SYLLABUS
ANTH 100 - History and Theory of Biological Anthropology
Anthropology Department, UC Santa Cruz
Online

Lecture days/hours: Online
Lecture location: Online

Instructor: Jay S. Reti, Ph.D.
Contact: jreti@ucsc.edu
Office: Online during office hours or by appointment
Office Hours: Canvas Discussion/Email office hours

COURSE DESCRIPTION:
This course is designed to provide the historical and theoretical overview of biological anthropology through a lens of evolutionary theory and the history of evolutionary thought. Through lectures, weekly readings, small group discussions, and response assignments, students will learn about the emergence of evolutionary theory and the key scholars who have contributed to its development since the 17th Century. Course topics will include the development of evolutionary theory and the modern synthesis, the advent of evolutionary developmental biology, reactions against rising adaptationist conclusions, and modern applications to biological anthropological theory. These and other key topics will help students understand how biological anthropology has emerged as a major discipline within the social sciences.

COURSE OBJECTIVES:
In this course, students will be exposed to a wide array of academic literature concerning the history and theory of biological anthropology. A successful student will:

1) have working knowledge of the key historic texts and ideas that have contributed to our understanding of evolutionary principles today,
2) be able to articulate how changing evidence has influenced our understanding of evolutionary theory,
3) apply this knowledge of evolutionary theory to topics in biological anthropology, and
4) form a critical eye in analyzing textual sources related to evolutionary theory and biological anthropology.

Course assignments (papers and small group discussions) will allow students to actively engage with the material and demonstrate their broader understanding of how theoretical understanding of evolution has changed through time.

REQUIRED TEXT:
This course will be using an assortment of research articles. These articles are available on the course Canvas website. Students will also be required to read excerpts of Darwin’s “On the Origin of Species” over the course of the class. Students may purchase a paper copy of the book or access the .pdf version of the book available on the UCSC Canvas course website.

COURSE REQUIREMENTS:
Your grade will be determined via four components:

- Weekly discussions and responses: 35%
- Midterm Exam: 20%
- Final Exam: 20%
- Final Paper: 15%
- Quizzes: 10%
The exams will consist of a combination of short responses and open-ended longer response questions. Weekly discussions will be based on assigned small groups (3-5 students per group). Each group will be responsible for coming up with a collaborative response to a weekly question concerning the lecture and assigned articles. This collaborative response must be posted to the class-wide discussion post for that week by Thursday evening at 11:59 PM. Each student must then read these responses and respond to another group by Friday night at 11:59 PM. I will monitor these discussion for accuracy and clarify where needed.

STUDENT PARTICIPATION:

The expectation within the University of California system is that for each credit hour of a course, students spend 3 hours in preparation during the week. For a 5-credit course, this means that students should be spending about 15 hours per week preparing for class. An approximate distribution of the work time for this course each week is as follows: roughly 3 hours viewing/engaging with lectures, roughly 8 hours reading and reviewing course material, and 4 hours conducting research or writing for class assignments.

SCHOLARSHIP AND CLASS ETIQUETTE:

All cases of suspected plagiarism and cheating will be reported to the academic deans. I will discuss the issue of plagiarism during lecture, but please visit www.plagiarism.org for more information.

SCHEDULE:

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic and Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Introduction to the course
Pre-Darwinian concepts of humans, science, evolution
Readings:
 - Nott 1843 – Mullato as a hybrid
 - Farber 1972 – Buffon and the concept of species
1. Lecture viewing due by Tuesday of Week 1
2. Small group discussion posts due by Thursday of Week 1
3. Large group discussion posts due by Friday of Week 1</td>
</tr>
<tr>
<td>Week 2</td>
<td>Lamarck and What Darwin didn't know
Readings:
 - Darwin 1859 – Preface and Chapter 1
 - Mayr 1972 – Lamarck Revisited
1. Lecture viewing due by Tuesday of Week 2
2. Small group discussion posts due by Thursday of Week 2
3. Large group discussion posts due by Friday of Week 2</td>
</tr>
<tr>
<td>Week 3</td>
<td>Response to Darwinian evolution: Owen and Huxley
Readings:
 - Owen 1860 – Review of On the Origin of Species
 - Huxley 1887 – On the reception of “The Origin of Species”
1. Lecture viewing due by Tuesday of Week 3
2. Small group discussion posts due by Thursday of Week 3
3. Large group discussion posts due by Friday of Week 3</td>
</tr>
</tbody>
</table>
Week 4

Darwin’s immediate impact, De Vries, Fisher, Haeckel
Readings:
- Bowler 1977 – De Vries, Morgan, and Mutation Theory
- Stauffer 1957 – Haeckel, Darwin, and Ecology

1. Lecture viewing due by Tuesday of Week 4
2. Small group discussion posts due by Thursday of Week 4
3. Large group discussion posts due by Friday of Week 4

Week 5

Mendel and the modern synthesis
- Mayr and Provine 1981

1. Lecture viewing due by Tuesday of Week 5
2. Small group discussion posts due by Thursday of Week 5
3. Large group discussion posts due by Friday of Week 5

Week 6

MIDTERM DUE (VIA Canvas Assignments by 11:59 PM)

Week 7

Revolt against adaptationists
- Gould and Lewontin (1979) – The Spandrels of San Marcos
- Barash 1976 – Male response in bluebirds

1. Lecture viewing due by Tuesday of Week 7
2. Small group discussion posts due by Thursday of Week 7
3. Large group discussion posts due by Friday of Week 7

Week 8

Socio-Biology and Sexual Selection
- Dawkins 1976 – The selfish gene excerpt (intro)
- Andersson 1994 – Introduction to sexual selection

1. Lecture viewing due by Tuesday of Week 8
2. Small group discussion posts due by Thursday of Week 8
3. Large group discussion posts due by Friday of Week 8

Week 9

Ancient DNA and the modern contribution of genetics
- Sankararaman et al. 2014 – Neanderthal genomics
- Slon et al. 2018 – Neanderthal-Denisovan hybrid

1. Lecture viewing due by Tuesday of Week 9
2. Small group discussion posts due by Thursday of Week 9
3. Large group discussion posts due by Friday of Week 9

Week 10

FINAL PAPER DUE (VIA Canvas Assignments at 11:59 PM)
Evolutionary Developmental Biology (“Evo-Devo”)
- Hall 2003 – Evo Devo
- Gunz et al. 2010 – Brain development in humans and neanderthals

1. Lecture viewing due by Tuesday of Week 10
2. Small group discussion posts due by Thursday of Week 10
3. Large group discussion posts due by Friday of Week 10

Finals Week

FINAL EXAM DUE (VIA Canvas Assignments by 11:59 PM)
Course Paper Assignment: General Instructions

For this paper assignment, please conduct research of a major figure concerning evolutionary theory in biology or biological anthropology. During our second class we will watch a documentary that introduces you to many different figures in evolutionary theory, but a few of the prominent ones are below. Your research should NOT BE A BIOGRAPHY, but rather focus on the research of the individual you select and how their research contributed to evolutionary theory. This may be in a positive light or a negative light, but you need to explain what evolutionary theory was thought to be during their time of research and how their research contributed to the understanding of that theory during their lifetime (and since they died, if applicable).

Research Topics (many others exist as well!):
1. Comte du Buffon
2. Carolus Linnaeus
3. Jean-Baptist Lamarck
4. Charles Darwin
5. Charles Lyell
6. Richard Owen
7. Ernst Haecckle
8. Thomas Henry Huxley
9. Gregor Mendel
10. Thomas Hunt Morgan
11. Hugo de Vries
12. Julian Huxley
13. Ronald Fisher
14. Ernst Mayr
15. George G. Simpson
16. Stephen J. Gould
17. Edward O. Wilson
18. Bernard Wood
19. Lee Berger

Final Paper: DUE FRIDAY OF WEEK 10 (ONLINE: CANVAS ASSIGNMENTS)
- 8-10 pages, double-spaced, 12-point font, Times New Roman, 1” margins
- Parenthetical in-text citations (APA style guide, see Purdue OWL website for info)
- APA formatted reference section
- Academic references (peer-reviewed journals, edited books) – should be well-researched and include many references that round out your discussion and argument (at least eight, but many more would help to strengthen your paper)
Weekly small group discussion participation should take place by Thursday at 11:59 PM each week. Please coordinate with your small group to find online discussion meeting times that work for everyone:

<table>
<thead>
<tr>
<th>Date and Readings:</th>
<th>Response Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1:</td>
<td>Before reading Farber’s article, think about your current understanding of how Darwin changed the scientific world.</td>
</tr>
<tr>
<td>- Nott 1843 – Mullato as a hybrid</td>
<td>Groups 1 and 2: Read Farber’s article about the Comte du Buffon and explain Buffon’s complex ideas regarding evolution. How does Buffon define the concept of “species”? How is his understanding of what represents a “species” different from how we define the concept of a species today?</td>
</tr>
<tr>
<td>- Farber 1972 – Buffon and the concept of species</td>
<td>Group 3 and 4: Nott lived a century after the Comte du Buffon. Given Buffon’s definition of “species”, do you think that Buffon would agree with Nott’s conclusions? Explain why or why not?</td>
</tr>
<tr>
<td>Week 2:</td>
<td>Group 1: Define “Lamarckian Evolution.” How does Lamarck’s view of the evolutionary process differ from Darwin (this should be an explanation in some detail!)?</td>
</tr>
<tr>
<td>- Darwin 1859 – Preface and Chapter 1</td>
<td>Group 2: What is the major topic that Darwin covers in the beginning of On the Origin of Species? Why does Darwin begin with such examples of evolution? In other words, how does beginning the book this way strengthen Darwin’s arguments for natural selection?</td>
</tr>
<tr>
<td>- Mayr 1972 – Lamarck Revisited</td>
<td>Groups 3 and 4: What are some of the major misconceptions of Lamarck’s research and conclusions? What aspects of Lamarck’s conclusions might have influenced Darwin’s own research?</td>
</tr>
<tr>
<td>Week 3:</td>
<td>Group 1 and 2: Compare Huxley’s retrospective look at Darwin’s publication of On the Origin of Species and compare it with Owen’s initial review. How did perspectives change in the 27 years between these publications?</td>
</tr>
<tr>
<td>- Owen 1860 – Review of On the Origin of Species</td>
<td>Group 3: Categorize Owen’s criticisms of Darwin. In other words, what broad types of criticisms does Owen wage against Darwin? Do you think that these criticisms are warranted? Which of these critiques is the most damning for Darwin in 1859? Why?</td>
</tr>
<tr>
<td>- Huxley 1887 – On the reception of “The Origin of Species”</td>
<td></td>
</tr>
</tbody>
</table>
Group 4: Outline some specific examples from Huxley that counter the arguments made by Owen. Your responses should select several examples and be specific about them.

Group 1. Describe the differences between how Hugo De Vries and Thomas Hunt Morgan view the role that mutation plays in the evolutionary process.

Group 2. Ernst Haeckel made many contributions to furthering evidence for Darwinian evolution. Explain how the introduction of “ecology” changed the way that biologists viewed natural selection.

Group 3: Thomas Hunt Morgan’s perspective on mutation changed over the course of his life. How does Morgan’s early opinion on Natural Selection differ from his later opinion concerning Natural Selection?

Group 4: What specific criticisms does Thomas Hunt Morgan make against Natural Selection? Use specific examples to demonstrate why Morgan thought a “utilitarian” approach to Natural Selection was incorrect.

Group 1: What is the “modern synthesis”? How and why did it occur and what major milestones did it mark for evolutionary theory?

Group 2: What are the differences between early geneticists, naturalists, and biometricians? Why do these differences matter at the time of the “modern synthesis”?

Group 3: Why might the “modern synthesis” help to demonstrate the strength of Darwinian natural selection and end the idea of mutationism, which we discussed last week?

Group 4: The addition of genetic information to evolutionary theory contributed to the unfortunate rise of “social Darwinism” in America and other parts of the world. What is “social Darwinism,” how did genetics contribute, and why is the application of social Darwinism incorrect from a genetic perspective?

Week 6:
- No Readings or discussion this week.
<table>
<thead>
<tr>
<th>Date and Readings:</th>
<th>Response Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 7:</td>
<td>Group 1: What does the term “Adaptationist” refer to? Would Gould and Lewontin describe themselves as “adaptationists?” Why or why not?</td>
</tr>
<tr>
<td>- Gould and Lewontin (1979) – The Spandrels of San Marcos</td>
<td>Group 2: Think about our definition of Natural Selection and ask yourself how Barash applies Natural Selection to his study. What criticisms can you make of this article in its inception, methods, and/or conclusions?</td>
</tr>
<tr>
<td>- Barash 1976 - Bluebirds</td>
<td>Group 3: Gould and Lewontin specifically criticize the article by Barash (1976) that we previously read. Why do they criticize him and label him an “adaptationist?”</td>
</tr>
<tr>
<td></td>
<td>Group 4: Gould and Lewontin discuss the idea of “pluralism” – that more than one mechanism is responsible for evolutionary change (not only Natural Selection). Discuss some of the other mechanisms that might influence the evolution of life.</td>
</tr>
<tr>
<td>Week 8:</td>
<td>Group 1: What does the concept of the “selfish gene” refer to? How is this interpretation different from a standard interpretation of natural selection?</td>
</tr>
<tr>
<td>- Dawkins 1976 – The selfish gene excerpt</td>
<td>Group 2: Sexual selection can operate in many different ways. Discuss the nuances of how the process of sexual selection can influence the ways in which organisms adapt.</td>
</tr>
<tr>
<td>- Andersson 1994 – Introduction to sexual selection</td>
<td>Group 3: Look at Table 1.1.1. in Andersson’s chapter on Sexual Selection. Discuss how different behaviors might demonstrate differential adaptations to breeding events and mating behaviors.</td>
</tr>
<tr>
<td></td>
<td>Group 4: Is Sexual Selection a separate evolutionary process (not just Natural Selection)? Or can sexual selection be classified as a sub-category of Natural Selection? Discuss what you, as a group, think and why.</td>
</tr>
<tr>
<td>Week 9:</td>
<td>Group 1: What is the main question that Sankararaman et al. (2014) are addressing? Discuss the methods that they use to identify these specific genetic markers.</td>
</tr>
<tr>
<td>- Sankararaman et al. 2014 – Neanderthal genomics</td>
<td>Group 2: What are the overall conclusions of the Sankararaman et al. (2014) article? How does this application of genetics differ from the initial genetic applications of the modern synthesis?</td>
</tr>
<tr>
<td>- Slon et al. 2018 – Neanderthal-Denisovan hybrid</td>
<td></td>
</tr>
</tbody>
</table>
Group 3: What behavioral or biological questions does the results of Slon et al.’s (2018) article bring up for biological anthropology/human evolution?

Group 4: Consider both the article for this week and my lecture. Think back to our initial discussions of the Biological Species Concept and Buffon’s definition of species. Does a modern understanding of genetics and genetic differences change our definition of species or does it make the Biological Species Concept more robust?

Week 10:
- Hall 2003 – Evo Devo
- Gunz et al. 2010 – Brain development in humans and Neanderthals

Group 1: What is “Evo-Devo” and what questions does it address for biology? How might it be applied to biological anthropology?

Group 2: Describe some specific examples of how developmental patterns can influence natural selection. How does an understanding of developmental patterns change your understanding of how natural selection might operate?

Group 3: What are the conclusions of Gunz et al. (2010) and what implications does this have for human vs. neanderthal developmental patterns?

Group 4: How does Gunz et al. demonstrate the application of Evo-Devo to human evolution? In other words, how does an Evo-Devo perspective allow us to ask novel questions of the fossil record?

FINALS WEEK: FINAL EXAM DUE VIA CANVAS ASSIGNMENTS