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Abstract 

In this paper, we introduce asynchronous cryptographic relays that
can power anonymous, decentralized and secure mobile peer-to-
peer networks and provide a reliable private device-to-device 
communication channel. Easily installed and confgured, crypto 
relays are designed to guarantee resilient connection and end-to-
end encrypted data exchange between many mobile devices. The 
platform supports quick messaging mode as well as transferring big
arbitrary fles over the network. A complete reference open-source 
implementations of the relay node, relay client and web user 
interface are available.

1. Introduction
To create a practical mobile peer-to-peer network we have to solve a number of 
challenges that are distinctly diferent from the usual patterns of desktop-based 
peer-to-peer networks.

To minimize smartphone battery use, a persistent mobile application will be kept 
by its mobile OS in a suspended state most of its lifetime. A peer-to-peer 
application that is waiting for external communications might be unloaded by the 
user or suspended by the host OS at any moment. To make the peer-to-peer 
network reliable we will need a backbone of stable nodes that can relay 
communications between endpoint devices, similar to Skype's dedicated super-
nodes1. Once an “always-on” relay backbone is present, mobile peer-to-peer 

† max@skibinsky.com
‡ dodis@cs.nyu.edu
1  http://arstechnica.com/business/2012/05/skype-replaces-p2p-supernodes-with-linux-boxes-hosted-
by-microsoft/
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application can establish a reliable communication channel between end-point 
devices. The relays will receive encrypted communications from an end-point 
mobile sender and cache these communications until the recipient device is woken 
up (by internal events or a notifcation from the host OS) to collect them. Such a 
relay network should provide a secure asynchronous transport layer to any peer-to-
peer mobile app regardless of app specifcs.

Let’s consider how end-points should communicate with these relays. With an 
extremely high number of mobile devices2, it is implausible to create a schema that
depends on the reliable device pre-registration for each relay. A few million devices
joining the network with little notice could be a legitimate use case (fast growing 
and popular new mobile app), or it might be a DDOS attack. A popular 
application can have an install base reaching into hundreds of millions of users, 
which would make it prohibitively complex to add and provision new relays into 
the network. To make relay nodes lightweight and dynamic, we should allow any 
device to communicate with any relay with no pre-conditions, yet introduce a non-
zero cost of a potential DOS attack — relays should thus require a “proof of work”
handshake (made increasingly dificult as the relay's load factor increases) from 
each device to establish a new communication session.

Since any relay can communicate with any device, that makes relays fully 
interchangeable. In turn, we obviously would want for the relay backbone to 
become more robust with as additional relays are added. At the same time, growth
of the backbone network will increase the exposure of end-point device 
communications to an increased number of parties. Therefore, each relay should 
provide strong privacy: it should be theoretically impossible for any relay to 
recover the contents of peer-to-peer communications passing through it, and relays
should never store communication contents in any form of permanent storage.

Finally, the relay should be reasonably robust in scenarios of partially broken or 
misconfgured installations. In the broader community, relay instances might be 
deployed by hobbyists without proper security training. When possible, we should 
add reasonable safeguards protecting end-point information passing through the 
relay even if the given relay is mis-confgured and leaks some information about its
operations (such as log fles, misconfgured TLS, etc).
 

2 Around 2 billion smartphones as of this writing, estimated to increase to 4 billion within the next 
few years: http://ben-evans.com/benedictevans/2015/5/13/the-smartphone-and-the-sun/
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1.1 Relay Node Requirements
Let’s summarize all the requirements of an asynchronous relay node:

 Universal: All the relay nodes should be mutually interchangeable and 
operate in a global address space. Any mobile device should be able to 
contact any node to pass private communications to any other mobile 
device without a pre-existing setup or registration with that relay.

 Encrypted end-to-end: It should be cryptographically impossible for the 
relay node to decrypt the trafic passing though it between endpoint 
devices — even if the relay is taken over by an external agency.

 Ephemeral: Relay nodes should not store anything in permanent storage, 
and should operate only with memory-based ephemeral storage. The relay 
should act as an encrypted memory cache shared between mobile devices. 
Key information should be kept in memory only and erased within minutes
after completing the session. Encrypted communications should be kept in 
memory for future collection and should be erased after a few days if not 
collected by the target device.3

 Well-known relays: A deployed relay’s URL/identity should be well 
known and proven by a TLS certifcate. Applications might implement 
certifcate pinning for well-known relays of their choosing. A mobile app 
could keep a list of geographically dispersed relays and use a deterministic 
subset of them to send & receive asynchronous communications to/from 
another mobile device.

 Identifcation privacy: After establishing temporary keys for each 
session, a relay node should never store long-term identity keys of the 
endpoint devices. When the protocol requires the verifcation of public key 
ownership, these operations should happen in memory only and should be 
immediately erased afterward.4

 Resilient: Relays should be reasonably resilient to external takeover and 
network trafic intercept. Such a takeover, if successful, should only expose 
communication metadata, but not the content of any communications. 
Minor mis-confgurations of a relay node, (such as leaking log fles, etc.), 
during deployment by more casual users should not lead to a catastrophic 
breakdown of communication privacy.

3 We use Redis for memory storage in our implementation.
4 In the future, it is conceivable to leveraging zero-knowledge proofs to eliminate disclosure of long-
term public keys (and therefore device identity) to a relay node completely.
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 Private nodes: Power users should have the option to deploy their own 
personal relay nodes and have the ability to add them into the 
confguration of mobile applications that are reliant on this kind of peer-to-
peer network.

2. Relay Protocol
2.1 Key Concepts
Each mobile device (Alice, Bob, etc.) has a pair of long-term identity 
communication keys: secret key comm_sk and public key comm_pk. When a 
peer-to-peer application establishes a communication circle of specifc devices it 
wants to talk with, it will exchange device identity public keys between each other
via the usual mobile communications methods (text, email, chat). Communications
with a relay (Rebecca) happen after an identity key exchange has already taken 
place between Alice and Bob. Endpoint applications can use these communication 
keys either for direct end-to-end messaging if perfect forward secrecy is not a 
factor, or as starting keys in forward-secure ratchet schema5. Communications 
between mobile device and relay instance will always be forward secure: after a 
session is established both sides will use temporary keys created for that specifc 
session, and both sides delete the temporary keys after the session.

All encryption and authentication operations are based on the NaCl library6 PKE 
functions. All hashes are performed as h (m) = sha256(0 , sha256(m))₂ ₃₂ 7. A 
relay identifes devices by the h₂ hash of the device's public comm_pk key. The 
hash of the device’s comm_pk is the permanent identifcation of that device for 
its peers. We refer to the h (comm_pk)₂  hash of the public key as hpk for a 
given device.

Hashing of the public long term communication keys forms a global address space 
between all relay nodes. A mobile device can leave communications for a specifc 
hpk on any relay, and in turn, check for its own communications for its device 
hpk on any relay. Relays have no methods of verifying “valid” hpk destinations, 
and will hold communications for any hpk given by the originator. If 

5 Such as Axolotl or similar schemas: https://github.com/trevp/axolotl/wiki
6 NaCl: Networking and Cryptography library: http://nacl.cr.yp.to/
7 To Hash or Not to Hash Again? (In)diferentiability Results for H2 and HMAC http://cs.nyu.edu/
~dodis/ps/h-of-h.pdf
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communications are not collected, they are fushed from memory within 3 days. If 
a relay is overloaded, its up to the relay administrator to start deleting stale 
communications faster (maintaining the memory-only storage policy) or to start 
caching new communications to hard drive (maintaining reliability during high 
load).8

As a measure against simple denial of service attacks, relay communications are a 
two step process. In the frst step, any client initiates a session handshake by 
sending a random string to the relay and getting another random string in 
response. This random pair will identify the session until both sides exchange 
session keys. Each relay has a difficulty setting, that can be set by relay 
administrator or rise dynamically if the relay is under heavy load. The default 
difficulty is 0 and in such cases the “proof of work” step is skipped. In these cases, 
the client verifes initiated session by responding with a hash of the client and 
relay strings h (client_token, relay_token)₂  — a simple confrmation that it 
received the relay random string. Such verifcation doesn’t require access to the 
main relay systems (key generation & communication storage) and can be done at 
the load balancer level, or at a separate, isolated tier of public facing instances, 
which can be brought online quickly during periods of increased load.

When the relay difficulty is above zero, in addition to a random string, the relay 
will send its dificulty value [1..255] after the handshake random string. Now, 
instead of sending the h  hash, client will have to send a unique 32 bytes ₂ difficulty
nonce instead: a value such that h (client_token, relay_token, dif_nonce)₂  
results in difficulty count of leading zero bits in the hash result. For example, a 
dificulty setting of 8 requires the frst byte of the hash result to be zero. A simple 
way to think about this algorithm: at the default difficulty of 0 any nonce value 
would be correct, so the client just skips the proof of work loop and responds with 
the “minimal” work unit of calculating h (client_token, relay_token)₂ . If proof
of work is enabled by relay admin, client does need to calculate proper 
dif_nonce for h (client_token, relay_token, dif_nonce)₂  to satisfy leading
zeroes condition and send it back to complete the handshake.

In the second part of the handshake, after the relay verifes the token exchange, it 
will generate ephemeral keys for the session. The client will generate its own 

8 For relays with SSD storage, temporal caching of the encrypted communication data on hard disks
should be an acceptable choice due to the technical challenges of recovering data from properly 
erased SSDs.
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session keys and, after the key exchange, prove ownership of the long term identity
key corresponding to hpk (all these communications are encrypted with the 
session keys). Once this ownership has been proven, the relay will associate in a 
limited time window the current client session key with the (now provenly owned) 
hpk and execute client commands to check, upload, and delete communications for
hpk that are sent using that client session key.

In general, the relay should be well confgured, with properly setup TLS that 
accepts only https requests and a logging policy that doesn’t save the 
content/metadata of POST requests.

2.2 Protocol Schema
Mobile device Alice A communicates with relay Rebecca R.

2.2.1 Schema Defaults
 Each session token or public key is shared once in plaintext in the A  ⟷ R 

channel, and used in hashed form in all the following communications.
 Each encrypt/decrypt operation includes a random 24 byte NaCl nonce 

with the frst 8 bytes being the big endian epoch time in seconds as 
protection from replay attacks.

2.2.2 Schema Legend
 A → R: Alice A sends to Rebecca R
 A ← R: Rebecca R sends to Alice A

Alice A owns:
 (a_comm_pk, a_comm_sk) — a long term identity communication 

key pair
 hpk = h (a_comm_pk)₂

2.3 Communication Protocol
2.3.1 A starts new session with R

1. A generates client_token = random 32 bytes
2. A sends client_token → R

 R stores client_token for handshake session
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 R generates relay_token = random 32 bytes
 A ← relay_token, difficulty responds R

3. A sends h (client_token)₂ , h (client_token, relay_token)₂  OR diff_nonce → 
R
 R verifes h (client_token, relay_token)₂  from relay_token on 

client_token session for zero dificulty. If difficulty is not zero it checks 
that frst difficulty bits of h (client_token, relay_token, diff_nonce)₂  are 
zero

 R generates and stores temporary session keys (r_sess_pk, r_sess_sk)
 A ← r_sess_pk responds R

4. A gets r_sess_pk from R response
5. A generates & stores own temporary session keys (a_sess_pk, a_sess_sk)
6. A creates session_sign = h (a_sess_pk, relay_token, client_token)₂
7. A timestamps random nonce1, nonce2
8. A c_inner = ENC(a_comm_sk → r_sess_pk, nonce1)[session_sign]
9. A c_outer = ENC(a_sess_sk → r_sess_pk, nonce2)[a_comm_pk, 

nonce1, c_inner]
10. A sends h (client_token), a_sess_pk, nonce2, c_outer₂  → R

 R recovers a_sess_pk, nonce2, c_outer
 R verifes recency of nonce2 timestamp
 R DEC(r_sess_sk → a_sess_pk, nonce2)[c_outer] → a_comm_pk, 

nonce1, c_inner
 R verifes recency of nonce1 timestamp
 R DEC(r_sess_sk → a_comm_pk, nonce1)[c_inner] → session_sign
 R verifes session_sign as h (a_sess_pk, relay_token, client_token)₂
 R writes hpk == h (a_comm_pk)₂  for this session
 R rejects session on any decryption/verifcation errors
 R on successful session:

◦ R erases a_comm_pk, client_token, relay_token
◦ R stores (r_sess_pk, r_sess_sk), a_sess_pk, hpk for duration of the

session for hpk
11. A on successful session:

 A erases client_token, relay_token
 A stores (a_sess_pk, a_sess_sk), r_sess_pk for duration of the session 

with R
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2.3.2 A sends command (a command-specifc data-block) number n to R

1. A timestamps random nonce_n
2. A hpk, nonce_n, ENC(a_sess_sk → r_sess_pk, nonce_n)[command] → R

 R verifes recency of nonce_n timestamp
 R recovers keys (r_sess_pk, r_sess_sk) for hpk active session
 R DEC(r_sess_sk → a_sess_pk, nonce_n) → command
 R executes command that may produce result (a command-specifc 

response data-block)
 R timestamps random r_nonce_n
 A ← r_nonce_n, ENC(r_nonce_n, r_sess_sk→a_sess_pk)[result] R
 R rejects command if any decryption/verifcation errors or lack of hpk 

session.
3. A verifes recency of rnonce_n
4. A DEC(a_sess_sk → r_sess_pk, rnonce_n) → result
5. A rejects result if any decryption/verifcation errors. On success A sends 

result to higher level application logic for processing.
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3. Relay HTTP Specifcation
3.1 Alice initiates session

POST /start_session/
Authentication: none. Any device can make this request.

Alice generates a random 32 byte client_token and makes a POST 
/start_session/ request with base64(client_token) string as the single line body.

 line 1: base64(client_token)

Response

 Rebecca generates a 32 byte relay_token
 Rebecca stores the following values in the memory caching layer at 

h (client_token)₂  key with a 1 min expiration (confg param):
◦ client_token
◦ relay_token

 Rebecca responds with a base64 frst line of relay_token as response. Plain 
text difficulty value is the second line of this response.

 line 1: base64(relay_token)
 line 2: difficulty

Rebecca is IP-throttled to 1 handshake request per 10 sec (confg param) for a 
given IP.

Notes

 difficulty can be in [1..255] range or zero
 The same client_token requests should return the same relay_token until 

the handshake attempt expires (1m)
 A diferent client_token generates a diferent relay_token

POST /verify_session/
Alice completes the handshake via POST to /verify_session/
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 line 1: base64(h (client_token))₂  of the same client_token used in 
/start_session request

 line 2: base64(h (client_token, relay_token))₂  OR 
base64(dif_nonce)

Rebecca checks for a valid handshake by reading from the *h (client_token)₂ * 
memory only cached entry and calculating *h (client_token, relay_token)₂ * for a 
zero difficulty setting. For any non-zero dificulty, Rebecca verifes that the frst 
difficulty bits of h (client_token, relay_token, diff_nonce)₂  are 0.

If the handshake is correct, Rebecca generates a session key pair (r_sess_pk, 
r_sess_sk). Rebecca caches this key pair in memory at h (client_token)₂ . This 
key pair should expire in 5 min (confg param).

Response

 Rebecca responds with a plaintext base64 encoded *r_sess_pk* as a single 
line response.

 line 1: base64(r_sess_pk)

Session state

Cached in memory for 5 minutes (confg param) at the h (client_token)₂  key:
 relay key pair: (r_sess_pk, r_sess_sk)
 client_token
 relay_token

Notes

 The same client_token requests should return the same session key-pair 
until the handshake expires (5 min).

 A diferent client_token verifcation returns a diferent key pair.
 If there is no cached entry for h (client_token)₂ , the request immediately 

fails. Rebecca can use verifcation of fxed size frst line of POST body as a 
quick rejection flter for malformed requests.

Deployment
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 initial handshake requests with zero dificulty can be verifed at the load 
balancer level.

 instances that verify handshake requests can be isolated from the rest of the
infrastructure.

 these instances require relatively little resources since key generation doesn’t
happen until after the handshake.

 verifcation instances can be brought online if the relay is under heavy load 
and protect instances serving verifed connections.

End State

After this exchange Rebecca has shared a temporary session key with Alice.

3.2 Alice proves ownership of hpk

POST /prove_hpk/

Authentication

 previous successful handshake for client_token
 ownership of private identity key controlling hpk.

Alice now has r_sess_pk and relay_token and can prove ownership of hpk while 
the handshake for client_token is active.

 Alice generates a temporary key pair (a_sess_pk, a_sess_sk)
 Alice writes h2(client_token) as 1st line (base64) of the POST
 Alice writes a_sess_pk as 2nd line of POST (base64)
 Alice picks 24 byte nonce_outer. First 8 bytes are the UTC timestamp 

and rest random
 Alice writes base64(nonce_outer) as 3rd line of POST
 Alice creates nonce_inner in the same way
 Alice creates 32 byte session signature as h (a_sess_pk, relay_token, ₂

client_token)
 Alice encrypts the signature with crypto_box(nonce2, r_sess_pk, 

a_comm_sk) resulting in cyphertext_inner
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 Alice creates a JSON object9:

JSON = {

nonce: nonce_inner,

pub_key: a_comm_pk,

sign: cyphertext_inner

}

 Alice encrypts this JSON object with crypto_box(nonce, r_sess_pk, 
a_sess_sk) resulting in cyphertext and writes base64(cyphertext) as 
4th line of POST

Alice POST request by line numbers

 line 1: base64(h (client_token))₂ : same client_token used to receive 
r_sess_pk, serves as the handshake id

 line 2: base64(a_sess_pk): Alice temporary session key using previously 
exchanged relay_token

 line 3: base64(nonce_outer): Timestamped nonce
 line 4: base64(crypto_box(JSON, nonce_inner, r_sess_pk, a_sess_sk)): 

Outer crypto-text

Rebecca receives a double encrypted envelope. The outer envelope is encrypted 
with the session key and the internal payload is encrypted with Alice's long term 
identity communication key against Rebecca's session key.
Rebecca has no information as to whether hpk represents a real hash. Rebecca only
checks if there are any communications for hpk in its current in-memory records.

 Rebecca recovers h (client_token)₂  from the frst line, and retrieves the 
session state from memory caching service. If there is no session state the 
request fails

 Using relay_token from the session state, Relay de-masks a_sess_pk

9 This is the only place in the protocol where Alice discloses her long term public key. A reliable 
relay will delete it, while a relay taken over by another agency might keep it and therefore get 
meta-data about Alice's communication patterns. Eventually, we can leverage zero-knowledge 
proofs to let Alice prove ownership of a_comm_sk without disclosing a_comm_pk, while disclosing
only the proof for h (a_comm_pk)₂ .
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 Rebecca checks the timestamp section of the outer nonce. Rebecca will 
reject packets with a time diference higher than 3 min (confg param). To 
account for any potential mobile phone clock desynchronization, we keep 
the timestamp validity window relatively large

 Rebecca caches all nonces received in memory for 10 min (confg param). 
Relay rejects any communication where nonce is reused to prevent replay 
attacks within timestamp validity window

 Rebecca decrypts outer cipher-text crypto_box_open(nonce_outer, 
a_sess_pk, r_sess_sk) and recovers the JSON object with a_comm_pk

 Rebecca checks the timestamp section of inner nonce. Rebecca will reject 
packets with a time diference higher than 3 min (confg param)

 Rebecca can decrypt the inner cipher-text with 
crypto_box_open(JSON.nonce, JSON.pub_key, r_sess_sk) and 
verify the session signature h (a_sess_pk, relay_token, client_token)₂

 If the communication passes all of the above confrmations:
◦ Rebecca writes hpk = h (a_comm_pk)₂  into current session memory 

storage.
◦ Rebecca writes the total number of communications for hpk in response 

body — or zero if there is no cached entry for hpk. Alice can use that 
information to determine if she needs further communication with 
Rebecca.

◦ Rebecca moves all cached data from h (client_token)₂  key entry to hpk 
entry and sets expiration to 10 min (confg param). After the transfer 
h (client_token)₂  the cached contents are deleted.

Success Response

 line 1: plaintext count of communications for hpk.

The decryption protocol verifes that:

 Alice is in possession of (a_comm_pk, a_comm_sk) keypair
 a_comm_pk hashes into hpk which becomes the new session id for Rebecca
 Alice's request is recent due to the nonce timestamp checks
 Alice's request is for this relay since it verifes recently given relay_token 

mask
 Alice's a_comm_pk is transferred over the wire in encrypted form over 

(r_sess_pk, a_sess_sk) key pair
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 The session signature is unique for the combination of (a_sess_pk, 
relay_token, client_token)

After Rebecca verifes all the checkpoints above, Alice should be allowed to 
downloaded trafic for hpk since she has proven ownership of a_comm_sk 
corresponding to the a_comm_pk which hashes to hpk.

Rebecca can store a_sess_pk as the authenticated key for hpk and will accept 
other requests referring to hpk for the duration of the (r_sess_pk, r_sess_sk) key 
pair. Rebecca will decipher trafic for hpk using (a_sess_pk, r_sess_sk) until 
r_sess_sk expires in 10 minutes.

Session state

When Rebecca has established a session for hpk she keeps the following in a 
memory only cache associated with hpk.

 Rebecca's session key pair (r_sess_pk, r_sess_sk)
 a_sess_pk
 deletes relay_token, client_token, a_comm_pk from memory
 Alice keeps the session keys (a_sess_pk, a_sess_sk), r_sess_pk for the 

same duration

Notes

Rebecca will respond to a new new_session, verify_session to establish another 
session, which in turn can be used to verify hpk ownership, even if an hpk session is
already established. If hpk is proven on another session, which implies another 
temporary key pairs on both sides, the new session state with new key information 
overwrites all cached state associated with the existing hpk session.

End State

Rebecca decrypts and encrypts trafic for the device with established hpk session 
for the (a_sess_pk, r_sess_sk) key pair.

3.3 Alice sends relay commands (basic)

POST /command/
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Authentication

Owner of private key for hpk.

 Alice communicates by encrypting her trafic to/from relay with 
(r_sess_pk, a_sess_sk)

 Rebecca communicates by encrypting responses to/from Alice with 
(a_sess_pk, r_sess_sk)

 Nonces are always timestamped and checked by both sides to match current
UTC time within 3 min (confg param). Rebecca caches in memory all 
nonces received for 10 min (confg param). Rebecca rejects any 
communication where nonce is reused to prevent replay attacks within the 
timestamp validity window.

Alice creates a JSON data structure that must have the command name feld 
cmd. Alice encrypts this JSON data structure with (r_sess_pk, a_sess_sk) to 
get cipher-text.

Alice's POST to relay by lines:

 line 1: base64(hpk)
 line 2: base64(timestamped nonce)
 line 3: base64(cipher-text)

Relay will:

 check that there is an active session state for hpk
 check the nonce timestamp
 time-check key expiration
 decrypts the second line with (nonce, a_sess_pk, r_sess_sk) with the key 

taken from the established session for hpk
 recovers the JSON data structure with cmd

3.3.1 ‘count’ command
Rebecca expects a JSON object with only ‘cmd’ feld with ‘count’ value. Rebecca 
responds by encrypting the following JSON data structure:
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{ count: 0 # number of communications for hpk }

Rebecca's response

 line 1: base64(nonce)
 line 2: base64(response cipher-text)

3.3.2 ‘upload’ command
Rebecca expects the following JSON felds:

{

  cmd:      ‘upload’         # well known string

  to:       h (bob_comm_pk)  ₂ # hpk of communication destination (Bob)

  nonce_id: int[24]          # Alice's random nonce for Bob, which also 

serves as a unique communication ID

  payload:  int[..]          # a binary blob (up to 100kb), presumed to 

be a cipher text between Alice and Bob encrypted with nonce_id, and 

whatever keypair Alice/Bob ratchet agreement currently dictates. Clients 

can use (a_comm_sk, bob_comm_pk) at the cost of forward secrecy.

}

Rebecca will cache nonce_id, payload into memory keyed as the next 
communication for Bob’s hpk_bob = h (bob_comm_pk)₂  with a 3 day expiration 
(confg param).

Rebecca doesn’t know and can not verify if the hpk_b value in to corresponds to 
any real public key or not. It only holds the communication queue for any well 
formatted hash value.

Rebecca doesn’t provide Alice with any verifcation of communication delivery. 
The communication will be erased from memory in 3 days (confg param). It is up 
to Alice and Bob to confrm the mutual communication delivery via an internal 
application protocol.

3.3.3 ‘download’ command
Relay expects the following JSON felds:
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{

  cmd:   ‘download’      # well-known string

  from:  [hpk1,hpk2,...] # optional. A list of comma separated hpk’s of 

communication originators to filter. If omitted, downloads all 

communications.

  start: 10              # optional. The first communication position, 

defaults to 0 if omitted.

  count: 50              # optional. The total number of communications 

to download, defaults to 100 if omitted.

}

Rebecca encrypts with (relay_nonce, a_sess_pk, r_sess_sk) the JSON array of 
communications sorted by the order in which they were received:

[{

  received_at:  # UNIX UTC timestamp of the communication receipt

  from:         # hpk of Bob's comm key

  nonce_id:     # communication nonce received from Bob and the unique 

communication ID

  payload:      # cipher-text received from Bob

},…,…,…]

Rebecca populates the array until the one of the following conditions are met:

 The array has either count or 100 communications (100 is a confg param)
 The array has all communications for the given hpk

Rebecca's response:

 line 1: base64(relay_nonce)
 line 2: base64(communications array cipher text)

Alice will check time-stamped nonce and decipher the array with
(relay_nonce, r_sess_pk, a_sess_sk).

Using the from feld allows Alice to do whitelisting if for whatever reason her 
trafic is overloaded. Alice can download and process communications from her 
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whitelisted collection of hpk before downloading the rest of her communications 
from unknown parties.

3.3.4 ‘delete’ command
Rebecca expects the following JSON felds:

{

  cmd: ‘delete’       # well known string

  ids: [id1,id2,...]  # A JSON array of communication nonce_ids to be 

deleted

}

After the communications are successfully deleted, Rebecca responds with a 
plaintext count of communications for hpk in the response.

3.4 Alice sends relay commands (File API)
File commands API leverages the existing anonymous message exchange 
mechanism of relays to bootstrap fle exchange metadata and key exchange. After 
parties have exchanged information about the fle, fle API commands allow for the
bulk content of an encrypted fle to be exchanged.
Requests and responses are encrypted and transferred in JSON format, unless 
specifed otherwise.

3.4.1 ‘startFileUpload’ command
Asks the relay to start a new upload session, and gets a unique fle identifer 
required to upload fle chunks.

Request

{

  cmd: 'startFileUpload' # well-known string

  to:                    # Recipient's name, base64(hpk_to)

  file_size:             # Size in bytes of the original file (not 

encrypted yet)

  metadata:              # Cryptobox-encrypted metadata of the file. JSON

object consists of 2 fields: nonce and ctext. ctext is encrypted hpk_from

→ hpk_to with nonce
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}

Metadata

Object with the following properties is encrypted hpk_from → hpk_to with public 
key, to allow recipient to access the metadata. This data is not accessible to the 
relay since the relay never has access to the hpk_to private key.

{

  name:      # Original filename with extension, as used on the user's 

file system

  orig_size: # Size in bytes of the original file

  skey:      # Symmetric key, used to encrypt the file using NaCl 

secret_box. Recipient will use the same key to decrypt all chunks

  md5:       # MD5 hash of the original file. May be used by the 

recipient to verify the transfer after the file is decoded

  created:   # "File created" timestamp

  modified:  # "File modified" timestamp

  attrs:     # chmod-compatible file mode

}

Response

{

  uploadID:       # Unique ID used in subsequent requests to upload by 

hpk_from and download by hpk_to file chunks. Specific to the current 

relay and file metadata

  max_chunk_size: # Maximum size of encrypted chunk (in bytes) that the 

current relay may handle

  storage_token:  # This message's token. It can be used with the 

standard messageStatus and delete commands to check on that message's 

status in storage until deleted by the recipient or expired

}

Errors

Errors are communicated back via HTTP codes 400, 401 and 500. No error 
details are given to the client, relay owner can look into relay logs for specifc and 
detail information about every error. Set log level to INFO to see every detail of 
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relay operations in log. 400 and 401 errors generally indicate error in given 
parameters or operations. 500 errors indicate some failure of relay backend system 
(such as Redis going offline) and might indicate relay should not be used in the 
near term.

3.4.2 ‘uploadFileChunk’ command
Transfer the encrypted chunk of the fle to the relay.

Once the client obtains an uploadID from the startFileUpload response, it should
split the binary into chunks of the same size. The size of the last chunk may be 
less than all of others', if it's not evenly divisible. Then the client encrypts them 
with NaCl Secretbox and sends the chunks sequentially to the server. The 
maximum size of an encoded chunk is determined by maxChunkSize which the 
relay declares in response to startFileUpload.

If a fle is small enough to ft into a single chunk, it's just a particular case: only 
one request is needed to upload it. The part param should be equal 0, and 
total_parts == 1.

Request

{

  uploadID:   # Unique identifier of the file being uploaded, recognized 

by the relay

  part:       # Sequential number of the file chunk, starting with 0

  nonce:      # Secretbox nonce in Base64 format

  last_chunk: # Present when the client sends the last chunk of given 

file. Upon seeing this flag, relay will mark the status of this file as 

COMPLETE

}

Last line of the POST request is the Secretbox-encoded chunk in Base64 format. 
The Secretbox key for this encryption is passed previously inside cyphertext of 
startFileUpload call from hpk_from → hpk_to. The encrypted contents of fle 
chunk is transferred outside of the usual relay encrypted command. Instead it's 
sent as an extra line of the POST command.

Response
{
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  status: 'OK'

}

Errors

 HTTP Method Not Allowed: The current relay does not support operations 
with fles

 One or more params in the request body are missing or invalid
 Unknown uploadID
 No free space is available on the relay

3.4.3 ‘fleStatus’ command
Get the status of the fle by its relay-specifc uploadID. Uploader can call it to 
verify the correct transfer, and downloader can check if the fle exists and retrieve 
the number of chunks.

Request

{

  uploadID: # Unique identifier of the file

}

Response

{

  status:       # One of the statuses (see below)

  file_size:    # Size announced during the startFileUpload command

  bytes_stored: # Total bytes in all chunks stored so far by the relay 

for this file

  total_chunks: # If the status is COMPLETE, this field will be present 

with the total number of chunks received

}

Statuses

 NOT_FOUND. File does not exist or has already been deleted.
 START. startFileUpload request received by relay, and the given uploadID

is valid.
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 UPLOADING. At least one chunk was successfully uploaded, but not all 
of them.

 COMPLETE. File is fully stored on the relay as it has received a fle 
chunk marked with lastChunk.

3.4.4 ‘downloadFileChunk’ command
Download the encrypted fle chunk from the relay. The total number of chunks can
be retrieved via a fileStatus request, so to restore, the fle recipient has to 
download, decrypt, and merge all of the chunks.

Request

{

  uploadID: # Unique identifier of the file, received from file info 

message in hpk_to mailbox

  part:     # Sequential number of file chunk, starting with 0

}

Response

 line 1: base64(nonce)
 line 2: base64(encoded chunk)

Secretbox key to decrypt the chunk is passed previously inside cyphertext of the 
startFileUpload call from hpk_from → hpk_to, and then used to decrypt all of the 
chunks. The relay never sees this key explicitly. 

Errors

 HTTP Method Not Allowed: The current relay does not support operations 
with fles

 One or more params in the request body are missing or invalid
 Unknown uploadID

3.4.5 ‘deleteFile’ command
Deletes a fle from the relay (or all chunks uploaded so far, if the upload was not 
completed). Can be called by either the sender or recipient.
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Relay expects the following JSON format:

{

  uploadID: # Unique identifier of the file

}

Response

{

  status: # 'OK' or 'NOT_FOUND' if the file does not exist (or has 

already been deleted)

}
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4. Reference Implementations

 Relay node: Rails/Ruby, https://github.com/vault12/zax
 Relay client: CofeeScript, https://github.com/vault12/glow
 Test Relay: https://zax-test.vault12.com
 Test dashboard: AngularJS/CofeeScript, https://github.com/vault12/zax-

dash
 Questions or comments? Our community Slack: https://slack.vault12.io

https://github.com/vault12/zax
https://slack.vault12.io/
https://github.com/vault12/zax-dash
https://github.com/vault12/zax-dash
https://zax-test.vault12.com/
https://github.com/vault12/glow
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