SI649/EECS548, Information Visualization, Fall 2017

Instructor: Matthew Kay
Office hours: TBA (NQ4364)

GSI: Licia He.
Office hours: Tuesday 1-3 In room 1274

Lecture: Monday 6-7:30PM NQ 2255
Lab section 1: Tuesday 10-11:30AM NQ 1255
OR Lab Section 2: Wednesday 4-5:30PM NQ 2255
(everyone attends lectures and one lab section)

Contacting us: We will be using Piazza for class discussion
(https://piazza.com/umich/fall2017/si649001fa2017/home). The system is highly catered to
getting you help fast and efficiently from classmates, the GSI, and myself. Rather than emailing
questions to the teaching staff, I encourage you to post your questions on Piazza. You can
reach us by email at mjskay, or hesricia (all "at umich").

We aim to respond to piazza within 24-48 hours if you asked your question on a week day.
We do not guarantee timely responses on weekends, so plan your time accordingly.

Learning Objectives

The increasing amounts of data that we are exposed to is simultaneously creating an increase
in cognitive load. Information Visualization (InfoVis) systems and techniques are intended to aid
in dealing with this deluge, serving as external cognition "amplifiers" that expand memory, ease
comprehension, and support decision making. Note that though there are different uses of the
term "information visualization" in different communities, for the purposes of this class, we will
treat information visualization as the use of (possibly interactive) interfaces to visually represent
abstract data. The course is intended for students interested in understanding and utilizing
information visualization in their own work.

The objective of this course is to introduce students to information visualization. Students will
learn the visualization pipeline, processing data for visualization, visual representations, the
design of interaction in visualization systems, and the impact of perception. Students will also
develop the skills necessary to solve visualization problems and critique and evaluate InfoVis
systems. This material will be covered through lectures, readings, and a number of assignments
and projects. The assignments and large group project will provide students with practical
experience in the construction of visualization systems.
The course will be taught at a graduate level and will include written and programming work. As such, students should be comfortable with a basic level of programming and be willing to work with and learn graphics APIs and analysis tools.

Tentative Schedule

<table>
<thead>
<tr>
<th>Week of</th>
<th>Lecture</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>9/11</td>
<td>Intro</td>
<td>Tableau</td>
</tr>
<tr>
<td>9/18</td>
<td>Data Models</td>
<td>JavaScript / D3 walkthrough</td>
</tr>
<tr>
<td>9/25</td>
<td>Perception</td>
<td>D3</td>
</tr>
<tr>
<td>10/2</td>
<td>TBA</td>
<td>D3</td>
</tr>
<tr>
<td>10/9</td>
<td>Design</td>
<td>D3</td>
</tr>
<tr>
<td>10/16</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>10/23</td>
<td>Interaction</td>
<td>Personal project round robin</td>
</tr>
<tr>
<td>10/30</td>
<td>Evaluation / Multidim</td>
<td>Evaluation + Design lab 1 (set differences)</td>
</tr>
<tr>
<td>11/6</td>
<td>Temporal</td>
<td>Temporal Visualization + Design lab 2 (evo. of websites)</td>
</tr>
<tr>
<td>11/13</td>
<td>Storytelling</td>
<td>Peer Round Robin (sketches for group project)</td>
</tr>
<tr>
<td>11/20</td>
<td>Hierarchical</td>
<td>Hierarchical Visualization + Design lab 3 (tennis match)</td>
</tr>
<tr>
<td>11/27</td>
<td>Network</td>
<td>Network Visualization + Design lab 4 (survey)</td>
</tr>
<tr>
<td>12/4</td>
<td>Text</td>
<td>Peer Round Robin (group project)</td>
</tr>
<tr>
<td>12/11</td>
<td>TBA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Class format

Class time will be spent as a mixture of discussions, lab activities, quizzes, presentations, peer round robins, and lectures.
Flipped classroom

My goal is to provide you with significant opportunity to apply what you have learned and receive critique in class. To do so with a large group of students requires that we leave plenty of class time for discussion/critique/feedback, which requires everyone to come to class prepared.

While I will make an effort to provide a high level summary of the material at the start of every class, my expectation is that you will be prepared to leverage the material from readings for the various activities we will have in class. Put another way, I will expect you to have read the assigned readings before class. Material in the readings (see below) may be topics of frequent in-class quizzes.

Learning Objectives

I will be providing you with a learning objectives document at the start of the semester (this will be updated as the semester goes). It will cover things I expect for you to learn divided up by week. It will specifically list topics/skills that you should acquire before that week’s meeting/lecture (these things will come from the video lectures + readings) as well as a set of things that you should be able to do after that week’s meeting (perhaps on completion of the assigned lab). Think of these as an outline of the course. The outline will include things like: “define and be able to apply the definition of expressiveness in analyzing a visualization” or “calculate the data-ink ratio.” I would strongly recommend that you use this document as an outline for note-taking where you fill in the details as you go.

In-Class Quizzes

We will have frequent, 1-2 question quizzes. These will be administered at the start of class (if you show up late to class you will not be allowed to take the quiz). They will be scored on a 3 point scale (well, 4 if you count 0):

0 – nothing submitted
1 – present in class but wrong answer
2 – partially correct
3 – correct.

These are not intended to be trick questions or difficult. In fact, the questions will be directly drawn from the learning objectives document (e.g., “list 3 things ‘expressed’ in this visualization” or “given these parameters, what is the data-ink ratio for this plot?”). The questions will take no more than 5-10 minutes but they will allow me to make sure we’re making progress in the material and you’re picking up key concepts. They will also ensure that we are all on the same page during class discussion sessions.
If you need to be away from class (and know in advance), you may take the quiz before the class lecture time. **There will be no makeup quizzes after the class**, as we review the answers immediately. If the reason for missing class is a medical issue please let the course staff know and we will make some accommodation.

Attendance

Attendance in the class and participation in labs is mandatory. Repeatedly missing class (> 3 times, unexcused) or failing to participate will lead to a failing grade. See note above on quizzes.

Readings

There will be a number of readings assigned for each lecture which you’ll be expected to complete (see note on learning objectives above). The amount will vary from topic to topic but might include 1-2 chapters, and some research papers (all will be provided to you as handouts or PDF files). The readings will come in useful for the design section of the classroom and as such will be part of your class participation grade. The required readings should all be in Canvas before the first lecture (they’ll be the pdf files or links in the lecture directories). I may add additional optional readings to provide more details.

Labs + Critique Sessions

We will have labs and critique sessions nearly every time we meet. Specifically, you will encounter:

Programming labs – The first few weeks will be programming labs where you will work in pairs to work on a lab assignment. You will complete these labs either in class or on your own time and return the finished lab by the following week (if you finish in class, that’s great, but don’t always count on being able to do so). You may work individually or with your lab partner to complete the lab. Partners will be randomly assigned and possibly switched between labs. There may be a few non-programming questions in there too

Critiques/peer-to-peer – We will have sessions where you or your group are presenting your current work on your individual and group assignments. Depending on the number of groups, this will be done in a “round-robin” fashion where you will present to other groups for a short period and then rotate or will be done in front of the class. You will be told what to bring in preparation for these sessions. Often it will be a few slides and your prototypes, but some preparation will be required

Design labs – The last type of lab will be a design lab. This will feature a specific problem related to the lecture of the day. The problems are designed to be somewhat open-ended but are based on situations where a “professional” created a solution. You will get to read about the professional solution for the next class and will
be asked to generate a reading response (see below). The class will be broken apart into groups and each
group will have a short amount of time to come up with a proposed design, creating a lo-fi or mid-fi design to
address the problem. Groups will then have a few minutes to present their solution to the class and get
critiqued on their proposal and critique the work of others.

Group activities – In addition to labs we will have small (2-4 person) group activities that are intended to
expand on the materials. I may provide a high level question and then have groups discuss. You will often be
taking notes and answering these questions into a shared Google Doc.

Attendance/participation for all labs is mandatory.

Response Readings

When we begin the design labs, you will find that one of the readings for the class will be
designated as a response reading. The response reading will be on the topic of the in-class
project from the last class (so if we worked on the social network vis. problem last time, we'll
read about one solution this time). Instead of a few paragraphs, or one pager about the paper,
we're going to use a presentation format. Each student is responsible for creating a 3-5 slide
deck (or some equivalent) and be ready to lead a short discussion. Occasionally, I'll put you
back in a group to talk over your analysis and then present.

What to turn in: I expect your “deck” or whatever prepared materials you'd use for your
presentation by 7pm EST on Sunday. This is to give me enough time to look at the materials.
Some additional guidance:

You should have ~5-8 slides worth of content. You should spend ~30-45 seconds on the solution
(assume people have seen it already) and then split your time between a discussion of pros and
cons of their approach relative to the design spec, drawing on what we've learned so far. I would
specifically like to see you compare their solution to your own from class (individual or group). I
would encourage you to scan the image from your shared google doc (or redraw) and have that
in a slide to be able to talk about differences. Always end with a discussion slide. Use lots of
figures so we know what you're talking about and very little text (you should NOT be reading off
your slides). Make your deck something you can work with, but if I won't be able to understand
where you're going just by looking at it (e.g., you only have pictures), then please also give me
at least an outline with some key bullet points.

If you are randomly selected to present but are not present you will receive a 0 for that
response reading.

Why this format? I think that lots of classes require you to write short responses to readings
and this is a great exercise that forces you to read the papers and think about the materials.
However, I also believe that it’s important to be able to present information to an audience and this is something we don’t do enough of. I hope that most of you will consider this fun and useful. Realistically, it might mean less work for you. If you have some debilitating fear of public speaking come talk to me and we’ll work something out.

Bonus for presenting: If you volunteer (and are selected) to present I will give you 3 quiz points (so a “perfect” on one quiz). Whether you volunteer or not and are selected to present, you will not have to present again.

Assignments

There will be additional details for each of these on the Website, but here are short descriptions.

Labs

The first several lectures will feature labs that you will need to complete and turn in at midnight before the beginning of your discussion section the following week. As the labs build on each other you will NOT be able to turn in these labs late.

You may work individually to complete the labs (whatever you didn’t finish in class) or with your assigned partner (both of you will need to turn in your answers). You may consult other students in class for high level advice regarding solutions (and of course you may use whatever online resources). You may not copy code from your classmates (in this iteration of the class or any previous instance). Any form of cheating (sharing solutions or copying solutions) will be turned over to the academic advising office. Note that I am extremely good at catching people doing this.

Individual mini-project

Rather than having you struggle with data for this first assignment, I will ask you to build a communicative, interactive visualization that is specifically targeted at teaching a mathematical/technical/algorithmic concept. This is motivated by the examples proposed by Bret Victor, specifically: “**Scientific Communication as Sequential Art**” (which uses interactive visualizations to explain the Small Worlds paper) and “**Explorable Explanations**” (another, more technically sophisticated example—in the material it covers—is [here](http://explorable.explanations)). I will ask you to pick a particular concept. You will be asked to define a set of learning objectives for a student wanting to learn that concept, and then construct a visualization that would help them. The Victor example, above, is a nice demonstration since you get to play with parameters for various things to see how they influence models (through visualization). You should not pick overly simple things (e.g., visualizing a gaussian and letting a single slider control the sigma is probably too simple). The nice thing about this is that while you can use external data if it helps (you can, for example, demonstrate Poisson distributions using real Hurricane data) but can also create fake data.
For this project there will be an intermediate deadline where I and your peers provide quick feedback on your sketchbook (worth 10% of this assignment's grade). You will turn in a working system (complete with interactive components) for the final deadline. You may use whatever language/environment you want as long as I can run it in the end. You will be responsible for keeping and updating a sketchbook. I will give you a template for this. Your grade will be a mix of your sketchbook (50%) and implementation (40%).

Individual Assignment proposal: TBD (midnight)
Individual Assignment “sketch”: TBD (midnight)
Final Individual Assignment Due: TBD (midnight)

Final Project - Group Project

This is an open-ended project intended to give you an experience with designing, implementing and evaluating a visualization method or system. You will work in groups of 3-5 (talk to me if you want to propose something that's bigger or smaller, but unless there is a really good reason, I probably won't allow it). There will be 3 milestones for this project: 1) a proposal (1% of class grade), 2) an interim sketch (3% of class grade), and 3) a final submission (sketchbook + presentation + implementation + peer feedback — 21% of class grade). Although it is my expectation that most projects have a working artifact at the end, you can propose other projects (i.e., an evaluation of visualization techniques, etc.). As with the individual assignment you will have a sketchbook that you will need to keep updated. There will be a couple of peer round-robins (a short one on March 25th and a longer one on April 10th) to get feedback from your classmates.

You will be asked to evaluate your team members and that feedback will be part of the final project grade. To turn in:

1) Your code and pointers to working system (if it's hosted). Try to make a short video for me if it's not hosted and is hard to set up. 2) Your final sketchbook – so a cleaned up version. All questions answered and everything clear (pay specific attention to getting the right set of tasks, expressiveness, and effectiveness arguments). 3) Your slides from the presentation.

Assignment proposal: TBD
Assignment “sketch”: TBD
Final Assignment presentation: TBD
Final Assignment due: TBD

Grading

25% Quizzes
10% Response Decks
5% Class Participation (attendance required)
15% Programming Labs
20% Individual Assignment
25% Final Project

Lateness Policy

All reading responses must be turned in by 7pm EST on the Sunday before class. I recognize that the Flu season is hard sometimes and that emergencies happen. As such, you can turn in one reading response up to the time of class (Monday @6:00pm) without penalty. You only get to do this once.

The labs are due as posted (midnight before your discussion section---that means midnight Monday if your section is on Tuesday, and midnight Tuesday if your section is on Wednesday). You can turn *1* in late, but it still needs to come in before your lab (these build off each other so falling behind is bad).

The due dates for projects and milestones will be posted. A late turn-in within 24 hours will cost you one letter grade or equivalent (so the best you'll be able to get is a "B"). A later turn in between 24 and 48 hours will cost you 2 letter grades. Nothing will be accepted after the 48 hour "grace" period.

The (final) final project report will be due on time since I need to get grades in.

Commercial Systems

In the past, Tableau and Spotfire have kindly offered us a licensed version of their application for the semester and I'm going to try to get a similar arrangement again. I'll also try to set up a tutorial section for these systems. Both are powerful (and expensive) commercial visualization/visual analytics systems that are used in industry so you should definitely take the opportunity to play with them.

Original Work

Unless otherwise specified in an assignment, all submitted work must be your own, original work. You may discuss general approaches with others on individual assignments, but may not copy code or other work and must indicate on your turned-in assignment who you worked with. You may not provide your solutions to other students. Any excerpts from the work of others must be clearly identified as a quotation, and a proper citation provided. Any violation of the School's policy on Academic and Professional Integrity (stated in the Master's and Doctoral Student Handbooks) will result in severe penalties, which might range from failing an assignment, to failing a course, to being expelled from the program, at the discretion of the instructor and the Associate Dean for Academic Affairs.
Accommodations for Students with Disabilities

If you think you need an accommodation for a disability, please let me know at your earliest convenience. Some aspects of this course, the assignments, the in-class activities, and the way we teach may be modified to facilitate your participation and progress. As soon as you make me aware of your needs, we can work with the Office of Services for Students with Disabilities (SSD) to help us determine appropriate accommodations. SSD (734-763-3000; http://www.umich.edu/sswd/) typically recommends accommodations through a Verified Individualized Services and Accommodations (VISA) form. I will treat any information you provide as private and confidential.

Student Mental Health and Wellbeing

The University of Michigan is committed to advancing the mental health and wellbeing of its students. If you or someone you know is feeling overwhelmed, depressed, and/or in need of support, services are available. For help, contact Counseling and Psychological Services (CAPS) at (734) 764-8312 and https://caps.umich.edu/ during and after hours, on weekends and holidays, or through its counselors physically located in schools on both North and Central Campus. You may also consult University Health Service (UHS) at (734) 764-8320 and https://www.uhs.umich.edu/mentalhealthsvcs, or for alcohol or drug concerns, see www.uhs.umich.edu/aodresources.

For a listing of other mental health resources available on and off campus, visit: http://umich.edu/~mhealth/