
PUBLIC REPORT

Vault12
Smart Contract
Security Audit

2

Foreword

Status of a vulnerability or security issue

Clarity is a rare commodity. That is why for the convenience of both the client and the

reader, we have introduced a system of marking vulnerabilities and security issues we

discover during our security audits.

Let’s start with an ideal case. If an identified security imperfection bears no impact on the

security of our client, we mark it with the label.

The fixed security issues get the label that informs those reading our public report that the

flaws in question should no longer be worried about.

In case a client addresses an issue in another way (e.g., by updating the information in the

technical papers and specification) we put a nice tag right in front of it.

If an issue is planned to be addressed in the future, it gets the tag, and a client clearly sees

what is yet to be done.

Although the issues marked “Fixed“ and “Acknowledged“ are no threat, we still list them to

provide the most detailed and up-to-date information for the client and the reader.

Severity levels

We also rank the magnitude of the risk a vulnerability or security issue pose. For this

purpose, we use 4 “severity levels“ namely:

1. Minor

2. Medium

3. Major

4. Critical

More details about the ranking system as well as the description of the severity levels can

be found in Appendix 1. Terminology.

No issue

✓ Fixed

Addressed

Acknowledged

TABLE OF CONTENTS
01. INTRODUCTION

1. Source code

2. Security assessment methodology

3. Auditors
02. SUMMARY

1. Investors

2. Advisors

3. Locked tokens

4. Vaul12 reserve

04. GENERAL ISSUES
1. Unnecessary functionality

2. multisend

3. Anyone can call addTokenGrant

4. addTokenGrant doesn’t check recipient address

5. Vault12LockedTokens doesn’t take into account

Leap year

6. changeMultiSig doesn’t validate address

7. addTokenGrant doesn’t check that _vestingDuration

<= 25 years

8. addTokenGrant doesn’t check that _vestingCliff

<= 10 years

9. Solidity version should be locked at final

project stage

10. Redundant Ownable for VaultGuardianToken

11. Team can rewrite team vesting

12. Team won’t recieve 20M per year for Advisors

13. Redundant approve

14. removeTokenGrant doen’t clear activeGrants

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

03. REQUIREMENTS

15. Vault12LockedTokens.addTokenGrant accepts _recipient,

which should be only v12MutiSig

16. SafeMath doesn’t work for uint16

17.17ю 3_distro.js and smart contracts assume different number

of seconds in a year

18. Vault12LockedTokens locks team tokens

after 24 years

✓ Fixed

✓ Fixed

✓ Fixed

APPENDIX 1.
TERMINOLOGY

Acknowledged

1. Severity

5

01. Introduction

1. Source code

2. Security assessment methodology

3. Auditors

Object Location

Vault12 Source code was given personally

The code of a smart contract has been automatically and manually scanned for known

vulnerabilities and logic errors that may cause security threats. The conformity of

requirements (e.g., White Paper) and practical implementation has been reviewed as well.

More information on the used methodology can be found here.

1. Alexey Pertsev

2. Katerina Belotskaya

1

2

3

https://peppersec.com/smart-contract-audit.html

6

02. Summary

Below, you can find a table with all the discovered bugs and security issues listed.

Vulnerability description Severity

Team won’t recieve 20M per year for Advisors Critical

Anyone can call addTokenGrant function

Major

addTokenGrant doesn’t check that _vestingDuration <= 25 years

addTokenGrant doesn’t check that _vestingCliff <= 10 years

Team can rewrite team vesting

Redundant approve

removeTokenGrant doesn’t clear activeGrants

Vault12LockedTokens locks team tokens after 24 years

Unnecessary functionality Medium

addTokenGrant function doesn’t check recipient address

Vault12LockedTokens doesn’t take into account Leap year

changeMultiSig function doesn’t validate address

Solidity version should be locked at final project stage

Vault12LockedTokens.addTokenGrant accepts _recipient, which

should be only v12MutiSig

 SafeMath doesn’t work for uint16

3_distro.js and smart contracts assume different number of

seconds in a year

multisend Minor

Redundant Ownable for VaultGuardianToken

7

03. Requirements

 ► Name: Vault Guardian Token

 ► Symbol: VGT

 ► Total: 1 Billion == 1E^9 == 1,000,000,000

 ► First 18,940,497 tokens should be locked till May 15 2019

 ► The rest of tokens can be distributed directly to their owners’ addresses

 ► Each year starting from May 15, 2018, grants Vault12 20M tokens to grant to advisors.

 ► First 20M grant for 2018 can be just transferred to our advisory vesting contract, and we
will grant them to current advisors based on their vesting schedule.

 ► The rest is unlocked as 4x grants from the supply every year going forward.

647,737,363 locked tokens vesting per the white paper formula.

The white paper uses a recursive formula that grants the Vault12 tokens at a rate of 10% of

remaining locked tokens per year from July 1, 2018. So first year (7/1/2019) would be ~64.7M,

while next year would be ~58.29M, etc.

50M tokens reserved for Vault12’s activities.

1. Investors

2. Advisors

1

2

3. Locked tokens3

4. Vaul12 reserve4

8

04. General issues

A new version of the openzeppelin Ownable contract has the renounceOwnership function.

For more information, see here.

This function is inherited by your VaultGuardianToken unnoticeably. The

renounceOwnership function seems superfluous. It is worth considering whether the

function is necessary for the project?

Recommendations:

1. Consider rewriting renounceOwnership to empty the implementation.

Status:

The multisend function of the VaultGuardianToken smart contract requires the count of

_recipients less than multiSendLimit, which is 150 by default. The current implementation

allows increasing the value up to at least 220.

Recomendations:

1. Consider increasing default value to maximum.

Status:

1. Unnecessary functionality1
Severity: MEDIUM

✓ Fixed VaultGuardianToken.sol#L18

✓ Fixed VaultGuardianToken.sol#L166

2. multisend2
Severity: MINOR

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/5daaf60d11ee2075260d0f3adfb22b1c536db983/contracts/ownership/Ownable.sol#L42
https://github.com/OpenZeppelin/openzeppelin-solidity/issues/903
https://github.com/vault12/vault-guardian-token/blob/master/contracts/VaultGuardianToken.sol#L18
https://github.com/vault12/vault-guardian-token/blob/master/contracts/VaultGuardianToken.sol#L18

9

The addTokenGrant function of AdvisorsVesting smart contract does not check that only

multisender can call it. If AdvisorsVesting contract still has the tokens approved for the

transfer, anyone can create a Grand for themselves and take the tokens.

Recomendations:

1. Consider using only the V12MultiSig modifier in the function.

Status:

The addTokenGrant function of AdvisorsVesting smart contract does not validate recipient

address.

Recomendations:

1. Consider adding a following check:

require(_recipient != address(0) && _recipient != this && _recipient != address(token));

Status:

Vault12LockedTokensr define a year as 31540000 seconds, which is not always true.

Recomendations:

1. Consider adding 21600 (6 hours) to SECONDS_PER_YEAR constant to make calculations
more accurate.

Status:

✓ Fixed AdvisorsVesting.sol#L59

✓ Fixed AdvisorsVesting.sol#L60

✓ Fixed Vault12LockedTokens.sol#L9

3. Anyone can call addTokenGrant3
Severity: MAJOR

4. addTokenGrant doesn’t check recipient address4
Severity: MEDIUM

5. Vault12LockedTokens doesn’t take into account Leap year
Severity: MEDIUM4

https://github.com/rstormsf/v12_contracts/blob/6f3e538e5354f3759ffe5ec592f26c6651a03bf2/contracts/VestingVault12.sol#L11
https://en.wikipedia.org/wiki/Leap_year
https://github.com/vault12/vault-guardian-token/blob/master/contracts/AdvisorsVesting.sol#L59
https://github.com/vault12/vault-guardian-token/blob/master/contracts/AdvisorsVesting.sol#L60
https://github.com/vault12/vault-guardian-token/blob/master/contracts/Vault12LockedTokens.sol#L9

10

The changeMultiSig function of the AdvisorsVesting and Vault12LockedTokens smart

contracts does not validate _newMultisig address.

Recomendations:

1. Consider adding address validation.

Status:

The addTokenGrant function of the AdvisorsVesting and Vault12LockedTokens smart

contracts does not check that _vestingDuration <= 25 yrs, which is a special client

requirement.

Recomendations:

1. Consider adding the validation of _vestingDuration.

Status:

✓ Fixed AdvisorsVesting.sol#L195

✓ Fixed AdvisorsVesting.sol#L195

✓ Fixed Vault12LockedTokens.sol#L128

✓ Fixed Vault12LockedTokens.sol#L128

6 changeMultiSig doesn’t validate address
Severity: MEDIUM

6

7 addTokenGrant doesn’t check that _vestingDuration <= 25 years
Severity: MAJOR

7

https://github.com/vault12/vault-guardian-token/blob/master/contracts/AdvisorsVesting.sol#L195
https://github.com/vault12/vault-guardian-token/blob/master/contracts/AdvisorsVesting.sol#L63
https://github.com/vault12/vault-guardian-token/blob/master/contracts/Vault12LockedTokens.sol#L128
https://github.com/vault12/vault-guardian-token/blob/master/contracts/Vault12LockedTokens.sol#L55

11

The addTokenGrant function of AdvisorsVesting smart contrac does not check that _

vestingCliff <= 10 yrs, which is a special client requirement.

✓ Fixed AdvisorsVesting.sol#L1

✓ Fixed AdvisorsVesting.sol#L62

✓ Fixed Vault12LockedTokens.sol#L1

✓ Fixed VaultGuardianToken.sol#L1

8 addTokenGrant doesn’t check that _vestingCliff <= 10 years
Severity: MAJOR

8

9 Solidity version should be locked at final project stage
Severity: MEDIUM

9

Recomendations:

1. Consider adding the validation of _vestingCliff.

Subsection:

Contracts should be deployed with the same compiler version and flags that they have

been tested most with. Locking the pragma helps ensure that contracts do not accidentally

get deployed using, for example, the latest compiler which may pose higher risks of

undiscovered bugs. Contracts may also be deployed by others and pragma indicates the

compiler version intended by the original authors.

Recommendations:

1. Consider locking specific version of pragma.

Status

https://github.com/vault12/vault-guardian-token/blob/master/contracts/AdvisorsVesting.sol#L1
https://github.com/vault12/vault-guardian-token/blob/master/contracts/Vault12LockedTokens.sol#L1
https://github.com/vault12/vault-guardian-token/blob/master/contracts/VaultGuardianToken.sol#L1

12

The team can use the addTokenGrant function of Vault12LockedTokens smart contract to

rewrite their Vesting Grand. The contract does not check Grand already exists. That action

cannot be used to cheat actually, but it can cause a DoS.

Recomendations:

1. Add the validation of _recipient.

Status:

11 Team can rewrite team vesting
Severity: MAJOR

11

✓ Fixed Vault12LockedTokens.sol#L54

✓ Fixed VaultGuardianToken.sol#L10

10 Redundant Ownable for VaultGuardianToken
Severity: MINOR

10

The VaultGuardianToken contract is inherited from Ownable and Claimable, which is

inherited from Ownable as well. However, the compiler resolves this graph correctly, so

there is no security impact here for now.Recommendations:

1. Consider removing explicit Ownable inheritance

Status:

https://github.com/vault12/vault-guardian-token/blob/master/contracts/Vault12LockedTokens.sol#L54
https://github.com/vault12/vault-guardian-token/blob/master/contracts/VaultGuardianToken.sol#L10

13

TokenDistro.md has the following requirements:

But 3_distro.js migration satisfies the second requirement only. For additional 4 grands, the

script utilizes the Vault12LockedTokens contract. It means the team will get 10% per year,

which is not 20M per year (as it has been required in TokenDistro.md).

Recomendations:

1. Use the AdvisorsVesting contract for creating 4 additional vestings that start from 2018,
2019, 2020 and 2021 year respectively with 1 year Cliff.

Status:

The 3_distro.js script has redundant approve to AdvisorsVesting for 20M tokens, which is

unused.

Recomendations:

1. Consider removing the unused approve to avoid attacks.

Status:

12 Team won’t recieve 20M per year for Advisors
Severity: CRITICAL

12

✓ Fixed 3_distro.js#L124-L144

✓ Fixed 3_distro.js

13 Redundant approve
Severity: MAJOR

13

https://github.com/vault12/vault-guardian-token/blob/master/migrations/3_distro.js#L124-L144
https://github.com/vault12/vault-guardian-token/blob/master/migrations/3_distro.js

14

The removeTokenGrant function of AdvisorsVesting smart contract does not clear

activeGrants mapping. So, after removing vesting the getActiveGrants still returns it.

Recomendations:

1. Consider removing vesting from activeGrants in the removeTokenGrant function.

Status:

✓ Fixed AdvisorsVesting.sol#L178. Now Grand has isActive variable which is checks in

getActiveGrants

14. removeTokenGrant doen’t clear activeGrants
Severity: MAJOR

14

The addTokenGrant function of VaultGuardianToken accepts _recipient, which is supposed

to be only one address - address of Vault12’s team MultiSig. The team may desire to create

cleaner implementation with _recepient value hardcoded into smart contract.

Recomendations:

1. Consider removing _recipient argument.

Status:

15. Vault12LockedTokens.addTokenGrant accepts _recipient, which
should be only v12MutiSig
Severity: MEDIUM

15

Acknowledged

https://github.com/vault12/vault-guardian-token/blob/master/contracts/AdvisorsVesting.sol#L178
https://github.com/vault12/vault-guardian-token/blob/master/contracts/AdvisorsVesting.sol#L93

15

The AdvisorsVesting and Vault12LockedTokens.sol smart contracts use SafeMath for uint16,

which works for uint256 only. There is no security impact for the current implementation,

but it can happen in case of some smart contract changes.

Recomendations:

1. Consider using uint256 only.

Status:

The 3_distro.js uses 31556926 as the number of seconds in year, but Vault12LockedTokens

uses 31561600. This desynchronization can lead to problems with the token claim in future.

Recomendations:

1. Consider using 31561600 as the number of seconds in a year in 3_distro.js.

Status:

16. SafeMath doesn’t work for uint16
Severity: MEDIUM

16

✓ Fixed

17.17ю 3_distro.js and smart contracts assume different number of
seconds in a year
Severity: MEDIUM

17

✓ Fixed 3_distro.js#L131

https://github.com/vault12/vault-guardian-token/blob/master/migrations/3_distro.js#L131

16

The claimVestedTokens function of Vault12LockedTokens smart contract accumulate

yearsClaimed per call instead of rewriting. That leads to locking rest amount of tokens after

24 years.

Recomendations:

1. Consider implementing rewriting.

Status:

✓ Fixed Vault12LockedTokens.sol#L114

18. Vault12LockedTokens locks team tokens after 24 years
Severity: MAJOR

18

https://github.com/vault12/vault-guardian-token/blob/master/contracts/Vault12LockedTokens.sol#L114

17

Appendix 1. Terminology

Severity is the category that described the magnitude of an issue.

Severity

Im
pa

ct

Major Medium Major Critical

Medium Minor Medium Major

Minor None Minor Medium

Minor Medium Major

Likelihood

MINOR

Minor issues are generally subjective in their nature or potentially associated with the

topics like “best practices” or “readability”. As a rule, minor issues do not indicate an actual

problem or bug in the code. The maintainers should use their own judgment as to whether

addressing these issues will improve the codebase.

MEDIUM

Medium issues are generally objective in their nature but do not represent any actual bugs

or security problems. These issues should be addressed unless there is an apparent reason

not to.

MAJOR

Major issues are things like bugs or vulnerabilities. These issues may be unexploitable

directly or may require a certain condition to arise to be exploited. If unaddressed, these

issues are likely to cause problems with the operation of the contract or lead to situations

which make the system exploitable.

CRITICAL

Critical issues are directly exploitable bugs or security vulnerabilities. If unaddressed, these

issues are likely or guaranteed to cause major problems and ultimately a full failure in the

operations of the contract.

1. Severity1

About Us

Worried about the security of your project? You’re on the right

way! The second step is to find a team of seasoned cybersecurity

experts who will make it impenetrable. And you’ve just come to

the right place.

PepperSec is a group of whitehat hackers seasoned by many-year

experience and have a deep understanding of the modern Inter-

net technologies. We’re ready to battle for the security of your

project.

LET’S KEEP IN TOUCH

peppersec.com

Github

hello@peppersec.com

https://peppersec.com
https://peppersec.com
http://peppersec.com
https://github.com/peppersec
https://github.com/peppersec
https://github.com/peppersec
mailto:hello%40peppersec.com?subject=
mailto:hello%40peppersec.com?subject=
mailto:hello%40peppersec.com?subject=

