ENGR 160 Introduction to Engineering Optimization Techniques Syllabus

Instructor:

Dr. Hamed Mohsenian-Rad
Assistant Professor, Department of Electrical Engineering
Office: WCH 436
Email: hamed@ee.ucr.edu

Course Purpose:

Textbook:

No Official Textbook. Lecture notes are the source of reading.

Course Topics:

- Introduction to Optimization:
 - Design Variables, Design Constraints, and Objective Function
 - Different Classifications of Optimization Problems
 - Single-Variable and Multi-Variable Optimization
 - Engineering Applications of Optimization: Electrical Engineering, Mechanical Engineering, Industrial Engineering, Course Planning, Resource Management, etc.

- Linear Programming:
 - Identifying Linear Optimization Problem
 - Geometry of Linear Optimization Problems
 - Formulating Linear optimization problems
 - Applications and Examples of Linear Programming
 - Using MATLAB to Solve Linear Optimization Problems

- Integer Programming:
 - Integer variables and 0-1 decision making
 - Identifying Integer Optimization Problem
 - Geometry of Integer Optimization Problems
 - Formulating Integer Optimization Problems
Formulating Mixed-integer Optimization Problems
Applications and Examples of Integer and Mixed-Integer Programming
Using MATLAB to Solve Integer and Mixed-Integer Programming Problems

- Nonlinear Optimization
 - Nonlinear objective functions and constraints
 - Geometry of Nonlinear Programming Problems
 - Nonlinear Optimization Problem Approximated by Linear Problems
 - Nonlinear Optimization Problems that involve Convex functions
 - Formulating Nonlinear Optimization Problems
 - Applications and Examples of Nonlinear Programming
 - Using MATLAB to Solve Nonlinear Programming Problems

- Nonlinear Constrained Optimization:
 - Decision Making Under Uncertainty
 - Modeling Uncertainty in Optimization Problems
 - Stochastic Optimization
 - Formulating Stochastic Optimization Problems
 - Applications and Examples of Stochastic Programming
 - Using MATLAB to Solve Stochastic Programming Problems

Prerequisites:

Prerequisite(s): MATH 010A; either CS 010 or CS 010V or EE 020 or ME 018.

Grading (Percentage):

Homework – 15%
MATLAB Assignment* - 10%
Midterm Exam: 25%
Final Exam – 50%