent to intended receiver

FIG. 11E
(k=6)

21

U.S. Patent May 24, 2005 Sheet 21 of 25 US 6,898,288 B2

Sender-encrypted
Py by iy by b b | codeword & 1110

Memory 1122a

Sets of lock-key pairs

(T1124a (e,.d,)
randomly
Cache &—| chosen from
d, memory 1122a
/ 1126 / 1128a
> & = {i1 ULAAS is} Encryption (by receiver)
Yl by =ik +ihy + ik ik, + ik +ih,
Dy =lh +ih, +iyhy + ik, +ih + ik,
Py =ishy +ichy + by +iyh, +ih +i,h,
Py =iy +ish, +igh, +ih, +iyh, + ik,
Ps =ik +ihy +ishy +ich, +ih + ik,
Do =il +ihy + i hy +ih, +igh, +ih,
1130a
Double-encrypted
+— -
codeword P= {pl P2 D3 Py Ps ps}
to be returned
to sender, treated as
plaintext

FIG. 11F
(k=6)

22

U.S. Patent May 24, 2005 Sheet 22 of 25 US 6,898,288 B2

Double-encrypted
codeword P 1130a
P1 Py D3 Dy Ps Dy 14

From 1102a

Cache
d

s

1142a 1144a

- c

> =
d, = {bl byb 3, bs b, 6} Decryption (by receiver)

G =bp +b,p, +bypy +b,p, +bsps + b ps
9, =bsp, +b,p, +b,p, +b,p, +b,ps +b,p,
qs =bsp, +bsp, + by p, +b,p, +b,ps +b,pg
4s =b,p, +b;p, +bp, + bip, +b,ps +b,p,
9s =b,p, +b,p, +b;p, +bsp, +bp; +b,pg
11462 96 =b,p; +b,p, +b,p, +bsp, +bsps + b p,

Receiver-encrypted (

Codeword to be _
sent to receiver, ¢ q= {ql 9: 959, 9; Q6} —

treated as plaintext

FIG. 11G
(k=6)

23

U.S. Patent May 24, 2005 Sheet 23 of 25 US 6,898,288 B2

Receiver-encrypted
codeword ¢ 1146a

From 1124 ql QZ q3 Q4 QS Q6
Cache
d"
L~ 1162a / 1164a
d.={jij 2J3 o Js Js} > Decryption (by receiver)
> ¢ = J,q, + 7.9, +J3qs + j4q, + Jsqs + J4s
Cy = joy ¥ JiGy + oy + juGe + JoGc +]
Code Table 2 J.s% J.1QZ J.zqs .{344 .]‘4qs].sqs
1168a C3=Tsqy T J692 T Gyt Jaq4 + J3qs + J.g;
Co =y + jsqy + Jeds + 514 + J29s + Jiq,
¢ = Jag, + j.9q, +Jsqs + Jeds + Jigs + J29s
1170a 1166a Co =191t J392 + a5 F Jsqs * Jeds + jig,
(= -
Decode &— =
l e YN |
eg {66666}
FIG.11H
(k=6)

24

U.S. Patent May 24, 2005 Sheet 24 of 25 US 6,898,288 B2

ﬂ\eneratin g private (random)

Cellular security lock-key pairs
phone to replace the ones in
battery
recharging

FIG. 12

25

U.S. Patent May 24, 2005 Sheet 25 of 25 US 6,898,288 B2

Memory
[1306

13\00 ' Operating System L-1310
i 1312

File System -
Lock-Key Pair Generator |- 1314
CPU Lock-Key Pairs 1316
1302 Encoding Module L -1318

1360
L Decoding Module - 1320
Encryption Module - 1322
User Interface _ 1324
™ Double-Encryption Module
m O 1304 Decryption Module — 1326
A, Commutative Decryption | 1328
Module

Communication Module |~ 1330

Network Interface
1340

I g R e e I I R N R N N

Communications
Network
1350

FIG. 13

26

US 6,898,288 B2

1

METHOD AND SYSTEM FOR SECURE KEY
EXCHANGE

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation No. 60/344,842, filed Oct. 22, 2001, which is hereby
incorporated by reference.

The present invention relates generally to cryptography,
and in particular, to a method for secure secret key exchange
without using a public key.

BACKGROUND OF THE INVENTION

Public-key cryptography, or asymmetric-key
cryptography, underlies many network transactions that
occur today. Unlike symmetric-key cryptography, which
relies upon a single key to both encrypt and decrypt data,
public-key cryptography uses a pair of keys—a public key
and a private key. A public key and private key are related
in that information encrypted with a public key can be
decrypted by the corresponding private key, and vice-versa.
The public key is published while the private key is kept
secret. If a sender of data authenticates that a published
public key originated from a desired recipient (generally
established through a trusted source, such as a certificate
authority on the Internet), the sender can then encrypt the
data to be sent using the public key, and, in theory, only the
desired recipient (as the sole party in possession of the
private key) can decrypt it.

Another use of public-key cryptography is digital
signatures, which is a method to verify that a message was
actually sent by the party expected to send it. When a
sending party wishes to digitally sign a message for verifi-
cation purposes, it uses its private key to encrypt a hash table
(also known as a message digest) representation of the
message itself. Then, the recipient can use the public key of
the sender, authenticated by a trusted source, to decrypt the
digital signature. If the recipient successfully decrypts the
hash table, unique to the message being sent, with the
authenticated private key, this verifies that the message was
sent by the expected sender. This is true because, in theory,
the message could only have originated from the expected
sender, since it is the only party in possession of the private
key corresponding to the public key used to decrypt the
signature.

Encryption strength is related to the difficulty of discov-
ering the key, which in turn depends on both the crypto-
graphic algorithm (generally called a “cipher”), and the
length of the key. (The ciphers themselves are published for
evaluation by the cryptographic community, leaving only
the key unknown.) For example, the difficulty of discovering
the key for the RSA cipher (most commonly used for
public-key encryption) depends on the difficulty of factoring
large numbers, a well-known mathematical problem. In
general, longer keys provide stronger encryption. Thus, a
128-bit key used with a particular cipher will provide much
better cryptographic protection than a 40-bit key used with
the same cipher.

Similarly, different ciphers may require different key
lengths to achieve the same level of encryption strength. For
example, the RSA cipher used for public-key encryption can
only use a subset of all possible values for a key of a given
length, due to the nature of the mathematical problem on
which it is based. Other ciphers, such as those used for
symmetric key encryption, can use all possible values for a
key of a given length, rather than a subset of those values.
Thus, a 128-bit key for use with a symmetric-key encryption

10

20

25

30

35

40

45

50

55

60

65

27

2

cipher would provide stronger encryption than a 128-bit key
for use with the RSA public-key encryption cipher. In
practice, the RSA public-key encryption cipher (the most
common form of public-key encryption) must use at least a
512-bit key to be considered cryptographically “strong,”
whereas symmetric key ciphers can achieve approximately
the same level of strength with a 64-bit key.

There are different methods to break encryption. The most
basic method is the “brute force” method, in which a hacker
might try every possible key, which, in theory, is guaranteed
to result in success eventually. Other methods are cipher-
specific. For example, generating public-private key pairs
using the RSA cipher requires a “modulus” (i.e., key) that is
comprised of two prime numbers, “p” and “q.” To determine
a RSA private key from a RSA public key (and hence break
the encryption), the modulus must be factored into “p” and
“q.” This is a particularly difficult task as the size of the
modulus increases. Thus, if a modulus is 512 bits, it must be
factored into two 256-bit prime numbers (“p” and “q”) to
break the encryption. In 1997, a specific assessment of the
security of the 512-bit RSA keys showed that one may be
factored for less than one million dollars and eight months
of effort, and in 1999, the 512-bit number RSA-155 was
factored in seven months. This means that 512-bit keys no
longer provide sufficient security for anything more than
very short-term security needs. RSA laboratories currently
recommends key sizes of 1024 bits for corporate use, and
2048 bits for extremely valuable keys. The problems with
using such long-length keys will be discussed further below.

The rate at which encryption schemes are broken contin-
ues to increase. This is true, in part, because processor
capacity continues to double approximately every 18
months, in accordance with Moore’s law. Weaker encryption
can now be decrypted by using distributed processing over
a relatively small number of computers. Because public-key
encryption is, on average, weaker than symmetric-key
encryption, it is particularly susceptible to cracking.
However, it is also not feasible to simply increase the length
of public keys, as it takes a substantial amount of time to
encrypt and decrypt data using a very long key. For example,
doubling the modulus of a RSA key will increase the time
required for public key operations (such as encryption and
signature verification) by a factor of four, on average, and
will increase the time taken by private key operations (such
as decryption and digital signing) by a factor of eight, on
average. Further, key generation time will increase by a
factor of 16 if the modulus is doubled.

The increased processing time for cryptographic opera-
tions using long keys is problematic in systems requiring
fast communications, and for large-scale, multiple-computer
request processing (e.g., an Internet server). Similarly, por-
table electronic devices generally cannot support the level of
processing required for longer-length keys to ensure secure
communications. For example, devices such as cell phones,
PDAs, and facsimile machines have very limited processing
capabilities, and would not be able to readily perform public
or private key operations with the length of keys required for
secure communications. Thus, because public-key cryptog-
raphy is a time-consuming and processor-intensive means to
securely exchange data, it is oftentimes used only initially to
setup a secure exchange to be conducted using symmetric
keys. There are two principal ways in which this occurs.

In one public-key/symmetric key encryption scheme, for
each message to be transmitted, a temporary random “ses-
sion” key of fixed length, typically shorter than the message
itself, is generated. The session key is encrypted by using a
public-key algorithm and the intended recipient’s public

US 6,898,288 B2

3

key, and appended to the front of the message to be sent. The
original message is then encrypted using a faster symmetric-
key algorithm, utilizing the session key. The entire message
thus includes the public-key-encrypted session key, fol-
lowed by the session-key-encrypted original message. Upon
receipt, the recipient (whose public key was used to encrypt
the session key) uses its corresponding private key to
decrypt the session key. The recipient then uses the
decrypted session key to decrypt, at a faster rate than could
be done with the public/private keys, the original message.
In this scenario, the generation of a random session key
occurs for each transmitted message.

In another public-key/symmetric key encryption scheme,
a session key is generated for an entire communications
session. In this scheme, only the session key, after being
encrypted by the intended receiver’s public key, is sent to the
recipient. The recipient decrypts the session key using its
private key. Then, the session key, now in possession of both
the sender and recipient, is used in conjunction with a
symmetric-key algorithm to rapidly encrypt and decrypt data
that is communicated between the parties, at a much faster
rate than could be accomplished using the public or private
keys. The same session key can be used throughout the
communications session (e.g., receiving a streaming video
over the Internet) without having to conduct another public-
key cryptography operation.

Acommon type of session key is a 64-bit Data Encryption
Standard (DES) key for use with the DES cipher. The DES
cipher is a block cipher, meaning that it takes a 64-bit data
message as input (also referred to as “plaintext”), and
outputs a 64-bit encrypted data message (also referred to as
“ciphertext”). Block ciphers like DES are much faster than
the calculations required for public-key algorithms like
RSA.

The principal problem with symmetric keys (or “secret”
keys) is finding a method to securely exchange them. As
described above, with the advent of public-key
cryptography, this problem has been substantially resolved.
Therefore, the optimum combination of security and speed
provided by dual public-key/symmetric-key encryption
schemes (e.g., RGA/DES) underlic many encryption
schemes currently in use on the Internet, like the SSL
(Secure Sockets Layer) Handshake protocol.

A representation of a public-key encryption exchange of
a symmetric key is shown in FIG. 1. As shown, the Sender
wishes to provide a session key, “k,” to the Intended
Receiver. The Receiver has a public/private key pair, “e, d,”
compatible with a cipher such as RSA. The Receiver pro-
vides its public key “e” to the Sender, which as shown
occurs directly, but can also occur indirectly through a
trusted source like a certificate authority, which can verify its
authenticity. Using this public key, the Sender encrypts the
session key to generate encrypted session key “1” (i.e.,
“E(k)=17). It then transmits the encrypted key to the
Receiver, which decrypts it using its corresponding private
key “d” to generate the original key “k” (i.e., “D (1)=k").

A public-key encrypted exchange of a symmetric key can
also occur for multiple intended receivers for group
communications, as shown in FIG. 2. In this context, each
intended receiver will have its own public/private key pair
(ie. “eq, d;” for Intended Receiver 1; “e,, d,” for Intended
Receiver 2; “es, d,” for Intended Receiver 3). The Sender
will separately encrypt the session key using each Intended
Receiver’s public key, which is then uniquely decryptable by
only the appropriate Intended Receiver. Each version of the
encrypted key (i.e., “1;,” “1,,” “15”) will be entirely distinct

10

15

20

25

30

35

40

45

50

55

60

65

28

4

from the other versions, but the end-result decrypted session
key “k” will be the same for each Receiver.

One problem of the public-key/symmetric-key encryption
scheme is what is commonly referred to as the “man-in-the-
middle” problem. In this situation, an adversary interjects
itself between the sender and the intended receiver, mas-
querading as the intended receiver to the sender, and as the
sender to the intended receiver. This scenario is shown in
FIG. 3. In this case, as with FIG. 1, a Sender is attempting
to send a key “k” to the Intended Receiver.

However, this time an Adversary intercepts the Intended
Receiver’s public key “e,” and then provides its own public
key “f” to the Sender instead. The Sender unknowingly uses
the Adversary’s public key to encrypt “k,” generating
encrypted key “t,” which the Sender attempts to send to the
Intended Receiver, but which is again intercepted by the
Adversary. The Adversary uses its corresponding private key
“g” to decrypt the symmetric key “k” sent by the Sender. The
Adversary can now communicate freely with the Sender
using the symmetric key, “k.”

Next, the Adversary encrypts the now-decrypted symmet-
ric key “k” (or, alternatively, the Adversary’s own symmet-
ric key) with the intercepted public key “e” of the Intended
Receiver, which it then sends to the Intended Receiver. The
Intended Receiver, not realizing it is being duped and
thinking that it has just received the Sender’s encrypted
symmetric key, decrypts the key using its corresponding
private key “d.” The Intended Receiver can now freely
communicate securely with the Adversary, which it thinks is
the Sender. As the “man-in-the-middle,” the Adversary can
intercept messages from the Sender to the Intended
Receiver, or vice-versa, decrypt them, and then send them on
or modify them as desired. It is difficult with this arrange-
ment to detect the Adversary.

One way to avoid this issue, however, is to use a trusted
source like a certificate authority to obtain public keys,
which authenticates that a public key originates from a
desired intended recipient. However, this is not always
practical or possible. Having trusted sources requires a
substantial infrastructure, which is not always feasible out-
side of the context of large networks like the Internet. Also,
while the certificate authorities provide public-key verifica-
tion for many major Internet sites, it would be impractical to
keep an authenticated list of public keys for every individual
user or computer on a wide-area network, for example.
Furthermore, even if a trusted source of public keys is
available, monitoring and accessing the trusted source to
obtain dynamically changing content would consume sub-
stantial resources. This is particularly true if trusted sources
must be accessed every time a communication is initiated.
Also, obtaining and maintaining a table of public keys would
be a very difficult undertaking for personal electronic
devices like cell phones or facsimile machines.

For these reasons, it is desirable to have a method and
system for secure key exchange that does not utilize public-
key cryptography, while being simple enough to be used by
devices like cell phones and facsimile machines having
minimal processing capacity.

SUMMARY OF THE INVENTION

In one embodiment, the present invention is a method for
secure transmission of a data message between a sender and
a receiver. The method includes locking, at the sender, the
data message using a first lock, and transmitting the locked
data message to the receiver. Next, the locked data message
is double-locked, at the receiver, using a second lock, and

US 6,898,288 B2

5

then this double-locked data message is transmitted back to
the sender. The first lock of the double-locked data message
is then unlocked, at the sender, using a first key, leaving the
data message single-locked by the second lock. The single-
locked data message is transmitted back to the receiver,
where the second lock of the single-locked data message is
unlocked, using a second key, to generate the data message.

In another embodiment, the present invention is a method
for secure key exchange between a sender and a receiver.
The method includes encrypting, at the sender, a secret key
to be transmitted from the sender to the receiver, using one
or more locks of a plurality of sender lock-key pairs. Then,
the sender-encrypted secret key is transmitted to the
receiver, where it is encrypted, using one or more locks of
a plurality of receiver lock-key pairs. The receiver- and
sender-encrypted secret key is then transmitted back to the
sender. At the sender, the sender-encrypted portion of the
receiver- and sender-encrypted secret key is decrypted,
using one or more keys of the plurality of sender lock-key
pairs, leaving the secret key receiver-encrypted. The
receiver-encrypted secret key is transmitted back to the
receiver, where it is decrypted using one or more keys of the
plurality of receiver lock-key pairs, to generate the secret
key.

In yet another embodiment, the present invention is a
secure transmission module for securely transmitting a data
message to at least one receiver. The module includes a
plurality of lock-key pairs, and an encryption module for
encrypting a data message using one or more locks of the
plurality of lock-key pairs. Additionally, the module
includes a commutative decryption module for decrypting
encryption applied by the encryption module to the data
message, using one or more keys of the plurality of lock-key
pairs. This decryption occurs after the data message has been
additionally encrypted at least once more at the at least one
receiver. Finally, the module includes a communication
module for transmitting encrypted data messages and
commutatively-decrypted data messages to the at least one
receiver. The communication module is also for receiving
additionally-encrypted data messages from the at least one
receiver.

In a further embodiment, the present invention is a secure
receiver module for securely receiving a data message from
a sender. The module includes a plurality of lock-key pairs,
and a double-encryption module for encrypting an already-
encrypted data message, using one or more locks of the
plurality of lock-key pairs. Additionally, the module
includes a decryption module for decrypting encryption
applied by the double-encryption module to a data message,
utilizing one or more keys of the plurality of lock-key pairs,
to generate the data message from the sender. The decryp-
tion occurs after the already-encrypted portion of the data
message has been commutatively decrypted at the sender.
Finally, the module includes a communication module for
receiving already-encrypted data messages and
commutatively-decrypted data messages from the sender.
The communication module is also for transmitting double-
encrypted data messages to the sender.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention will be
more readily apparent from the following detailed descrip-
tion and appended claims when taken in conjunction with
the drawings, in which:

FIG. 1 is a block diagram of a prior-art method of key
exchange between a single sender and a single receiver,
using public-key cryptography.

10

15

20

25

30

35

40

45

50

55

60

65

29

6

FIG. 2 is a block diagram of the prior-art method of key
exchange between a single sender and multiple receivers,
using public-key cryptography.

FIG. 3 is a block diagram demonstrating the “man-in-the-
middle” adversary problem of the prior art method of FIGS.
1 and 2.

FIG. 4A is a block diagram showing a method for secure
key exchange between a single sender and a single receiver,
in accordance with one embodiment of the present inven-
tion.

FIG. 4B is a block diagram showing the method of claim
4A, further including password-based verification of the
identity of the intended receiver.

FIG. 5A is block diagram of an exemplary embodiment of
the present invention, showing a method for secure key
exchange between a single sender and multiple receivers.

FIG. 5B is a block diagram showing the method of claim
5A, further including password-based verification of the
identity of the intended receiver.

FIG. 5C is a block diagram of an attempted “man-in-the-
middle” interception of a key during a method for secure key
exchange between a single sender and multiple receivers
being conducted in accordance with an embodiment of the
present invention.

FIG. 6 A depicts a schematic of four-number lock and key
matrices, utilized in accordance with one embodiment of the
present invention.

FIG. 6B depicts a schematic of six-number lock and key
matrices, utilized in accordance with another embodiment of
the present invention.

FIG. 7 is a logical block diagram of the process of
generating lock-key pairs consistent with one embodiment
of the present invention.

FIG. 7A presents further detail on Unit A of FIG. 7,
relating to preliminary calculations in the process of gener-
ating four-number lock-key pairs.

FIG. 7B presents further detail on Unit B of FIG. 7,
relating to verification of locks in the process of generating
four-number lock-key pairs.

FIG. 7C presents further detail on Unit C of FIG. 7,
relating to computing keys in the process of generating
four-number lock-key pairs.

FIG. 7D presents further detail on Unit A of FIG. 7,
relating to preliminary calculations in the process of gener-
ating six-number lock-key pairs.

FIG. 7E presents further detail on Unit B of FIG. 7,
relating to verification of locks in the process of generating
six-number lock-key pairs.

FIG. 7F presents further detail on Unit C of FIG. 7,
relating to computing keys in the process of generating
six-number lock-key pairs.

FIG. 8A shows an example of a memory containing
four-number lock-key pairs generated by the processes of
FIGS. 7A-C, in accordance with one embodiment of the
present invention.

FIG. 8B shows an example of a memory containing
six-number lock-key pairs generated by the processes of
FIGS. 7D-F, in accordance with another embodiment of the
present invention.

FIG. 9A is an exemplary embodiment of a coding table
used for pre-encryption coding for four-number lock-key
pair systems.

FIG. 9B shows an example of a series of secret numbers
(e.g., a key) coded using the coding table of FIG. 9A.

US 6,898,288 B2

7

FIG. 10A presents a method of preparation for pre-
encryption coding for six-number lock-key pair systems, in
accordance with one embodiment of the present invention.

FIG. 10B shows an exemplary embodiment of a coding
table used for pre-encryption coding for six-number lock-
key pair systems.

FIG. 10C shows an example of a series of secret numbers
(e.g., a key) coded using the coding table of FIG. 10B.

FIG. 11Ais a logical block diagram showing a method of
encrypting a secret key using locks from four-number lock-
key pairs, at a sender, in accordance with one embodiment
of the present invention.

FIG. 11B is a logical block diagram showing a method of
double-encrypting a sender-encrypted secret key using locks
from four-number lock-key pairs, at a receiver, consistent
with an embodiment of the present invention.

FIG. 11C is a logical block diagram showing a method of
commutatively decrypting a double-encrypted secret key
using keys from four-number lock-key pairs, at the sender,
in accordance with an embodiment of the present invention.

FIG. 11D is a logical block diagram showing a method of
decrypting a receiver-encrypted secret key using keys from
four-number lock-key pairs, at the receiver, consistent with
an embodiment of the present invention.

FIG. 11E is a logical block diagram analogous to FIG.
11A, but using six-number lock-key pairs instead.

FIG. 11F is a logical block diagram analogous to FIG.
11B, but using six-number lock-key pairs instead.

FIG. 11G is a logical block diagram analogous to FIG.
11C, but using six-number lock-key pairs instead.

FIG. 11H is a logical block diagram analogous to FIG.
11D, but using six-number lock-key pairs instead.

FIG. 12 is a schematic of a cellular phone that receives a
computer program capable of generating lock-key pairs
using random numbers, in accordance with one embodiment
of the present invention.

FIG. 13 is a block diagram of a programmed general
purpose computer or a computer controlled device that
operates in accordance with one embodiment of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Note that, as used herein, a “secret key” means any key
which provides security benefits by not being publicly
known. A secret key is, most commonly, a symmetric key
(the two terms are used interchangeably herein), but a secret
key does not have to be a symmetric under this definition.
Also, the term “session key” is used interchangeably herein
with “secret key.” Further, a “data message” may comprise
a secret key, text, numerical data, financial transaction data,
facsimile data, or any other type of data or information that
a sender desires to transmit to a recipient. Also, the data to
be included in a data message may be encoded, in addition
to being encrypted using the techniques of the present
invention.

Generally, in a preferred embodiment, the invention is a
method to securely exchange a secret key, or to securely
transmit a data message, such as a digital signature or digital
envelope. The method does not require the various compo-
nents of a PKI (public key infrastructure), such as certificate
and registration authorities to provide public key verifica-
tion. Instead, the sender and receiver exchange the key or
data message using encryption generated, applied, and

10

15

20

25

30

35

40

45

50

55

60

65

30

8

decrypted separately at each individual party to the
communication, without the transmission of any public
encryption key.

Specifically, a sender wishing to send, for example, a
secret key would first encode the key. This occurs by using
a code table that first partitions the secret key into blocks of
integers up to a predetermined number of integers, based on
a partitioning methodology. Then, using the code table, all of
the varying-length blocks are converted into encoded blocks
of equal length, for example four-integer encoded blocks.

Before transmission, the sender uses locks to encrypt the
encoded blocks. The locks are generally not generated at the
time of the transmission of the data, but rather are generated
earlier before conducting any secure communications, and
can be used for more than one transmission. For enhanced
security, the lock-key pairs are also regenerated
periodically—for example, they might be generated in a
portable electronic device (for example, the device shown in
FIG. 12) every time the batteries are recharged. To actually
generate the lock-key pairs, a lock-key generator obtains a
sequence of randomly generated numbers, which are gen-
erated either by a random number generator, or by random
user input such as pushing the number keys on a cell phone.
The random numbers are used as the locks of a lock-key
pair, as the basis for an encryption system. If matrix mul-
tiplication is used for the encryption system, then to be able
to successfully decrypt data encrypted by the random num-
ber locks of the matrix, however, the matrix must be
invertible, which is determined by plugging the random
numbers into verification equations.

Again, for a matrix multiplication based encryption
system, if the encryption matrix is invertible, keys corre-
sponding to the random-number locks are generated by
plugging the random numbers into separate equations that
compute the inverse matrix to the matrix formed by the
random-number-lock matrix. In this way, the lock-key pair
generator develops a key for each lock at each position in the
matrix. The lock-key pairs are then stored in memory.

To encrypt the encoded blocks of the secret key, a lock is
randomly selected from memory for each encoded block of
the secret key. To ensure that the identity of the lock used to
encrypt a particular code sentence is not lost, the corre-
sponding key (or the identity of the key) of the lock-key pair
is stored in cache memory, for later retrieval. Then, using an
encryption algorithm that converts, for example, a four-
integer lock into a 4x4 matrix, each integer of an encoded
block is matrix-multiplied against the lock matrix, thereby
encrypting the encoded blocks of the secret key.

Next, the encrypted and encoded secret key, treated as
plaintext, is transmitted to an intended receiver. The
intended receiver has generated its own supply of lock-key
pairs, also utilizing random number matrices for the locks,
and inverted matrices for the keys. The receiver double-
locks the encrypted secret key—in other words, it randomly
selects lock-key pairs from memory to use to double-encrypt
each already-encrypted block of the secret key, using the
same process as described previously for the sender. Next,
the double-encrypted secret key is transmitted back to the
sender. The sender now retrieves its cached set of keys, in a
sequential order corresponding to the order of encryption,
and uses the keys, one by one, to decrypt the sender-
encrypted portion of the double-encrypted secret key. The
sender’s key must be commutative with the receiver’s lock.
The simplest system is an additive system in which the lock
is performed by adding random numbers modulo p (for
example p=10), and the key is performed by subtracting the

US 6,898,288 B2

9

same numbers. This is done by both the sender and receiver
using different random numbers. A more secure system
involves matrix multiplication as in the preferred embodi-
ment. By performing the same matrix multiplication as with
a lock, but with the keys instead (representing an inverted
matrix), the original sender encryption is decrypted, despite
the fact that an additional layer of encryption was added by
the receiver. It is the commutative property, AxB=BxA, that
allows the original sender-encryption to be commutatively
decrypted.

At this point, the secret key remains receiver-encrypted
only (in addition to being encoded), for which the receiver
has the key. Thus, the receiver-encrypted key is transmitted
back to the receiver, where, again using the cached keys
corresponding to the locks used to double-encrypt the secret
message, the receiver-encrypted portion of the secret key is
decrypted, using the same decryption process described
above. At this point, the recipient is in possession of the fully
decrypted secret key, which now remains only coded. The
code table is then applied in reverse, or a decoding table is
utilized. In either case, the end result is the now decoded
secret key—the same secret key that the sender wished to
securely exchange with the recipient.

Referring to FIG. 4A, a method of secure key exchange in
accordance with one embodiment of the present invention is
shown, providing further detail of aspects of the method of
secure key exchange described above. In this figure, the
Sender has a secret key “k” that it wishes to send to the
Intended Receiver. Both parties have generated private lock-
key pairs (“e,, d,” for the Sender, “e,, d,” for the Receiver).
The Sender encrypts “k™ with its private encryption lock
“e.” (“E_[(k)=f"), and then transmits the sender-encrypted
“f” to the Receiver. The Receiver encrypts “f” with its own
private encryption lock “e,” (“E_,(f)=g”), and then transmits
the now receiver- and sender-encrypted (i.e., double-
encrypted) secret key, “g,” back to the Sender. The Sender
now uses its private key “d,” to commutatively decrypt “g”,
meaning that it decrypts the sender-encrypted portion of “g”
from “behind” the receiver-encrypted portion of “g” (“D,,
(g)=h"). The encrypted secret key “h,” now only receiver-
encrypted, is transmitted back to the Receiver. Finally, the
Receiver decrypts its own encryption on “h” using its private
key “d,” to generate the original secret key “k” that Sender
wished to send to the Receiver.

Referring to FIG. 4B, the same method of secure
exchange as FIG. 4A is shown, with one addition—the
Sender verifies that the party transmitting the sender- and
receiver-encrypted key “g” is in fact the Intended Receiver.
It does this by requiring, and receiving, a password from the
Receiver when it transmits “g” back to the Sender. The
password can be known in advance by the Receiver, if the
Sender has provided the password to the Receiver to autho-
rize secure communications between the two. Or, the Sender
can pose a question (not shown), or have a standing
question, that only the Receiver would know the answer to,
which constitutes the password. Either way, the password
should identify that the party the Sender is communicating
with is in fact the Intended Receiver. This decreases the
probability of a successful “man-in-the-middle” attack.

Turning to FIG. 5A, the same method for secure key
exchange as shown in FIG. 4A is depicted, but in this case,
the Sender wishes to send the secret key “k” to multiple
Intended Receivers. Like in the single intended-receiver
context, the Sender applies its private lock to “k” to generate
the sender-encrypted secret key “f.” The sender-encrypted
key is sent to three separate Intended Receivers. Of course,
each Intended Receiver will have its own set of private keys

10

15

20

25

30

35

40

45

50

55

60

65

31

10

and locks, separate and distinct from the other Intended
Receivers. Thus, the individual double-encryption applied to
“f” results in different receiver- and sender-encrypted secret
keys for each Intended Receiver (i.e., “g,” for Receiver 1,
“g,,” for Receiver 2, and “g;” for Receiver 3), all three of
which are transmitted back to the Sender. Now, using its
private key, the Sender decrypts all three double-encrypted
keys “g;,” “g,,” and “g,,” using the same decryption key and
methodology for all three to produce three different receiver-
encrypted-only keys, “h;,” “h,,” “h;.” Finally, the Sender
sends each of the three receiver-encrypted-only keys “h,,”
“h,,” “h,,” which are distinct for each intended Receiver, to
the appropriate Receiver. Each Receiver decrypts its respec-
tive receiver-encrypted key to generate the original secret
key “k” that the Sender wished to send. Each Receiver
should have the exact same key.

The schematic shown in FIG. 5B is the same as FIG. 5A,
with the addition that password (“psw”) verification has
been added, which is utilized in the same manner as
described with the password verification in FIG. 4B.

FIG. 5C shows a potential “man-in-the-middle” adversary
situation for the multiple Intended Receiver scenario. As
shown on the left of the figure, an Adversary has inserted
itself in the place of the Intended Receiver 3, and conducts
the same transactions with the Sender as Intended Receiver
3 was expected to do. There are different methods the
Adversary could use to do this. It could copy “f” as it is
being transmitted to the Intended Receiver 3; intercept “f”
and re-propagate it to Intended Receiver 3; or, the Adversary
could fully intercept “f” (i.e., hijack “f”’) and not provide any
copy to Intended Receiver 3.

In this situation, the Sender uses different strategies to
attempt to reduce the probability of an Adversary-
compromised key exchange. First, the Sender needs to
ensure that it receives the correct number of double-locked
keys (i.e., “g;,” “g,,” “g5”) from the Intended Receivers. In
the context of FIG. 5C, if the Sender receives less than all
three, or more than three, it knows that it is possible an
Adversary is involved in the transaction (e.g., the Adversary
could have copied “f” and encrypted it, sending back a “g,”
double-locked key). If this is true, the Sender notifies all
Intended Receivers of a potential adversary, and the key
exchange is canceled. The key exchange can possibly be
restarted using different encryption locks, but this may still
leave the communications open to interception or copying
by an Adversary. However, if the Adversary simply hijacks
the communications directed to one Intended Receiver, the
Sender may still get back the appropriate number of double-
encrypted keys, and would not be able to detect the inter-
ception using this technique.

When the number of double-locked keys received equals
the actual number of Intended Receivers, the sender utilizes
another method to reduce the probability of a “man-in-the-
middle” Adversary. After the secure key exchange is
complete, the Sender initiates a “roll call,” as shown in FIG.
5C. The roll call, utilizing a query encoded by the secret key
exchanged using the method for secure key exchange
described herein, requests a password acknowledgment
from each of the Intended Receivers. A non-response from
any of the Intended Receivers is a good indication that all of
the communications to that Intended Receiver as part of the
secure key exchange were hijacked, so all Intended Receiv-
ers are notified of the possibility of a potential adversary, and
the key exchange is restarted. Again, passwords known only
to the Intended Receivers, or answers to questions that can
only be provided by the Intended Receivers, can be utilized
to ensure that an Adversary is not simply masquerading as
an Intended Receiver.

US 6,898,288 B2

11

Turning next to a more detailed discussion of the func-
tionality of aspects of the present invention, two particular
cases will be described—a four-number encoding/
encryption scheme, and a six-number encoding/encryption
scheme. However, the present invention is not limited to any
particular number encoding/encryption scheme, whether
lesser or greater, and all such schemes are contemplated as
part of the invention, affected only by the level of security
needed and the allowable complexity of operations.

Referring to FIGS. 7 through 7F, the process of generating
lock-key pairs is depicted for both the four-number scheme
and the six-number scheme. Initially, the lock-key pair
generator (1314, FIG. 13) requests a series of random
numbers that are, in one embodiment, integers. These ran-
dom numbers are generated by a random number generator,
or are provided at random by a user of the device performing
the communications (710). Alternatively, a user can input a
random number seed that is utilized by the random number
generator to generate a sequence of random numbers. The
random numbers are shown as “a; a, . .. a;” (712). In this
case, “k” is the desired of size of a lock and key in a lock-key
pair. Thus, in one of the cases being described, “k” will be
four, and in the other, “k” will be six. The random numbers
“a; a,...a,” will be used to construct a “k”x“k” matrix for
encryption, and will be used to calculate a set of numbers “b,
b, ... b,” that will be used to construct the inverse of the
“k”x“k” matrix, for decryption.

Considering first the case with four-number locks and
four-number keys, the random numbers “a,, a,, a5, a,” are
used to construct a 4x4 matrix comprising a lock of a
lock-key pair, as shown in FIG. 6A as 4x4 lock matrix 600.
In the matrix, each consecutive row contains the “a,, a,, a,
a,” numbers, but they are shifted to the right by one, relative
to the row immediately above. This matrix ensures that each
integer of each encoded block is multiplied by each of the
random numbers “a,, a,, a;, a,,” as will be explained in
further detail below.

The preliminary computations for 4x4 lock matrix 600,
undertaken by Unit A, are shown in FIG. 7A (the “units”
represent functional features of the lock-key pair generator).
In particular, the equations for “A;” and “A,” determine
whether 4x4 lock matrix 600 is invertible. They determine,
in part, whether the determinant of the matrix is non-zero, a
pre-requisite to determining whether a matrix is invertible.
In addition to the two equations shown, other equations or
algorithms that determine whether a matrix is invertible, as
known to those of skill in the art, are contemplated to be
within the scope of the invention.

Next, Unit B verifies, as shown in FIG. 7B, that the
random numbers provided by the random number generator,
or by the user, are actually invertible, based on whether “A;”
and “A,” are non-zero. In addition to establishing that the
determinant of 4x4 lock matrix 600 is non-zero “A,” and
“A,” also form the denominator of some of the equations
used to generate the keys, described below, and therefore
cannot be zero for this reason additionally. If Unit B of the
lock-key generator determines that “A,” and “A,” are
non-zero, then random numbers “a,, a,, a5, a,” are stored in
memory 720 as the lock of the lock-key pair being gener-
ated. Additionally, these random numbers, as well as “A;”
and “A,” are provided to Unit C for key-generation.

If “A,” and “A,” do not meet the requirements (i.c., one
or both are equal to zero), the lock-key pair generator
requests that the random number generator, or the user,
provide new random numbers to replace “a;, a,, as, a,,”
sequentially and one at a time, until the requirements for

10

15

20

25

30

35

40

45

50

55

60

65

32

12

“A,” and “A,” are met. Thus, “a,” would be regenerated
first, and the conditions for “A,.. ., <4, retested. If this
fails, “a,” would be regenerated, and “A,” and “A,”
retested, and so on. This procedure continues until four
random numbers are provided that meet the requirements
specified for “A;” and “A, ” as shown in FIG. 7B.

Unit C of the lock-key generator, depicted in FIG. 7C,
generates the corresponding key to a lock. The equations
shown in FIG. 7C represent a linear algebraic approach to
determining the inverse matrix to the 4x4 lock matrix 600.
An inverse matrix of a matrix can be multiplied against the
matrix to generate the identity matrix, or, in an encryption
context, to decrypt data that has been encrypted, to generate
the original pre-encrypted data. Stated mathematically, the
product of a matrix A and its inverse A1 is 1,i.e., A*A™!=1.
An inverse matrix of a matrix can be calculated by multi-
plying the adjoint of the matrix times one over the deter-
minant of the matrix. The equations depicted in FIG. 7C
conduct these calculations, and thereby provide the values
for the inverse matrix of the 4x4 lock matrix. The inverse
matrix comprises a 4x4 matrix containing the numbers “b,,
b,, by, b,,” shown as 4x4 key matrix 602 in FIG. 6A. Like
with the structure of the 4x4 lock matrix 600, cach con-
secutive row of the 4x4 key matrix 602 contains the “b,, b,,
bs, b,” numbers, shifted over to the right by one relative to
the row immediately above.

Once the lock-key pair generator determines both the 4x4
lock matrix 600, and the 4x4 key matrix 602, it has deter-
mined a lock-key pair. The actual lock and key need not be
the full matrix, but rather are the four numbers that comprise
each matrix. As shown in FIG. 7, the locks and keys are
stored in memory 720, which is shown in more detail at FIG.
8A. The result is that each four-number lock-key pair,
denoted as “{e,,, d,,}”” in FIG. 8A, comprises a lock made up
of random numbers “a,, a,, a;, a,,” and a key made up of
numbers “b,, b,, b, b,” that correlate to an inverse matrix
to the lock matrix.

FIGS. 7D through 7E show the determinations for Units
Athrough C, respectively, for six-number locks and keys (as
opposed to the four-number locks and keys just discussed).
Thus, instead of four random numbers “a, a,, a3, a,” (i.e.,
“k”=4), this case uses six random numbers “a;, a,, a5, a4, s,
as” (ie., “k”=0). Like with the four-number case, the six
random numbers “a,, a,, a5, a,, a5, &~ are turned into a 6x6
lock matrix 610, as shown in FIG. 6B, with ecach row of the
random numbers shifted over to the right by one, relative to
the row immediately above.

The equations used for the preliminary calculations of
Unit A, shown in FIG. 7D, like the preliminary calculations
shown in FIG. 7A for the four-number case, are used to
determine whether the 6x6 lock matrix 610 is invertible.
There are more equations than the four-number case due to
the greater size, and hence greater complexity, of the 6x6
lock matrix. However, the general premise is the same—
analyzing, in part, whether the determinant is non-zero.
Thus, Unit B tests whether certain relationships exist
between the random numbers of the 6x6 matrix, as shown in
FIG. 7E. If any one of the three conditions specified in FIG.
7E fails, the lock-key pair generator requests that the random
number generator, or the user, provide new random numbers
to replace “a,, a,, a5, a,, as, a5, one at a time and in that
order, until all of the conditions specified in FIG. 7E are met.
When the three conditions are met, then random numbers
“ay, a,, a3, A, 45, &, are stored in memory 720 as the lock
of the lock-key pair being generated. Additionally, these
random numbers, as well as the variables used in the
preliminary computations, are provided to Unit C for key-
generation.

US 6,898,288 B2

13

Unit C of the lock-key generator, depicted in FIG. 7F for
six-number keys, generates the corresponding key to a lock.
Like with the equations for the 4x4 lock matrix 600, the
equations shown in FIG. 7F determine the inverse matrix to
the 6x6 lock matrix 610. The inverse matrix is the 6x6 key
matrix 612 containing the numbers “b,, b,, b;, b,, bs, bg,”
as shown in FIG. 6B. Like the structure of the 6x6 lock
matrix 610, each consecutive row of the 6x6 key matrix 612
contains the “b,, b,, b;, b, bs, bs” numbers, shifted over to
the right by one, relative to the row immediately above.

If 6x6 key matrix 612 is multiplied times 6x6 lock matrix
610, the result is the identity matrix. Therefore, the 6x6 key
matrix 612 will decrypt encryption applied by the 6x6 lock
matrix 610. The generation of 6x6 key matrix 612 completes
the generation of a lock-key pair for the six-number case.
The lock-key pair “{e,,, d,,}” is stored in memory 720, which
is shown in more detail for the six-number case at FIG. 8B.
As shown in FIG. 8B, the lock “e,” comprises the random
numbers “a,, a,, a5, a4, a5, &5, and the key “d,,” comprises
the numbers that correlate to an inverse 6x6 matrix to the
lock—*“by, b,, bs, by, bs, bg”

As previously discussed, the generation of the lock-key
pairs does not need to occur at the same time the secure
communications of the present invention are initiated.
Rather, the lock-key pairs are typically generated when, for
example, the functionality of the present invention is first
activated in a device. This may occur, for example, when a
device is first powered on. Also, greater security is achieved
by periodically generating new lock-key pairs. This could
occur as often as every communication in one embodiment,
but in other embodiments, occurs at more periodic intervals,
whether regularly scheduled or event-driven. For example,
in one embodiment, new lock-key pairs are generated when
the batteries are recharging in a portable electronic device.
Thus, when a cell phone is connected to a power source for
recharging, the random number generator can generate new
random numbers until the criteria described above are met,
or the cell phone can prompt a user to key-in a new set of
random numbers until the criteria are met.

In some cases, two computers or devices may wish to
engage in communications, but only one of the computers or
devices has the functionality of the present invention. In one
embodiment, the functionality of the present invention is a
computer program capable of performing a portion, or all, of
the features of the method of secure data communications.
One party to a communication can send the computer
program, which may be a Java applet in one embodiment, to
the other party or parties. For example, a sender who wished
to send a data message or a secret key or a code table to a
recipient who did not have compatible software could trans-
mit a program to the recipient capable of performing the
encrypting of the sender-encrypted secret key, and the
decrypting of the receiver-encrypted secret key, at the
receiver. Or, a party who wished to receive a data message
or secret key securely, but for which the sender did not have
the capabilities of the present invention, could send that
sender a program capable of performing the encrypting of
the secret key, and the decrypting of the receiver- and
sender-encrypted secret key, at the sender.

Turning to FIG. 9A, a code table for encoding data or a
secret key before it is encrypted for transmission, for the
case of a four-number lock, is shown, in accordance with
one embodiment of the present invention. This may be
particularly useful if the data being transmitted is particu-
larly sensitive, such as a secret key. Encoding the secret key
provides another layer of security, premised on an entirely
different security mechanism than the encryption process,

10

15

20

25

30

35

40

45

50

55

60

65

33

14

requiring an adversary to obtain, decrypt, and decode a
communication to obtain its contents.

Before the coding scheme set forth in the coding table can
be applied, the secret key to be transmitted must be parti-
tioned into blocks of numbers (integers in one embodiment),
up to four integers long for the example being described. The
partitioning is based on the similarity of adjacent numbers,
as shown in FIG. 9B by partitioned blocks 900. Before being
encoded, the secret key will typically be a long sequence of
non-negative integers. Starting at the first integer, a partition
is made after the second integer if it is different than the first;
after the third integer if the first and second are the same, but
the third is different; or, otherwise, after the fourth (in which
case the first three integers are the same, with the fourth
being either the same or different). Once the end of the
sequence is reached, there will be between one and four
integers remaining, and no additional partition is required.

At this point, the secret data is broken up into one- to
four-integer blocks. Now, the coding scheme set forth in
FIG. 9A is applied to the partitioned blocks. For example,
using the code table, “a b” is translated to “a b a b.” This
means that if a block is two distinct integers long, such as “4
5,” the first integer is repeated twice, and the second integer
is repeated twice, resulting in “4 4 5 5.” In this way, the
two-integer block is converted into a four-integer encoded
block. Thus, regardless of whether a pre-encoded integer
block is one or four integers long, after encoding, all of the
encoded blocks are four integers long. This ensures that each
encoded block can be “locked” by a 4x4 lock matrix 600
through a matrix multiply. (To multiply two matrices
together, the length of the first matrix’s rows must be equal
to the depth of the second matrix’s columns).

In the instances where a partitioned block has all of the
exact same integer, the coding scheme requires that the
integer and a negative number be alternated (e.g., “a a a”
translates to “a =3 a —=3.”). Thus, based on the coding table,
for a partitioned block such as “2 2 2 2,” the corresponding
encoded block would be “2 -4 2 —4.” The encoding con-
tinues for all of the partitioned blocks of the secret key until
all values have been converted into four-integer encoded
blocks. In FIG. 9B, the partitioned blocks 900 of the secret
key are shown converted into encoded blocks 902, consis-
tent with this scheme.

The pre-coding partitioning scheme for six-number locks
is shown in FIG. 10A, in accordance with one embodiment
of the present invention. The data or secret key integer
sequence is partitioned into five-integer blocks, irrespective
of the value of the integers. According to the first rule of the
partitioning scheme, if all five of the integers are the same,
the last two integers are translated to -1 -1 (i.e., “aa a a a”
becomes “a a a =1 -17). The second rule applies to the
end-sequence partitioned block, and provides a methodol-
ogy to convert a block of less than five integers to a
five-integer block.

Once the partitioning methodology has been
implemented, as shown by partitioned blocks 1000 in FIG.
10C, the coding of the code table shown in FIG. 10B is
applied. In this particular coding scheme, the five integers
are left unchanged, and a sixth integer is added that is equal
to “X;—X,+X;—X,+X5 ” The result of applying this encoding
scheme to partitioned blocks 1000 is shown as encoded
blocks 1002 in FIG. 10C.

While two embodiments of coding schemes for the four-
number (“k”=4) and six-number (“k”=6) schemes have been
described, the present invention is not meant to be limited to
any particular type of coding scheme. Any coding scheme

US 6,898,288 B2

15

known by those of skill in the art is expressly meant to be
encompassed by the present invention. Longer encoding
schemes are generally more secure than shorter ones. The
varieties of coding schemes are virtually unlimited, and any
scheme that provides added security while ensuring unifor-
mity of encoded block length will be useful in the present
invention. To ensure that a coding scheme can be used to
mutually code and decode data, the partitioning and coding/
decoding schemes should be known by both parties in
advance, although, in one embodiment, the coding scheme
can be included with the data message securely communi-
cated using the methodology of the present invention. In this
case, it is beneficial to base the coding scheme on informa-
tion that is known to, or can only be known by, the intended
receiver.

Turning now to the encryption, decryption, and transmis-
sion processes, FIGS. 11A—11D depict this functionality for
the four-number lock-key pair case. The encryption process
shown in FIG. 11A occurs at the sender of, for example, a
secret key. Memory 1100 stores the sets of lock-key pairs,
pre-generated in accordance with the methods described
above. The encoded block “c” 1106 is a four-integer encoded
block of the secret key, represented as “c,, ¢,, c;, ¢,.” The
encoding is applied as described previously. Encoded block
1106 is encrypted in this process on a block-by-block basis,
whether done serially or in parallel. It is stored locally for
fast processing, preferably in a register.

To begin the encryption process for encoded block 1106,
a lock-key pair “e,, d,” is selected from memory 1100. In a
preferred embodiment, a different lock-key pair is selected
for each encoded block 1106 being encrypted. The order of
selection of the lock-key pairs can be sequential, because the
lock-key pairs themselves were chosen randomly, or can be
chosen at complete random, thereby adding another level of
security. This would be useful in the unlikely event that an
adversary somehow obtains the sender’s generated lock-key
pairs. Using a lock-key pair to encrypt and decrypt more
than one encoded block (and in particular a sequence of
encoded blocks) can compromise the security of the system,
because it would given an attacker or eavesdropper an
opportunity to mathematically derive candidates for the
lock-key pair. However, if reuse of a lock-key pairs is
randomized, meaning that the pattern of re-use of lock-key
pairs is sufficiently random to be effectively unpredictable,
then the reduction in security associated with such re-use
may be acceptable.

Next, the key “d,” of the selected lock-key pair “e,, d,” is
stored in cache 1102. In other embodiments, a representation
of the key (as opposed to the key itself) is stored in the cache
1102. Or, both the lock and key, or representations of them,
can be stored in the cache (it is unnecessary to store the lock,
however, because it is not reused). Alternatively, the selected
key “d,” can be stored in a portion of memory 1100 that is
not cache memory. In any event, the selected lock “e.” 1104,
also known as a first lock, is read out of memory 1100 and,
in one embodiment, stored locally in a register.

To perform the actual encryption, an encryption module
1108 performs a matrix multiply between a 4x4 lock matrix
600, and encoded block 1106. The structure of the 4x4 lock
matrix 600 has been described previously, with the rows of
the matrix comprising the lock 1104 numbers “a,, a,, a5, a,,”
with each row being shifted to the right once relative to the
row above it. In one embodiment, this matrix structure is
established through the use of shift registers. The shift
registers work in conjunction with a FIR filter that conducts
the matrix multiply. In other embodiments, the matrix struc-
ture and multiply functions are implemented in software.

10

15

20

25

30

35

40

45

50

55

60

65

34

16

Any other means of conducting this functionality, well-
established in the art, are also within the scope of the
invention.

The result of the matrix multiplication is the encrypted
codeword “h” 1110. The sender-encrypted codeword 1110
contains four integers “h,, h,, h;, h,,” as shown in the
encryption module 1108. (These values will necessarily be
integers, in the embodiment being described, because the
encoded block 1106 is comprised of integers, as is the
random-number integer lock 1104). As shown in the encryp-
tion module 1108, after the matrix multiply, each integer “h;,,
h,, hs, h,” of the encrypted codeword 1110 is the sum of a
multiplication between each integer of the encoded block
1106, and each integer of the lock 1104, in various pairings.
By using 4x4 lock matrix 600, comprised of the lock 1104
integers, instead of just the lock 1104 integers directly, the
encryption module 1108 achieves a greater magnitude of
mathematical complexity in encrypting the encoded block
1106. This encryption process is repeated for each encoded
block 1106 in the secret key, until all encoded blocks have
been encrypted. The resulting series of encrypted codewords
1110 comprise the sender-encrypted secret key, also referred
to as a locked data message.

For transmission purposes, the sender-encrypted code-
word 1110 is treated as a plaintext message to be sent to the
intended receiver. Each sender-encrypted codeword 1110
can be transmitted to the intended receiver as it is encrypted
(if encrypted serially), or the entire secret key can be
transmitted at once, after all of the encoded blocks have been
encrypted. While shown as a serial process, the encryption
process in FIG. 11 A can also occur in parallel, with the entire
secret key being encrypted simultaneously. Further, while
specific examples of encryption algorithms involving square
matrices have been described as embodiments of the present
invention, other encryption schemes, including other types
and sizes of matrices, are also contemplated to be within the
scope of the invention. Specifically, any encryption scheme
(including non-matrix functions) that has an inverse
function, such that data encrypted with the scheme can also
be decrypted by the inverse of the function, will work with
the present invention. The only requirements are that the
encryption scheme must be decryptable, and in particular
commutatively decryptable, which will be discussed below.

Referring to FIG. 11B, the double-encrypting process at
the intended receiver is shown. The receiver first receives
the sender-encrypted codeword 1110, preferably storing it in
a register. (In actuality, the receiver receives a series of
sender-encrypted codewords constituting the sender-
encrypted secret key, or locked data message.) Prior to
receipt of the codeword, the receiver pre-generates sets of
lock-key pairs, stored in memory 1122, in accordance with
the lock-key pair generation methods discussed above.
Then, to double-encrypt the sender-encrypted codeword
1110, a lock-key pair “e,, d,” is first selected from memory
1122. (A different lock-key pair is preferably selected for
each sender-encrypted codeword 1110 being double-
encrypted). As before, the lock-key pair selection is random,
although it can also be sequential or in any other predeter-
mined order. The key “d,,” or a representation of it, is stored
in cache 1124. The selected lock “e,” 1126, also known as
a second lock, is also stored in a register in one embodiment.

To perform the encryption, an encryption module 1128
performs a matrix multiply between 4x4 lock matrix 600,
and sender-encrypted codeword 1120. The 4x4 lock matrix
600 is based on the random number integers “i;, iy, iz, 1y,
paralleling the structure of the 4x4 lock matrix 600 used by
the sender to initially encrypt the secret key. Again, using

US 6,898,288 B2

17

shift registers and a FIR filter, or software, the encryption
module 1128 performs the matrix multiply, producing
double-encrypted codeword “p” 1130. As before, the use of
the 4x4 lock matrix 600 ensures that each integer of the
double-encrypted code word “py, Po, P> P4~ 1S the sum of a
multiplication between each already-encrypted integer of
sender-encrypted codeword 1120, and each integer of lock
1126, mathematically increasing the complexity of the
encryption. This double-encryption process is repeated for
each sender-encrypted codeword 1120 in the secret key, until
all encoded blocks have been encrypted.

The resulting series of double-encrypted codewords 1130
comprise the receiver- and sender-encrypted secret key, also
referred to as a double-locked data message. The double-
encrypted codewords are transmitted, either individually as
they are double-encrypted, or collectively when the entire
secret key has been double-encrypted, back to the sender,
treated again as plaintext.

Referring to FIG. 11C, the process of decrypting the
sender-encryption of the double-encrypted codeword “p”
1140, at the sender, is shown. The double-encrypted code-
word 1130 arrives back at the sender and is stored in a
register, buffer or other memory structure or device.
Meanwhile, the key “d,” is retrieved from cache 1102, where
it was previously stored as shown in FIG. 11A. Alternatively,
a representation or pointer to “d,” may be stored in cache
1102, which is retrieved and used to load the actual key “d.”
from memory. The retrieved key “d,” 1142 (also known as
a first key), comprising numbers “b,, b, bs, b,” used to form
an inverse 4x4 key matrix 602, is loaded into a register.

Next, using a FIR filter and shift registers in one
embodiment, or software in another, decryption module
1144 conducts the same matrix multiply undertaken for the
encryption functionality of FIGS. 11A and 11B to decrypt
the double-encoded codeword “p” 1130 to generate a
receiver-encrypted-only codeword “q” 1146. However,
because the key “d,” 1142 was specifically designed to be
able to form an inverse to the lock “e.” conducting this
matrix multiply results in a multiplication between the
sender 4x4 lock matrix 600, and the sender 4x4 key matrix
602, for a net value of one. This effectively removes the
sender-encryption of the double-encrypted codeword 1130.

When all of the double-encrypted codewords 1130 of the
secret key are decrypted in this fashion by the sender, this
effectively removes the sender-encrypted portion of the
receiver- and sender-encrypted secret key, or unlocks the
first lock of the double-locked data message. The now
receiver-encrypted-only codewords are transmitted, either
individually as they are decrypted in this fashion, or collec-
tively when the entire key has been decrypted in this fashion,
back to the receiver. The receiver-encrypted codewords are
treated as plaintext.

One important feature of the present invention, demon-
strated in FIG. 11C, is the ability to perform commutative
decryption. The commutative property holds that the order
of the operands in certain mathematical equations can be
reversed without affecting the result, such as with matrix
multiplication. In a sense, this allows the first “layer” of
encryption, originally applied by the sender, to be decrypted
“behind” the second “layer” of encryption, applied by the
receiver. In a visual analogy, it is as if a secret box is
encrypted with a protective shield, and then double-
encrypted with a second protective shield external to the first
shield, and the invention allows the first protective shield to
be unlocked “through” the second protective shield. This
enables both the sender and the receiver to encrypt the secret

10

15

20

30

40

45

50

55

60

65

35

18

data to be transmitted, and the sender to unlock its own
encryption regardless of the fact that it was applied first,
leaving the secret data only receiver-encrypted. Because the
secret data is receiver-encrypted only, it easily can be
decrypted by the receiver to reveal the original secret data.
During the transmission process back and forth under this
scheme, the secret data is never transmitted without at least
one layer of encryption applied.

Completing the transmission, the functionality for
decrypting the receiver-encryption, at the receiver, is shown
in FIG. 11D. The receiver-encrypted codeword “q” 1146
arrives back at the receiver, where it is stored in a register in
one embodiment. The key “d,” is retrieved from cache 1124,
where it was previously stored as shown in FIG. 11B.
Alternatively, a representation or pointer to “d,” may also be
stored in the cache, which is retrieved and used to load the
actual key “d,” from memory. The retrieved key “d,” 1162
(also known as a second key), comprising numbers “j, j,, js,
j4” that are used to form inverse 4x4 key matrix 602, is
loaded into a register. Then, using a FIR filter and shift
registers in one embodiment, or software in another, decryp-
tion module 1164 conducts the same matrix multiply decryp-
tion as described in FIG. 11C. In this case, multiplying the
4x4 lock matrix 600 for “e,” against the 4x4 key matrix 602
for “d,” results in a net value of one, effectively decrypting
the receiver encryption of the receiver-encrypted codeword
1146, or unlocking the second lock. The result is the
regeneration of the original encoded block “c” 1166.

Finally, the original encoded block “c” 1166 is decoded by
decoder 1170, using decode table 1168, which is the reverse
of the code table depicted in FIG. 9A. After the decoder
decodes each integer “c;, c,, ¢;, ¢,” of the encoded block
1166, the original partitioned code block is left. As explained
above in the context of the encoding process, not every
partitioned block is actually four integers in length—instead,
some partitioned blocks had been converted into four inte-
gers to allow for an uniform encryption and decryption
process. Therefore, after being decrypted, the partitioned
blocks are reset to their original length. As the final step, the
blocks are concatenated (or otherwise reassembled in a
particular order), with the final result being the actual secret
key or secret data message. The secure communications of
a secret key is complete, without requiring an exchange of
a public key. If the data message is a digital signature, the
decoded digital signature proves, in theory, that the sender
(as a party in possession of the secret decoding scheme) is
who it purports to be.

FIGS. 11E-H detail the same sequence as described for
FIGS. 11A-D, but for the six-number lock-key pair case. For
convenience, the exact same numbers used for the processes
of FIGS. 11A-D are depicted, but with the suffix “a.”
Besides the fact that each encrypted block “c” 11064 is six
integers long, and that the lock-key pairs (“e;, d.”; “¢,, d,”)
are six numbers long each for the lock and for the key, the
processes are the same. In particular, referring to FIG. 11E,
the encryption module 1108z multiplies six-integer
encrypted block “c” 1106a against six-integer lock “e.” to
generate encrypted codeword “h,” which has six values (in
this case, integers) “;, h,, hs, by, hs, he.” Like with the results
of the matrix multiplications for the four-integer case, each
number “h,, h,, hs, h,, hs, hy” is the sum of a multiplication
between each integer of the encoded block 11064, and each
integer of the lock 11044, in various pairings.

The process continues as explained in the context of the
four-number case, discussed above, with only the differ-
ences stated. At the end of the process, shown in 11H, each
original encoded block “c” 1166a is decoded by decoder

US 6,898,288 B2

19

11704a, using code table 1168a, to produce the original
partitioned code blocks. Finally, the blocks are concatenated
(or otherwise reassembled in a particular order), with the
final result being the actual secret key or secret data mes-
sage. If the data message is a digital signature, the decoded
digital signature proves, in theory, that the sender (as a party
in possession of the secret decoding scheme) is who it
purports to be.

Referring to FIG. 12, an example of cellular phone that
uses an embodiment of the present invention is shown. The
cell phone utilizes either dedicated circuitry or a software
procedure executed by a microprocessor, or a combination
of these, to periodically generate new lock-key pairs to
replace the ones in memory, such as when the cell phone is
recharging its batteries. The lock-key generation circuitry
and/or software may be also used more or less often based
on other events, or just by periodic scheduling. The software
that generates the lock-key pairs can be transmitted to the
phone.

FIG. 13 shows a computer system, or a microprocessor
controlled device 1300 (e.g., a cell phone or personal digital
assistant or facsimile machine or the like) capable of prac-
ticing the present invention. The system or device 1300
includes one or more central processing units (CPU) 1302,
an optional user interface 1304, memory 1306 (including
high speed random access memory, and non-volatile
memory such as disk storage), and a network interface or
other communications interface 1340 for connecting the
system or device to other computers or devices on a com-
munications network 1350, to conduct secure communica-
tions. These components are interconnected by one or more
system busses 1360.

The memory 1306 typically stores an operating system
1310, file system 1312, lock-key pair generator 1314, and
lock-key pairs 1316. The memory 1306 furthermore typi-
cally stores a set of executable software modules, including
encoding module 1318, decoding module 1320, encryption
module 1322, double-encryption module 1324, decryption
module 1326, commutative decryption module 1328, and
communication module 1330. The modules implement the
lock-key pair generation, encoding, decoding, encryption
and decryption procedures and methodologies described
above. In some embodiments, the processing unit(s) 1302
include one or more FIR filters or one or more digital signal
processors so as to provide a hardware-based boost to the
speed of the encryption and decryption operations.

The memory 1306 may also store further modules and
data structures not shown, and is not meant to be limited to
only the features identified in the figure. Also, some of the
modules depicted as distinct modules may comprise a single
module. Further, some of the modules, or aspects of the
modules, may also be implemented as hardware compo-
nents. Other configurations of the hardware and software of
the present system, as known by those of skill in the art, are
expressly contemplated to be part of the present invention.

The present invention can be also implemented as a
computer program product that includes a computer pro-
gram mechanism embedded in a computer readable storage
medium. For instance, the computer program product could
contain one or more of the program modules and data
structures shown in FIG. 13. These modules may be stored
on a CD-ROM, magnetic disk storage product, or any other
computer readable data or program storage product. The
software modules in the computer program product may also
be distributed electronically, via the Internet or otherwise, by
transmission of a computer data signal (in which the soft-
ware modules are embedded) on a carrier wave.

10

15

20

25

30

35

40

45

50

55

60

65

36

20

While the present invention has been described with
reference to a few specific embodiments, the description is
illustrative of the invention and is not to be construed as
limiting the invention. Various modifications may occur to
those skilled in the art without departing from the true spirit
and scope of the invention as defined by the appended
claims.

What is claimed is:

1. A method for secure transmission of a data message
between a sender and a receiver, the method comprising:

locking, at the sender, the data message using a first lock;

prior to locking the data message at the sender, encoding
the data message, said encoding including partitioning
the data message into partition blocks and encoding
each partition block by performing one or more opera-
tions selected from the set comprising: rearranging data
within the block when the partition block matches a
first predefined data pattern, expanding the partition
block by adding one or more predefined data values
when the partition block matches a second predefined
data pattern, and expanding the partition by adding a
data value obtained by performing a mathematical
linear operation on one or more data values within the
partition block;

transmitting the locked data message to the receiver;

double-locking, at the receiver, the locked data message

using a second lock;

transmitting the double-locked data message back to the

sender;
unlocking, at the sender, the first lock of the double-
locked data message using a first key, leaving the data
message single-locked by the second lock;

transmitting the single-locked data message back to the
receiver; and

unlocking, at the receiver, the second lock of the single-

locked data message using a second key to generate the
data message;

wherein the locking and unlocking at the sender comprise

mathematical linear computations.

2. The method of claim 1, wherein the secure transmission
of the data message occurs without a public key exchange.

3. The method of claim 1, wherein the data message
unlocked at the receiver is identical to the data message prior
to locking at the sender.

4. The method of claim 3, wherein the encoding utilizes
a code table.

5. The method of claim 3, further comprising, subsequent
to unlocking the second lock of the single-locked and
encoded data message, decoding the encoded data message
to generate the data message.

6. The method of claim 1, further comprising transmitting
from the sender to the receiver a computer program capable
of performing the double-locking of the locked data
message, and the unlocking of the second lock of the
single-locked data message, at the receiver.

7. The method of claim 6, wherein the computer program
is a Java applet.

8. The method of claim 1, further comprising transmitting
from the receiver to the sender a computer program capable
of performing the locking of the data message, and the
unlocking of the first lock of the double-locked data
message, at the sender.

9. The method of claim 8, wherein the computer program
is a Java applet.

10. The method of claim 1, wherein the data message is
a secret key.

US 6,898,288 B2

21

11. The method of claim 1, wherein the data message is
a digital signature.

12. The method of claim 1, wherein the data message is
a digital envelope.

13. A method for secure key exchange between a sender
and a receiver, the method comprising:

generating a plurality of sender lock-key pairs for the
sender and a plurality of receiver lock-key pairs for the
receiver;

encrypting, at the sender, a secret key to be transmitted
from the sender to the receiver, using one or more locks
of the plurality of sender lock-key pairs;

transmitting the sender-encrypted secret key to the
receiver;

encrypting, at the receiver, the sender-encrypted secret
key using one or more locks of the plurality of receiver
lock-key pairs;

transmitting the receiver- and sender-encrypted secret key
back to the sender;

decrypting, at the sender, the sender-encrypted portion of
the receiver- and sender-encrypted secret key, using
one or more keys of the plurality of sender lock-key
pairs, leaving the secret key receiver-encrypted;

transmitting the receiver-encrypted secret key back to the
receiver;

decrypting, at the receiver, the receiver-encrypted secret
key using one or more keys of the plurality of receiver
lock-key pairs, to generate the secret key;

encrypting at the sender a data message using the secret
key to generate an encrypted data message, and trans-
mitting the encrypted data message to the receiver; and

decrypting at the receiver the encrypted data message
using the secret key so as to regenerate the data
message at the receiver.

14. The method of claim 13, wherein the data message
decrypted at the receiver is identical to the data message
prior to encryption at the sender.

15. The method of claim 13, wherein the generating
occurs periodically.

16. The method of claim 13, wherein the generating
occurs using one or more algorithms, and a plurality of
random values as variables for the one or more algorithms.

17. The method of claim 16, wherein the plurality of
random values are generated by a random number generator.

18. The method of claim 16, wherein the plurality of
random values are generated at least in part by user input.

19. The method of claim 13, wherein the method is used
in a portable electronic device, and wherein the generating
occurs at least when batteries for the portable electronic
device are recharging.

20. The method of claim 13, wherein a representation of
each of the plurality of sender lock-key pairs corresponding
to the one or more locks used to encrypt the secret key are
stored in a memory.

21. The method of claim 13, wherein a representation of
each of the plurality of receiver lock-key pairs correspond-
ing to the one or more locks used to encrypt the sender-
encrypted secret key are stored in a memory.

22. The method of claim 13, wherein the decrypting of the
sender-encrypted portion of the receiver- and sender-
encrypted secret key utilizes commutative mathematic
operations.

23. The method of claim 13, wherein, prior to the decrypt-
ing at the sender, the sender verifies that the receiver- and
sender-encrypted secret key was transmitted by the receiver.

10

15

20

25

30

35

40

45

50

55

60

65

37

22

24. The method of claim 13, further comprising, prior to
encrypting the secret key at the sender, encoding the secret
key.

ZS. The method of claim 24, wherein the encoding utilizes
a code table.

26. The method of claim 24, further comprising, subse-
quent to decrypting the receiver-encrypted and encoded
secret key, decoding the encoded secret key to generate the
secret key.

27. The method of claim 13, further comprising transmit-
ting from the sender to the receiver a computer program
capable of performing the encrypting of the sender-
encrypted secret key, and the decrypting of the receiver-
encrypted secret key, at the receiver.

28. The method of claim 27, wherein the computer
program is a Java applet.

29. The method of claim 13, further comprising transmit-
ting from the receiver to the sender a computer program
capable of performing the encrypting of the secret key, and
the decrypting of the sender-encrypted portion of the
receiver- and sender-encrypted secret key, at the sender.

30. The method of claim 29, wherein the computer
program is a Java applet.

31. A method for secure key exchange between a sender
and a receiver, the method comprising:

encrypting, at the sender, a secret key to be transmitted

from the sender to the receiver, using one or more locks
of a plurality of sender lock-key pairs;

transmitting the sender-encrypted secret key to the

receiver;

encrypting, at the receiver, the sender-encrypted secret

key using one or more locks of a plurality of receiver
lock-key pairs;

transmitting the receiver- and sender-encrypted secret key

back to the sender;
decrypting, at the sender, the sender-encrypted portion of
the receiver- and sender-encrypted secret key, using
one or more keys of the plurality of sender lock-key
pairs, leaving the secret key receiver-encrypted;

transmitting the receiver-encrypted secret key back to the
receiver;

decrypting, at the receiver, the receiver-encrypted secret

key using one or more keys of the plurality of receiver
lock-key pairs, to generate the secret key;

wherein each lock of the plurality of sender lock-key pairs

comprises a plurality of values capable of forming a
lock matrix, and further wherein each key correspond-
ing to each lock of the plurality of sender lock-key pairs
comprises a plurality of values capable of forming a
key matrix, and further wherein the key matrix is the
inverse of the lock matrix.

32. The method of claim 31, wherein each lock of the
plurality of receiver lock-key pairs comprises a plurality of
values capable of forming a lock matrix, and further wherein
each key corresponding to each lock of the plurality of
receiver lock-key pairs comprises a plurality of values
capable of forming a key matrix, and further wherein the key
matrix is the inverse of the lock matrix.

33. The method of claim 31, wherein, before encrypting
the secret key at the sender, the secret key is partitioned into
a plurality of partitioned blocks, and further wherein the
encrypting at the sender comprises multiplying each parti-
tioned block of the plurality of partitioned blocks against an
encrypting lock of the one or more locks of the plurality of
sender lock-key pairs.

34. A method for secure key exchange between a sender
and a receiver, the method comprising:

US 6,898,288 B2

23

encrypting, at the sender, a secret key to be transmitted
from the sender to the receiver, using one or more locks
of a plurality of sender lock-key pairs;

transmitting the sender-encrypted secret key to the
receiver;

encrypting, at the receiver, the sender-encrypted secret
key using one or more locks of a plurality of receiver
lock-key pairs;

transmitting the receiver- and sender-encrypted secret key
back to the sender;

decrypting, at the sender, the sender-encrypted portion of
the receiver- and sender-encrypted secret key, using
one or more keys of the plurality of sender lock-key
pairs, leaving the secret key receiver-encrypted;

transmitting the receiver-encrypted secret key back to the
receiver;

decrypting, at the receiver, the receiver-encrypted secret
key using one or more keys of the plurality of receiver
lock-key pairs, to generate the secret key;

encrypting at the sender a data message using the secret
key to generate an encrypted data message, and trans-
mitting the encrypted data message to the receiver; and

decrypting at the receiver the encrypted data message
using the secret key so as to regenerate the data
message at the receiver;

wherein the secure key exchange occurs between a sender
and a plurality of receivers, and further wherein, prior
to the decrypting at the sender, the sender verifies that
each receiver of the plurality of receivers has transmit-
ted a receiver- and sender-encrypted secret key, and
further comprising decrypting, at the sender, the
sender-encrypted portion of each of the receiver- and
sender-encrypted secret keys transmitted from each
receiver of the plurality of receivers.

35. The method of claim 34, wherein if, prior to the
decrypting at the sender, the sender receives a greater
number of receiver- and sender-encrypted secret keys than
the number of the plurality of receivers, the plurality of
receivers are warned of a possible adversary and the secure
key exchange is canceled.

36. The method of claim 34, wherein if, prior to the
decrypting at the sender, the sender receives a lesser number
of receiver- and sender-encrypted secret keys than the num-
ber of the plurality of receivers, the plurality of receivers are
warned of a possible adversary and the secure key exchange
is canceled.

37. A secure transmission module for securely transmit-
ting a data message to at least one receiver, the module
comprising:

a lock-key pair generator for generating a plurality of
lock-key pairs, using one or more algorithms and a
plurality of random values as variables for the one or
more algorithms;

a first encryption module configured to encrypt a data
message using one or more locks of the plurality of
lock-key pairs; wherein the data message includes a
secret key;

10

15

20

25

30

35

40

45

50

55

38

24

a commutative decryption module configured to decrypt
encryption applied by the encryption module to the data
message, using one or more keys of the plurality of
lock-key pairs, after the data message has been addi-
tionally encrypted at least once more at the at least one
receiver;

a second encryption module configured to encrypt session
messages with the secret key; and

a communication module for transmitting encrypted data
messages, encrypted session messages and
commutatively-decrypted data messages to the at least
one receiver, and for receiving additionally-encrypted
data messages from the at least one receiver.

38. The secure transmission module of claim 37, wherein
the secure transmission of the data message occurs without
a public key exchange.

39. The secure transmission module of claim 37, further
comprising an encoder for encoding the data message prior
to initially encrypting the data message.

40. A secure receiver module for securely receiving a data
message from a sender, the module comprising:

a lock-key pair generator for generating a plurality of
lock-key pairs, using one or more algorithms and a
plurality of random values as variables for the one or
more algorithms;

double-encryption module configured to encrypt an
already-encrypted data message using one or more
locks of the plurality of lock-key pairs;

a first decryption module configured to recover the data
message by decrypting encryption applied by the
double-encryption module to a data message, utilizing
one or more keys of the plurality of lock-key pairs, to
generate the data message from the sender, the decryp-
tion occurring after the already-encrypted portion of the
data message has been commutatively decrypted at the
sender;

a second decryption module for decrypting session mes-
sages encrypted with a secret key, wherein the secret
key is included in the recovered data message; and

a communication module for receiving messages, includ-
ing already-encrypted data messages, commutatively-
decrypted data messages and session messages from
the sender, and for transmitting double-encrypted data
messages to the sender.

41. The secure receiver module of claim 40, wherein the
secure receipt of the data message occurs without a public
key exchange.

42. The secure receiver module of claim 40, wherein the
data message recovered at the secure receiver module is
identical to the data message, prior to encryption at the
sender.

43. The secure receiver module of claim 40, wherein the
data message is encoded, and further comprising a decoder
for decoding the data message upon finally decrypting the
data message.

