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Abstract

An interesting subset of problems in the eld of computer vision requre the
inference of a continuous valued quantity from image data. This dissrtation
describes thevisual inference machingVIM), a general method for learning the
mapping from image data to a continuous output space using the Bagsian rules
of inference. The learning is performed without needing to de ne a geerative
model of image formation, the bene t of which being increased speedf infer-
ence for real-time applications. The disadvantage of this method ishiat a set
of training data is needed, from which the VIM learns the mapping, and such
data can be costly to collect and label. Therefore, an extension tohte VIM
is also introduced (the semi-supervised visual inference machineor SS-VIM)
which does not require the training data to be fully labelled. The issue ohow
best to Iter an image for optimal inference is also covered, and it is fown that
the VIM or SS-VIM can easily learn mappings using a mixture of image fatures
and automatically select those that are most useful. The VIM and S¥IM are
demonstrated for visual region tracking, in human—computer inteaction (e.qg,
gaze trackin@; gesture-based interfaces) and for mapping images to points on a
manifold. Lastly, this dissertation addresses the issue of outlying laservations,
both on a per-image and per-pixel basis. In this latter case theariational Ising
classi er or VIC algorithm is developed which considers a prior over outlying
pixels that models their spatial coherence properties.

1This abstract was composed entirely using Dashéhttp://www.inference.phy.cam.ac.uk/dasher/
driven by VIM gaze tracking.
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1

Introduction

For an entity to possessvision, it must be capable of detecting and interpret-
ing patterns of light so that it can perceive the world and act accordimgly. The
eld of computer vision concerns the design and implementation of algorithms
that make inferences from image data received from a camera. Byapaphras-
ing Aristotle's de nition of vision as nding “what is where by looking” [Ma  rr,
1982], we highlight the two most fundamental problems researchersn com-
puter vision seek to solve: localization (identifying “where”) and recognition
(identifying “what”).

This dissertation addresses a subset of problems in computer visiowhich
require the inference ofcontinuous-valued quantities. For example, in localiza-
tion we identify the position of a target in the world and this is expressedas a
vector of continuous-valued coordinates (see Fig. 1/1a). Fundaemtally, recogni-
tion requires the classi cation of a target image into one of many discete classes.
However, assuming it is known “what” a target is, it may still have some un-
known, continuous-valued property we would like to know; for example whe n
a user looks at a computer screen, knowing the coordinates they argazing at
is an alternative method for human—computer interaction: this is of particular
interest as an assistive technology for people with physical and comumication
dif culties (Fig. 1.1b). Even when the output space comprises a nitenumber
of discrete items, it may be possible to identify a natural, continuouscoordinate
system in which the items are embedded (see Fig. 1.1c). By treatingcsuvision
problems as one ofmapping from the space of images to continuous outputs,
these applications, and many others, are realized in this dissertatioby develop-
ing a general framework which we call thevisual inference machine

These types of application have been addressed by many reseagch how-
ever the framework developed in this dissertation is driven by the dese to create
a truly useful system. Therefore, it is essential that any systenteveloped can per-
form its given task with reasonable accuracy and robustness, butdyond this we
state three speci c aims:

Ef ciency Output quantities must be inferred in real-time, meaning that images
are received from a video camera and an output must be returnedf one

1



x1.0 CHAPTER 1

(@)

(b)

Figure 1.1: Example applications covered in this dissertation. ({E)e sequential
localization of an object in a video sequencgsual tracking is a long-standing
pillar of computer vision. (b) Being able to infer a user's gaze unobtrusively is
an important application as an assistive technologfc) Even when the output
space for an application is discrete (here a number of framesnfra video of

a karate player), it may de ne amanifold (see X7.7) in which case discrete
items may be indexed by inferring continuous coordinates oat timanifold.
This illustration shows how hand gestures can control theled as one would
for a video game. The sequences shown in this gure can be dusddd

from http: //mi. eng. cam. ac. uk/ omcw2/ thesis/ happy _sad _mpg. mpg
http: // mi. eng. cam. ac. uk/ omcw?2/ thesis/ eye _big _-mpg. mpg and
http: // mi. eng. cam. ac. uk/ omcw?2/ thesis/ karate _mpg. mpg respec-
tively.


http://mi.eng.cam.ac.uk/~omcw2/thesis/happy_sad_mpg.mpg
http://mi.eng.cam.ac.uk/~omcw2/thesis/eye_big_mpg.mpg
http://mi.eng.cam.ac.uk/~omcw2/thesis/karate_mpg.mpg
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image before another arrives; typically this is at 15-30Hz. Preferhly,
inferences should be made even faster than this so that less tha®d%
CPU time is used.

Simplicity The system must be relatively inexpensive, so it is not acceptable for
it to require any dedicated hardware beyond a standard personal@amputer
and webcam.

Versatility The system must be versatile, meaning that a single piece of software
can be rapidly adapted for use in a variety of situations by an inexper
user.

It will be shown in subsequent chapters that the requirement for efciency is
satis ed by the visual inference machine: in our implementation, theapplications
shown in Fig. 1.1 can all be called “background tasks” on a typical peronal—
computer, meaning they leave the majority of CPU cycles free whilst ograting
in real-time. The two subjective requirements are also shown to be satisd
through the use of simple equipment throughout and the variety ofsituations
we are able to tackle.

1.1 The visual inference machine: VIM

Many approaches to solving problems in computer vision involve building a
mathematical model of the physical processes that convert a atworld scene
into an image. To make inferences about the scene, one varies thagameters of
the model until the image it synthesizes matches most closely an imageceived
from a camera. This is known as themodel-basedapproach by the computer
vision community. In building the models, a compromise is usually necessy:
one may choose to build a sophisticated model, capable of describing great
deal of the complexity encountered in a typical image, and such appaches have
given rise to many excellent results in computer vision and computer @gphics.
However, this kind of processing is very time-consuming, and is only pssible for
“off-line” situations. To use models in a real-time application, the situation must
be simpli ed, e.g., many such methods only consider the occluding comurs of
objects and theedgesthey induce in images. However, any approximations or
de ciencies in these models can lead to poor inferences and lack of bustness,
particularly when the scene appearance changes in a way not accout for.

It is, however, possible to perform visual inferencewithout a model of image
generation and in the areas of object recognition and object deteixin [Turk
and Pentland, 1991, Osuna et al., 1997, Viola and Jones, 2001], thee has been
interest and success imppearance-base@pproaches. With no model of image
formation, the images are treated as points in a high-dimensional se and

3



x1.2 CHAPTER 1

discriminative learning is used to map from image space to the target output
space without consideration of how a particular input arose.

The framework developed and discussed in this dissertation is of thepgoearance-
based, discriminative, variety. The reasons for this are

1. Whilst it may be a highly complicated physical relationship between an
image and the state of the world causing it, the inverse mapping from im
ages to this state may be approximately expressed as an ef cientapping
between two spaces.

2. When the only thing one cares about is the output space, it is wastal to
expend effort modelling the behaviour and structure of the input pace.

These two statements seem virtuous in respect of what the statednas are, how-
ever there are also caveatdi) whilst a mapping might be ef cient to execute, dis-
covering the mapping from scratch may be a complicated and time-awsuming
exercise;(ii) one must be certain that itis only the output space that is of in-
terest so as not to be disappointed when the resulting system is noapable of
generating images, computing image likelihoods, etc.

The drawback of having no model is that the relationship between inpus
and outputs is initially unde ned. Instead, the mapping is constructed through
supervised learning in which some higher level system (e.g., a human) provides
a training set D containing typical examples of images that will be observed.
Each example has an associatelhbel which designates what the output of the
system should be. Atraining stage is required, during which the details of the
input—output mapping are learnt from these training data. If a training set can
be collected easily, the same set-up may be trained to tackle many téfent prob-
lems, squarely satisfying the requirement for versatility.

We call this appearance-based, learning framework th@isual inference ma-
chine, or VIM, and Fig. 1.2 schematically illustrates this simple set-up: a web-
cam captures a view of the world and converts it into a digital format; this is
then processed by deature transform (see Chapter 5) to give afeature vector
X 2X R" which the trained VIM then maps to a low-dimensional output
vectory 2 Y RY describing the wanted characteristics of the input image.
This inference pipeline ows inthe x ! y direction only: images are translated
into simple, meaningful representations. The oppositey ! x direction is the
computer graphics pipeline in which descriptions of the world are transbrmed
to images. As discussed above, it is assumed that the applications ware about
do not require this functionality.
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Figure 1.2: The visual inference pipelineA digital imagel is processed by the
feature transform to give a feature vector which the VIM then translates to an
output vectory. With no initial model of how images are formed, the VIM mapping
is de ned by a training seD containing example input{output pairs. The opposing
path, mapping simple representations to features or imagespimputer graphics.

1.2 Dissertation overview

The VIM process of learning a mapping from training data, and of making pre-
dictions once trained, follows the Bayesian rules of inference. This inslves treat-
ing all unknown quantities as probability distributions and leads to a pragmatic
mechanism for handling uncertainty, combining multiple sources of inbrma-
tion, incorporating prior knowledge about a problem and for handling s o-called
“nuisance parameters”. Chapter 2 does not contain any novel contributions,
but explains these ideas in detail and outlines the learning methods dm the
literature that will be used to implement the VIM throughout this dissertation.

Fig. 1.1a shows localization by visual tracking, which is an important ap-
plication in it own right, as well as being a building block for many others.
Chapter 3 introduces the displacement expertas a method for region tracking.
Many previous approaches to tracking use a (usually simple) model foimage
formation, yet if the mapping principle of the VIM is used, a highly robu st and
ef cient tracker is created, demonstrated through extensive xperiment. Ow-
ing to the Bayesian methodology employed in the VIM, the estimates mde by
the displacement expert are readilyfused with other probabilistic sources of in-
formation, such as a motion model. This chapter therefore explainshow the
displacement expert is combined with such models in a simple ltering frane-
work.

The VIM learns its mapping from a supervised set of training data, aml it will
be shown that the learning process is limited to a few seconds for the ajority of
systems developed here. In some situations (including the displacemt expert)
training data is easily gathered, yet for others it is this step that pses the largest
impediment to getting the VIM ready to make inference from real-time data.
Chapter 4 shows how the VIM may be extended to deal with training data in
which not all of the example images are labelled. The result is called theemi-
supervised visual inference machiner SS-VIM, and experimental results show

5



x1.2 CHAPTER 1

how it is still possible to exploit partially labelled training data. The SS-VIM
makes a large number of applications practical that would otherwise bedif cult
to de ne with exhaustively labelled training data.

There are many ways in which a digital image can be Itered to produce
features useful to the VIM in learning its input—output mapping. Chapter 5
rstly describes the feature transforms that are used in this dissrtation before
explaining how a mixture of feature transforms can be used with the VIM and
SS-VIM, making the most of several lters.

A shortcoming of the appearance-based approach is that it can bmore dif-
cult to identify outliers: if an image is a point in a high-dimensional space
mapped to an output space, the VIM will blithely map even ridiculous inputs
to similarly ridiculous outputs, with a possibly undesirable outcome. Therefore,
Chapter 6 covers the general topic of outliers. First whole image outliers are
considered so the that VIM is capable of either sending a warning signdhat its
predictions may be unreliable, or automatically xing the problem itself. The
latter half of the chapter then covers the more subtle issue gbartial contamina-
tion, in which only part of in incoming image is an outlier, or misleading. Such
a problem has been studied in detail in the past, however the signi cancontri-
bution here is the consideration of a spatial prior over the possible dtribution
of outlying observations: “bad” portions of an image tend to appear in coherent
“blobs”. A Bayesian method is developed for inferring (i) which observations
are contaminated; and(ii) whether the “good” observations truly represent a
particular target. This is a sister algorithm to the VIM and, for reasons of its
design, is called thevariational Ising classi er, or VIC.

Having developed the mathematical machinery of the VIM and VIC ap
proaches to visual inference,Chapter 7 puts them to use as practical applica-
tions. The rst application combines the displacement expert with the outlier
detection ideas to form a system that can track a target for an ind nite period of
time whilst only requiring 10—-20% CPU cycles. A number of human—computer
interaction applications are then considered, including gaze trackig (Fig. 1.1b)
and a variety of visual interfaces for the Dasher text entry system [Ward and
MacKay, 2002]. The inference of 3D pose is then covered for huma heads,
and for a moving camera. Finally, the possibility of using the continuows VIM
framework for discrete output sets is considered (e.g., Fig. 1.1c).

The last chapter of the main dissertation isSChapter 8 which summarizes this
work and provides speculation on future research directions.

Beyond its scienti ¢ contributions, part of this dissertation's legacy is the
bringing together of various research topics in this particular con guration. A
broad cross-section of the literature is surveyed here, with manyush comments
are collated as Appendix A in order to keep the individual chapters azoncise as
possible. The most relevant work is however mentionedn situ if it is a necessary

6



De nition of symbols and notational conventions x1.4

part of the “story” describing a part of the research explained.

Many aspects of the VIM's performance are best demonstratethrough video
data. There is therefore a collection of on-line material which can be acessed
(along with an electronic copy of this dissertation) from the web page

http://mi.eng.cam.ac.uk/ omcw?2/thesis/thesis.html

1.3 De nition of symbols and notational conventions

Both variables and constants in this dissertation are representdaly either Roman
or Greek italic characters, e.g.x. A vector quantity is set asx, the i element of
which is indexed using the notation x;. Matrices will be denoted using a sans-
serif font and are also capitalizedX. The element in thei" row and j column
of a matrix is written as Xj .

Calligraphic notation will be used to denote sets: X. When a set contains
a nite, ordered number of items, each item is indexed using the supscript
notation x(). Sets are also written explicitly using curly braces, meaningx;yg
is the set containingx andy.

Finally, we will also use “function overloading” from time to time, where
the meaning of a function depends on the number or type of paramedtrs.

1.4 Related publications

Some of the work described in this dissertation has been published pv@usly.
The displacement expert (Chapter 3) and its combination with a detetion algo-
rithm (described in Chapter 7) appear in [Williams et al., 2003, Williams et al.,
2005a). Some initial work on the variational Ising classi er (VIC) algo rithm,
discussed in Chapter 6, has been published in [Williams et al., 2004].
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2

Bayesian Learning and Inference

The visual inference machine, or VIM, described in Chapter 1, lears the map-
ping between input feature vectorsx 2 X and an output spaceY. This chap-
ter does not contain any novel contributions, but is a tutorial on the Bayesian
learning techniques that will be used to implement the VIM for the various ap-
plications covered in this dissertation. These applications all involve antinuous
output spacesY 2 RY and therefore this chapter only covers Bayesian methods
for regression/interpolation; many interesting machine learning tojics are omit-
ted simply because they are not involved in the research documertdiere. The
chapter opens with a section justifying the ubiquitous use of Bayesiamethods.
There is then a discussion on Bayesian learning in general, including a slerip-
tion of the evidence framework[MacKay, 1995] for setting model hyperparame-
ters, before a detailed description of the algorithms employed in latechapters:
namely the relevance vector machineor RVM [Tipping, 2000, Tipping, 2001]
and Gaussian processes [Williams and Rasmussen, 1996, MacKay, 18P

Probability notation

Throughout this document, the notation P (A) will be used to represent the prob-
ability that the proposition A is true. The probability that a random variable A
takes the valuea, conditional on (or giventhat) the variable B = b, will be writ-
tenasP (A = ajB = b) and will be abbreviated to P (ajb) provided the meaning is
still clear. The notation P (a) will also be used for probability densities whenever
A is continuous. Joint distributions e.g., the probability that (A = a)\ (B = b),
will be written as P(a;b).

Rules of probability

Several rules for manipulating probabilities will be used extensively thoughout
this dissertation and are brie y stated here. For a full discussion se [Jaynes,
2003].
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Product rule This is also known as the chain rule and states that

P(a;b = P(ajhP(b) = P(ba)P(a); (2.1)

Sum rule This provides the ability to marginalize a joint distribution where, if b
is discrete X X
P(a) = P(a;b = P(ajb)P(b); (2.2a)
b b
or, if bis continuous
Z Z
P(@= P(ajbhdb= P(ajbP(bdb (2.2b)

Bayes rule This is an important corollary to the product rule, stating that

st

: P(Djy)P(y)
(yiD) = 2. (2.3)
E:ﬁrj f’._ézD.i

where the special namegosterior, likelihood, prior and evidenceare used
whenevery denotes a set of unknown parameters that we wish to infer
from data D.

2.1 Why Bayesian?

Bayesians meaning those who practise Bayesian inference, regard probabiliys
a measure of the degree of belief in something [Cox, 1966, Jayne2003] and
treat the unknowns in a problem as random variables. An important pat of
this is the ability to de ne prior probability distributions over the unknowns,
encapsulating any beliefs held about them before observing data. dhsider the
prior probability distributions as a pragmatic means of expressing our design
decisions, made meaningful thanks to their probabilistic interpretaion. This
differs from Fuzzy Logic [Zadeh, 1965], for example, where “degree of truth”
cannot be interpreted probabilistically and as such is less meaningful.

This use of probability is at odds with the so-calledfrequentist [Fisher, 1956]
position on statistics where only repeated experimental outcomes ay be con-
sidered as random variables and the laws of probability simply cannot baised
as Bayesians do. Rather than enter the prickly Bayesian/frequdst debate here
(there are better protagonists e.g., [Jaynes, 2003, Berger, 29]), we will assume
that treating unknowns as random variablesis reasonable and rely on engineer-
ing common sense to let experimental performance speak for itself

10



Why Bayesian? x2.1

Like regularization [Tichonov, 1977], priors are often de ned tha t promote
simpler explanations of the world, for example when tting a curve to data
points, smoother interpolants are often preferred in the absene of any other
information. This is a manifestation of Occam's razor [Audi, 1996], the uni-
versally accepted scienti ¢ principle, also known as the principle of pasimony,
which states that when multiple explanations are available for a phenomeon,
the simplest should be preferred. As [Jefferys and Berger, 199RlacKay, 1995,
Rasmussen and Ghahramani, 2001] explain, however, the Bayesiandatment
automatically encompasses Occam's razor without necessarily enacaging it in
the prior. This is due to requirement that the likelihood in (2.3) be a normalized
probability distribution which integrates to one. A more complex model will
explain more of the space of possible data and thereby tend to hava lower
density around the observed data point. A simpler hypothesis will hae a higher
density in some region and, if this coincides with the data, will be prefered in
the posterior.

These regularizing effects act as a safeguard agairster tting [Duda et al.,
2001] by preventing the selection of a model that ts the data vey well, but does
not generalizeto new training data. A good example of over tting is found in
[Burges, 1998]: imagine a botanist who claims a large plant is not a trebecause
it has a different number of leaves to every tree she has seen befo The other
extreme is called “under tting” and would correspond to our botanis t being
overly general declaring everything that is green to be a tree. As will see in
later chapters, Bayesian methods for learning from data have a gl generalizing
ability and are capable of making reasonable predictions for novel inpts.

However it is achieved, the aim of Bayesian inference is to provide a digt
bution over the unknowns given the dataP (yjD). This differs from alternative
methods that may simply provide a single estimate for the unknowns. A an
illustration of the bene ts of a full predictive distribution, consider the idea of
localizing a target object within an image (this is the subject of Chapter 3. Two
observations are made, the rst of which leads to a prediction that e object
is at coordinates (100;100) (1;1) and the second at(250; 250) (200; 200).
Clearly, we would like to take the second prediction less seriously than ta rst
one due to its greater uncertainty. Bayesian inference not only gés us a mea-
sure of uncertainty but, coupled with the discipline of decision theory [Berger,
1993], provides a rational means of arriving at a decision, in light of its conse-
guences, by minimizing theexpected losgdeciding on a single position estimate
is covered inx3.5).

The Bayesian methods described in this chaptdearn the X 'Y mapping
from training data. Mechanisms for learning tend to involve a number of pa-
rameters, which are often referred to as “nuisance parameters’bwing to the
notorious dif culty of establishing their values manually. An example of this is

11
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the support vector machine (SVM) [Scldlkopf et al., 1998, Vapnik, 1995], the
performance of which is dependent on the kernel parameters andrer-margin
trade-off parameter C. In light of this, a further bene t of Bayesian inference for
learning is that it provides a principled means for automatically handling nui-
sance parameters, either by marginalizing them out or setting theivalues from
training data: seex2.2.

Bayesian inference provides a principled means of incorporating prioknowl-
edge, makes predictions with a measure of uncertainty, and manageparame-
ter values, however its drawback is that the resulting expressions aroften in-
tractable. Also, the Bayesian method can only make predictions ba&sl on the
models it is provided with; poor assumptions in the prior will lead to poor in-
ference. In many cases, the “easy” part of Bayesian inference &stablishing the
equations one wants to solve; the “hard” part is de ning the models, making the
approximations, and developing the algorithms to learn and predict & ciently.
The following sections develop the principles of using Bayesian inferemcfor
learning a regression from a supervised training set and describe adthms for
performing such inference.

2.2 Bayesian inference for supervised learning

As discussed in Chapter 1, supervised learning involves nding a mappg v :
X 1Y between an inputfeature spaceand an output space given a training set
D of exemplar inputs and outputs (the word “example” appears in a number
of contexts in this dissertation so, to avoid confusion, example inpu vectors
appearing as part of a training set will be referred to asexemplarg

where x( 2 X are exemplar feature vectors andy) = y(xM)+ ; 2 Y are
scalar outputs, possibly corrupted by some additive noise; (we consider vector-
ial outputs in x2.7). Given this training data, the aim is to infer a probability dis-
tribution for the value y = y(x ) given a new input, P(y jx ;D). As was also
mentioned in Chapter 1, we intend to usediscriminative learning approaches
meaning we model the prediction without the use of agenerativedistribution
P(x j::2).

Frequently, y( ) is modelled as belonging to some functional class, parameter-
ized by a vectorw, i.e.,y = y(x ;w). To make a prediction, w is marginalized
out, subject to some independence assumptions

z
P(y jx ;D)= P(y(x ;w)jx ;w)P(wjD)dw: (2.5)
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From this it can be seen how the learning task is naturally divided in two: in
the learning stage the training data is used to nd a posterior distritution for

the functional (or model) parametersP (wjD); in the prediction stage we mar-
ginalize over these parameters as in (2.5). Bayesian methods make distinction

between learning and inference: the process of “learning” the paramatersw, is
simply a case of inferring them from training data. Using Bayes' rule ¢ write

the posterior for w gives

P(Djw; )P(wj )

P(wjD; )= P(Dj ) (2.6)

where we have introduced somehyper-parameters governing the learning
process. The term hyper-parameters will be used to refer to varkdes controlling
the learning process beyond the simple parameters de ning( ). For example,
they might re ect our prior preference on values of w yielding smooth func-
tions y(). When a prediction is made, these hyper-parameters should also be
marginalized out
zZZ
P(y jx ;D)= Py(x ;w)jx ;w)P(wjD; )P( jD) dw d; (2.7)

however, performing these integrations is frequently intractablefime consuming
or both and an approximate solution is sought. For example, this migh be done
by Monte Carlo methods [Gilks et al., 1995] or variational inference [Jordan,
1998]. Another approximation is to x the value of  at its most probable value
given the training data and this is the approach we will adopt here, refered to
as theevidence framework

2.2.1 The evidence framework

In [MacKay, 1995], the following approximation is made to (2.7)
z
P(y jx ;D) P(yjx:D;") = P(y(x ;w)jx ;w)P(wjD;dw  (2.8)

where ” is an optimal setting for the hyper-parameters. IfP( jD) is peaked
around *, this will be a good approximation, and signi cantly better and faster
than some others that might be used to evaluate (2.7) (e.g., Markoehain Monte
Carlo or variational methods [MacKay, 2003]).

In the evidence framework, the optimum” is determined from the data using
the marginal likelihood

z
Nzargmax P(Dj )= P(Djw; )P(wj )dw (2.9)

which appears in (2.6) as the evidence in the denominator; hence theame of
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the procedure. The following sections introduce the methods that willbe used
to learn mappings from training data and thereby form the visual inference ma-
chine. These use the evidence framework, showing it to be a simple andfective
means of dealing with hyper-parameters.

2.3 The generalized linear model

A popular parameterization for the functional mapping from featu re vectors to
outputs is known as the generalized linear model(GLM) [Bishop, 1995]

x
yosw) = owi ()= wh (x) (2.10)
i=1

where the vector (x) consists of m basis functions evaluated atx. (2.10) is
often written with a constant bias term added, however we have chosena omit
this as one can implicitly de ne an extra basis function (x) = 18x achieving
the same result with less notational clutter.

Which basis functions are used varies with application, however a fregent
choice is the Gaussian radial basis function (RBF) [Bishop, 1995]

i(x) = exp kx K2 (2.11)

where () is the basis function “centre” and is a width parameter. It is common
practice to setm = n and use the training exemplars as the RBF centres!) =
x (1,

Learning with a GLM is a matter of inferring w from the training set D. This
is discriminative learning and feature vectors on the input side are »d; i.e., no
attempt is made to introduce a density overx. Hence (2.6) is rewritten as

P(fyMgifxDgw; )P(wj ),

PWID: )= ygitxg; )

As a de nition for the likelihood, target training outputs are assumed to be
corrupted from their true values by independent and identically distibuted (iid)
Gaussian noise. The multivariate Gaussian distribution will be written asNormalxj ; ),
meaning the distribution is overx with mean and covariance matrix : i.e.,

— 1 1 T 1 .
P(x) = pWeXp 5(X ) (X )

In cases wherex is scalar, then this same notation will be used to represent
the univariate Gaussian distribution. Given thaty(®) = y(x())+ where
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Normal jO; 2) we get the likelihood

. _ Y _ .
PyOgitxOgw; )/ exp  HwT (xB) y0)?2
i=1

—exp Sa(w o YT(w oy (212)

wherey contains all of the scalar training targets collected into a column vetor
(.e.,yi = yi)yand 2 R"™ ™M js the design matrix containing all of the basis
function values for the training set, i.e., j = j(x(). The prior is also speci ed
as a multivariate Gaussian with mean zero and covariance matrixA

P(wj )= Normalwjo;A) / exp( iw'A lw): (2.13)
Having speci ed the likelihood and prior terms, the set of hyper-parameters

now consists of the training data noise variance 2, the elements ofA and the
parameters of the basis functions.

Since the prior and likelihood are both Gaussian, the posterior will be too
[MacKay, 1995, Bishop, 1995]

P(wjD; )= Normalwj#;G) (2.14a)
G=(+ T +AH? (2.14b)
w= 231G Ty: (2.14c)

The same analytic tractability applies when making a prediction
z
P(y jx ;D; )= P(y jx jw; )P(wjD; )dw (2.15)

where we take the posterior forw from (2.14) and de ne the functional evalua-
tion process as Gaussian

P(y jx ;w; )= Normaly jw' (x ); 2 (2.16)

to give the Gaussian prediction

P(y jx ;:D; )= Normaly jy :R? (2.17a)
vy =W (x) (2.17b)
R?= (x)'G (x )+ % (2.17c)

The evidence framework, described irk2.2.1, is used to establish a value for
the hyper-parameters in . In the case of the GLM equations given above, the
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evidence is again a multivariate Gaussian distribution

P(fy®Wgjfxg; )= Normalyjo; ) (2.18a)
S= ?I,+ A 1T (2.18b)

is xed at the maximum of this but for numerical reasons the objective func-
tion is usually the logarithm of the evidence

A = argmax log P (fy®gjf xWg; )

=argmax 1y'S 'y 1llogdetS+ const (2.19)

The rst term on the right is a measure of how well the GLM ts the data for

a given set of hyper-parameters. The second term is the logarithraf what is

frequently termed the Occam factor [MacKay, 1995, Tipping, 2001] as it gov-

erns the complexity of the GLM. As mentioned in x2.1, we did not explicitly

demand this factor exist: it is a natural consequence of the Bayem approach
to inference. Providing the basis functions are differentiable as auhction of ,

(2.19) can be maximized using conjugate gradient ascent [Bishop, 8%, Press
et al., 2002].

2.4 The relevance vector machine

The relevance vector machine (RVM) was introduced in [Tipping, 200] as a
Bayesian response to the popularity of the support vector machia (SVM) [Vap-
nik, 1995, Scholkopf et al., 1998]. The RVM is a GLM, its novelty coming in
the de nition of the prior covariance A (2.13)

A=diag( 1;:::; m) (2.20)

where the ; are independent. This brings up the notion ofrelevance basis func-
tions with ;! O will have a zero posterior weight w;, have no in uence on the
sum (2.10), and may as well be ignored when making predictions. This prp-
erty of ignoring basis functions is calledsparsity which, when a large number of
basis functions are removed, has bene ts for both computation&ef ciency and
storage.

Sparsity is also one of the selling points of the SVM [Vapnik, 1995, Schlkopf
etal., 1998]. There are three reasons to prefer the RVM over th&&VM, however:

1. The RVM yields full predictive distributions rather than point estim ates;

2. The RVM has been shown to be more sparse than the SVM in some ces;
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3. The SVM has a number of nuisance parameters that can be awkwardnd
costly to set.

On this last point, one might point out that the RVM has a host of nuisance
parameters: namely the hyper-parameters?, = f ;g and the basis function
settings. However, these can all be determined from the training da via the
evidence framework; as for all GLMs.

2.4.1 Training the RVM

If the values of the hyper-parameters are known, then predictios can be made
with (2.14) and (2.17) immediately. This may be the case for the basis faction
parameters and possibly the training noise 2, but we are unlikely to know the
value of a priori: this would imply knowledge of which basis functions are not
relevant, in which case they would simply not be included in the rst place!

A is found by maximizing (2.19) which, for smaller data sets fi < 1000,
can be done using gradient ascent. Whilst training, it is observed thahe values
for some of the ; begin tending to zero. This indicates that the associated basis
function is not relevant and it is then pruned from the problem by reposing it
as if that basis function never existed. The problem size is reducedaeh time
pruning occurs and iterations become gradually faster as training pgresses.
Nevertheless, the complexity scales a®(n®) due to matrix inversion and, for
larger training sets, a more sophisticated algorithm, described in [ipping and
Faul, 2003], can be used which exploits the sparsity of the RVM from the start.

2.5 Gaussian processes

In x2.2, it was implied that to make the Bayesian learning framework tractabie
one must parameterize the output function. Learning and predidbn then in-
volved making inferences about the parametersv based on the training data
before making predictions abouty based onw. This parametric form has ab-
stracted prediction away from training data.

Gaussian processes [Williams and Rasmussen, 1996, MacKay, 1997move
this parametric structure by de ning probability distributions direc tly onto the
space of functions: a functiony(x) can be considered as an in nite collection of
points indexed by feature vectorsx. As the name suggests, the distributions over
these functions are Gaussian and as such are completely describegdrean and
covariancefunctions which can be written as

P(y(x)j )= GP 0;c(x;x1); ) (2.21)
where the mean ofy(x) is zero everywhere andt(x(V; x 1)) is a covariance func-
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tion, possibly de ned by hyper-parameters . If ¢(x();x1)) has a high positive
value, we are stating our prior belief that y(x() and y(x()) are highly corre-
lated (in fact, correlation depends onp C(X(S(z:;)ﬁgg =Ty but for the covariance
functions we will use, the denominator of this is a constant). Thus, if iforma-
tion is obtained about y(x(V) (e.g., there is some training data atx(), it is
propagated toy(x()) thanks to this prior. Thus, our task is to de ne c(x(); x())
such that it encodes any prior knowledge about the relationships bateen fea-

ture vectors.

To make predictions with a Gaussian process, having obtained a traininget
D and given a new inputx , the product rule is used to give

PI() P () B

PO Ty?gix ifxTg) ). (2.22)
P(fyMgjfx(g; )

According to a Gaussian process, the set of training outputs are risy samples

from y(x) taken at f x()g which are jointly distributed as

P(y jx ;fyWgfx(g; )=

P(fyWIgjifxg )= Normalyjo;C+ 2I,) (2.23)

where the elements of the matrixCj = ¢(x(;x1)) andy is again the vectorized

version of the setf y()g. The joint distribution of y and the predicted pointy is

likewise written as [Williams and Rasmussen, 1996, MacKay, 1997]

" # " #!
y c+ 2, c

P(y ;fy®gjx ;fx"g; )= Normal 0;
(y ;fy*gix ;fx*’g; )= Norma LT ox :x )

(2.24)

where c is a vector with elementsc; = ¢(x ;x(). The ratio of Gaussians can
be found analytically and (2.22) is therefore [Williams and Rasmussen;]1996,
MacKay, 1997]

P(y jx ;fyWg:fxWg; )= Normaly jy';R?) (2.25a)

Yy =c(C+ 2ty (2.25b)

R?=c¢(x ;x) c'(C+ 2, lc (2.25c)

Like the GLM, training to nd the optimal values for is performed by

maximizing the marginal likelihood, equivalent to the evidence, given by(2.23).
Taking the logarithm gives the objective function:

A = argmax logP (fFy@gjf xWg; )

=argmax 1y'(C+ Zl,) 'y logdet(C+ Z2I,)+ const (2.26)
which again consists of a data term and an Occam factor. This objectig func-
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tion is reminiscent of that for the GLM and RVM: (2.18). This is because the
GLM is a type of Gaussian process with the explicit de niton C= A 1 T.1In
the case of the Gaussian process, however there was never any neéedactorize
C, and as such it has been shown [Williams, 1997] that certain choices afovari-
ance function correspond to a GLM with an in nite number of basis func tions.
To achieve this without additional computational burden (predictions are still
made by inverting ann n matrix) makes the Gaussian process a very powerful
concept.

A Gaussian process regression is trained by maximizing (2.26), usuallysing
an algorithm such as conjugate gradient ascent [Bishop, 1995, Pss et al., 2002].
Since each iteration involves matrix inversion, training scales a®(n?), as it does
for the RVM ( x2.4).

2.6 A simple regression example

Later chapters demonstrate the RVM and Gaussian process learngnnon-linear

regression functions with very high dimensional feature spaceX . However, to

complement the discussion for this chapter, the RVM and a Gaussian mcess
were used to perform non-linear regression on a simple one-dimensiah data
set in which the exemplars are the scalars

The output set was sampled from the function
y(x) = 0:001x® 0:005*>+0:2x 0:2

with additional zero-mean Gaussian noise of variance 0.1.

The RVM was de ned using n Gaussian RBF basis functions (2.11) centred
at the exemplars i.e.,

ix)=exp kx xMVK?:
An RBF function was also used for the Gaussian process covariance
o(x;x0)) = sexp( kxi  xk?)

where and s are width and scale parameters respectively.

Both were trained using the evidence framework to establish optimalettings
for the basis/covariance function parameters, the training data nise estimate 2
and the RVM's relevance hyper-parameters. They were then usetb predict
values of y(x) at unseen data points in the range 50. The results of this are
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Figure 2.1: Simple 1D experimentThe thick line shows mean prediction and the
thin lines show the 2 standard deviation error bars. Crosses indicate the tragni
data set. (a) Gaussian process predictions for 1D data sb}.RVM predictions. (c)
Gaussian process predictions \zoomed-out" to illustrate betour far from training
data. (d) Zoomed-out RVM predictions.

shown in Fig. 2.1.

The mean prediction of both machines seems to interpolate the traing data
well. The exception is the training point at x = 10, where the RVM has decided
it pays a lower Occam penalty to describe this point as an outlier ratherthan
use a more complex interpolant to t it. The interesting behaviour is in the
error bars, where the Gaussian process is considerably more conving: the
error bars shrink close to the training data and grow to a massive vhie far
away (Fig. 2.1c). The RVM has rather larger error bars near the traning data
(which may be more reasonable than those on the Gaussian process givthe
noise in the training data), however they do not grow with distance from the
training data as much as would be expected, exposing a known shortaoing
of the RVM: the RVM is overcon dent for test points distant from the training
data.

This simple experiment suggests that the Gaussian process is predble to the
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RVM since its predictive uncertainties are considerably more realisticHowever,

there are still bene ts to using an RVM owing to its sparsity. In this experiment,

the RVM training algorithm pruned all but 3 of the training basis funct ions,

meaning that it makes predictions 7 times faster than the Gaussian prcess and
requires 1/7" of the storage. In subsequent chapters the nal choice betweethe

RVM and Gaussian process for regression will be a trade-off betweenhe com-
putational bene ts of the RVM and the more realistic predictive uncertainties of

the Gaussian process.

2.7 Multivariate regression

The preceding sections have described regression with the GLM, theMR and
with Gaussian processes when the target or output space is scalar i.¢.,, R.
To use these learning tools as a general VIM, regression to higherirdensional
spacesY  RY will be required. There are three levels of complexity with which
this can be tackled.

Full independence

By assuming the dimensions of the output space are completely indepdent,
multivariate regression can be achieved by simply modelling it agd completely
separate uni-dimensional regression problems. In many circumst&es this is a
mild assumption provided Y can be chosen such that the coordinates are mu-
tually independent. This is analogous to the independence of soursein PCA
or ICA [Ghahramani, 2004, Duda et al., 2001, MacKay, 2003], which are com-
monly regarded as reasonable.

Coupled hyper-parameters

A major reason to use an RVM is that it nds sparse solutions. Multivariate
RVM regression can be almost as fast as univariate regression if threame basis
functions and relevance parameters are used for each output diemsion. The
multivariate form for (2.10) is

y = W' (x) (2.27)

where each column ofW is equivalent to the weight vectorw in the univariate
GLM. An identical prior, equivalent to (2.13), is placed on each column of the
random matrix W and the likelihood of the vectorial training targets is treated
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as independent,

. . ik . . . .
P(fyDgifxOgw; )/ exp y® IwT (x®) T Ty wT (x0)

(2.28a)
R | |
P(Wj )/ exp  3( W)TwTaw @) (2.28b)
j=1
where = diag( %;:::; 2) contains the independent target variances and
C_
() _ 1 i=]
! 0 i6]

The posterior weight matrix W has independent columns and the covariance of
the elements of thej " column is given by the matrix (c.f., (2.14))

ci) = % j2 T +aAl; (2.29)
and thej ™ column of the mean weight matrix is
Wi = 360 Ty;: (2.30)
J
Accordingly, predictions are distributed as multivariate Gaussians
P(y jx ;:D; )= Normaly jy :R) (2.31a)
Y= W' (x) (2.31b)
Tgl) + s =
Rj = ()G Gy 1= (2.31c)
0 i 6]

Note that although this model does consider some dependency bgeen out-
put dimensions through the hyper-parameters, each coordinate istill treated
as completely independent in the likelihood so, whilst there is an perforrance
improvement for the RVM, there is no modelling bene t over the completely
independent option above.

Joint outputs

If is no longer assumed to be diagonal, the situation becomes increasiyg
complicated as the columns ofW are no longer independent in the posterior.
[Chakraborty et al., 2004] discusses some of the mathematical is®s and com-
plications surrounding this problem, however for multivariate regression in the
VIM, the coupled hyper-parameter model will be used for the RVM, whereas
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the complete independence model will be used for the Gaussian procekaving
it to the higher order system providing training data to choose an ouput space
Y with approximately independent dimensions.
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3

Learning to Track: The Displacement Expert

The advent of object detection algorithms that can exhaustively serch an image
and localize a target at video frame rate (e.g., [Romdhani et al., 200Viola and

Jones, 2001]), has raised the standard expected from localizatioalgorithms.

For visual tracking algorithms to compete, they must become evefaster, to the

point of becoming background tasks on a desktop PC. This chaptemtroduces

and examines thedisplacement experf an approach to tracking built on the

visual inference machine (VIM, Chapter 1), which learns a non-linearmapping

from images to displacements in object position. We will show that this is a
robust method for visual tracking and, when trained using the relewance vector
machine &2.4), is capable of tracking at 30Hz using less than 20% CPU time
on a desktop PC (see3.7 for experimental details). Extracts from this chapter
have appeared previously in [Williams et al., 2003, Williams et al., 2005a].

The chapter opens with a de nition of what tracking is, how tracking may
be posed as a mapping and a literature survey of relevant previous wk. The
creation and use of a displacement expert is then described as well s integra-
tion with a Kalman ltering algorithm. The chapter concludes with an exte nsive
set of experiments.

3.1 What is tracking?

A fundamental task in Computer Vision is the localization of a target within an
image (see Chapter 1). With no prior knowledge about the target's psition, the
image must be searched exhaustively, but for localization in sequeiatl frames
of a video sequence, it may be appropriate to useéracking if it is known, or

can reasonably be assumed, that the target's motion is smooth aninter-frame
changes in position will be either small or predictable. Localization by tacking
can therefore be computationally ef cient, but has the downside that whenever
the smoothness assumptions are violated, a tracker may fail to Iadize the tar-
get: a failure mode known as “loss of lock” [Blake and lIsard, 1998]. This
chapter explains how the visual inference machine (VIM) idea from Gapter 1
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can be used to build an ef cient tracking system whilst Chapter 7 explans how
occasional loss of lock may be detected and dealt with.

Targets will be considered as rigid, planar regions of images in this chapr,
not as three-dimensional objects in the real world. Any 3D motion or non-rigid
deformation of the target will be considered as a non-linear noise proess to
which a degree of invariance is needed. The treatment of some inteseng 3D
motions and deformations will be covered in Chapters 4, 5 and 7.

3.1.1 State-spaces, sampling and normalization

To determine a target's position in an image, a de nition is required for what
“position” means in a given application. The numerical description of a target's
position will be referred to as its state and when tracking with d degrees of
freedom, the state vector is represented as 2 RY.

Assume that the target is rectangular and that there is a canonitaeference
frame with the target at its origin (see Fig. 3.1). Given the statau, there exists a
warp function mapping canonical coordinatesa to image coordinatesa®

%= (aju);
wherea 2 R? is a point in the canonical reference frame andh®2 R? a point in
the image. The three state models that will be demonstrated ix3.7 are:

Translation This is the simplest model and only explicitly considers horizontal
and vertical translation of the target. The state vector isu 2 R? and the
warp function is

2(a;u) = a+ u:

Euclidean This four-dimensional state space § 2 R?*) expresses rotation and
isotropic scaling in addition to translation. Regions are therefore réated
by the Euclidean similarities [Hartley and Zisserman, 2000] and the wap
function is given by

a(@;u) =24 (uz)a+[u ug]"

where () is a2 2 rotation matrix through an angle , and we have
de ned the 4" element ofu to contain the logarithm to base 2 of relative
scale.

Afne The largest number of degrees of freedom considered is six, cogpond-
ing to the af ne transformation [Hartley and Zisserman, 2000]. Th ese
augment the four degrees of freedom of the Euclidean similarity by iolud-
ing anisotropic scaling and shear. With this state representation,ie warp
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function is - #
u u u
s(a;u) = 1, 3 Ug a
uo Us Usg

We assume that all imaged are discrete and only contain data at integer
pixel locations. It is likely that warped points will not have integer values and
to recover (approximate) image data for general points a comprmise between
computational speed and accuracy is necessary. The fastest tined is to round
the warped coordinates to the nearest integral values.In cases witlarge warp,
this can result in a considerable distortion. More sophisticated metlods interpo-
late between pixels and in many cases a linear interpolation between neigbur-
ing pixels provides suf ciently good quality output with little computatio nal
overhead compared to nearest neighbour: this method is used fahe experi-
ments in this dissertation.

Sampling is used to describe the process of warping a region described by
u into the canonical coordinate system before applying the featurdransform
to give a feature vector. Sampling froml using state vectoru, gives a sampled
region x, written as

x="f(;u):

f () is afeature transform that translates general image data into a speci c rep-
resentation. Examples of feature transforms include edge eneydFreeman and
Adelson, 1991], colour, or simple greyscale intensity. Different ima@ features
are discussed in detail in Chapter 5, but in this chapter, greyscaletures will be
used predominantly, in which case the elements of are scalars betweer® and 1
which are normalized usinghistogram equalization[Jain, 1989] to provide some
invariance to illumination. The sampling procedure is summarized in Fig. 32.

3.2 Tracking as a mapping

Consider a video sequence of lengtV framesf | (t)gy:l showing a moving target
where the true, and generally unknown, location of the target in eachframe is

given by the state vectorsug;us;:::;uy. It will be assumed that ug is already
known (initialization is covered in x7.1) and that tracking is causali.e., when
inferring the target's position in frame t = , no information is available for

frames at timest > . There is also interest in non-causal tracking algorithms
in which information from an entire video sequence is used to infer posiion
in a single frame (e.g., [Winn and Blake, 2004]). However, our emphasisere
is on producing an ef cient tracking algorithm that can be used in live, real-
time situations where V is unknown and there is no possibility of obtaining
knowledge of future frames.

Provided with an estimate of the target's position in a framet, the state
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canonical reference frame

image coordinate system

Figure 3.1: The canonical reference frameA point a in the canonical reference
frame can be transformed into the image's coordinate systemgisi warp function
based on the region's state parametars

sample from imagex = f (I ;u)
Require: rectangle width/height: W; H
extract warped sub-image®
for b=0 to H do
fora=0 to W do
a=[aH"
a’= (aju)
interpolatel Ya; b 1(a%
end for
end for
apply feature transform to sub-image f (19

linear interpolation:| (a9
(a;b = a°
(a;D) = oor(a;b

a a
b b

=01 N+ | (a+1;D

I, =(1 J(a;b+1)+ | (a+1;b+1)
returnl (@) =1 )i+ 12

Figure 3.2: Image sampling algorithm
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displacement is de ned asy; = t; U¢. The assumption of small or predictable
inter-frame motion underpins the justi cation for tracking and is eq uivalent to
saying that

abq[y¢i)< i i=1:::d 8.1)

for some maximum displacement vector i.e., all displacements lie within a hy-
percube centred on the origin with sides of lengti2 . Tracking may be achieved
if it is possible to generate estimates within  of the truth and infer y; for every
frame.

We de ne a generaldisplacement expertas a machine that, giverl © and an
estimate of the target's positiont, returns the displacement from the prediction
to the true location y = y(I®;&). The displacement expert can be posed as
a special case of the VIM, introduced in Chapter 1, when feature vetors are
sampled from a state estimate and mapped to a (PDF over) displacems y.

Subject to the assumption (3.1), aglobally optimal displacement expert is
de ned as the minimizer of the functional
X Zu=u()

E(y) = u() & y(;w) *du (3.2)
PIRa)

where [ is the set of all images that contain the target to track, and the faction
u(l) returns the ground-truth state vector for the target in imagel . The variable
tt 2 RY traces out the hypercube of expected displacements, determiciéy

The following section gives some examples from the literature that carbe
considered as displacement experts and approximately solve (3.2yHineariza-
tion. However in x3.4 we show that the VIM can also be used to create a dis-
placement expert by learning from a supervised training set of exeplars sam-
pled with known displacements.

3.3 Previous work

Tracking has been a central part of computer vision research fomany years
and has a vast literature associated with it; more than could be comfdably
summarized here. Instead, this section aims to give a concise ruhrbugh of the
literature on real-time region tracking relevant to the novel work introduced in
this chapter. A more complete literature survey on the wider contriutions in
visual tracking may be found in Appendix xA.1. Another extensive review, with
a different emphasis, may be found in [Blake, 2005].
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3.3.1 Model-based tracking

Real-time tracking occurs when state estimates are generated from one frae
of image data before the next arrives. A well-known early example of ths is
the RAPID tracker [Harris, 1992]. RAPID requires a known camera calibra-
tion [Hartley and Zisserman, 2000] and an accurate 3D model of the target
object indicating the location of high-contrast edges. 3D tracking isperformed
by rst projecting the model into the image using the current stateestimate and
measuring the distance from the edges predicted by the model td¢ nearest
edges detected in the image. The estimated pose of the object is thepdated to
minimize this mismatch.

The original RAPID tracker is sensitive to spurious edge detectionsnaccu-
racies in camera calibration and inaccuracies in the object model. In [Anstrong
and Zisserman, 1995], RANSAC [Fischler and Bolles, 1981] is used to detect
and eliminate outlying observations and thereby improve the robustess of the
RAPID tracker. More recently, robust optimization techniques have also been
used in [Pilet et al., 2005] to localize adeformable 2D mesh model at close to
real-time speed (10 frames per second). This ef ciency is largely @uto the use
of simple, but powerful, tree-based classi ers to detect key pointsn a test im-
age; robustness is achieved by disregarding any key points that dwt match the
consensus.

3.3.2 Template-based tracking

Model-based tracking can be both ef cient and robust, however it isnot always
possible to know the 3D shape of an object suf ciently well ahead of time to
use such methods. We therefore leave model-based approacheshind in favour

of techniques requiring minimal initialization. Many approaches to localization

minimize the misregistration between an imagd¢emplate & and a region sampled
from a test image, i.e.,

u = argmin kf (I;u) RKZ: (3.3)

This approach originates from [Lucas and Kanade, 1981] in which (3.3 is it-
eratively minimized using Gauss-Newton gradient descent. The choicef state
representation and warp function dictates the modes of variation his system
can track; a frequent choice for rigid objects is the af ne model. Vaious systems
have been based on this approach (e.g., [Bascle and Deriche, 1995ater and
Toyama, 1996]) and [Baker and Matthews, 2004] reviews each techique within
a uni ed framework, showing how particular treatments of (3.3) lead t o faster
or more robust algorithms than the original. Of these, the work of [Cootes et al.,
1998] and [Hager and Belhumeur, 1998] are of particular interestin this chapter
as they can be interpreted as special cases of a displacement expe
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[Hager and Belhumeur, 1998] reposes (3.3) in terms of a state dgtate and
displacement,tr and y:

U= t+arg m)i/n Kf(1;e+y)  RKZ (3.4)

A Taylor expansion on f (I ;& + y) gives

P+ y)= F(+ (e Ty (3.52)
where
2 % %3
1 1
qu=2 : : g; (3.5b)
@x Q@x
@m @m
thus giving the approximation
u=u+¥y (3.6a)
¢ arg r’r;in KE(le)+ rof(;e) Ty RK2 (3.6b)
which can be solved to give
1
y = ruf(l;br)ruf(l;tr)T rof (h;e) (R f(l;w)): (3.7)

By making the assumption that the estimatex is perfect, it is possible to de ne
M(e) = r yf(I;61)  MoH(tr)

where Mg = r % and only needs to be computed once for the templaté. H(t)
corrects for the change in coordinate system between the templaand the image,
but is also a constant for many state spaces giving a tracking updatequivalent
to a linear displacement expert

y =M f(l;u) (3.8)
where M%is constant for a particular template.

[Cootes et al., 1998] seek the same displacement update term as.§3, but
rather than derive M°from modelling assumptions, they generate a training set
of n random displacementsf y (Vg and feature vectorsf x () g sampled from those
displaced positions in an image containing the template (sex.4 for a discussion
of training set generation). MCis then found as

X0 . , 2
M°= arg min y@ Mo x® (3.9)
i=1
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which can be solved by least squares. This approach was generalizeddarelated
to the work of [Hager and Belhumeur, 1998] in [Jurie and Dhome, 2002] where
it is observed that by removing the explicit rst order assumption, fewer itera-
tions of (3.8) are required per frame (i.e., the state updates are Itier). Equation
(3.9) can be seen as an approximation to the optimal displacement gert (3.2)
wherejlj =1, the integral overy is replaced with a sum overn exemplars and
the form of y(I; ¢) is constrained to be linear.

3.3.3 Tracking using a binary classi er

Template methods rely on there being a single, pre-de ned templatéwhilst this

is an easier approach to initialize than the 3D models required by [Haris, 1992,

Armstrong and Zisserman, 1995], it may be the case that a single taplate does
not capture suf cient variability in the target's appearance, or that a particular

application will not provide the facility to obtain a template. In [Avidan, 2001],

a support vector machine (SVM [Vapnik, 1995]) is used to de ne a class of
target appearances, rather than a single template; in the examplapplication

of [Avidan, 2001], the SVM is trained off-line to classify image regions as cars
or not cards. The SVM score of a region vector (x) 2 R is a scalar which
is more positive the more the region resembles a car. By taking the st order

Taylor expansion of the SVM score for displacements around a guessd location
o, he writes

T @
@

and based on this linearization uses Newton's method to nd they that maxi-
mizes locally the SVM score. For certain choices of SVM kernel [Sditkopf et al.,
1998], the gradient of the SVM score can be computed analytically. k. 3.3
shows how the SVM score varies with displacement from the true objecposi-
tion.

f(l;er+y) f(l,e)+y f(l;t)

Each evaluation of the SVM score requires a candidate image regiorotbe
compared via the kernel function to a number of support vectorsretained from
the off-line training. In [Avidan, 2003] it is observed that, during t racking,
the candidate region's appearance changes only slightly from ongdme to the
next leading to only small changes in the kernel comparisons with the gport
vectors. An approximation is therefore proposed in which a candidae patch
is not compared to every support vector in every frame; instead its compared
to just 1=n of them, using cached results for the remainder. The comparison
to every support vector is thereby distributed overn frames ( is between 5
and 10 in reported experiments) resulting in much improved ef cieng for little
reduction in tracking accuracy or robustness.

The approach of using a binary classi er is further explored in [Avidan,
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f(l;a)

300 80 60 40 20 © 20 40 60 80 100
True displacement

Figure 3.3: SVM score as a function of displacemenfThis graph shows how
the SVM score varies with displacement. For this demonstmattbe SVM was
trained to classify faces against non-faces and each curvierisa di erent test
face image. The score for zero displacement corresponds taSYiM score for a
correctly registered image.

2005] where the SVM is exchanged for a classi er based on boostingHreund
and Schapire, 1995]. The bene t of boosting is the ease with which theclassi er
can be retrained on-line, resulting in an adaptive tracking algorithm @pable of
handling steady appearance changes over time.

In x3.2, we motivated the treatment of tracking problems as one of mapmg
from high-dimensional image space to a lower-dimensional state spac(i.e., the
displacement expert). From this viewpoint it is possible to raise two critiGssms
of the classi er-based approach described above:

1. The space of SVM scores is one-dimensional and can thereforeqvide no
basis for a multi-dimensional state space; in terms of dimensionalityeduc-
tion, we have over-shot the target. A parameter vector must beeastored
by using the gradient of the score and assumptions about its form.

2. The SVM is optimized to perform classi cation and not infer displace-
ments: it is a classi cation machine. Why not use a displacement machef?

These points are illustrated in Fig. 3.4. For the SVM used to produce ig. 3.3, the
gradient of the score with respect to displacement (Fig. 3.4a) is noisynaking op-
timization dif cult and the results error-prone. By comparison, a displacement
expert (Fig. 3.4b: a RVM-based displacement expert as described xB.4.2 was
used to generate this curve) produces a smooth surface from whidisplacement
predictions can be read directly without needing an optimization step.

The rest of this chapter explains how the idea of a VIM can be used, in
conjunction with Bayesian learning, to create a general, non-linear diglacement
expert.
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Figure 3.4: SVM tracking verses displacement expert. (By maximizing SVM
score, [Avidan, 2001] seeks to nd displacements giving genathe noisy derivative
of score function.(b) By learning displacements directly, the displacement expert
produces a much less noisy displacement prediction function.

3.4 Training a displacement expert

To create a displacement expert with the VIM, information is required about
what the target region is. This is provided by one or moreseed imagesn which
the state of the target is known: f10);ul)gs) . The seed position labels are
either provided manually or automatically (seex7.1). A supervised training set
of feature vectors and displacement® f x{);y()gl, is generated from the
seed images by

1. choosing a random seed imag¢ [1;ng];

2. selecting a random displacement
y@  Uniform(  ;+ )

where Uniform(  ;+ ) denotes a uniform probability distribution over
the hypercube bounded by the extreme points ;

3. sampling from the seed image using this displacement

This is the same procedure introduced by [Cootes et al., 1998] to eate a lin-
ear equivalent to the displacement expert. Some exemplars, samgiéor a face
tracking application using the Euclidean similarities and greyscale featres, are
shown in Fig. 3.5.

A displacement expert is crafted by using the VIM to learn a mapping fom
feature vectors to displacements, given ifD. The complete training procedure is
summarized in Fig. 3.6.

34



Training a displacement expert x3.4

(@) (b)

Figure 3.5: Real training exemplars. (aa labelled seed image(b) some typi-
cal exemplars used to train the displacement expert, samplatl wie Euclidean
similarities (i.e., displaced in translation, rotation arstale).

train displacement expert

Require: seed imagesf1()g's,
Require: labels:fu)g's
Require: displacement range:
Require: number of exemplara:
Require: feature transform:f ()
Require: VIM training algorithm
fori=1to N do
y®O uniform(  + )
j Uniform(1; ng)
x@ £ u0) + yO)
end for

D= fx(|),y(|)gP=1
train VIM on D

Figure 3.6: Displacement expert training algorithm
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3.4.1 Inferring displacements

Once trained, displacement predictions can be made, given an imadé? and an
estimatet, by sampling
x=f(1O;w)

and generating a predictive distribution for the displacement with theVIM
P(yil ;&) = P(yjx; D):

3.4.2 Three implementations

The system for tracking described in the previous section has at iiseart a VIM
that has learnt to map image regions to displacement predictions. Irthe ex-
periments detailed inx3.7, the displacement expert is created by learning this
mapping with three different approaches to Bayesian regression:

Linear The simplest implementation uses linear regression from feature vears
to displacements. It can be implemented as a linear model (GLM2.3)
with one basis function for each element of the input; i.e.,

i(X)=Xi R

where % is a template. This implementation of the displacement expert is
analogous to [Cootes et al., 1998, Jurie and Dhome, 2002], but with an
extra regularizing in uence from the GLM prior.

RVM The sparse relevance vector machine [Tipping, 2001]x@.4), trained for
multivariate regression, is also used to create a displacement expern
Gaussian radial basis functions were used, centred around the traiimg
data

(x) = ()2
i(X) =exp kx  x'k

where the width parameter is set during training by evidence maximiza-
tion (seex2.2.1).

Gaussian processLastly, the displacement expert is implemented using multi-
variate Gaussian process regression [Williams and Rasmussen, 1986&cKay,
1997] (x2.5) with a Gaussian RBF covariance function

o(xi;xj) = sexp  kx; xjk

where again the scale and width parameterss(and ) are set during train-
ing by the evidence framework.

Since all the models considered here make Gaussian predictions, tlkeedisplace-
ment experts can be thought of as implementing two functions: one @turning
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| feature X . P(yjl ®;u, 1) P (ugjl D)
— disp. exper lter
transform

delay

P(ug 4j & 1)

Figure 3.7: Schematic for a tracking systerisplacement expert predictions are
fused over time by a lter.

the mean displacement vector, the other returning the covariare matrix

P(yjlt; &) = Normalyjy; R) (3.10a)
¥ =y(t) (3.10Db)
R= R(l¢; &): (3.10c¢)

3.5 Spatio-temporal ltering

The displacement expert learns directly the posterior mapping fromimages to
displacements, given an estimate of the target's state,

P(yjl ;u); (3.11)

where| ) is an image received from a video source at timeandy is the predic-
tion from the displacement expert. The great merit of the displacerent expert
implemented by Bayesian regression is that it provides a full predicti distribu-
tion for y, and thereby foru; = &+ y.

Tracking is possible by just updating a point state estimate, but to egloit
the displacement expert's full predictive distribution and incorporate any motion
dynamics that may have been learned previously (a dynamical prior)a higher-
level system is required to fuse all available information. We refer tdahis general
class of systems adters and the situation is illustrated in Fig. 3.7. Notice that
the displacement expert is the only component exposed to actual iage data
and that it depends on the previous state estimate to generate astimate. This
situation is therefore somewhat different to that in classic ltering [Gelb, 1974]
where state estimation does not affect the observations. The sign's output is
an estimate of the distribution of the target's state given the histry of images
received as input

Pugl ®:::::19) = P(ugjl ©D): (3.12)
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3.5.1 General ltering formulation

Provided with the posterior from the previous time-step, and a dynanical prior
P (u¢ju; 1), a forecast of the new state can be made
z
P(ugl® "M)=" P(ujur 1)P(ue 1j1 ¢ *D)du 1 (3.13)

To poll the displacement expert from the new image a single estimate igquired.
The task of choosing the best point estimate from a distribution is a natter for
decision theory [Berger, 1993]. In this case, there is a quadratiloss for any error
in the estimate, which leads to the mean of (3.13) being the optimal chice
Z
e = uP Ul ® )ydug: (3.14)

The displacement expert will then return a predictive distribution P (ujl ®; uﬁo))
which may be incorporated into the overall posterior using Bayes' rle

P(1Vje”).

P (ugh ©9;60) = P(ugt € )P (ugjl ©;6®) ). (@as)
P(utjer™)
Taking the last term as a constant this may be written as
- 1 1 .
P (ugjl ;) = 7Pl )P (gl ©; ) (3.16a)
z
Z= Pugjl® "™P il ©;e@)du;: (3.16b)

In light of this new distribution, it is possible to poll the displacement expert
again for another estimate
Z

e = uP (Ul @0 e@)du, (3.17a)

1 . .
P(ugt e 6 = 2P (Ut ©re?)P (Uil O u?) (3.17b)

lF>(uu(t LDYP (uejl O; )P (uejl O; 6y (3.17¢)

where we have taken the liberty to constantly re-de neZ so as to ensure the right
hand side always integrates to one. 1K tests are made with the displacement
expert from image | (| the general form for the posterior state is

0 1
reverse posterior
1 ﬂ) 11{ (k)
P (uil “V; b 0) = = ?@ P(ugiye P (ur jl ¢ FD)duy 12 F(“J'“) )
dynamics disp. expert

(3.18a)
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where Z
te = UP (Ul @ trox 1)duy (3.18b)

3.5.2 Kalman lter

Because the predictions made by the displacement experts des@aibin x3.4.2
are normally distributed, (3.18a) can be computed analytically. This gves rise
to a set of linear equations analogous to the discrete Kalman Iter [Géb, 1974,
Kalman, 1963].

Let us de ne notation
1. for the dynamical prior (seex3.5.3 for details)
P(utjur 1) = NormalujBiut 15 t); (3.19)
whereu; 2 R4 and B; 2 RY ¢:
2. the displacement expert
P (udjl ;) = Normaludjer + 9ic; Re); (3.20)

whereg, = y(1 O: &) and Ry = R(1 O; &) are the predicted displacement
mean and covariance;

3. and the posterior

P (ugjl “Y: g .0) = Normalugj0¢; ¢): (3.21)

Before applying the displacement expert, an estimate is made based the
dynamical prior and the reverse-time posterior

P(ugl ¢ D)= Normal ujBi0; 1;B; ¢ 1B + = Normalugjal ); ()
(3.22)
The notation is based on that in [Gelb, 1974] whereog ) and f ) are the esti-
mated state mean and covariance in frame before an observation is madeﬂfk)
and Ek) are the same quantities aftelk observations. Polling the displacement
expert from the mean of (3.22) gives

P(ugjl ©;el?) = Normaiujo! ) + yo; Ro) (3.23)
and a posterior
P(uijl @ ?) = Normal uja@; © (3.24)
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where

0@ = al ) + Ky, (3.25a)
O =g kU (3.25h)
K= IR+ ) % (3.25¢)

K is called the Kalman gain [Gelb, 1974, Kalman, 1963]; when the estimates
made by the displacement expert are more con dent, the Kalman ga is larger
thereby giving it a bigger in uence on the posterior estimate. If thedisplacement
expert is polled several times, equations (3.25) can be used reciusly:

o = ok D4 Ky (3.26a)
W=y K & (3.26b)
(3.26¢)

The complete algorithm is summarized schematically in Fig. 3.8.

3.5.3 Dynamical priors

From (3.19), the form for the dynamical prior is
P(utjut 1) = Normalu¢jBiut 15 1):

In many cases, however, it is useful to consider second order moltsewhich take
into account the two previous observations [Blake and Isard, 1998 The I-
tering algorithm can be easily extended to second order dynamical nors by
augmentingthe state vectors to accommaodate the previous observation givin
" # " # " # " #
B:1 B 0

Ut y
U = = B= = : 3.27
TR lg O 00 (3.27)

These augmented vectors and matrices can then be used as befor the ltering
algorithm Fig. 3.8.

Setting the values ofB1, B, and  depends on how much information is
available before tracking. There are two possibilities considered here

1. No specic knowledge is held about the target motion, in which case a
constant velocity model is used whereB; = 21,B, = land = gyl
where gy, is set to a reasonably large value re ecting prior uncertainty.

number of frames. Maximum likelihood learning can then be used to
establish values forB;, B, and
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initial conditions: g, o,t =1

fetch I (¥ from source

predict

(=
-
-
|

= Bl 1
E) By ¢ 1B{ +

poll displacement expert

y(1®;ak )
R( (t);ogk 1)) k++

P
R«

t++

update estimate

kK= &V R+ *D 1

of = af* ¥+ Ky
k k
W= oK Y

return

0, = ogk) ves nished? no

- K
t— ot

Figure 3.8: Flow chart detailing the incorporation of thesgilacement expert with
a Kalman lter.
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[Blake and Isard, 1998] give a thorough discussion on dynamical piors and
how the coef cients may be learnt in the second case above.

If the motion coef cients are to be learnt, it is important that the example
trajectory is truly representative of the motions that will be witnessel during
tracking. This is because the learnt process noise will be very small if the
motion is well described by the model and the Kalman Iter will make con d ent
forecasts of the target position in new frames. This gives a small Kean gain
for new observations from the displacement expert and if the motimm model
then makes erroneous forecasts, the displacement expert prietdons will not
have suf cient weight and loss of lock may occur.

3.6 System demonstration

Before we give a detailed experimental analysis of the displacement jert,
Fig. 3.9 shows a schematic diagram illustrating the process of collectinabelled
training exemplars, training the VIM and then making real-time displacement
estimates.

As a demonstration, the displacement expert was trained to track #ace.
A single seed image was used (the seed image shown in Fig. 3.9) and in this
case the target state space describes 2D translation only. Ther¢get region is of
size 38 by 44 pixels which, when processed by the greyscale featureatrsform,
givesx 2 R%72. 100 training exemplars were generated for displacements in
the range 38 pixels horizontally and 44 pixels vertically and the mapping
from feature vectors to displacements was learnt by the relevanegctor machine
using exemplar-centric Gaussian RBF basis functions (se.4). The Kalman
Iter was equipped with a default “constant velocity” dynamical prior a nd for
each test frameK = 3 queries were made from the displacement expert. In this
case, the VIM took 2.83 seconds to train and following this tracked ewery frame
of video in 5.14ms. This is equivalent to consuming 15.4% CPU time when
images are arriving at 30Hz however, as explained irx3.7, this performance is
for a stored video sequence. Actual performance varies with handare.

3.7 Performance evaluation

This section provides an extensive evaluation of the experimental grfformance
of the displacement expert. There will be ve separate sets of expenents:

1. The rst experiments measure the sensitivity of the displacemenexpert
to the free variables set by a user, these being: the expected despement
range ; the number of training exemplarsn; the number of seed images
ns; and the choice of initial region labelling.
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

— = feature transfor

exemplars x(g

seed image

VIM training

_ webcam | __ _ _ _ _ _ __ _ | ________________

't

feature transform Kalman lter

posterior estimatel;

Figure 3.9: Schematic for displacement expert training and tracking pss. The
parts of this diagram inside the dashed box signify the o iti&ining process: ex-
emplars are excised from, in this case, a single labelled seadd and are then
passed to the appropriate VIM training algorithm which th@nplements a displace-
ment expert (DE) by providing the functiong( ) and R( ). Outside of the dashed
box are the real-time components of the tracking system. New insageceived
from the webcam are processed by the feature transform (iis ttase the greyscale
feature transform, see Chapter 5) and displacement preditiare fused with the
dynamical prior by the Kalman Iter framework shown in Fig. 3.8
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Figure 3.10: Face tracking. A video of this sequence may be downloaded from
http: // mi. eng. cam. ac. uk/ omcw?2/thesis/violent _mpg. mpg
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2. The second set of experiments assess the tolerance of a disgaent expert
to unmodelled appearance changes including: tolerance to unseeratk-
grounds and clutter; tolerance to target deformation; toleran@ to unmod-
elled three-dimensional motion; tolerance to occlusion; and tolerane to
lighting variation.

3. The next experiments demonstrate the bene ts of including dyamical pri-
ors and probabilistic data fusion via a Kalman lter. The tests will include:
tracking without a Kalman lIter; tracking with ltering, but using a gen-
eral “constant velocity” dynamical prior; and ltering with a dynamic al
prior trained speci cally for the target in question from an authentic ex-
ample trajectory.

4. Experiment set four compares the displacement expert againsvo popular
tracking algorithms from the literature: the wandering, stable, lost(WSL)
model from [Jepson et al., 2001] and cross-correlation [Lucas ad Kanade,
1981, Lewis, 1995].

5. Finally, the fth set of experiments is a simple demonstration of the dis-
placement expert beyond what has already shown. Demonstrations in-
clude: tracking with 4 and 6 degrees of freedom and tracking objectsvith
non-rectangular boundaries.

Implementation details

Unless otherwise stated, the following applies to the displacement expis being
tested: only translation is being tracked to facilitate easy comparisn to ground
truth data; Kalman lItering is used with a general constant velocity dynamical
prior with 49y = 10; the feature transformf (') is greyscale, hence the entries in
a feature vectorx are scalars between 0 and 1 and histogram equalization [Jain,
1989] is used to provide some invariance to lighting (see Chapter 5 fomore);
displacement experts are trained from a single seed image{= 1); and, as there
is a random component to the displacement expert training algorithm(Fig. 3.6),
results are given for the mean of ten repeated experiments with alkegtings xed.

The experiments were performed on a desktop PC with a 2.54GHz Intel Bn-
tium 1V processor and 2GB of RAM. Measurements were made for savé video
sequences, which consisted of 640480 pixel images stored, uncompressed, as
24bit RGB images. Using this tracker with a webcam can be faster and slowe
than the results reported here owing to factors such as camera die drivers and
hard-drive speed.
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Figure 3.11: E ect of expected maximum displacement on tracking accuracy.
Error bars indicate one standard deviation in results.

Performance measures

The two properties of the algorithm measured are accuracy and eftiency. In
the following experiments, a number of test video sequences are usefor which

a “ground truth” was obtained by hand-labelling the video sequences This is
not ground truth data in the truest sense since it was not measuredirectly at
source, independently of the video images. But insofar as grounduth data may
be considered as an accurate and reliable source of data, we feelighcarefully
hand-labelled data is suf ciently good for our purposes. Accuracyis reported as
the root mean square (RMS) error between tracking estimates anthe ground
truth, de ned as Vv
fax

€rMs = V2
t

kOy  uk?; (3.28)
=1
where V is the number of frames in the video sequencey; is the ground truth
state for framet and Q; is the mean of the posterior state estimate made by the
Itered displacement expert.

Ef ciency will be reported as seconds per frame taken to provide anesti-
mate. All ef ciency comparisons are carried-out on the same workgation using
identical software to extract frames from a video sequence and logesults.

Parameter sensitivity

To measure the effects of the displacement range on displacement expert per-
formance, the RVM expert (tracking translation only) was trained wit h =
( ;) for intherange 0-25 pixels. The results of this are shown in Fig. 3.11.
The error bars on Fig. 3.11 give insight into the behaviour of the expéet trained
on small displacement ranges: good tracking accuracy is possible #se expert
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Figure 3.12: Displacement expert performance against training set gize (a)
Variation in the accuracy and e ciency of an RVM displacemeepert againsin.
(b) number of relevance vectors retained by RVM expert with chiagq.

has been trained on many exemplars very close to the target objeand predic-
tions within this local region are very accurate. However, the experthas not
been trained on any large displacements and rapid inter-frame motio will cause
loss of lock.

Fig. 3.12a shows how displacement expert performance varies with thsize
of the training set, n. Choosing n involves a compromise: the more train-
ing exemplars, the better the tracking performance, however largr n incurs
a larger computational penalty, for both training and tracking. For an RVM
expert the extra burden is imposed by an increased number of relence vec-
tors (Fig. 3.12b). This number increases linearly withn up to n = 80, after
which the number of relevance vectors saturates at about 56. Thisnplies that
adding exemplars aboven = 80 does not provide any extra information about
displacements (for this test sequence).

By using a single seed image, the performance of the displacementpext is
dependent on what can be learnt from that one image. To capture grater in-
variance to deformation, 3D rotation, lighting and background, it is favourable
to train the expert on exemplars gathered from several differenseed images. To
assess the bene ts of using more than one seed image, a headekang sequence
was used in which signi cant unmodelled 3D rotation occurs. By including ssed
images showing the head in different poses, the displacement expestiould gen-
eralize to these different appearances. Fig. 3.13 shows how the dermance of
an RVM expert improves with number of seed images; whilst the improvenent
of using two seed images over one is dramatic, subsequent improvemis are far
smaller. It is possible that for this face-against-of ce scenario twoseed images
capture suf cient variability in appearance.

A nal degree of freedom left to a user (or higher order system) ighe choice
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Figure 3.13: Bene ts of using more than one seed imagé&his plot shows how
RMS tracking error decreases as additional seed images ad tes create the
displacement expert. The images on the right are the ve seedgesaused in this
experiment.

of initial region labelling. In Fig. 3.14 it is shown how the choice of what con-
stitutes a face in face tracking can have a considerable effect oregormance.
This shows that by cropping the face inside what would normally be considesd
the boundary, performance improves. This is because the “backgund”, as the
tracker sees it, is actually the periphery of the face, something #t is far more
stable in appearance than an arbitrary, cluttered background. Hwever, if this
is taken too far (to below around 50% in face tracking) the number of features
available to help track the object has been reduced to such a point tt the ac-
curacy degrades again. For face tracking, the optimal area is atmd 75% of the
total object.

Tolerance to appearance changes

Whilst it is plausible that the relatively small number of training exemplars gen-
erated in the algorithm of Fig. 3.6 are suf cient to capture variation in the ap-
pearance of the target object, they are certainly insuf cient to @pture all possi-
ble backgrounds. There are two strategies available to help reducé¢ effect of
background:

1. If the target region is cropped inside the true object boundarythe “back-
ground”, as registered by the displacement expert, is actually theeriphery
of the target, the advantages of which are demonstrated in Fig. 34.above.

2. Training on multiple seed images showing the target against differerback-
grounds will introduce some invariance to background. Whilst this still
will not generalize to all backgrounds, true background rarely occwpies
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Figure 3.14: E ect of cropping. By setting the target region to be inside the true
target, the displacement expert is less dependent on viewlrggobject against one

particular background. In this example, the 100% area is ofithvi59 pixels and

height 74 pixels.

more than 25% of a sampled region and the remaining features can be
used to guide the displacement expert.

To test this second conjecture, the effects of using different lkgrounds in seed
images was tested. The results of this are in Fig. 3.15. The sequencerh which
Fig. 3.15b was taken contains a moving, cluttered background (this \deo is
available athttp://mi.eng.cam.ac.uk/ omcw?2/thesis/ben _clutter _mpg.mpg

Other important appearance changes that can occur are due toeforma-
tion of the object (e.g., facial expression in face tracking), occlusin by some
foreign object or a change in lighting conditions. Fig. 3.16 shows that the dis-
placement expert is robust to object deformations and partial octusions when
trained from just a single seed image. Despite the use of histogram ealiza-
tion, however, the displacement expert fails under signi cant changs in light-
ing when using greyscale features. One way to overcome this is to prale
multiple seed images showing various illuminations, but when being used for
real-time tracking the user cooperation required to gather multiple illumina-
tions in the training set is unacceptable and an alternative approaclis sought.
Fig. 3.16¢ shows the results when the edge orientation of ateerable Iter [Free-
man and Adelson, 1991] is used as the feature transform (this videis available
at http://mi.eng.cam.ac.uk/ omcw2/thesis/light  _track _mpg.mpy These
features are magnitude invariant and exhibit excellent tolerance tsevere light-
ing variation when used by the displacement expert: see Chapter 5 fanore.
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(a) (b) ()
# backgrounds erums €erMs ON
trained on on host BGs unseen BGs
1 6.2 17.2
2 5.8 8.1
3 6.1 7.6
(d)

Figure 3.15: Advantages of using di erent backgrounds in seed images. )(&tills
showing the three backgrounds used in this experimefd) Table showing the
accuracy of the displacement expert when trained on one or nswed images
showing di erent backgrounds. Results are given for tragkithe object on the
\host" backgrounds the expert was trained against, and onseen backgrounds.

Bene ts of temporal Itering

To test the value of the temporal ltering strategy in x3.5, the three varieties of
displacement expert described irx3.4.2 were trained using the rst frame of a
standard test sequence as a seed image. They were then each usettack the
sequence under three lters:

No Kalman lIter With no temporal ltering, tracking was performed by updat-
ing a point estimate of state by the mean displacement predicted byhe
displacement experts.

Default Kalman lter This is the Kalman Iter described in x3.5 using a “de-
fault” constant velocity dynamical prior with large process noise.

Learnt Dynamics This is the same algorithm as above, however a dynamical
model was learnt beforehand from an example trajectory.

Fig. 3.17 shows how the accuracies of the nine combinations of displaceent
expert and lter vary and there are three signi cant remarks to be made:

1. The Gaussian process displacement expert is the most accurat€he sim-
ple experiments inx2.6 showed that Gaussian processes provide more con-
vincing regression results than the RVM, hence this result could haw been
predicted.

2. For all three types of displacement expert, using a Kalman Iter inproves
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@) (b) ()

Figure 3.16: Tolerance to appearance changes. (adhow the displacement expert
tracking a face undergoing deformation and occlusion. Rarticclusion is tolerated
(although small misalignments occur), however the last ocdosn (b) is too severe
and tracking is lost.(c) a displacement expert using greyscale features is sensitive
to lighting variation, but one using the orientation from eérable Iters [Freeman
and Adelson, 1991] is extremely tolerant to it. This column aisothe result of
tracking such ltered image features under severe lightiragiation.
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tracking accuracy, justifying the use of experts capable of makingroba-
bilistic predictions and the fusion with a dynamical model.

3. In each case, the speci cally learnt dynamical model shows little impove-
ment in accuracy over the constant velocity model.

Fig. 3.18 shows how the ef ciency of the displacement experts variesvith
different lters. Although the RVM was seen to be slightly less accurde than
a Gaussian process in Fig. 3.17, this gure illustrates how the RVM's sprsity
property (seex2.4) pays dividends in a real-time application. The fastest (but
also least accurate) results are for a linear displacement expert witho Itering.
When a Kalman lIter is used, this time rises considerably due to the computa-
tional expense of computing the predictive uncertainty.

Comparison to other approaches

Many approaches for 2D region tracking exist in the literature. We compare the
displacement expert to two of them here:

1. Firstly we compare to normalized cross-correlation [Lewis, 1995] & this
is a well established and familiar approach and will serve as a benchmark.
This was implemented by updating the state estimate to the location hang
the highest correlation score with an initial template. This search was
performed in a region around the previous state estimate. The sizef
search region was chosen as the smallest which enabled the algorithm to
track the entire sequence without loss of lock.

2. Secondly the displacement expert is compared to thg/andering, stable,
lost (WSL) tracker of [Jepson et al., 2001]. This is an adaptive approal
and as such is reported to have excellent tolerance to appearanceanges
as well as good accuracy.

These two methods were compared to the three types of displacemeaxpert de-
scribed inx3.4.2 for both accuracy (RMS error) and ef ciency (time per frame).
The results are recorded in Table 3.1.

An immediate advantage of the competition can be seen from this ashey
required no off-line training before tracking. However, the displacement expert
only takes a few seconds to train, the Gaussian process being thestast as it
has the fewest nuisance parameters to set, the RVM is next as it musstablish
the relevance of all the basis functions and therefore has many me nuisance
parameters. The linear displacement expert takes so long to traindcause of the
number of basis functions it uses and the consequent cost of maxrinversion.
The most accurate tracker is the WSL algorithm, however this takesigni cantly
longer to track each frame than any of the other methods and is fafrom a real-
time option. The Gaussian process displacement expert is only fractimally less
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Figure 3.17: Tracking accuracy with di erent lters.
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Figure 3.18: Tracking e ciency with di erent lters.
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Method erms(pixels) Training time (s) Time/frame (ms)
GP displacement expert 3.71 0.74 15.03
RVM displacement expert 4.31 2.83 *5.14
Linear displacement expert 4.77 4.27 14.53
Cross-correlation 6.60 *none 17.73
WSL *3.70 *none 312.56

Table 3.1: Comparison to normalized cross-correlation [Levili895] and WSL
tracking [Jepson et al., 2001]JThese results were taken from tracking a 136 frame
sequence of a head passing in front of the camera at approximatenstant depth.
Entries marked with an asterisk (*) indicate the best perfornt in that column.

accurate than WSL, but is 20 times faster at producing estimatesThe fastest
tracker is the RVM displacement expert which requires only 5.14ms to tack
per frame, but is slightly less accurate than the Gaussian process glacement
expert and WSL.

Further demonstrations

A previous experiment demonstrated the degree of tolerance thdisplacement
expert has to background variations. For objects with non-rectamgular bound-

aries, another method to minimize the in uence of background on tracking per-

formance is to sample pixels from contoured regions. Fig. 3.19 showslips

from a hand tracking experiment in which pixels are sampled from a regim de-

scribed by a closed B-spline curve [Blake and Isard, 1998]. Note it this does
not model the fact that a hand is not a rigid body but is merely illustrating the

use of contoured boundaries; Chapter 7 shows how this can be exieled using
techniques from later chapters to create a “hand mouse”. In thiscase, the curve
was de ned manually when labelling the seed image and the sampling procede

in Fig. 3.2 was modi ed by rst sampling all pixels from a rectangular regio n,

strictly outside the curve, and then collating the feature vector ly including only

pixels from inside the curve during raster scanning.

As an example of tracking objects against more varying backgrounsl than
an of ce, Fig. 3.20 shows the results of tracking passing cars, also sing the
Euclidean similarities. Both cars were tracked successfully after traing from a
single seed image.

An alternative method for handling 3D rotation is to model it approxim ately
with an af ne transformation. This requires six degrees of freedomin the dis-
placement expert, the results of which are shown in Fig. 3.21.
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Figure 3.19: Hand tracking. When tracking a non-rectangular object, pixels can
be sampled from an arbitrarily contoured region to excludarasch background as
possible.

Figure 3.20: Tracking cars. Digital video recordings of a pass-
ing vehicle and a license plate. The RVM displacement expers w
trained from a single frame and successfully follows the omwgi de-
spite clutter and an unsteady camera. These videos can be down
loaded fromhttp: // mi. eng. cam. ac. uk/ omcw2/ thesis/volvo _mpg. mpg
and http: // mi. eng. cam. ac. uk/ omcw?2/thesis/ford _mpg. mpg

Figure 3.21: Tracking with six degrees of freedom.These clips were gen-
erated by training an RVM displacement expert to work with sibegrees of
freedom in the ane similarity space. This approximately modethe projec-
tion of a planar object undergoing out-of-plane rotations. iEhvideo is at
http: // mi. eng. cam. ac. uk/ omcw?2/ thesis/ affine  _mpg. mpg
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3.8 Summary

In this chapter we have introduced the idea of adisplacement expertin which
region tracking is treated as a mapping from feature vectors to diglacements
in some state space representing a target object's position in an irga. An al-
gorithm was devised for training the visual inference machine (VIM) b act as
a displacement expert which was then implemented as a linear regressioand
non-linear regression with the relevance vector machine and a Gaussigrocess.
Finally we explained how the probabilistic state displacements can be fuel with
a dynamical motion model to form robust posterior estimates of olject posi-
tion. An extensive experimental evaluation proved this method fortracking to
be highly ef cient and accurate, two qualities between which a compromise is
normally necessary.
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Semi-Supervised Learning

Chapter 1 namesversatility as a key requirement for the visual inference ma-
chine (VIM) to be useful. Accordingly this chapter extends the VIM, making it
possible to learn the input—output mapping without needing to provide labels for
every training exemplar. We call the result thesemi-supervised visual inference
machineor SS-VIM. The chapter opens with an explanation of what is meant by
semi-supervised learning and a review of previous work in the area. Gumethod
for semi-supervised regression uses a Gaussian proces®.%) to infer uncertain
or “noisy” labels for unlabelled exemplars in the training set. To assistthis,
additional information, called temporal metadata, is considered: this metadata
is available if training data are collected at particular, known times. We $iow
how the GLM (x2.3), RVM (x2.4) or a Gaussian process can then be trained
from data with uncertain labels. This chapter includes two demonstratons of
the SS-VIM and concludes with experiments illustrating the bene ts @ including
unlabelled exemplars.

In Chapter 3, labelled exemplars were generated automatically from a&ingle
seed image. However, obtaining labelled training data is not always so egs
labelling data is often time-consuming and error prone, particularly when it re-
quires human intervention. On the other hand, exemplarswithout labels are
typically abundant: e.g., gathering training data by capturing a videosequence
or trawling the Internet for images can generate thousands of exaplars with
minimal expenditure of effort, time or money. We therefore propose the follow-
ing subdivision of the feature vectors presented to VIM:

1. Dy, fx®;y(gl is a set of training exemplars which have been labelled
with scalar target outputs y{) which will normally be written as a vector
y1 (we address multiple outputs inx4.1.2);

2. Dy, fxWglimh is another (frequently larger) set of training exemplars

which do not have labels;

3. Dy is the (possibly in nite) set of inputs for which the VIM is going to
make output predictions once trained.
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Learning from a labelled and unlabelled set of exemplars is calledemi-supervised
learning [Seeger, 2001].D, and D; are sometimes treated as the same set, how-
ever we keep them separate here becaud@: the aim of this work is to make fast
predictions at test time, so images inD; may be dealt with differently to those
in Dy and (ii) during the gathering of D, there may be somenetadataavailable
for the exemplars, that will not be available for D; (seex4.1).

The aims of semi-supervised learning are the same as those in supsed
learning, i.e., to learn a mapping between feature vectors and labeldJnsuper-
visedlearning [Ghahramani, 2004], being blind to any possible labels, is a ratler
different discipline which concentrates on identifying structure within the data
(clusters, low-dimensional manifolds etc.). Nevertheless, many appaches to
semi-supervised learning begin with an unsupervised step (sgA.2). This chap-
ter discusses training a VIM from labelled and unlabelled exemplars to i@ate
the SS-VIM, which means aregressionis learnt. The bulk of work in the area
of semi-supervised learning is for classi cation, a summary of which mg be
found in Appendix xA.2, and the relatively small amount of work addressing
semi-supervised regression is discussed next.

Previous approaches to semi-supervised regression

In [Franz et al., 2004], unlabelled exemplars are used to enhance geession
learning with a generalized linear model (GLM, x2.3). The observation is made
that GLM performance is improved when the basis functions are orthgonal
with respect to the data being used. The unlabelled exemplars are us¢o nd a
transformation for the basis functions such that they become athogonal. Whilst
the unlabelled exemplars are helping to condition the learning processhey are
not directly being used to learn the mapping.

Coreg [Zhu and Li, 2005] is an adaptation to regression of the co-training
approach for semi-supervised classi cation ( [Blum and Mitchell, 1998], see
XA.2) in which two separate regressors are used to iteratively generatlabels
for each other.

Semi-supervised regression is achieved in [Verbeek and Vlassis, 3)Mby
de ning a manifold over exemplars, where each exemplar is connectedo its
nearest neighbours in aGaussian eld [Zhu and Ghahramani, 2003, Zhu et al.,
2003]. This poses the problem as one of energy minimization in which it is -
ergetically favourable for connected exemplars to have the same balling. By
minimizing this energy with the labels given inD, xed, labels are generated for
the unlabelled exemplars. This method is similar to a Gaussian process [WWams
and Rasmussen, 1996, MacKay, 1997] where the covariance matrifor the given
exemplars depends on the nearest neighbour structure.

Another method based around constructing a manifold from exempars is
[Rahimi et al., 2005], where the data have been collected as a video geence
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and, like the SS-VIM detailed below, temporal information is used to giide the
construction of the manifold.

4.1 Semi-supervised regression with a Gaussian process

For the unlabelled exemplarsD, to contribute to the learning process, prior
knowledge or assumptions must be used about the training data so #t exem-
plars in D, may be compared toD, and in some way have labels inferred for
them. Without this expression of a prior, Dy, may as well be ignored and the
VIM trained in a supervised way from D, alone. The typical starting point is to
de ne a distance function between exemplars and thereby recovesome struc-
ture within and between D, and D, that will help infer labels for D, (i.e., nearby
exemplars have more similar labels). We will refer to this as atructural prior .

As a consequence of how training data were collected, there may alsexist
metadata which assist the process of labellingD,. We de ne metadata to be
any additional information that is available for D, and D, but not for Dy: if
useful information is ubiquitously available then it should simply be included as
an extra feature in x. The metadata for an exemplarx; is written as ; and the
setsM | and M  contain the metadata associated withD, and D, respectively.
The only type of metadata that will be considered in this dissertation igemporal
information, which is available if training data is collected as a video sequace,
however the approach is still general and can be easily adapted to lo¢r forms
of metadata. By assuming that the activity in the sequence is smadot or obeys
some other temporal structure (e.g., periodicity; see below), aemporal prior
over the labels ofD; and D, can be de ned. It seems reasonable that temporal
information will be available for test inputs, thereby making our use of it as
metadata contrary to the de nition just given. However, since test data will
arrive at some arbitrarily long time after the training data were collected, we
assume that it have no bene ts at test time.

We de ne the model of exemplar labels to be a Gaussian proces&.5

P y(x) =GP 0;c(fx; gP:fx; gi)) (4.1)
where, in a change to what was done in Chapter 2, the covariance funatn c( ; )
now depends on both the exemplars and the temporal metadata

. _ X o X o
o(fx; g;fx; gi))= cx@x@y+ M0y (4.2)
k=1 k=1

and is the weighted sum ofn structural covariance functions andn temporal
covariance functions (the hyperparameters i; « will be set by maximizing the
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evidence; see below). The joint distribution over the known labelsy, and the
unknown labelsy, (expressed as vectors) is a multivariate Gaussian

" # !
P(yi;yuD1;Dy;M ;M y; )= Normal ;/' 0;C (4.3a)
n # u
2
c= @t 7 Cu (4.3b)
Clu CUU

The matrix G 2 R™ ™ contains the covariance function evaluated between
members of D|; M |, i.e., [Cy]j = c(fx®); (Dg;fxW); U)g). G, ad Cyy are sim-
ilarly computed. As in x2.5, it is assumed that the given labels are subject to
IID Gaussian noise with covariance 2. is again used to represent all of the
hyper-parameters.

By conditioning on the known labels y,, the distribution over y, may be
found as [Williams and Rasmussen, 1996]x2.5

P(Yujy1;D1;Dy; M ;M ;) = Normalyyjyyu; H) (4.43)
Yu= Cu(Ci+ )ty (4.4b)
H=Cuw Gu(Gi+ 2) 'Cf (4.4c)

As is done throughout this thesis, the nuisance parameters aretsasing the
evidence framework [MacKay, 1995] in which the marginal likelihood

P(y1JD1;Du; M ;M y; ) = Normaly,jo; Cy) (4.5)

is maximized as a function of by conjugate gradient ascent [Press et al., 2002,
Bishop, 1995], seex2.2.1 for details.

4.1.1 One-dimensional demonstration: gesture

Before discussing how a general input—output mapping is learnt, we ige a
demonstration of this method for inferring labels for D,. Consider the following
scenario: a user records a video sequence of them opening and dhagtheir hand
(see Fig. 4.1) and wants to learn a mapping from hand images to real mabers in
the range[0; 1]. The user nds it easy to label the extreme gestures i.e., where the
hand is fully open or closed, but leaves all other frames unlabelled. Téimages
are converted into feature vectors using a greyscale featureamsform and the
frame number from the video is available as temporal metadata (e.g.,1 = 1,

5 =5 etc.).

To infer y,, a Gaussian process is de ned with one structural and two tem-
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Figure 4.1. Hand training exemplars.These images are framek 3;5;7;:::;17
from the training sequence, which contains 150 frames in kot@nly 18 frames
(including those shown here with a bold frame) have been lgldeas either open
(y = 1) or closed ¢ = 0) and therefore belong tdD,. All other frames are
unlabelled and belong t®,,.

poral covariance functions, (4.2):

c(xi;xj)=exp  1kxi x;Kk? (4.6a)
D p=exp 2o §)? (4.6b)

n 0
@i )=exp ssine (i ) (4.6¢)

The function ¢ states that two exemplars with small sum-of-squared differences
in intensity are a priori correlated. The other covariance functiors exploit the
temporal metadata: M states that two exemplars from nearby frames will have
correlated labellings and c® comes from the prior observation that the video
of the hand opening and closing is roughly periodic (this covariance faction is
very strong, in that it asserts that the signal isexactly periodic; a softer covari-
ance function would be more appropriate for general applications). All three
functions are exponential with width parameters 1, 2 and 3. The periodic
covariance also has a frequency parameter. The set of hyper-parameters to be
discovered by training is therefore =f 2;; 1; 2; 1; 2; 3, O

The table in Fig. 4.2a shows the values of found by maximizing (4.5) and a
graph of the inferred labelsy, is shown in Fig. 4.3a. Based on the metadata, it is
highly plausible that the labels are periodic, hence the relative magnitle of »,
and the clearly periodic shape. A video showing the exemplars and infeed la-
bels can be downloaded fromhttp://mi.eng.cam.ac.uk/ omcw?2/thesis/hand _
labels _mpg.mpg

A second experiment was conducted to study the effects of the meporal
metadata in which the frames of the training video sequence were raraimly per-
muted. The missing labelsy, were again inferred from these data and Fig. 4.2b
shows the inferred hyper-parameters. The encouraging point frm these gures
is that 1 and » have been effectively set to zero as there is no longer any evi-
dence for the effects they model; even though the Gaussian praeghas a very ex-
pressive covariance function, the Bayesian learning methodologyas prevented
over tting. The only signi cant correlations between exemplars are therefore
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Figure 4.2: Inferred (hyper)parameter settings. (dpferred hyper-parameters for
ordered training data; periodic e ects are judged to be domim. (b) Inferred
hyper-parameters with permuted training data; temporal infortiea is correctly
inferred to be useless and inference rests on structurarmétion alone.

structural, as modelled byc . A graph of the labels inferred in this case is shown
in Fig. 4.3b (un-permuted so as to correspond to the previous expément). Since
the Gaussian process is now unable to exploit the additional temporainforma-
tion, there is greater uncertainty in the estimated labely than for the ordered
case in Fig. 4.3a.

4.1.2 Multi-dimensional labelling

When dealing with applications requiring vector-valued outputs, we arecon-
fronted with the same choices faced for multi-dimensional regressioin x2.7: (i)
Attempt to learn a mapping giving a fully joint output distribution; (ii) Treat
outputs as independent problems, but couple hyper-parameteracross output
dimensions or; (iii) Treat each output dimension as a completely separate regres-
sion problem. For the Gaussian process labelling in the SS-VIM we adoptis
third and simplest approach.

4.2 Training the VIM from exemplars with noisy labels

The previous section describes the inference of a complete set obkls for semi-
supervised training data. This section address the problem of makippredictions
for unseen test data by training the VIM on the complete set of daa D, \ D

and labels. We call the complete process of inferringy, and then training the
VIM as the semi-supervised visual inference machiner SS-VIM. In the case of
Dy, the labels arenoisy, since their values are only known up to a probability
distribution:

yu Normal(yyjyu;H):

When supplied with a fully supervised training set, Chapter 2 explains hav
the VIM may be trained using the generalized linear model (GLMx2.10), the
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Figure 4.3: Inferred labels/,, computed with the hyper-parameter settings shown
in Fig. 4.2. Crosses show the user-supplied lalygland the dotted lines indicate the

2 standard deviation error bars taken from the diagonal eleisaf the covariance
foryy. (a) With the training data in order, the dominance of the periodiovariance
function is clearly visible(b) By shu ing the data, there is less useful information
and the uncertainty on labels is greater, as indicated byewidrror bars.
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relevance vector machine (RVMx2.4), or as a Gaussian processx@.5). In all of
these cases, it was assumed that the provided labels were subject #oD. Gaussian
noise of variance 2. The following subsections describe how these three learn-
ing paradigms are extended to cope with a semi-supervised training sevhere
the labels are sampled from a slightly more complicated, but known, digtibu-
tion.

4.2.1 Generalized linear model

The GLM, explained in detail in x2.3, is easily extended to the case where the
given labels are subject to non-independent Gaussian noise. The GLM likeood
from (2.12) is rede ned to be

PiyiD;w; ; 97 exp 3(w y)T Y w vy (4.7)
where " #
_ Y
Y Yu
and " #
2In| 0 .
0 H -

H is the covariance ofy, from (4.4); is the set of hyper-parameters inferred
during the labelling process which are now xed; and Cis an additional set of
hyper-parameters associated with the GLM basis functions, the vales of which
still need to be found.D D ;\D (\M ;\M  contains the training data.

The posterior over the weights (c.f., (2.14)) becomes

P(wjD; ; 9= Normalwjw;G) (4.8a)
G=( " ' +AH ! (4.8b)
w=G T ly: (4.8¢)

and the evidence, which is used during training, becomes (c.f., (2.18))

P(yjD;; 9= Normalyj0;S) (4.9a)
S= + A 1T (4.9b)

With these simple maodi cations, the GLM is now equipped to handle the
case of arbitrarily correlated noise in the labels. In fact, learning is rade simpler
because the noise is known beforehand and no longer needs to be infed during
training. Recall from x2.4 that the relevance vector machine (RVM) [Tipping,
2001] is a special case of the GLM with a sparse prior and special trainig
algorithm, therefore these small changes to the GLM likelihood, posgérior and
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evidence are also all that is required to modify the RVM for training targets with
general Gaussian covariance.

4.2.2 Gaussian process

A Gaussian process was used to infer labels fob,, based on both exemplars
and metadata. By de nition, metadata is not available for unseen tst data and
to learn the general input—output mapping with a Gaussian process, different

covariance function is required

ux(l)’x(J))

To predict the valuey for an unseen feature vectorx , a Gaussian process is
proposed where

02 3 1
Yi
P(y;yuwy jx ;D;; 9= Normal%ﬁﬁyu% O;Bg (4.10a)
5 y
By + 2l B b(x ;D)
B=9 B, Buw+H b(x;Dy)5: (4.10b)

bT(x ;D)) bT(x ;Dy) b(x ;x)

b(x ;D)) is the vector of covariance functions evaluated between the new ing
and the exemplars inD,. By, By, and By, are de ned analogously to the blocks
of Cin (4.3) and H is the covariance inferred for the labelsy,. As with the GLM
above, is the set of hyper-parameters inferred during the labelling proces
which are now xed; Cis an additional set of hyper-parameters associated with
the new covariance function b, the values of which still need to be inferred.
D D \Dy\M |\M , contains the training data.

The distribution over y is found by conditioning on the supplied labels

P(y jy;Yu:D;; %= Normal y j¢ ;R? (4.11a)
" #T n 2 1|| #
b(x ;D)) By + “l B Y
= 4.11b
) b(x ;Dy) B, By, + H Vi ( )
n #T n 2 # 1|| #
b(x ;D) By + “l B b(x ;D))
R = b(x ; L (411
b(x ;x ) b(x :Dy) BT B, + H b(x :Dy) (4.11c)

The values of the new hyper-parameters ° are set by maximizing the mar-
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create SS-VIM :
1 Collect exemplar feature vectors, storing temporal metadata

2 Provide labels for a convenient subset of exempldds |
3 Leave remaining exemplars unlabelled |
4 Specify structural and temporal covariance functions thaty characterize
training data: (4.2)
5 Train labelling Gaussian process by maximiz{dd)
6 Compute noisy labelg4.4)
if Learning mapping with GLM or RVMhen
7a Choose basis functions
8a Train by maximizing4.9)
9a if RVM: Prune non-relevant basis functions
end if
if Learning mapping with Gaussian procekgn
7b Choose covariance functidn
8b Train by maximizing(4.12)
end if

Figure 4.4: Steps involved in training a semi-supervised visual infezemachine.

ginal
~O=argmax P(y;yuD; 5 9 (4.123)
n #T n 2 # lIl #
1 By + “I B
argmax - Yi I - lu Yi

0 2 y\u . B|u Buu + H# y\u
1 By + 2 B
= log det 4.12b

4.3 The SS-VIM training process

Before the performance of the SS-VIM is assessed below, Fig. 4.4qvides a
summary of the steps involved in its training procedure.

4.3.1 Two-dimensional demonstration: gaze tracking

Gaze tracking can be implemented using the SS-VIM by learning the naglinear
mapping from images of an eye to coordinates on a screen; the mapm is there-
fore R" | R? wherer is the feature vector dimensionality.

A webcam was used to collect a video containing 937 closeup images of
an eye. Some of the frames show the eye gazing at one of the fouoroers of
the computer display (see Fig. 4.5) and 30 such frames were labelled witihese
calibrated 2D coordinates. The remaining 907 frames were left unlabiked and
the labels for these exemplars were inferred by using the 1D semi-sapvised
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Figure 4.5: Labelled eye imagesThese are four of the 30 labelled eye images,
known to be looking at four calibration points on a displayhé four corners).

framework (x4.1) independently for each output dimension. As before, images
were transformed into feature vectors by raster-scanning grescale intensities
(the greyscale feature transform, see Chapter 5).

As the training data were collected in a video sequence, temporal madata
is available and therefore the same covariance functions are used @ x4.1.1.
It may seem unlikely that there will be any periodic behaviour in these taining
data and that c , should be removed. However, as the previous demonstration
showed, by keeping it, there is no danger of over tting thanks to the Occam fac-
tor in the evidence objective function; ifc , is truly irrelevant, it will simply be
assigned a negligible weight. The remaining motivation for removing the pri-
odic covariance function is therefore greater computational efciency, but there
is a case for retaining a broader suite of covariance functions becse it means
that a single implementation of the SS-VIM can be applied to a wider rang of
problems, satisfying the requirement for versatility laid down in Chapter 1.

Having inferred a complete set of labels, the SS-VIM was trained usingn
RVM and Fig. 4.6 shows the inferred labels for some previously unseenye
images. The principal axes of the error ellipses are aligned with the harontal
and vertical axes because these dimensions are being modelled asdpdndent.
Due to the closing eyelid, the eye's appearance changes more dratically when
it looks up or down than when it looks left or right which means that the ver tical
errors bars are consistently smaller. The labelled images D, were all looking
at one of the four corners of the target rectangle and as such #herror bars in the
corners are far smaller than those in the central portions of thedrget rectangle.

For this demonstration it is assumed that well-registered eye imagesearead-
ily obtained; Chapter 7 describes the implementation of a complete gee track-
ing system with automatic region tracking and calibration. The accuray and
effectiveness of this approach will also be assessed in Chapter 7.

4.4 Performance of semi-supervised labelling

This section aims to demonstrate the effectiveness of the SS-VIEihd to com-
pare it to other methods of learning a regression from labelled and ulabelled
exemplars. The experiment we will employ requires twofully labelled sets of
feature vectors:
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-

Figure 4.6: Inferred gaze direction.This gure shows some selected test images
and the inferred point the eye is gazing at. These images haentmirrored around
the vertical axis to make the labels easier to interpret. THipses indicate the 1
standard deviation error bars. The bottom row shows how tHg-¥IM is sensitive
even to very subtle changes in eye appearance. This videgaitahle for download
at http:// mi. eng. cam. ac. uk/ omcw2/ thesis/ eye _big _-mpg. mpg

Figure 4.7: Sliding window. These exemplars were generated by sliding a window
horizontally past the image of a face and are labelled with tieizontal displace-
ment from which they were sampled.

1. The rst set will be used to train the SS-VIM by randomly selecting a
subset ofn; exemplars for which the labels are retained to formD,. The
remaining exemplars have their labels removed and these make u,.

2. The second set is for testing: the predictions made by the SSMIon these
exemplars are compared to the provided labels and the RMS error isan-
puted.

Because the contents ob, and D, are chosen at random, the results shown here
are the average of ten repetitions for each data point.

Two typical applications are used to provide representative trainingand test
sets. The rst is inspired by the displacement expert (Chapter 3) ad consists
of feature vectors sampled by sliding a window past a face. Some of thimage
regions corresponding to these exemplars are shown in Fig. 4.7. Begse these
data are generated synthetically, the labellings are perfect. Fig..8a shows the
results of this experiment when the SS-VIM is trained with an RVM from the
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face data; Fig. 4.9a shows the results of training a Gaussian process WiSS-VIM
labels. These gures also show results for two additional methods fo dealing
with labelled and unlabelled exemplars: the rst simply ignores the unlabded
exemplars and learns from theD, in the conventional supervised way described
in Chapter 2; the second, typically known asbootstrapping ( [Yarowsky, 1995,
Riloff et al., 2003], see xA.2) uses the machine trained by ignoring the unlabelled
data to label the exemplars inD, before retraining on a complete data set. In all
of these cases Gaussian RBFs were used between greyscale feataotovs.

The second data set uses images of a hand open and closing, as wamdae-
strated already inx4.1.1. In this case the labels for both the training and test sets
were provided by a human and are therefore subjective. As for thedace data,
Fig. 4.8b shows the performance of the SS-VIM on this data set whenr&ining
an RVM from the noisy labels; Fig. 4.9b is for a Gaussian process.

All of these graphs show that the SS-VIM outperforms the othermethods
tested; with as few as 20% of training data labelled, the SS-VIM's acaracy is
as good as the fully supervised case for the sliding window data. The el data
is more challenging, partly because the human-supplied labels are lesdiable.
The interesting result, however, is that with between 40% and 75% supevision,
the SS-VIM performsbetter than with 100% supervision.

From these experiments it appears that neither the Gaussian pross or RVM
bene ts more from the semi-supervised treatment: the errors @ roughly equal
for each n; in Fig. 4.8 and Fig. 4.9. However, these experiments only assess
the accuracy of mean predictions made by the SS-VIM: previous elpters have
shown that the Gaussian process makes more realistic error bar prédions and
that the RVM's sparsity property leads to ef cient prediction. Th ese charac-
teristics also apply to the choice of learning algorithm paired with the SSVIM
labelling procedure.

4.5 Summary

This chapter has covered the subject ofemi-supervised learningn which unla-
belled exemplars are used to enhance the learning process when taere only
a few labelled exemplars available; further improvement is possible ifemporal
metadatacan be found. The result of this is thesemi-supervised visual inference
machine or SS-VIM, a system which uses a Gaussian process to infer “noisy”
labels for the unlabelled exemplars before learning the mapping fromdature
vectors to outputs using either a GLM, RVM or Gaussian process, moded to
handle general noisy labels. The SS-VIM has been demonstratedrfase as a
gesture-based interface and for gaze tracking and an experim&l evaluation
has shown the SS-VIM does indeed bene t from unlabelled exemplarsMore
applications of the SS-VIM may be found in Chapter 7. Fig. 4.4 summaizes the
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Figure 4.8: RVM SS-VIM learning performanceThick lines show results for the
SS-VIM, dashed lines are the results of ignoring unlabellathdand dotted lines
show bootstrapped results.(a) Sliding window data Fig. 4.7. (b) Hand data

Fig. 4.1.
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steps involved in creating a SS-VIM.
The SS-VIM brings additional ease to the process of data-collectiorand

learning, satisfying further our requirement for versatility and ease of use as-
serted in Chapter 1.
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5

Joint Selection of Exemplars and Features

The visual inference machine (VIM) learns the mapping from featue vectorsx to
an application-speci ¢, continuous output spaceY  RY. In previous chapters,
feature vectors have corresponded to the greyscale intensitied pixels in an
image or an image region (apart from the demonstration of the displaement
expert using edge energy, shown in Fig. 3.16): thé&ature transform, part of the
“VIM pipeline” in Fig. 1.2, has therefore been the greyscaletransform which
converts generalized image data into such feature vectors. Themre, however,
many other ways in which an image may be processed to form a featureector
and, depending on application, these can be more useful to the VIMhan simple
greyscale; frequently, our choice of image feature is guided by thdesire for
invariance to certain appearance changes. Making an advance decision on the
type of image features to be used is a means of expressing prior kmbedge about
an application.

This chapter describes some different types of feature transfm that have
been used with the VIM before going on to explain how it can be trained fom
a mixture of different types of feature. When learning the VIM mapping with
the sparse relevance vector machine ( [Tipping, 2001}x2.4) we show how the
problem can be posed so that an optimal mixture of prototypical exemplars
and feature types is automatically selected as an integral part ofhe Bayesian
learning framework. The chapter closes with an experimental evaluaon of the
advantages (increased accuracy) and disadvantages (additidneomputational
overhead) of using multiple feature transforms with the VIM.

Feature selection is particularly pertinent for computer vision becase it is
possible to compute a vast, almost limitless, number of different fetres from
a single digital image (see below for some examples of image featuredjVhilst
it is theoretically possible to just compute every feature type, leadig to massive
feature vectorsx, this proves to be impractical, rstly for obvious computational
reasons but also because in such a case any learning algorithm seeakito use
features bearing useful information is likely to be overwhelmed by thelarge
number of irrelevant and redundant features. There is an extenge literature,
from a broad range of pattern recognition research, on the subjet of feature
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selection and AppendixxA.3 summarizes some pertinent work. Other surveys
are [Kittler, 1978, Siedlecki and Sklansky, 1988, Bishop, 1995, Blun and Langley,
1997, Guyon and Elisseeff, 2003].

For the areas of computer vision research in whichnterest points are con-
cerned [Harris and Stephens, 1988, Bauckhage and Schmid, 199@artley and
Zisserman, 2000], the word “feature” appears in a slightly different context in
which a “feature” corresponds to a point in an image that meets somecriteria,
possibly with an associated data structure describing it. Interest gints are used
to match the same scene point in several images so the aim is to devisede-
scription that is as distinctive as possible for each point. In this dissgation, a
feature means a single real number computed from arbitrary imageata making
up one element of an inputx to the VIM; there is no notion of “interest” or
search within an image at this stage.

5.1 The feature transform

The feature transform has been mentioned in previous chapters as the means of
converting generalized image datd 2 | into a real-valued feature vectorx 2 X .
The application domains considered for the VIM in this dissertation work with

a live video stream coming from a webcam (see Chapter 7). In this cas¢he
image spacd is an array of discrete pixel data dedicatingB bits to each pixel
which somehow encode its appearance. A typical example is for evergixel to
have 24 bits, with 8 bits each representing red, green and blue inteitg (RGB
image format).

The feature transform has and will be used in two ways

1. When the entire image is of interest, the whole thing is converted ird a
feature vector
x="f() f:1! R": (5.1)

2. However, it is sometimes just a region of an image that we care about(g.,
in the displacement expert). In this case, the target region is desbed by
a state vectoru and a feature vector is given by

x=f(;u) f:I RII R (5.2)

This is the sampling process which is detailed in Fig. 3.2.

Features generated from the greyscale intensity at every pixeteasimple to
compute and have been used extensively in the previous chapte®ther popular
types of image feature includeeigenvectorrepresentations [Turk and Pentland,
1991] in which the features are the projections of an image onto a seof eigen-
vectors; wavelet representations (e.g., [Oren et al., 1997, Papageorgiou et al.
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Figure 5.1: Edge energy and colour feature transforms. @d»me example input
images. (b) The output of the edge energy feature transform picks out taurs
of high contrast in the images(c) High resolution colour histograms; notice how
little change there is between the two hand images.

1998]) where the features are a set of wavelet responses from d#ffent posi-
tions and scales within an image andsabor energy functions[Daugman, 1985].
The types of feature that we will use here are discussed below and illustted in
Fig. 5.1.

5.1.1 Greyscale features

This is the fastest feature transform due to the ease with which intesity informa-
tion is garnered from a digital image. Sometimes intensity data is st&d directly
for every pixel, on other occasions it must be computed e.g., in the e of RGB
images, intensity can be found as a weighted sum of the three colourompo-
nentsY =0:299R +0:587G +0:114B whereY is intensity (or “luminance”) and

the three colour components are assumed to be real numbers [6; 1].

As detailed in Fig. 3.2, a 2D grid of greyscale data is converted into a 1D
vector by raster scanningin which the rows of data are concatenated.

The major weakness of this feature transform is its sensitivity to chages
in lighting conditions. None of the applications considered in this dissetation
are concerned with determining the lighting conditions of a scene and dter is
sought for greyscale feature vectors that will provide some invariace to illumi-
nation. We usehistogram equalization [Jain, 1989], which applies a non-linear
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(a) (b)

Figure 5.2: Histogram equalization.In an e ort to reduce the greyscale feature
transform's variability under changes in lighting, histegn equalization is used.
(a) Raw images received from camer@) Histogram equalization has forced each
image to have the same global proportions of dark and light boed not adjust
the relative spatial positions of dark and light pixels.

warping to intensity values such that the histogram of values in the vetor is
equal across all intensities. Fig. 5.2 demonstrates the effects bistogram equal-
ization. Whilst this transformation normalizes global discrepancies inintensity,
spatial intensity relationships are preserved; for example, a brighspot coming
from a re ection (a specularity) will force the remaining pixels to be generally
darker after histogram equalization and potentially cause problemdor the ac-
curacy of VIM predictions.

5.1.2 Edge energy

The greyscale feature transform is the closest thing to raw imageata used in this
dissertation and does not exploit any prior knowledge about what may ke useful
in making inferences. Theedge energyis a feature transform that gives a high-
valued response for points in an image that have a strong directioagradient
and thereby highlights contours around and within an object, rather than the
smoother textured parts. Not only does this feature transformconcentrate on a
target's shape more strongly than the greyscale transform, ahfrequently shape
variation is the strongest cue with which to make visual inferences, buit is
considerably less sensitive to lighting variations than greyscale.

A great deal of work has gone into classifying parts of the images as edges
with the aim of providing a semantic description of shape [Canny, 198§4. This
is not the intention here and the task is therefore the simpler matter of slecting
a lter for the image that is edge sensitive. We use theteerable lter approach
described in [Freeman and Adelson, 1991] in which an image is Itered bytwo
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@ )

Figure 5.3: Quadrature pair of oriented lters.The impulse response ofa) Gzg
the second derivative of a 2D Gaussian at 3telow the horizontal axigb) Hzg
its Hilbert transform [Bracewell, 1999].

2D lters G andH which form a quadrature pair. G is the second derivative
of a 2D Gaussian along the direction at an angle below horizontal (see Fig. 5.3)
and H is its Hilbert transform [Bracewell, 1999]. From Fig. 5.3 it can be seen
that G will give a large magnitude response for image points with line-like
structure (i.e., two nearby and parallel changes in magnitude) andd  will be
sensitive to step-like image structures.

The energy of an image at an orientation is found as the summed, squared
magnitude of the responses of both Iters to the greyscale compaent Y of an
imagel

E =(G Y)2+(H Y)%

where indicates the 2D convolution operator. The maximum energy for a pixel
(a; b) is then given by
E(a;b=max E (a;b)

which [Freeman and Adelson, 1991] shows can be computed ef cientlyusing
only 1D ltering operations. Fig. 5.1b shows the edge energy for someaxample
input images.

As with the greyscale feature transform, the 2D grid of energy valesE is
converted into a feature vector by raster scanning it.

5.1.3 Colour distributions

The greyscale and edge energy feature transforms operate onegscale image
data only, discarding any colour information that might be available. The third
and nal feature transform we will use therefore represents the olours within
an image or region. This is done by building a histogram from the “U” and “V”
components of an image. YUV is an alternative colour representatin to RGB
in which Y is the intensity (already represented by the greyscale treagform), U
is the relative amount of “blueness” of a pixel and V is its relative “redness”.
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Figure 5.4: UV colour plane.By setting Y = 0:5, this image shows the di erent
colours that are generated for the various settingslbfand V.

An image may be received already in the YUV format, otherwise the desd
components must be computed. In terms of RGB data they are [Fathild, 1998]

U=0:492B Y) V =0:877R Y): (5.3)

Fig. 5.4 shows the variety of colours over the plane described by and V.

To create a colour feature vector from a particular image (region) a 64
64 bin 2D histogram of UV values is constructed (see Fig. 5.1) which is then
vectorized by concatenating its columns into a long column vector.

Many webcams dedicate more bandwidth to intensity information than colour,
due to the ways in which images are perceived by humans. As a result,g¢huse-
fulness of the colour feature transform depends on whether ther is any strong
variation in colour between exemplars. In the third column of Fig. 5.1c, it can
be seen that for two images of a hand open and closed the colour histpams are
practically identical.

5.2 Using sparse learning for joint feature and exemplar selection

The experiments in Chapter 3 revealed how sensitive the VIM is to vaations
in lighting when using greyscale features. By switching to edge energystead, a
good deal of invariance to lighting was achieved, thereby improving tle displace-
ment expert's robustness. It seems strange, however, to arbdtrily choose one
feature transform over all others when the best performance milt be obtained
with a mixture of different feature types.

Fig. 5.5 illustrates the situation where several feature transformsare used,
the outputs of which are concatenated into a long feature vectorx. Feature
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Figure 5.5: The VIM using a mixture of feature types. (h) earlier chapters, only

a single, pre-de ned feature transform was considered fonvating image data
into feature vectors.(b) It is possible to create feature vectors as the concatenated
output of more that one feature transform so that the VIM may taladvantage of
the strengths of di erent types of image feature.

vectors received by the VIM are therefore given by

2 3
f1(1)

X = gfzflé (5.4)

fe(l)

andx 2 R ifiiff; ;1! R,

We could leave things at this and simply use large feature vectors. Heever,
elements ofx, generated from different feature transforms, are not necesarily
commensurate and we would be unwise to blithely compare them using such
measures as the Euclidean distance. The following subsection theoeé explains
how exemplar-centric basis functions may be de ned for a generaligd linear
model (GLM, x2.3) that take advantage of the special structure ok. When the
RVM training algorithm is used, the pruning of basis functions will jointly select
the most informative combinations of features and training exemplas.

5.2.1 Training a GLM with mixed feature types

It is common practice to de ne a GLM using radial basis functions, cerred on
the training exemplars [Bishop, 1995] (seex2.3)

i(x) = exp kx  x(VK? (5.5)
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where x{) is the i" training exemplar and is a width parameter. This gives
m = n basis functions. In cases where is the concatenated output of many
feature transforms, as in (5.4), the Euclidean distance measure i{5.5) doesn't
account for the different sources of the elements ok. We therefore propose
that for applications involving F different feature transforms, m = nF basis
functions are used, each centred on a training exemplar and using specic
feature transform, i.e.,

Fisk = exp kM (x - xM)k? (5.6a)

The matrix h i
M¢= 0 ::: 0 Iy, O 2 O (5.6b)

selects the elements ot generated by thek™ feature transform. There are now
F width parameters : one for each type of feature.
To recap (2.10), the GLM output functional is given by

xn
yosw) = owi i(x) = w'(x):

i=1
The RVM ( [Tipping, 2001], x2.4) is a special case of the GLM which aims
to set as many of the weightsw; to zero yielding a sparsesolution and in the
case of mixed feature types presented here, each of tie = nF basis functions
corresponds to a particular coupling of one of the n training exemplars and
one of the F feature transforms. When, during training, a particular weight is
set to zero, the associated basis function is said to be “pruned” mening it is
eliminated from the model. When training is complete, the remaining spase
set of basis functions will represent an optimal, joint choice of exemplas and
feature transforms.

This method of feature selection therefore does not require any ew spec-

i cation of the GLM or RVM learning algorithm, just a particular choice of
basis functions. This is therefore applicable to applications of a congntional
supervised VIM, such as that used as a displacement expert in Chegr 3 or its
semi-supervised sibling, the SS-VIM, covered in Chapter 4.

5.3 Performance evaluation

To assess the VIM performance when using a mixture of different fature types,
we rst return to the example of a hand opening and closing from Chapter 4.
For this experiment, the SS-VIM is set up as described ix4.1.1 in which a
partially labelled training set has noisy labels inferred for it. An RVM is then
trained using these labels, but now three feature transforms arased with three
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varieties of basis function:

Greyscale as used predominantly in previous chapters, histogram equalized gyscale
vectors are also used here, and the basis functions are Gaussian RBcen-
tred on the training exemplars

(99 (x) = exp gkMy(x  xMyk?

Edge energyFor this feature type, Gaussian RBFs are also used

®(x) = exp kMo(x  xM)k?

Colour distribution the nal feature transform returns the UV colour histogram
for an image region, and as was done in [Comaniciu et al., 2000], the
Bhattacharyya coef cient [Kailath, 1967] between this and the digribution
of an exemplar is used as a basis function

©(x)= Bh Max; Max®

where
X -
Bh(a;b) = aib
i=1

for vectorsa;b 2 R".

The SS-VIM was rst trained using each type of feature singly, againus-
ing the RVM. The RMS errors between predictions made by the VIM andthe
ground truth are shown in Table 5.1; without feature selection, greysale fea-
tures are most accurate followed by colour and then edges. The nuber of basis
functions retained by the RVM after learning (i.e., those that have ot be pruned)
mYis also recorded and, for this, the order of merit ranks edge feattes best and
colour worst suggesting that a single edge exemplar is most informata.

The nal row of Table 5.1 show that using a mixture of all three featu re
types attains the greatest accuracy and the best sparsity (if erranks bym%m).

Fig. 5.6 shows the retained basis functions for this experiment. Althoagh
colour features used alone attained greater accuracy than edgealmost all the
basis functions had to be retained to achieve this: colour featurepay too high
an “Occam penalty” during feature selection and as a consequenceone are
retained when greyscale and edge information is available.

5.3.1 Mixed features in the displacement expert

An additional experiment was conducted to illustrate the bene ts of using mixed
feature types with the RVM displacement expert, introduced in Chager 3. The
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Features RMS Error m® m
Greyscale 0.0925 52 151
Edge energy 0.1235 19 151
Colour 0.1026 135 151
All three 0.0738 33 451

Table 5.1: Feature selection improves accuracy and sparditye performance of
the SS-VIM using greyscale, edge and colour features alorshdsvn as the RMS
error on an unseen test sequence, and the number of activeslfasctions retained
by the RVM m@ The initial number of basis functionsn = nF +1, the additional
basis function being the bias(x) = 1. The last row shows the performance
improvement when provided with basis functions for all threatlire types (see
Fig. 5.6).

rst test was in a face tracking setting and Fig. 5.7a shows a 12% improement
in the accuracy of the displacement expert when it uses the mixture fothree

feature types used above over the simpler version using greyscdéatures only.
However, Fig. 5.8a shows that this improvement in accuracy incurs a 60%

increase in the time taken to track each frame due to the extra imag process-
ing required. Repeating this experiment by tracking a hand (an objetcthat is

possibly easier to track using an edge-based representation) yisl& 24% im-

provement in accuracy (Fig. 5.7b). The computational requiremets are largely
identical for both experiments as the feature vectors were of roghly the same
length.

5.4 Summary

This chapter has given details of different feature transforms tht can be used
with the VIM and SS-VIM. We have also shown how the VIM can be trained
using a mixture of different feature types, and by appropriate cloices of basis
function, the sparse learning properties of the RVM can be exploite to select
which pairings of exemplars and features are most effective for leaing the
input—output mapping. Fig. 5.9 outlines the steps involved in training the VIM
with a mixture of feature types.

Chapter 7 contains demonstrations of the VIM and SS-VIM, many d which
use a mixture of feature types as this chapter has described.
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Figure 5.6: Active RVM basis functions after training.This gure shows the
weights learnt for the one-dimensional sequence used to erdable 5.1. The rst
20 weights correspond to basis functions using greyscattove and the last 13
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Figure 5.7: Tracking error of displacement expert when using a singleygcale
feature transform versus a mixture of greyscale, edge enamy colour feature
transforms. (a)Face tracking sequencé€b) hand tracking sequence.
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Figure 5.8: Tracking speed of displacement expert when using a singlgsgade
feature transform versus a mixture of greyscale, edge enamy colour feature
transforms. (a)Face tracking sequencéb) hand tracking sequence.

Joint feature and exemplar selection
1 SelectF feature transforms
2 Obtain n training images and process with feature transforms to previk-
emplar training vectors
3 Obtain labels for training data, either by complete labegjior via the SS-VIM
labelling method (steps 1{6 in Fig. 4.4)
4 SpecifyF types of exemplar-centric basis function; one for each featype
5 Train RVM usingnF basis functions
6 Prune non-relevant basis functions
if No basis functions retained for basis function of typ¢hen
7 Remove feature transforrh; () from further usage
end if

Figure 5.9: Steps involved in training the VIM or SS-VIM with a mixture ofafeire
transforms.
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6

Outlier Detection and Robustness to
Contamination

In previous chapters, we have implicitly relied on input images being “well ke-
haved”: inputs are all expected to resemble the training exemplarg some way.
If, for example, the visual inference machine (VIM, Chapter 1) is tained to make
predictions from face images and it is presented with a completely untated im-
age (a tree perhaps), the VIM will nevertheless execute the mapgirit has learnt,
yielding a meaningless output. This chapter therefore opens by psenting the
idea of a home spaceof inputs, from which the VIM can be relied on to pro-

vide realistic output estimates: albeit with a degree of uncertainty. B training a
classi er to determine whether or not a particular feature vector belongs to this
space, an additional signal is available to an application which can then dal
with potential outliers differently to yield more reliable VIM predictions .

The latter parts of this chapter shift to the subtler issue ofpartial contami-
nation i.e., when only a subset of the image data is unreliable. The particular
contribution here is the consideration of a spatial coherence priorover the dis-
tribution of contaminated observations. The variational Ising classi er or VIC
algorithm is described for performing inference subject to this priorand the
chapter closes by combining the VIC with the displacement expert foocclusion
tolerant tracking. Extracts from this chapter have been publishé previously
in [Williams et al., 2004].

6.1 The home space of images

The VIM discriminatively maps input feature vectors x 2 X to an output space
Y  RY having learnt the mapping from a set of labelled exemplar image®. If
our intention is to perform inference from hostile, cluttered, real life images, we
must be prepared for the fact that the entire target object is nogoing to be visible
every time due to occlusions, lighting conditions or simple absence otk target
from the eld of view. Also, due to any inadequacies in the training data (e.g.,
if the training exemplars only represent a restricted subset of pasble inputs),
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Figure 6.1: The home space of imagedn this schematic illustration, the home
spaceH is shown as a dotted line drawn around the VIM training exemgla
indicated by circles. Four unseen test points, A{D, are sinoas squares.

unanticipated appearance changes may occur, for example thoskie to changes
in shape of the target. When the image of the target becomesontaminated in
such a way, it is important that the VIM uses only those data which are eliable:
only data that “belong” to the target. We are then forced to hope there are
suf cient uncontaminated data remaining to correctly infer the target's state.

Fig. 6.1 illustrates the idea of ahome spaceH of images. For feature vectors
falling into this notional set, we trust the learning algorithm used to implement
the VIM will have generalized suf ciently well to make sensible predictions. This
is not to say all predictions made from within the home space are con cknt: at
points that are sparsely populated by training exemplars, large eor bars are
expected, but the prediction will still be meaningful. For test points that fall
signi cantly outside the home space, the VIM output is far less meaingful. If
the learning algorithm is doing its job properly, there should certainly be very
large error bars on any prediction but it would be useful if the VIM also pro-
vided a separate signal to indicate that the feature vector was so wisual. As
was illustrated in Chapter 2, the Gaussian process does indeed retunery large
errors for test points distant from the training data, whereas theRVM is rather
overcon dent for such points.

The next chapter (Chapter 7,x7.1) describes a simple strategy for detecting
outliers when tracking with the displacement expert introduced in Chager 3:
during normal tracking, displacement estimates may be more or lesson dent
depending on the target appearance, however if loss of lock occurghe input
vectors are going to stray far from the home space of images andytproviding a
binary signal indicating this, the overarching tracking algorithm canrevert to a
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restart mode and reinitialize the displacement expert.

Whilst it is useful to know whether a feature vector is inside or outsideof the
home space, a subtler problem is to infer whether the entire vector isislead-
ing (e.g., in the loss of lock case) or whether it is only a few elements thaare
causing the abnormality (e.g., due to occlusion).x6.3 describes the variational
Ising classi er (VIC) algorithm that can infer which are the good pixels in con-
taminated data through capturing the regularity inherent in typical patterns of
contamination, namely their spatial coherence.

6.2 Occlusions and beyond

The contamination idea of identifying outlying image features is far fom new

in computer vision research; especially in the eld of tracking. In [Black and

Anandan, 1996, Black and Jepson, 1996, Hager and Belhumeur, 13B] robust

statistics are used to overcome the effects of contamination: andata that dis-

agree strongly with the consensus on the motion of the target are lzelled as
outliers and disregarded from the estimation process. Likewise, [{ison et al.,
2001] include a “lost” component to their generative model which can tem-

porarily explain away, contaminated data and ignore them when estimating mo-
tion (see Chapter 3 for a comparison of this tracker to the displacenent expert).

In contour tracking, [MacCormick and Blake, 1998] handles contamination by

discounting portions of the contour template.

Outside of tracking, methods that are robust to outlying observéaions are an
essential component in many computer vision applications. The moshotable
case is in tting homographies from point correspondences where te RANSAC
algorithm [Fischler and Bolles, 1981] and its generalizations [Torr ard Murray;,
1997, Torr and Zisserman, 2000] make accurate estimation possile, even with
very large proportions of spurious data.

Another important example is robust principal components analysis Stan-
dard PCA selects linear bases by minimizing a quadratic reconstructio error.
Such a quadratic loss function is highly sensitive to outlying pixels in anyof the
training exemplars and in [De La Torre and Black, 2001] the authors $iow that
by replacing this with a robust cost [Black and Rangarajan, 1996] the outliers
are ignored and sensible bases found. This treatment of individualigels as out-
liers is in the same spirit as the problem we seek to address in the remaiadof
this chapter and is in contrast to previous approaches to robust A (e.g., [Xu
and Yuille, 1995]) which ignore entire exemplars as outliers. The major dffer-
ence, though, is that we must cope with outliers in a single unlabelled testage,
rather than in a large labelled training set.
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Figure 6.2: Ising model [Kindermann and Snell, 1980, Cipra, 1987, Mack&03].

If elements of are considered to lie on a rectangular grid, eagthas four neigh-
bours: one each to the north, south, east and west. In thisgiéam, the ; are

shown as circles and two elements are neighbours if there iiseadrawn between
them.

6.2.1 Spatially coherent contamination

This previous work has modelled contaminations as arising independeihy; that
is, one observation may be labelled as contaminated without referemcto any
others that may be connected to it in some way (the exception to thigs [Mac-
Cormick and Blake, 1998] where coherence is modelled in 1D around a co-
tour). Our experience, however, suggests real contamination dxbits signi cant
correlation. For example, consider contaminations arising throughocclusion
of the target or shadow where the pattern of contamination forms a spatially
coherent blob in the image. The remainder of this chapter therefore proposes
an algorithm that doestake spatial dependencies between contaminations into
account.

Contamination is represented as a binary random variable 2 f 0; 1g", where
each entry corresponds to a pixel in an imagé and indicates whether that pixel
is contaminated (; = 0) or trustworthy ( j = 1). Rather than treat the elements
of as independent, we de ne a prior distribution taking the form of an Ising
model [Kindermann and Snell, 1980, Cipra, 1987, MacKay, 2003], a model of
spatial coherence originating from the study of ferromagnetism inPhysics. The
Ising model expresses the prior belief that if one pixel is labelled as cwami-
nated, the neighbouring pixels are more likely to be too.

Two entries, i andj, of are said to be neighbours if the pixels to which they
correspond are adjacent in the image. De ning the pixels to lie on a re@ngular
grid, each element of has four neighbours, as shown in Fig. 6.2. The edge
between neighbouring pixels is termed @&ond, which is said to be broken if the
elements of representing its ends have different labellings. Thenergy of a

88



The Variational Ising Classi er (VIC) x6.3

particular contamination  is then

X X

U()=3 (i) i+ @ ; (6.1)

] i
where ( i;j) =1 if i and | are neighbours and is zero otherwise. The energy
is proportional to the number of broken bonds and the ground stateswith zero
energy are those with either every pixel labelled contaminated or evg pixel
labelled trustworthy. There is also an energy added for every contaminated
pixel. This is not part of the Ising energy, but is used to bias generalljagainst
contamination.

The prior energy determines a probability via a “temperature” parameter
To [Kindermann and Snell, 1980]

P()=

Z(To) exp U( )=Tp (6.2)

where X
Z(To)= exp U(9=To (6.3)
0
is the partition function. Performing inference with this prior is hampered by the
inability to exactly compute the partition function as it is a sum over 2" possible
contaminations [Kramers and Wannier, 1941].

6.3 The Variational Ising Classi er (VIC)

In previous chapters, the VIM was used to learn the mapping from ima@e data
to continuous variables; in the case of the displacement expert (Gipter 3), this
meant learning state displacements from a training set of displaced#ture vec-
tors. In the following discussion, we are interested in a binary classi céion
problem (i.e., isx in H or not) and as such training/test data are all assumed to
be perfectly aligned and differ, not in position, but it their binary hom e space
membership status.

There are two interesting distributions that we may want to infer from an
input feature vector x, when considering the possibility that the image from
which it was sampled is contaminated. Firstly, assuming thatx would be in
a home spaceH if it weren't for the contamination, the posterior pattern of
contaminated pixels is useful as it can be used to instruct a companioinference
engine (in our case the VIM or SS-VIM: seex6.5) on which observations to
ignore
P( ;AX)

P( jx;A) = P(AjX)

(6.4a)
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where A is the proposition that x 2 H. As this assumes thak is in H the other
requirement is a detection signal analogous to that used in the rsfpart of this
chapter X

P(Ajx) = P( ;Ajx): (6.4b)

The rest of this chapter develops an algorithm for inferring these gantities
which we call the variational Ising classi er or VIC algorithm.
6.3.1 A contamination tolerant classi er

Both of the VIC output distributions (6.4) can be written in terms of t he joint
distribution P( ;Ajx). This is further factorized using the product rule

. cﬁﬂl.iﬁs.
P(iAX) = PLYPAT ) (6.5)

prior

where the rst factor is the Ising prior over (6.2), which is assumed to be inde
pendent ofx, and the second is a&contamination tolerant classi er which returns
the probability that x is a member ofH, given the pattern of contamination
The following subsection brie y explains how the Bayesian learning mettods
from Chapter 2 can be extended to build a binary classi er. Following this our
contamination tolerant classi er is described.

Bayesian classi cation

The generalized linear model (GLM) [Bishop, 1995] was described in2.10 for
regression problems. Itis also possible to use the GLM for classi catio between
images in classe$l andH whereH[H = X andH\H = ;. Repeating (2.10),
the output of GLM regression, given a feature vectorx, is

X
yx)=  wi i(x): (6.6)
i=1

If the basis functions are Gaussian RBFs [S¢itkopf et al., 1998] centred on the
training exemplars, we get

i(x) = exp kx  xWk2 (6.7)

where x() are exemplars and is a width parameter. To convert this linear
output into the posterior probability that the image is in H, the logistic sigmoid
link function is used [Bishop, 1995]

1

P(Ajx; =1)= y(x) = 1+ e

(6.8)
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whereP(A) P(x 2H).

The GLM likelihood function, (2.12), must be adapted to the fact that the
training set target labelsfy()g are no longer continuous real numbers, but be-
long to the setf0; 1g according to whether the associated exemplars belong to
H or not. As described in [Bishop, 1995], a Bernoulli distribution is used

_ ) ) i ) 1 vy
PyDjw:x®: =)= w’ x™ ¥ 1 w0 "7 (6.9

The relevance vector machine (RVM, [Tipping, 2001] seex2.4) is a special
case of the GLM and the classi cation version of the RVM shares the par-
sity property of the regression form. This means that after trairing it retains
only a few non-zero elements of the weight vectow and runtime estimates of
P(Ajx; = 1) are made ef ciently. We therefore use the classi cation form of
the RVM as a probabilistic classi er in the VIC, however the classi er described
so far assumes the input is totally uncontaminated. The next substion explains
how this classi er is extended to form a contamination tolerant class er.

Hallucinating hidden pixels

Let the setP. contain all of the elements ofx that are labelled as contaminated
by and P; all those that are trustworthy. X; is the vector containing the subset
of x labelled as trustworthy: x; f X; :i 2 P{g and the remainder comprise the
complementary contaminated subsek..

When making a prediction in the presence of possible contamination, lte
RVM should only base its decision on the trustworthy elements ofx i.e.,

P(Ajx; )= P(Ajxy): (6.10)

The RVM, however, is a static machine and requires a xed number of dser-
vations when classifying an image. To overcome this, weéallucinate (or im-
pute [Rubin, 1987]) the underlying appearance for any contaminated fxels and
thereby supply the RVM with a complete set of observations.

Let! be the underlying appearance of the object without contamination. D
get a classi cation from the RVM, marginalize over all possible hallucinations
z z
P(Ajx¢) =  PA! jxpd! = P(A]N)P(! jx¢)d!: (6.11)

The rst term in the integrand is now the RVM classi er probability for the
hallucinated appearance. The second is hallucination processde ning a distri-
bution over ! . By partitioning ! into those elements inP. and P; (! c and ! {)
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the hallucination process becomes
P jxt) = P( ;! cjxe) = Pt et )P (! ejxe): (6.12)

The appearance of the visible parts of should be xed at the received intensi-

ties: . Y

P jxt) = (i xi); (6.13)
i2P

where () is the Dirac delta function [Bracewell, 1999]. For computational

reasons, we model the hallucination process over contaminated pixeas a delta

function at the mean intensity for that pixel. This amounts to a hallucination

process | v v
P(!jx¢) = ioxip) (N (6.14)
i2p i2p ¢
where o
RO
RRARY0)

is the mean pixel appearance for images in clagd (unlike the continuous VIM,
a classi cation training set has labelsy() 2 f 0; 1g). Recall that the objective is to
infer the contamination posterior, and not perform image restoration, so it is im-
portant not to put too many resources into a sophisticated halluciration process
if it is unnecessary. The results show that this model is reasonablyffective for
low resolution images.

Since this gives a deterministic value fot , we re-write the hallucinated ap-
pearance as a function of contamination and the input imagée ( ;x). Equations
(6.11) and (6.10) then become

P(Ajx; )= P(Ajx) =P Ajl ( ;x) : (6.15)

The joint distribution (6.5) can only be found up to scale since it is intractable
to compute the normalization constant for the Ising model in the prior P( ). As
a result, the desired outputs (6.4) must be computed by an apprariate algo-
rithm; in our case a variational mean eld algorithm [Jaakkola, 2000]. Firstly,
however, we review why some popular techniques that have been used tolve
quite similar problems cannot be used in the case of the VIC.

Graphical model

Fig. 6.3 shows a directed graphical model [Jordan, 1998] for the catamina-
tion process which permits an alternative derivation of the joint distribution
P(A; jx). The graph shows that the uncontaminated target appearancé de-
pends on whether the image belongs to our target class or not; e.g.off faces,A
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Figure 6.3: A graphical model for the contamination process.

being true means that! is an uncontaminated image of a face, wherA is false,

I is a sample from the space of non-face images. The observed images then

a version of ! that has been contaminated by the binary contaminated eld .
From this model, the joint distribution is

P(A; jx)= P(P)(z)(A)P(xjA; ) (6.16)
- P(P)(F;)(A)Z P(xjl; )P(!jA) dt: (6.17)
Using Bayes' rule we write
P(xjA; )= E((/);))P(ij; ) (6.18)
= FF:((;)) P(Aj] )P (! jx; ) dl: (6.19)

Substituting this back into (6.17), and exploiting the deterministic form for
P(!jx; ) gives
P(A; jx)=P( )P Ajl (x; ) : (6.20)

6.3.2 Markov random elds

A number of problems in Computer Vision have been successfully modied as
Markov random elds (MRFs) (e.g. [Boykov and Kolmogorov, 2004, Freeman
et al., 2000, Geman and Geman, 1984]). In terms of the model introdwed here,
an MRF would factorize the joint distribution for the image and contamin ation
as Y Y

PMRF (x; )= P(xij 1) P( a5 b); (6.21)

i a;b2N

where the setN contains all pairs that are neighbours in the prior model (Fig. 6.2),
ie.N f a;b: ( a;b) =1g. The complete joint distribution has been decom-
posed into pairwisecliqueseither between an element in and the corresponding
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elements ofx or between two neighbouring elements of . Importantly, all the
image pixels are treated as independent of each other. Algorithmsush as loopy
belief propagation [Yedidia et al., 2003] or graph cuts [Boykov and Kolmogorov,
2004] exploit this independence to rapidly generate good approximéons to the
posterior for

Because, in the case of our contamination model, the non-contamated pix-
els are jointly considered when testing their membership of the claskl, the
distribution P(x; ) is not an MRF and a solution cannot be found using loopy
belief propagation or graph cuts (it is not possible to write down a Bethe free
energy[Yedidia et al., 2003]).

6.3.3 Mean eld approximation

Mean eld approximation is a form of variational approximation [Jaak kola,
2000] which nds an approximation Q( ) to the posterior P ( jA; x) by restrict-
ing Q( ) to a particular functional form. The aim is to minimize the Kullback-
Liebler (KL) divergence [Cover and Thomas, 1991] betweenQ and the true
posterior

Q ()= argmin KL [Q( kP ( jx;A) (6.22)
where
KLIQUIKP( ixi AN =« Q( Ylog 2D . (6.23)
’ . P( 9x;A)

Using the factorization already shown in (6.4), (6.22) can be expandé as

KL [Q(X)kP( x; A)] X X
= Q(9ogQ( Y+  Q( YlogP (Ajx) Q( 9logP(A; 9x)
= S(Q) EgllogP(A; jx)]+log P(Ajx) (6.24)
where S(Q) is the entropy of the distribution Q [Cover and Thomas, 1991] and

X
Eolo( )= Q( 9g( 9 (6.25)

is the expectation of a function with respect toQ( ).

The minimum value for (6.24) is zero and occurs whenQ( ) = P( jA; x).
By rearranging, this gives a functional

J(Q) = S(Q) + EqllogP(A; jx)] (6.26)

which is a lower bound on logP (Ajx), meaning that maximizing J(Q) gives
not only an approximation to the posterior for , but an approximation to the
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marginal detection score too.

Aform of Q( ) must be chosen that makes the maximization of (Q) tractable.
For the mean- eld approximation, Q( ) is modelled as a product of factors
[Jaakkola, 2000, Yedidia et al., 2003], one for every element of :

Y
Q()= | Qi(i): (6.27)

It is now possible to maximize J iteratively with respect to each marginalQ;( ;)
in turn, using the mean eld update [Haft et al., 1999]:

Q) Zliexp Eq  [0gP(A; jX)] ; (6.28)

where X
Z = exp Egqj, [logP(A; jx)] (6.29)
is the partition function and Eg; ; [] is the expectation with respect toQ xing
the it element of at the value ;:
2 3

X Y
Eqi [9( )= 4 Q)9 ): (6.30)
fogini ini

f g denotes a sum over all con gurations of , except for leaving ; xed.

6.3.4 Taking expectations ove? (A; jXx)

The log-joint distribution is written as

1

logP(A; jx)=log P(Aj ;X) T
0

U( )+ const (6.31)

where U( ) is the prior energy and the conditional expectation can be written as
the sum of two simpler expectations

Eqj, [logP(A; jx)1= Egj, [logP(Aj ;x)] TloEQj J[U( )]+ const  (6.32)

The second term, coming from the prior, can be factorized acroselements
of making is feasible to compute this conditional expectation exactly. The
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complete expectation (i.e., not conditional) is given by

X XX
EqlU( )= () QNN 1T (i )
B P X
+ Qi(i=0); (6.33)
i
and the conditional expectation can be computed from this term byreplacing
the relevant parts of the sum

Eqj, [U( )= EqlU( )]+ EC(1) (6.34a)

X X X
E(i)= Q(i) 1 (5 ) Q(d 1 (; 9

J2N (i) i
Qi(i=0)+ (1 ) (6.34b)

where N(i) f j: (i;j)=1gand %is a dummy variable standing in for
the values of ; that were used in the complete expectation. Any term that is
constant in ; will cancel when (6.28) is normalized therefore removing the need
to compute Eq [U( )] at any stage in the algorithm.

The rst term of (6.32), for the contamination tolerant classi er, is not fac-
torizable in such a way as to make exact computation feasible. This exgctation
is instead found approximately. The exact quantity of interest is

X
Eqj, log 1+eY'(® = Q( )logP(Aj :x) (6.35)
f Gini

which intractably requires the summation over2' 1 terms. In the approxima-
tion, this is replaced by the sum over a subset of con gurations

giving

. X , .
Egj, log 1+eY'(X Q( Mylog 1+e V' ("X
j=1
(6.36)
By making small, say< 210, the approximation is quick to compute. The

challenge is then to choose the set to give the best approximation for a given

We create by dividing the image region into successive annuli of varying
thickness, centred on thei" element of up to a maximum radius. This is
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Figure 6.4: Annular groupings of elements of. (a) In this low resolution example,
the circles indicate the elements ofwhich lie on a 12 12 grid. The centre of the
annuli is the target pixel being updated anghax =4, = 2. The 0" annulus
contains only the four neighbours of the target, each coesatl independently. The
remaining annuli group larger numbers of elements togetherhi@ tour quadrants
(grouped elements have the same colouff) For this even smaller grid,max = 2
and = 28 and the pixels have been numbered according to which grouy the
belong to. The outer groups (8,9,10,11) remain xed at the cant maximizer of
Q( ) for all entries in

illustrated in Fig. 6.4. Each annulus is subdivided into four parts and within
each part all elements of will have the same value when the set is generated.
The members of are the binary permutations of the independent parts of
in this annular structure; i.e., if there are 12 groups = 212 The elements
outside of the maximum radius are xed at the current maximizer of Q( ) for
all members of

Using the pitch between neighbouring elements of as a unit of distance, the
rst annulus is constrained to be of radius 1 so that the variables inN (i) are in-
cluded individually. Following this, the radii are assumed to grow exponentially,
with the outer radius of the j ! annulus (the rst annulus corresponds toj = 0)
given by
=21 (6.37)

If and the maximum radius max are known, the constant may be set

_ 4log, max.
log, '

For the experiments detailed here, the valuesmax =4 and = 256 are used.
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6.3.5 VIC classi cation

In x6.3.3 it was shown how J (Q) is a lower bound on the marginal, classi cation
term P (Ajx). Owing to the unknown normalization of the Ising prior, it is only
possible to computeEq [logP (A; jx)] up to a constant. Therefore, to perform
classi cation with the VIC, we compare the value of J(Q) computed without
the constant to an experimentally derived threshold:

Q> x2H

1) S (6.38)

This means that it is possible to perform classi cation, however we are nable
to recover the underlying marginal probability P (Ajx).

6.3.6 Course-to- ne initialization

The mean eld algorithm described above is capable only of local optimiation
of J(Q). A symptom of this is that it exhibits spontaneous symmetry breaking
[Jaakkola, 2000], where the contamination eld is set to either all contaminated
or all trustworthy. This is alleviated through initialization, for which we qu ickly

search for a point = argmax P( ;Ajx). Q( ) is then initialized using this
mask, before mean eld iterations start, by settingQ;( i) =0:5 Q depending
on 5. Q =0:25was found to be a reasonable choice.

The search is performed by dividing the image region into four quadrats.
The joint distribution P( ;Ajx) is evaluated with the elements of set to each
of the sixteen binary con gurations of these quadrants and~ is then the con-
guration with the highest probability. Following this each quadrant is fu rther
subdivided into four sub-quadrants and sixteen evaluations are mde for each
group of four, keeping the values of ~ outside the quadrant of interest xed at
the current maximum. This process is repeated down to a maximum nurber of
layers of sub-divisions (three are used in our experiments) resultgin a course
initialization. The initialization procedure is illustrated in Fig. 6.5.

Fig. 6.6 shows pseudo-code for the VIC algorithm. Forl9 19 images, the
average time taken for the VIC algorithm to converge is 0.5 secondgthis is a
C++ implementation on a 2.54GHz Pentium IV PC).

6.4 VIC performance evaluation

To test the VIC, A was chosen to be the proposition that the imagex depicts
a face. The training set used is the th&€ BCL Face Database #1from the MIT
Center for Biological and Computation Learning®, which contains images of

Thttp://www.ai.mit.edu/projects/cbcl
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(a) (b) (c)

(d)

Figure 6.5: Course-to- ne VIC initialization. (a)At the coarsest level, this initializa-
tion procedure searches over the four quadrants of the negibinterest, selecting
the one pattern out of the sixteen combinations that maximizé¢ ; Ajx). (b,c)
At the next two levels, each quadrant is further subdividetbiincreasingly smaller
squares, searching over each group of fogd) Possible ground truth pattern of
contamination for this hypothetical example (black patchewlicate contamina-
tion).

99



xX6.4 CHAPTER 6

Maximize J (Q)
Require: Candidate image regior
Require: ParametersTg, , Q

Require: Annulus radii
Require: RVM weights and exemplans; fx X gll_,
Require: Mean appearance

Obtain initial guess of™ (Fig. 6.5)
Initialize Qi ( j = 1) 05+5 Q (1 ) Q

while Q not convergeddo
for All image locations do
for ;= f0;1g do
Compute E( i) (6.34)
Approximately computeEg; ; [logP (Aj ;x)]
Eq, logP(A; x)]  Egq;, llogP(Aj ;x)]+ E( )
end for p
Compute partitionZ; = .exp Eq;j [logP(A; jx)]
Update Q;i( ;) %eEQj [log P (A; jx)]
end for '
end while

Figure 6.6: Pseudo-code for the VIC algorithm.

registered faces and non-faces which were histogram equalized [Jaih989] to

reduce the effects of different lighting (see Chapter 5). The saenis done to each
test image. The RVM was trained using 1500 face examples and 1500 no

face examples. These numbers are limited in practice by the compleyitof the

training algorithm [Tipping, 2001]. Parameters were setas =0:2, Q =0:25
and the temperature constant wasly = 1:5.

The posterior pattern of contamination P( jx;A) is approximately inferred
as the value ofQ which maximizes J. Fig. 6.7 shows some results of this. As
might be expected, for a non-face, the algorithm hallucinates an irdact face with
total contamination (for example, row 4 of the gure); but of cou rse the mar-
ginal P(Ajx) is very small in such instances.

To assess the classi cation performance of the VIC, 1000 contatimated pos-
itives were automatically generated (Fig. 6.8). These were combined witpure
faces and pure non-faces (none of which were used in the training Sednd tested
to produce the receiver operating characteristic (ROC) curveshown in Fig. 6.8.

Curves are shown for the unaltered RVM acting on the contaminatedset
and the new contamination-tolerant VIC outlined in this paper. For compari-
son, points are shown for aboosted cascade of classi ergLienhart and Maydt,
2002] which is a publicly available detector based on the system of Viola ad
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Input x Hallucinated image  Contamination eldQ( =1)
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Figure 6.7: Contamination posterior. Examples of contaminated inputs with in-
ferred contamination distribution.
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Figure 6.8: Classi cation performanceThe ROC curve on the left was traced out
by varying the threshold in (6.38). The VIC is shown as the solid line, but also
shown are lines for the RVM (without VIC enhancements) tegtincontaminated
examples (dashed) and the contaminated examples tested by Wikl Rdash-dot).
Likewise, single points are shown for the boosted cascade fetector [Lienhart
and Maydt, 2002]. Some of the contaminated positives used toegate the curves
are shown on the right.

Jones [Viola and Jones, 2001]. The curve shown for the RVM againsan un-
contaminated test set con rms that contamination does make the classi cation
task considerably harder. By modelling the contamination eld explicitly, a de-
tector is produced that improves on the performance of both a plan RVM and

a boosted cascade detector although it is still falls short, of cours, of the perfor-
mance of an RVM on completely uncontaminated examples. The algortim is
also relatively expensive to execute compared, say, with the contaimation-free
RVM.

Fig. 6.9 shows some natural face images that the boosted cascadggnhart
and Maydt, 2002] fails to detect, either because of occlusion or de to a degree
of deviation from the frontal pose. The VIC algorithm detects them successfully
however. The rst row illustrates occlusion and the corresponding inferred con-
tamination eld. In the second row, the centre of the face is deemd unusual
relative to the training data so recognition hangs on the remaining pegpheral
features. In the third row, the non-frontal orientation is nonet heless accepted by
discounting the data around one eye.
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Original Input x Hallucinated image Contamination

Q( =1)

A J

. Hz:

Figure 6.9: Some more examplesThe leftmost column depicts faces that the
boosted cascade [Lienhart and Maydt, 2002] fails to detedsing the VIC, these

lead to high posterior probabilities of faces after lab@dlisome regions as contam-
inated.
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6.5 Combining the VIM with the VIC

Having inferred the posterior pattern of contamination Q( ) P( jx;A) with
the VIC, we may then wish to make continuous predictions with the VIM using
only the “good” data. We achieve this by making a simple modi cation to the
GLM (x2.10) using Gaussian RBF basis functions. Given a pattern of contami-
nation the continuous GLM output is given by

xXn

y(x; ;w)= wi i(x; ) (6.39)
i=1

where we de ne the basis functions as

ix; Y=exp  kx xWk? (6.40)
and
()2 r X (i) 2
k=1 Kk j=1

wherer is the dimensionality of x and

By training a GLM (or an RVM, see x2.4) on clean data, this simple modi -
cation can be used to make inferences from contaminated data. Asdemonstra-
tion of this, Fig. 6.10 shows how an RVM displacement expert (see Chater 3)
can be used in collaboration with the VIC to track an object undergoingocclu-
sion. These results require approximately 0.7s of computation time pr frame,
which means that it does not meet our requirement for ef ciency (Chapter 1),
however this is a powerful of ine tracking system.

6.6 Summary

This chapter has explored the use of classi cation algorithms to degct outliers.
The notion of a home spaceH of images was introduced as a class of feature
vectors for which the VIM will make useful predictions. In cases wherean in-
put may be partially contaminated we introduced the variational Ising classi er
(VIC) which can identify the outlying elements of a feature vector byexploiting
the prior knowledge that contaminations exhibit spatial coherence. This uses a
discriminative RVM classi er [Tipping, 2001] to decide whether the tar get be-
longs to H or not, however it is worth reiterating that the VIC algorithm is not
limited to RVMs: any probabilistic detector can be modi ed in a similar way
to deal with spatially coherent contamination. Finally we showed how the VIC
algorithm can be used in conjunction with the VIM to create a contamination
tolerant displacement expert.
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Figure 6.10: VIM combined with VIC.For this demonstration, a displacement
expert was trained from clean data using an RVM (see ChaplerThe VIC was
implemented with a classi er trained from faces which was thesed to infer the
pattern of contaminationQ( ) over the tracked region. The displacement expert
was used to track the target using only data predicted to beodoby Q( ). The
lled-in parts of the tracked region indicate the inferred samination. This video
is available fromhttp:// mi.eng.cam.ac. uk/ omcw?2/thesis/vic _track _

mpg. mpg
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Practical Applications of the VIM

When the visual inference machineor VIM, was introduced in Chapter 1, the
diagram in Fig. 1.2 omitted what is arguably the most important block: the
target application for the inferencesy. This chapter offers a collection of ex-
ample applications that demonstrate the type of problems that arenaturally
tackled in this mapping framework. An extract from this chapter has appeared
in [Williams et al., 2005a].

One application that has already been covered in detail in Chapter 3 ishe
displacement expert which will not be covered again here, but is a compuent
for a number of additional applications. For the demonstrations that use a dis-
placement expert, a default constant velocity dynamical prior is ued andK =3
observations are made for each video frame (see Chapter 3 for tls). All these
demonstrations track translation only.

The rst section of this chapter explains how an object detection algrithm
(Chapter 6) can be used in conjunction with the displacement expertGhapter 3)
for a robust real-time tracking system capable of automatic initializgion. The
bene ts of this approach to computational ef ciency and robustness are demon-
strated experimentally. The next section examines the application fothe VIM
and SS-VIM to human—machine interfaces. This includegaze trackingwhere
an image of the eye is used to infer where on a computer screen the arsis
looking, and a variety of one-dimensional controllers for the Dasher text entry
system [Ward and MacKay, 2002]. Finally, we deviate from the rest d the work
in this dissertation (which concerns the mapping of images to continuas output
spaces) to brie y explain how ideas borrowed from work in dimensionality re-
duction [Tenenbaum et al., 2000] can be used to map into certain disete output
spaces.

7.1 Tracking validation and recovery

Being a local method, tracking with a displacement expert (Chapter Bis ef cient
at localizing a target object in an image. However, a target may occasiually
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validate an image region: validdte u)
Require: binary classi er
sample feature vectorx  f (I;u) (Fig. 3.2)
test x with classi er
if x 2H then
return 1
else
return O
end if

Exhaustive searchu = searclifl )
Require: max, min scales and resoluti®ax ; Smin ; Sres
Require: translation resolutiontes
scales = Smax
while s smin do
for a=0 to width of | steptes do
for b= 0 to height of | steptes do
candidate state vectou =[a b s0]" (seex3.2)
if validatgl; u) then
return u
end if
end for
end for
S S Sres
end while
return search failed

Figure 7.1: Pseudo-code for validation and search algorithniie search algorithm
is described assuming the Euclidean similarities are beied asd that no variation
in orientation is considered.

move more rapidly than expected, or alter appearance in an unfamilia way
causing the state estimates made by the tracker either to diverger converge
to an incorrect solution. This results in loss of lock and if a viable, long-term
localization system is desired, something most be done to detect los§lock and
recover from it. This section describes a simple system for doing thjgrovided
the target region is assumed to belong to a prede ned space of imagH (see
Chapter 6). A detection system is required which can operate in two modes:

Validate Given an image regionx, the detector will classify whether or not it
belongs toH;

Search Given a complete imagel , the detector will exhaustively search it and
return either one or many regions that belong toH.
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During normal tracking with the displacement expert, the region descibed by
the mean of the current state estimate is tested using the detectin validation
mode and, if it is deemed not to belong toH, the system is alerted to loss of
lock. This triggers the search mode to reacquire the position of theéarget region.
Pseudo-code for these simple routines is shown in Fig. 7.1, where the areh
algorithm assumes the Euclidean similarities are being used. Both algtims
require a ready-trained binary classi er to decide whether featurevectors belong
to H or not. For applications like face tracking, powerful pre-trained systems
are publicly available (e.g., [Lienhart and Maydt, 2002]); for other targets a
detector must be prepared specially.

In x3.7, the displacement expert was tested after being trained from had
labelled seed images and hand initialized. Exhaustive search by the @etion
algorithm can be used to automate this process by providing labelledeed im-
ages and giving an initial state estimate when continuous tracking comences
(i.e. provide ug in Fig. 3.8) An automated tracking system, with validation and
restart is detailed in Fig. 7.2.

7.1.1 Algorithmic complexity of tracking and detection

Exhaustive search must consider a large number of candidates, ¢éroverwhelm-
ing majority of which will be negative. The aim of the algorithm in Fig. 7.2
is to create a system that exploits both the ef ciency of local tra&ing with the
displacement expert and the long-term robustness of an object dector.

During continuous tracking, the operation count for generating displace-
ments from the expert scales linearly with three terms:

track: O(r n d): (7.1)

where r is the number of features in a feature vectorx, n is the number of
exemplars used to train the displacement expert (or the number ofemaining
relevance vectors in the case of an RVM displacement expert) andlis the num-
ber of degrees of freedom being tracked. In a particular applicatia d is xed,
as are the number of features in a vectok. The RVM displacement expert was
shown in x3.7 to make predictions faster than a Gaussian process, and this is éu
to the smaller n from the sparse learning process. For real-time tracking there
is also a signi cant constant term corresponding to the time taken b retrieve an
image from a webcam.

For exhaustive image search (in translation and scale space as deised in
Fig. 7.1), the number of operations is :

search:O r [Image width] [Image heighi t,zes Sres - (7.2)
Fast object detection algorithms achieve computational ef ciencyin part by
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input:seed images§| (g5,
no. examples
range

nd target: _
u) = searctfl () I++

¢

i<ng?

yes

no

train displacement expert
Fig. 3.6

fetch | from video source

Ug = searcll)

search successful?

no yes

track 1 frame with
Kalman lter Fig. 3.8
L0 t++

i

lidatgl; O
fetch newl -~ validate(l; 0¢) ——

u; = searclil)

Figure 7.2: Automatic displacement expert training, initialization arrécovery.
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Boosting RVM RVM
Video RMS RMS Adj. RMS Inliers
A 9.3 9.3 53 88%
B 101 171 11.3  70%
C 11.8 5.3 95 80%
D 220 314 156 78%

Table 7.1: RMS tracking errors. This table shows the RMS error of the two
algorithms compared to a ground truth. The adjusted RMS errsrcalculated by
only using as inliers those frames for which the detector edax hit .

adapting the number of features used for each test. In the casaf [Viola and

Jones, 2001, Romdhani et al., 2001] this is done via aletection cascadeavherein
many candidates are rejected without the need to examine all of theshtures. Im-
portantly, however, the cost of a detector of this kind still scales wih the size of
an input image (every image location must be tested, at least partialjywhereas
the cost of the displacement expert does not. The validator, which ésts just
one location, also escapes any dependency on image size and thegreimposes
negligible computational cost.

7.1.2 Complete tracker performance

Tracking has been combined with search for a fast localization algorittm. Speed
is measured here as both time taken to track each frame and CPU ilization.
This second measure is meaningful when video frames are only availabk a
maximum rate (e.g. 15 or 25 frames per second) and the tracker lags processor
cycles free.

Recently, work such as [Viola and Jones, 2001] has provided highly efient
face detection algorithms. For face tracking applications of this sgtem Float-
Boost [Li et al., 2002], a variant of [Viola and Jones, 2001], was usel. Experi-
ments were carried out to measure the CPU demand and accuracy BfoatBoost
alone. As a fairer comparison to the displacement expert, a versioof the Float-
Boost detector was used that is optimized for nding only one face in a image.
By using a heuristic search pattern and halting after one face is fod, this ver-
sion is more ef cient than exhaustive full-frame search. The hybridtracker with
the RVM displacement expert using FloatBoost for validation and resarting
was also tested for speed and accuracy on the same test data. Taly.1 shows
how the accuracy of frame-independent search by FloatBoost e¢opares a hybrid
system. The sequences used in this experiment all include the tatgebject be-
coming totally occluded for a short time. To calculate the adjusted RMS values,
inliers were counted as those frames for which the boosting algorithm pplied
an estimate (the boosting RMS and adjusted RMS columns were therefe com-
puted on the same number of data).
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Mean Steady
Video Boosting RVM RVM
A 44% 21% 21%
B 43% 45% 16%
C 50% 39% 20%
D 53% 43% 21%

Table 7.2: CPU Usage.Mean and steady-state (during tracking alone) CPU uti-
lization by both algorithms.

Table 7.2 shows the mean CPU utilization of each algorithm as well as
the “steady-state” CPU usage during tracking alone (i.e. ignoring ghaustive
searches and training).

For tracking a single object, the expert shows similar accuracy to bosting
(when taking the adjusted RMS value). With respect to CPU usage, thybrid
system takes 75% the number of cycles required by boosting for thse short test
sequences (including training the expert). In other, longer, scarios with less
attempts to deliberately instigate restarts, this gets closer to #40% suggested
by the steady-state results. It is worth mentioning, however, thathe version of
FloatBoost being used is optimized for nding a single face. Using a vestion with
exhaustive search will require more CPU time, but will have the advantge of
nding all faces present in the image.

The bene t of combining an object detector with a tracker is a systemthat is
not only ef cient but can recover from failure of the tracking comp onent yielding
long-term (inde nite) reliability. Figure 7.3 shows snapshots from a 60 minute
face tracking sequence during which the target (observed by a webm) carries
on working as normal, including leaving and returning to the scene seval times.
The tracker was trained from three seed images and the mean CPU utiéfion
for this period, including on-line learning of the displacement expert wes 32%.
Of all the occasions that the system changed from tracking to reart mode,
approximately 12% were due to tracker failure rather than the target simply
leaving the eld of view. The hybrid strategy is capable of tracking an object
for extended periods of time whilst still only using a fraction of available CPU
cycles.

7.2 Gaze tracking

The human, or indeed animal, eye is essentially an input organ ful lling the role
of light detector in the vision system (see Chapter 1). However, the is also in-
terest in the use of the eyes as output organs [Witzner Hansen0P5] for human—
computer interaction: by knowing the location a user is gazing at, thesystem can
act accordingly e.g., by moving the cursor to that location. For combrt and ease
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t = 10min t = 20min t = 30min

t = 40min t = 50min t = 60min

Figure 7.3: Long-term tracking behaviourThis gure shows tracking continuing
robustly over a 60 minute period.

of use, this is best implemented by using cameras, leading to the regmement for
a machine that can localize the eye and infer the direction in which it is lookng
from images: a process known as eye agaze tracking[Duchowski, 2003]. The
typical gaze tracking “pipeline” is illustrated in Fig. 7.4. Eye localization and
tracking can be performed using a displacement expert to ef ciery localize the
eye in each video frame (which has been initially identi ed in a seed image by
the user). Having localized the eye, the next stage is to infer the ga direction
and, as was brie y explained in Chapter 4, this can be achieved with the W by
directly learning the mapping between eye images and the 2D screenamalinates
the user is gazing at.

Although some appearance-based approaches have been used lie titera-
ture [Baluja and Pomerleau, 1994, Tan et al., 2002], our method forgaze track-
ing is in contrast to the majority of other approaches which work by shining
infra-red light on the subject and use a model of the eye optics to irdr gaze
position. The shortcomings of this are:

1. Dedicated infra-red lights and camera hardware is expensive;

2. The equipment must be carefully set up for the scene to t the ofical
model,

3. infra-red based systems typically fail in daylight;

4. If a user has an unusual eye appearance, lens distortion or née to wear
glasses, these systems again fail to operate successfully.

As motivated in Chapter 1, the VIM approach to visual inference does not rely
on models of image formation and as such unusual eye appearance glasses
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eye localization target

video input and tracking gaze inference application

Figure 7.4: The gaze pipeline. This diagram illustrates the semantic compo-
nents forming a complete system for gaze tracking (adaptearfijgVitzner Hansen,
2005]).

do not prohibit its ability to track gaze, provided the eye appearan® changes
consistently as the user looks around. Also, the computational ad hardware re-

quirements of the VIM extend to a budget desktop PC or laptop anda webcam.
The process of setting up the equipment is also far simpler: one musimply

ensure the webcam has a view of the user's eye; the gaze trackingpdication

bene ts from our efforts to meet the requirements for ef ciency, simplicity and

versatility established in Chapter 1. There is, however, still a calibrabn step

required to train the VIM, and this is discussed next.

7.2.1 Calibration

For gaze tracking, the SS-VIM is trained using a semi-superviseddining set
(see Chapter 4) with feature vectors generated from the mixed &ure types of
greyscale, edge energy and colour histograms (see Chapter 5)0 Gather the
training data, an animated calibration pattern is shown on the screerinvolving
a target that moves betweem; = 16 points arranged in a spiral pattern around
the screen. At each point the target comes to rest and an exempldeature
vector is recorded for the eye appearance, labelled with that poing' coordinates.
Between each point, ve exemplars are also collected as the eye followtbe
target, but these are left unlabelled, givinghy = 75. These data are collected as a
video sequence, so temporal metadata is also available and the semipervised
learning framework, already explained in Chapter 4 is used to train an R/M
(modi ed to handle noisy labels and exploit mixed feature types) formng the
mapping from eye images to screen coordinates.

7.2.2 Performance

To test the SS-VIM as a gaze tracker, the animated target on thscreen, used
for calibration, was moved between 100 randomly selected points. At ach
point, the moving target stops and the VIM's gaze prediction is reorded. From
this the RMS error in screen coordinates may be found. The accuy of gaze
trackers is usually measured in degrees and to compute this we neemlknow the
user's distance from the screen (0.8m in our experiment) and thehysical pixel

114



An all-purpose one-dimensional controller X7.3

Gaze tracker Calibration points  Angular erreg
SS-VIM 16 1.12
[Baluja and Pomerleau, 1994] 2000 15
[Tan et al., 2002] 256 0.5
[Tobii Technologies, 2004] - <0.5

Table 7.3: Gaze tracking accuracyrhis table shows the accuracy of the VIM gaze
tracker when trained on 16 calibration points. Also showrilis accuracy reported
in [Witzner Hansen, 2005] of the Tobii [Tobii Technologie&)04] system and the
gaze trackers in [Tan et al., 2002, Baluja and Pomerleau, 1994

dimensions (0.25mm). The average angular error is then given by

1 RMS pixel error  pixel width
distance from screen '

€ang = tan

Table 7.3 shows the accuracy of the VIM gaze tracker when trained with16
calibration points. Also shown are the reported accuracies of the caonmercial
Tobii system and the systems in [Tan et al., 2002] and [Baluja and Poerleau,
1994]. The VIM gaze tracker is capable of predicting gaze at 30Hz tilizing
around 30% of available CPU time. Calibration/training takes approximately
22 seconds. Although, again, actual performance varies with hardare.

The results in Table 7.3 show how the SS-VIM is a competitive method fo
gaze tracking measured by accuracy, and is particularly attracte given the lim-
ited calibration required. The expensive Tobii system clearly outpeiorms our
offering, as does the system of [Tan et al., 2002], however it is worthnoting
that the accuracy reported by the authors of this system is comyited by a leave-
one-out test on 256 consistent and well-registered eye-images; ouesults are
for a more realistic scenario in which unseen images are used, captutefter
calibration and training are complete.

7.3 An all-purpose one-dimensional controller

The Dasher writing system [Ward and MacKay, 2002J* is a replacement for
keyboards as a means of computer text entry. With Dasher, text isentered by
steering through the alphabet using continuous gestures. Suctegtures can be
generated by the mouse or some mechanical device (e.g., “breath Blger” works
by measuring a user's breathing pattern) however, the VIM can als be used as
a controller by mapping images received from a camera to a one-dimesional
signal. In this section we describe a single software application that treks a
region with the displacement expert and trains a one-dimensional S8iM to
map feature vectors sampled from this region to a control signal. his enables

1 Also seehttp://www.inference.phy.cam.ac.uk/dasher/
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Figure 7.5: One-dimensional controller screen shots. Here are some
stills showing the SS-VIM making 1D controller predictionsorfr im-
ages of an eyebrow and mouth. The bars to the side give an im-
pression of the predicted 1D signal. These videos can be tmaded
from http: // mi. eng. cam. ac. uk/ omcw?2/ thesis/ eyebrow _mpg. mpgand
http: // mi. eng. cam. ac. uk/ omcw?2/ thesis/ mouth _mpg. mpg

the use of practically any visible gesture as a controller for Dasher. e particular
examples given here are for the use of eyebrow motion and open andosing of
the mouth, however, the VIM gaze tracker from the previous sedbn and the
hand mouse and head pose tracker shown below can also be used tordool
Dasher.

For this one-dimensional controller, the training procedure is similarto that
for the gaze tracker above. The displacement expert is used todck the target
that is going to be used. If there is no detector available for this taget then
the seed image must be manually labelled and the tracker manually initialed.
Once the displacement expert is trained, a calibration process is pirmed for
which the user is expected to smoothly alternate between the extrees of the
input range in time with a visible and audible calibration signal. The SS-VIM
is then trained by only labelling the data that were collected at the extemes
(the calibration pauses at these points and this data is taken as moseliable).
Also in common with the gaze tracker is the use of a mixture of greysde, edge
energy and colour feature transforms and the use of the spard®VM to learn the
mapping.

Fig. 7.5 shows some screen shots of this one-dimensional controller @ction.

7.4 Hand mouse

Work such as [Cipolla et al., 1994, Stenger et al., 2001, Stenger et al2003]
is motivated by the application of a “hand mouse”, a visual interface in which
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Figure 7.6: Hand mouse With a vertically mounted camera, a hand can be viewed
in a comfortable desktop position. By tracking the hand with displacement
expert, the horizontal and vertical hand position can beem&d e ciently and
used to drive the position of the cursor on the computer scredssing the 1D
controller described in the previous section, a 1D signajéserated by the hand
opening and closing, thereby providing a single button &kli functionality: the
bottom row shows a typical \click and drag" sequence. Thigleo is available at
http: // mi. eng. cam. ac. uk/ omcw2/ thesis/ hand _mouse mpg. mpg

hand gestures are used to replace the traditional, mechanical mse input. The
gaze tracker and 1D controller applications of the preceding sectins use a dis-
placement expert to extract the correct image region and this localiation is oth-

erwise ignored. These additional degrees of freedom can be put tcse however,
and Fig. 7.6 shows some snapshots in which the VIM is used to create a hd

mouse.

7.5 Head pose tracking

Head pose is another useful piece of information for many applicatims [Gee
and Cipolla, 1994], and it is also possible to train the SS-VIM to map heal
images to 3D pitch and yaw angles. This application is a good candidatedi the
semi-supervised treatment because a teacher providing labelledesrplars may
know or be able to infer the head orientation in a few key images (e.g., wkn the
head is dead-on and 90 to the camera), but to label accurately the pose in every
image is dif cult and inaccurate without instrumenting the subject: something
that is not always practical. Fig. 7.7 shows some examples of this working.

7.6 Mobile camera

If the scene being studied remains largely static, but the camera raes, the VIM
can also be used to infer the camera's pose. Still images were captgr at 36
known camera orientations and by processing these with a mixture of geyscale,
edge energy and colour feature transforms a labelled training set v&acreated.
The VIM was then used to learn the mapping from these exemplars to 2D
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Figure 7.7: 3D pose recoveryFive key frames from a training sequence were la-
belled with the approximate 3D rotation (pitch and yaw) of thsubject's head.
The SS-VIM learns the mapping from images to the pose parameterdepen-
dently) and is then able to successfully predict the pose nevjpusly unseen
images (ve of which are shown here). This video can be dowdémh from
http: // mi. eng. cam. ac. uk/ omcw2/ thesis/ head _pose _mpg. mpg

output space representing the camera’'s azimuthal and zenith gies. For new,
unseen feature vectors it was then possible to predict the azimuthral zenith of
the camera: see Fig. 7.8. The sequence of inferred poses is also italde for
download from http://mi.eng.cam.ac.uk/ omcw2/thesis/slam _mpg.mpg

7.7 Manifold interpolation

This last section deviates from the rest of this dissertation becaesit addresses
circumstances where the output spac#’ is discreteY f o(i)gP:l. The training
set in such a case de nes the input—output relationship through coespondences
between training exemplars and members oY, instead of vectorial labels.

The learning task is broken into three parts:

1. A graph is built from the members of Y and the geodesic distance com-
puted between all members;

2. Using a set ofL landmark elements inY, an intermediate, continuous
coordinate system is de ned inR%;

3. The (SS-)VIM then learns the mapping from feature vectors tgoints in
the intermediate coordinate system.

This section does not therefore describe any alterations to the Wi, framework,
but instead explains how the intermediate coordinate system is dewsl.

7.7.1 Manifold structure

The rst step is to identify structure within Y and for this to be possible a dis-
tance function is requiredd : Y Y ! R* andtheO O matrix of distances
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Figure 7.8: Inferring the azimuthal and zenith pose angles of a cameratnota
around a xed origin.
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between all output members is computed usingl giving
Djj = d(o;00)): (7.3)

For the experiments described here, the sum-of-squared diffences (SSD) be-
tween two greyscale images is used as a distance. By connecting eadnmber of
Y to its K nearest neighbours a graph is constructed from D

D; if o;00) connected |

i = 7.4
I 1 otherwise (7:4)

The path matrix P°contains the distance of all elements of¢ from one-another,
travelling between connected elements only: thgeodesic distanceThis is com-
puted using Floyd's algorithm [Floyd, 1963]. This process compriss the initial
stages of thelsomap algorithm for dimensionality reduction [Tenenbaum et al.,
2000]. Isomap would then recover the manifold dimensionality by solving an
O O eigenproblem however, as our aim is not to identify latent dimensionality
this computationally intensive stage is not necessary here.

7.7.2 De ning an intermediate coordinate system

Given the set of exemplarsfx()g, a teacher now de nes correspondences be-
tween exemplars and members o¥ (see Fig. 7.9b). Each exemplar can only be
labelled once (or not at all), but one member ofY may be associated with many
exemplars. All of the o(") that correspond to at least one exemplar de ne a set of
L landmarksL Y . The columns of P°that do not correspond to landmarks are
removed to give a thinned matrix P (Fig. 7.9c) in which every row now contains
the geodesic distances of every member &f from the landmarks L. These row
vectors will be used as a coordinate system iR~ for points on the manifold.
The abstract correspondences between the exemplars andare translated into
vectorial labelsy, using the thinned path matrix P. If example x() corresponds
to o), theny@ 2 Rt will be the j ™ row of P.

Now that there is a vectorial label associated with each exemplar, th process
of inferring the complete label set[y,;yy] and learning the mapping from X to
the landmark coordinate system then follows the SS-VIM algorithm decribed in
Chapter 4. Once trained, any unseen feature vectax can be mapped toR". To
translate this into a member of the setY, the output whose row of P is closest
(in Euclidean distance) to the VIM prediction is selected.

7.7.3 Performance

We demonstrate the use of the VIM in conjunction with manifold learning when
the setY contains images from a video sequence. As a distance measure, tien
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(@)
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> 200

300

(©) (d)

Figure 7.9: Manifold learning. (a)In this example, the training exemplars are sam-
pled from a video of a hand opening and closing (12 of 150 imagjesvn). Y
contains frames from a video of a butter y apping its wings 21of 387 shown).
(b) The teacher makes correspondences between exemplars shdhéndpand
open(closed) to images W with the wings open(closed). The remaining exemplars
remain unlabelled(c) There are only two landmarks in this example, and the ma-
trix P contains the distance of each node Yhto the landmarksL . This schematic
shows smaller distances darkdd) Having trained the SS-VIM to map feature vec-
tors to the intermediate coordinate system, an unseen examplested to predict
distances from the landmarks. The nearest neighbour is foandording to geo-
desic distance by nding the best matching row & A video demonstrating this
is at http: // mi. eng. cam. ac. uk/ omcw?2/ thesis/ butterfly _mpg. mpg

of squared differences (SSD) between greyscale images is used. Tfia mean-
ingful measure when images are similar but degrades rapidly with increasg
dissimilarity. The Isomap [Tenenbaum et al., 2000] method of creatirg man-
ifold distances used here is therefore particularly effective as it coputes the
distance between two arbitrary members ofY by concatenating many small,
reliable steps.

Fig. 7.10 shows this method being used to synchronize two video sequeas.
Y contains images of “person 1” rolling her head around randomly. Similarly,
the exemplars show “person 2”7, also rolling her head. Some of the eemplars
are labelled by making correspondences to ve landmarks inY whenever the
two heads are in the same pose. The SS-VIM then learns a mapping froim-
ages of person 2 to the intermediate manifold coordinate system,ral thereby to
members of Y. Novel test images of person 2 can then be used to fetch images
from Y, nding a new trajectory through the video. This application is similar
to the “do as | do” idea from [Efros et al., 2003]. As an illustration of the man-
ifold and the landmarks, a 2D embedding of the manifold is shown in Fig. 7.11

121



X7.7 CHAPTER 7

Correspondences

Predictions

Figure 7.10: \Do as | do". When the output set consists of video frames,
a mapping can be learnt so that the input images \drive" the outp The
top two rows show the correspondences made by the teacher, hlottom
shows some predictions. The VIM makes r predictions at 25Hngsi 30%
of time on a 2.5GHz CPU. This video sequence can be downloadeth f
http: // mi. eng. cam. ac. uk/ omcw?2/thesis/a2z _mpg. mpg

together with the path followed when creating a novel output sequene. See also
Fig. 7.12.

This manifold learning method can also be used in human—computer inte
action applications. Fig. 1.1d in Chapter 1 shows how hand gesture is u=d to
index frames from a video of karate moves. When the training set wasabelled,
a at hand corresponds to a neutral stance, st shapes have k@n mapped to
punch and a rotated palm to a blocking motion.
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Figure 7.11: Intrinsic dimensionality.Solely for illustration, this is a 2D projection
of the nodes in the graph for the example of Fig. 7.10 (using Isomap [Tenenbaum
et al., 2000] code available from the author's web site). Agtans we know the
manifold of these images to be two-dimensional and this struetig convincingly
so. The stars indicate the landmark positions together withet corresponding
members ofL. The thick line indicates the interpolated path taken by thdM in
generating the output of Fig. 7.10.

Figure 7.12: More \do as | do". Another example in which the output set
Y are frames from a video found on the Internet. See the video lois t
http: // mi. eng. cam. ac. uk/ omcw2/ thesis/ ow _gb_mpg. mpg
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8

Concluding Remarks

This dissertation describes and develops a general framework foff eiently solv-
ing a subset of problems in computer vision by treating them as a mapgpg from
the space of images to a continuous-valued output space. The ndsis called the
visual inference machin€¢VIM). In Chapter 3 it was shown how tracking can be
accomplished by adisplacement expertin which a mapping is learnt from im-
ages to displacements using the VIM; experiments demonstratedhat tracking
with a displacement expert is both robust and ef cient. Chapter 4 introduced
the semi-supervised visual inference machingsS-VIM) in which a new method
for solving semi-supervised regression with a Gaussian process was dge deal
with partially labelled training sets. Chapter 5 explains some of the ways in
which images may be lItered for the VIM, and then goes on to adapt the rele-
vance vector machine so that it automatically selects the most usdffeatures for
the task in hand. Chapter 6 addressed the problems associated withutlying,
mis-registered or corrupted observations. In the rst instance a simple object
detector can be used to classify an entire input image as to whether mot it is
suitable for the VIM; however, we then went on to develop thevariational Ising
classi er (VIC), an algorithm that considers whether speci ¢ observations ae
contaminated. The novel aspect of the VIC is that a prior distribution is placed
over the patterns of contaminated observations which expressdheir spatial co-
herence.

It was stated in Chapter 1 that the aims of this research were to prodce a
system that demonstrated ef ciency, simplicity and versatility. The VIM solves
most tasks in real-time (i.e., at 15-30Hz) using< 50% CPU time, and typically
even less than this. Hopefully, the demonstrations in Chapter 7 cowince the
reader of the ease with which the VIM and SS-VIM can be readily deployd for a
wide variety of visual inference applications using a standard persca computer
with a webcam attached.

125



x8.1 CHAPTER 8

8.1 The VIM design cycle

This section summarizes the work presented in this dissertation as@esign cycle
[Duda et al., 2001] for tackling visual inference problems with the VIM.

Identify input and output The nature of what the VIM input and output will be
like is likely to be de ned, at least vaguely. It can, however, take some
time to decide which degrees of freedom should be considered explicitys
output, and which others are super uous and to which the VIM should be
invariant. In terms of the input, it may be the case that the entire inage
is of interest, however it is often just a region of the image that is usefi,
and if this region might move, the rst step is to construct a systemfor
localizing the region in every frame. As a robust and ef cient means
achieving this, the displacement expert has been an excellent choider
this in the applications devised here.

Implement feature transforms Chapter 5 describes the greyscale, edge energy
and colour feature transforms that have been used to implementhe ap-
plications that have been demonstrated for this dissertation. A deision
must be made as which feature transforms are likely to be useful fothe
application in hand, and whether the computational burden of the exra
image processing is affordable.

Collect training data This step varies with application, and the major decision
to make is whether the training data is to be fully or only semi-supervisd.
The actual process of gathering data then need not include a usémbou-
riously entering labels for a list of images: in the case of the displacemé
expert (Chapter 3), a fewseed imagesvere labelled with the target region
and a large training set was generated by synthesizing displacementer
the human—computer interaction applications shown in Chapter 7, acali-
bration procedure was used in which the user was directed to provide par-
ticular data by the system, which then trusted these inputs to proide labels
automatically. It is, however, important that suf cient data is gath ered to
learn the desired mapping effectively and for the VIM to be invariantto
any super uous degrees of freedom in the input.

Training The next decision is which learning tool is going to be used, the ma-
jor ones used in this dissertation being the Gaussian process and re@ce
vector machine (see Chapter 2); for most implementations used e the
RVM has been preferred due to its sparsity, which in turn means it males
predictions more ef ciently than the Gaussian process. Whichever rethod
is used, the speci cation of basis/covariance functions, approprite to the
feature transforms being used and the characteristics of the dput, is nec-
essary.
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Prediction When the training procedure is complete, the VIM is ready to make
predictions based on the input—output mapping de ned by the trainng set.
The predictions may simply be displayed as a point on a display, or used
to override the mouse, or probabilistically fused with another data sairce
before being passed back to a higher-order system.

8.2 Future research directions

This section provides speculation on possibly fruitful avenues alongvhich re-
search into the VIM and VIC ideas may be extended. These are split to two
categories: “research” ideas that will continue to develop the novétheoretical
ideas presented here, and “engineering” ideas which will add polish and seful-
ness to some of the practical applications of the VIM.

Research ideas

By considering contamination, the VIC was shown to improve on classi s that
do not consider contamination, however its accuracy is still poor. WHilst it is
unreasonable to expect it to perform on contaminated data as well a classi ers
on clean data, improvements in this area will dramatically enhance the \C's
usefulness. One target is to eliminate the hallucination process frorthe conta-
mination tolerant classi er and develop a classi er capable of handling gneral
missing data. A related topic is to make improvements to the way the W
makes continuous predictions with missing data, beyond the simple masng
procedure used in Chapter 6.

Chapter 4 extended the VIM to work with semi-supervised training ses. A
related idea isactive learning [MacKay, 1992] in which the learning algorithm
decides which data points would be most bene cial to the learning task. This
extension would be useful in the gaze tracking application where the \C could
select the most informative calibration points which would maximally improv e
accuracy.

Another related idea is to incorporate incremental learning particularly for
the displacement expert. In this scenario, the VIM would constantlyupdate the
learnt mapping based on new observations. As presented here,dhdisplacement
expert is trained once from a limited sample of target appearancedf the target
gradually changes appearance, incremental learning would allow the idplace-
ment expert to adapt with it.

A longer term ambition for the VIM is for it to tackle more advanced disc rete
problems via the manifold learning extension described ix7.7 with the eventual
target of tackling object recognition problems. This will require signi ¢ ant work
to develop all aspects of the work discussed here, but particularlylte manifold
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learning approach and the selection of image features.

Engineering ideas

The gaze tracking system demonstrated in Chapter 7 is a promisingpglication
of the VIM, yet for it to be a success it requires the ability to detectblinking and
the facility to decorrelate changes in head pose from eye motion. Fther design
of a user interface is also required, especially increased ease of caéibon (see
comments on active learning above).

This gaze tracking technology, and the other demonstrations of bman—
computer interaction shown in Chapter 7, are ripe for exploitation as aids to
people with physical and/or communication dif culties. Hopefully it will be
possible to further design the VIM and the SS-VIM so that they carntruly be of
use to the world.

It would be interesting to extended the simple spatial localization appli@tion
demonstrated in x7.6 and test its usefulness when used in conjunction with a
mobile robot.
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Bibliographic Notes

In an attempt to keep the major chapters of this thesis concise, nrgy signi cant
contributions from the literature have been overlooked if they do rot pertain
directly to the discussion. This chapter therefore covers the brader literature
not discussed elsewhere.

A.1 Visual tracking

A.1.1 Optical ow

To track a target, prior knowledge or reasonable assumptions are xploited to
achieve computational ef ciency. One of the earliest assumptionss that of
brightness constancy[Horn, 1986]. if a single point in an image at time t,
I (a;b; 1), is translating with velocity (a;b), this assumes that, a short timet
later, the brightness of the translated target point is identical

l(a+at,b+bt;t+ t) I(a;b;t):

Making the rst order Taylor expansion on the left hand side gives the motion
constraint equation [Horn, 1986]

I (a;b;t) + glat+€t+ @t—l(abt)

@ I

Eru @g 7_0 (A.1)

which, provided the gradients can be computed, may be solved to ndhe veloc-
ity of that point.

There are problems with solving for pixel velocities like this: where the sp-
tial or temporal gradients are small, the results will be sensitive to nise; the
component of motion perpendicular to the spatial gradient cannotbe recovered
(the aperture problem [Hildreth, 1984]); and the assumption of brightness con-
stancy is often violated. These shortcomings are addressed in gdry Horn and
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Schunck [Horn and Schunck, 1981], who consider a region of pixelR, believed
to have the same velocity. The left hand side of (A.1) is then minimized eer this
region achieving a more stable estimate of the velocity:

X ewh, , eah, @b *

@a & @b ot (A.2)

a;b=argmin
ab a;b2R

Owing to either the choice of region or the character of that part of the
image (or both), there may be outlier pixels in the region that disagre strongly
with the consensus. When solving equation (A.2), these will act to pull he
inferred velocity away from a possibly better answer. [Black and Anaman, 1996]
therefore introduce further stability by using robust statistics

s X @a;h)_ . @lab, . @(ab
gh=argmi @a &' “ @b ' @t

a;b2R

(A.3)

is a robust cost function which reduces the effect of large image diirences on
the solution; this is an early example of work that ignores certain input data that
may be contaminated: see Chapter 6.

Blob tracking

The class ofblob tracking [Wren et al., 1997] algorithms represent a target im-
age region using only the gross statistics of that region. Tracking iperformed

by locally searching for a cluster of image pixels with the greatest prohbil-

ity of coming from the blob model. One strength of blob tracking is the ease
with which the statistical appearance model can be updated on-lineMean shift

tracking [Comaniciu et al., 2000, Comaniciu et al., 2003, Pérez et al., 2002]
maintains and updates a histogram of the colours within a target regio and

has been shown to be a robust and ef cient tracker in certain situaibns. The
robustness of blob tracking can also be improved by modelling the stistics of

background [Stauffer and Grimson, 1999, Isard and MacCormick, 2001] and by

controlling the amount of adaptation dependent on the reliability of the current
observations [Vermaak et al., 2002, Berez et al., 2004].

Adaptive appearance models

The trackers described inx3.3 use only a xed template to de ne target ap-
pearance. The general displacement experts in Chapter 3 and thepproach
in [Avidan, 2001] extend this by generalizing appearance from a colletion of
exemplars, but this de nition of appearance is xed once tracking begins. Blob
trackers use a softer approach by having a probability distributionover the space
of possible appearances, but still this is xed during tracking. Thereis a class
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of trackers, however, that does not keep its representation xe but actively
updates it during tracking. This is an excellent way to deal with objects hat
might smoothly change appearance during tracking without having toexplicitly
describe the appearance change: e.g., a human face might changg@ression
or an object might move to a location with different lighting. Unfortuna tely
they do suffer from drift where they adapt whilst misaligned and the appearance
representation steadily degrades from that of the true targetpften becoming
permanently “stuck” to a piece of background or an occluding object.

A good example of an adaptive tracker is the “wandering stable lost” WSL
tracker [Jepson et al., 2001]. In this case the image features atbe responses
of a Iter centred at each pixel in a region. Like blob tracking, the WSL has a
probability distribution over these image features that is a mixture d three com-
ponents, but unlike a blob tracker the parameters of the mixture @mponents
and the mixture weights are continuously updated. The mixture commnents
are

Wandering describes features that are smoothly changing appearance ouimne;
Stable describes features whose value remains xed;

Lost is an outlier process “explaining away” pixels that do not t the other t wo
components. The lost component is valuable as it can detect partialonta-
mination (Chapter 6) and indicate that such features should be temorarily
ignored during tracking.

Another example is theeigentrackersystem of Black et al. [Black and Jepson,
1996] where the pixels in a tracked region are modelled as belonging to dnear
subspace found using principal components analysis [Jollife, 1986] Tracking
is then performed using a framework very much like that in [Black and Anan-
dan, 1996], but the state vector has appended to it the subspa&ccoef cients
for the current appearance. Thus tracking is performed in paralléwith adapta-
tion/recognition within a limited space of appearances.

Tracking articulated objects

So far we have considered tracking rigid bodies and, in the previous s&on,
methods of updating appearance parameters to cope with defornt#&n. In other
applications, the aim of tracking is to directly infer deformation or ar ticula-
tion of objects, examples of which include faces [Blake and Isard, 194], hands
[Stenger et al., 2001, Stenger et al., 2003], and human bodies [Wreet al.,
1997, Toyama and Blake, 2002, Shakhnarovich et al., 2003, Agarwaland Triggs,
2004].

In [Stenger et al., 2001, Stenger et al., 2003] an articulated 3D computer
graphics model is constructed for a human hand. Tracking is perfomed by
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minimizing a cost function based on thechamfer distance[Borgefors, 1998] be-
tween edges detected in an image and the occluding contour of the hd model
projected into the image. The hand model has 27 degrees of freedoand so-
phisticated search methods, relying heavily on learnt dynamics, areequired in
order to nd the optimal hand con guration ef ciently.

Another approach using the chamfer distance is [Gavrilla, 1999], in whch
the articulation of an object is recovered by matching a template fran a large
library to the image edges. [Toyama and Blake, 2002] extends thisyintroduc-
ing a dynamical model over the transition between templates in the libary. The
ingenious approach of Shakhnarovich [Shakhnarovich et al., 2003also tracks a
human body by looking up templates in a library, but this time using parameter
sensitive hashing

In [Agarwal and Triggs, 2004], the ideas behind the displacement epert
(Chapter 3) are extended to articulated body tracking where, raher than infer-
ring displacements in a rigid body state space, separate RVMs are &g to predict
the joint angles in a model of the human body. A similar model, but a different
approach, is that of pictorial structures [Fischler and Elschlager, 1973, Felzen-
szwalb and Huttenlocher, 2005] in which objects are modelled as piecewise
rigid components which are then tracked/localized separately subjedio joint
constraints.

Active contours

A large body of work in tracking models targets simply by their occluding con-
tour [Lowe, 1992, Yuille and Hallinan, 1992] (a thorough review of this work
is [Blake and Isard, 1998]). Traditionally, these methods consist ba parameter-
ized curve, asnakeor active contour, that is tted to greyscale images by search-
ing along normals to the curve for intensity discontinuities. Snakes an be con-
strained to deform rigidly, can be left to deform freely or can be sulject to more
general shape constraints: e.g., continuous constraints on cuature [Kass et al.,
1987] or embedding shape in a linear subspace [Cootes et al., 1995]Blake
and lIsard, 1998] explains how snake tracking can be placed into a Bgesian
framework, facilitating the inclusion of dynamical priors. Unlike the dis place-
ment expert (x3.5), observations made from a shake are non-Gaussian and of-
ten multi-modal. The condensation algorithm [Isard and Blake, 1996] uses a
Markov-chain Monte Carlo approach to obtain approximations to th e posterior
state. This method is the standard means of tracking in a Bayesiamdmework
when observations are non-Gaussian. When observations are Gaussiaas they
are with the displacement expert, the Kalman Iter [Gelb, 1974] can beused to
give exact posteriors.
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A.2 Semi-supervised Learning

This section is a brief survey of the published literature on semi-supgised learn-
ing that has not been covered in Chapter 4. Two alternative reviews othis
subject are [Seeger, 2001, Zhu, 2005].

Rather than regression, the vast majority of work on learning with a mixture
of labelled and unlabelled exemplars addresses classi cation, where aapping is
needed to a discrete set of class labels; ::: " g (as opposed to a vector space in
regression). A lot of this work bears more resemblance tansupervised learning
[Ghahramani, 2004], in which there are no labels, than to supervised larning.
For example, much work attempts to model the distribution of feature vectors
P(x) as a mixture model [Titterington et al., 1985, McLachlan and Basford,
1988] identifying clusters of data. Two feature vectors should then be given the
same labelling provided they are connected by a region of higR (x) (i.e., belong
to the same cluster) [Tipping, 1999]. A generative model for exemlars is used
in a novel way in [Jaakkola and Haussler, 1998] to create a kernel [8hdlkopf
et al., 1998] that can be used in a discriminative classi er, such as a qport
vector machine [Vapnik, 1995].

Another popular approach that begins with unsupervised learning is® iden-
tify manifold structure [Szummer and Jaakkola, 2001, Blum and Chawla, 2001,
Belkin and Niyogi, 2004] in the exemplars using methods such as thgenerative
topographic mapping [Bishop et al., 1998], Isomap [Tenenbaum et al., 2000],
locally linear embedding[Roweis and Saul, 2000] andGaussian elds [Zhu and
Ghahramani, 2003, Zhu et al., 2003]. Labels can then be inferred forunlabelled
exemplars by comparing their manifold position relative to labelled exenplars.

Like the SS-VIM, [Lawrence and Jordan, 1995] use a Gaussian pross for
semi-supervised learning without seeking to explicitly explain the exemiars,
however this behaves quite differently since it is being used for binarglassi ca-
tion and not regression. This approach works by modelling the prior asumption
that the data density should be lower between two classes (i.e., the classform
clusters). The unlabelled exemplars are therefore useful in the ptement of a
decision boundary by their contribution to data density.

Co-training [Blum and Mitchell, 1998] is also a method for semi-supervised
learning based on discriminative, rather than generative, learningThis method
relies on two “suf cient and redundant views” of feature vectors for each ex-
emplar. Two learning algorithms are trained on the labelled exemplars fo each
view. Predictions made by one of these on unlabelled exemplars aree¢h used
to augment the training set for the other by labelling unlabelled exempars. This
process alternates between the two learners until the labels preded by the two
converge. In computer vision, co-training was used in [Levin et al., 203] to
train an object detector based on the work of [Viola and Jones, 2001

Self-training or bootstrapping [Yarowsky, 1995, Riloff et al., 2003] is a method
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in which a classi er is trained on the labelled exemplars alone and is then wed
to predict labels for the unsupervised exemplars. These (or a subtof these) are
then added to the original training data and learning is repeated on his larger
set. The obvious danger with this procedure is that any errors made predicting

labels are then reinforced in subsequent rounds of training. In corputer vision

Rosenberg et al. [Rosenberg et al., 2005] use self-training to créa an object
detection system.

There has been a lot of interest inweakly or minimally supervised learning
for computer vision problems [Selinger, 2001,Rosenberg et al., 208]. In [Fergus
et al., 2003, Fei-Fei et al., 2003], the task is object recognition by leming from
a training set comprised of whole images containing a target object in ditrary
positions and poses. In some sense this data set is supervised sieaeh image
has a class label provided for it, however since the images are compédy un-
normalized and there is no explicit information guiding the identi cation of the
target object under consideration, the learning strategy still has great deal of
work to do in order to build a classi er from such “weak” labels.

Active learning [MacKay, 1992, Cohn and Jordan, 1996] is a technique that
is somewhat connected to semi-supervised learning in which an input-aput
rule is learned from an initial data set, following which the system selecta new
exemplar (possibly from a library of unlabelled exemplars) that when lakelled
by some higher order system is expected to improve the quality of th learnt
rule in some respect (e.g., the variance of estimates made in a certaiegion is
reduced).

Coaching [Tibshirani and Hinton, 1995] is a technique which relies on ad-
ditional data during training, similar to the metadata in the SS-VIM. Multi-task
learning [Baxter, 1995,Caruana, 1995, Thrun, 1996] is another methodin which
the learning hyper-parameters are set by learning one problem anthen xed for
another. In the case of the VIM, this could be a useful avenue fofurther research
if a mapping is rst learnt between feature vectors and the metadat to establish
hyper-parameter values before learning the mapping to the truearget variables
from the labelled exemplars alone.

A.3 Feature selection

Feature selection is primarily of interest in supervised learning, wherdéeature
types can be assessed according to how much they help predict exglar label.
Feature selection in unsupervised learning is a much rarer and morénallenging
scenario (see e.g., [Law et al.,, 2003, Roth and Lange, 2004]). Metbds for
feature selection in supervised learning have been divided by [John &l., 1994]
into Iter and wrapper methods. Filter methods separately choose a subset of
features before passing the feature vectors to the learning algthm. Wrapper
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methods search for an optimal subset of features as an integrakrt of the overall
learning and inference algorithm. The method explained Chapter 5 is bthis
latter kind.

Recent approaches have tackled feature selection by focusing meoon the de-
nition and optimization of an objective function [Jebara and Jaakko la, 2000,
Weston et al., 2000, Weston et al., 2003]. These functions have a ten for the
predictive performance of a classi er using a particular subset and term penal-
izing the number of features used, or the complexity. This approak relates most
closely to what we introduce in Chapter 5, where the eventual objectivefunc-
tion is a natural consequence of the Bayesian learning methodologgmployed
throughout this dissertation.

In computer vision, a recent and high pro le use of feature selectia is in
[Viola and Jones, 2001, Viola et al., 2003]. In this work, simple rectange-based
features are used because of the speed with which they can be conted. The
exhaustive set of all such features is massive, so feature seleatis used to nd
an optimal subset for the face detection task under consideratio. This is done by
building a simple classi er independently for every feature. For obviais reasons,
these are called “weak learners”. TheAdaBoost learning algorithm [Freund and
Schapire, 1995] is then used to construct a stronger classi er bgombining m
such classi ers, and thereby select a subset of features.
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