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Abstract

An interesting subset of problems in the �eld of computer vision require the
inference of a continuous valued quantity from image data. This dissertation
describes thevisual inference machine(VIM), a general method for learning the
mapping from image data to a continuous output space using the Bayesian rules
of inference. The learning is performed without needing to de�ne a generative
model of image formation, the bene�t of which being increased speedof infer-
ence for real-time applications. The disadvantage of this method is that a set
of training data is needed, from which the VIM learns the mapping, andsuch
data can be costly to collect and label. Therefore, an extension to the VIM
is also introduced (the semi-supervised visual inference machine, or SS-VIM)
which does not require the training data to be fully labelled. The issue ofhow
best to �lter an image for optimal inference is also covered, and it is shown that
the VIM or SS-VIM can easily learn mappings using a mixture of image features
and automatically select those that are most useful. The VIM and SS-VIM are
demonstrated for visual region tracking, in human–computer interaction (e.g,
gaze tracking1; gesture-based interfaces) and for mapping images to points on a
manifold. Lastly, this dissertation addresses the issue of outlying observations,
both on a per-image and per-pixel basis. In this latter case thevariational Ising
classi�er or VIC algorithm is developed which considers a prior over outlying
pixels that models their spatial coherence properties.

1This abstract was composed entirely using Dasherhttp://www.inference.phy.cam.ac.uk/dasher/
driven by VIM gaze tracking.
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1
Introduction

For an entity to possessvision, it must be capable of detecting and interpret-
ing patterns of light so that it can perceive the world and act accordingly. The
�eld of computer vision concerns the design and implementation of algorithms
that make inferences from image data received from a camera. By paraphras-
ing Aristotle's de�nition of vision as �nding “what is where by looking” [Ma rr,
1982], we highlight the two most fundamental problems researchersin com-
puter vision seek to solve: localization (identifying “where”) and recognition
(identifying “what”).

This dissertation addresses a subset of problems in computer visionwhich
require the inference ofcontinuous-valued quantities. For example, in localiza-
tion we identify the position of a target in the world and this is expressedas a
vector of continuous-valued coordinates (see Fig. 1.1a). Fundamentally, recogni-
tion requires the classi�cation of a target image into one of many discrete classes.
However, assuming it is known “what” a target is, it may still have some un-
known, continuous-valued property we would like to know; for example whe n
a user looks at a computer screen, knowing the coordinates they are gazing at
is an alternative method for human–computer interaction: this is ofparticular
interest as an assistive technology for people with physical and communication
dif�culties (Fig. 1.1b). Even when the output space comprises a �nitenumber
of discrete items, it may be possible to identify a natural, continuouscoordinate
system in which the items are embedded (see Fig. 1.1c). By treating such vision
problems as one ofmapping from the space of images to continuous outputs,
these applications, and many others, are realized in this dissertation by develop-
ing a general framework which we call thevisual inference machine.

These types of application have been addressed by many researchers, how-
ever the framework developed in this dissertation is driven by the desire to create
a truly useful system. Therefore, it is essential that any systemdeveloped can per-
form its given task with reasonable accuracy and robustness, but beyond this we
state three speci�c aims:

Ef�ciency Output quantities must be inferred in real-time, meaning that images
are received from a video camera and an output must be returned for one

1



x1.0 CHAPTER 1

(a)

(b)

(c)

Figure 1.1: Example applications covered in this dissertation. (a)The sequential
localization of an object in a video sequence,visual tracking, is a long-standing
pillar of computer vision. (b) Being able to infer a user's gaze unobtrusively is
an important application as an assistive technology.(c) Even when the output
space for an application is discrete (here a number of frames from a video of
a karate player), it may de�ne amanifold (see x7.7) in which case discrete
items may be indexed by inferring continuous coordinates on that manifold.
This illustration shows how hand gestures can control the video as one would
for a video game. The sequences shown in this �gure can be downloaded
from http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ happy sad mpg. mpg,
http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ eye big mpg. mpg and
http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ karate mpg. mpg respec-
tively.
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The visual inference machine: VIM x1.1

image before another arrives; typically this is at 15–30Hz. Preferably,
inferences should be made even faster than this so that less than 100%
CPU time is used.

Simplicity The system must be relatively inexpensive, so it is not acceptable for
it to require any dedicated hardware beyond a standard personal computer
and webcam.

Versatility The system must be versatile, meaning that a single piece of software
can be rapidly adapted for use in a variety of situations by an inexpert
user.

It will be shown in subsequent chapters that the requirement for ef�ciency is
satis�ed by the visual inference machine: in our implementation, theapplications
shown in Fig. 1.1 can all be called “background tasks” on a typical personal–
computer, meaning they leave the majority of CPU cycles free whilst operating
in real-time. The two subjective requirements are also shown to be satis�ed
through the use of simple equipment throughout and the variety ofsituations
we are able to tackle.

1.1 The visual inference machine: VIM

Many approaches to solving problems in computer vision involve building a
mathematical model of the physical processes that convert a real-world scene
into an image. To make inferences about the scene, one varies the parameters of
the model until the image it synthesizes matches most closely an image received
from a camera. This is known as themodel-basedapproach by the computer
vision community. In building the models, a compromise is usually necessary:
one may choose to build a sophisticated model, capable of describing agreat
deal of the complexity encountered in a typical image, and such approaches have
given rise to many excellent results in computer vision and computer graphics.
However, this kind of processing is very time-consuming, and is only possible for
“off-line” situations. To use models in a real-time application, the situation must
be simpli�ed, e.g., many such methods only consider the occluding contours of
objects and theedgesthey induce in images. However, any approximations or
de�ciencies in these models can lead to poor inferences and lack of robustness,
particularly when the scene appearance changes in a way not accounted for.

It is, however, possible to perform visual inferencewithout a model of image
generation and in the areas of object recognition and object detection [Turk
and Pentland, 1991, Osuna et al., 1997, Viola and Jones, 2001], there has been
interest and success inappearance-basedapproaches. With no model of image
formation, the images are treated as points in a high-dimensional space and

3
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discriminative learning is used to map from image space to the target output
space without consideration of how a particular input arose.

The framework developed and discussed in this dissertation is of the appearance-
based, discriminative, variety. The reasons for this are

1. Whilst it may be a highly complicated physical relationship between an
image and the state of the world causing it, the inverse mapping from im-
ages to this state may be approximately expressed as an ef�cient mapping
between two spaces.

2. When the only thing one cares about is the output space, it is wasteful to
expend effort modelling the behaviour and structure of the input space.

These two statements seem virtuous in respect of what the stated aims are, how-
ever there are also caveats:(i) whilst a mapping might be ef�cient to execute, dis-
covering the mapping from scratch may be a complicated and time-consuming
exercise;(ii) one must be certain that it is only the output space that is of in-
terest so as not to be disappointed when the resulting system is not capable of
generating images, computing image likelihoods, etc.

The drawback of having no model is that the relationship between inputs
and outputs is initially unde�ned. Instead, the mapping is constructed through
supervised learning, in which some higher level system (e.g., a human) provides
a training set D containing typical examples of images that will be observed.
Each example has an associatedlabel which designates what the output of the
system should be. Atraining stage is required, during which the details of the
input–output mapping are learnt from these training data. If a training set can
be collected easily, the same set-up may be trained to tackle many different prob-
lems, squarely satisfying the requirement for versatility.

We call this appearance-based, learning framework thevisual inference ma-
chine, or VIM, and Fig. 1.2 schematically illustrates this simple set-up: a web-
cam captures a view of the world and converts it into a digital format; this is
then processed by afeature transform (see Chapter 5) to give afeature vector
x 2 X � Rr which the trained VIM then maps to a low-dimensional output
vector y 2 Y � Rd describing the wanted characteristics of the input image.
This inference pipeline �ows in the x ! y direction only: images are translated
into simple, meaningful representations. The oppositey ! x direction is the
computer graphics pipeline in which descriptions of the world are transformed
to images. As discussed above, it is assumed that the applications we care about
do not require this functionality.

4
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replacements

camera feature
transform

VIM
I 2 I x 2 X y 2 Y

D

Figure 1.2: The visual inference pipeline.A digital imageI is processed by the
feature transform to give a feature vectorx which the VIM then translates to an
output vectory . With no initial model of how images are formed, the VIM mapping
is de�ned by a training setD containing example input{output pairs. The opposing
path, mapping simple representations to features or images, iscomputer graphics.

1.2 Dissertation overview

The VIM process of learning a mapping from training data, and of making pre-
dictions once trained, follows the Bayesian rules of inference. This involves treat-
ing all unknown quantities as probability distributions and leads to a pragmatic
mechanism for handling uncertainty, combining multiple sources of informa-
tion, incorporating prior knowledge about a problem and for handling s o-called
“nuisance parameters”. Chapter 2 does not contain any novel contributions,
but explains these ideas in detail and outlines the learning methods from the
literature that will be used to implement the VIM throughout this dissertation.

Fig. 1.1a shows localization by visual tracking, which is an important ap-
plication in it own right, as well as being a building block for many others.
Chapter 3 introduces the displacement expertas a method for region tracking.
Many previous approaches to tracking use a (usually simple) model of image
formation, yet if the mapping principle of the VIM is used, a highly robu st and
ef�cient tracker is created, demonstrated through extensive experiment. Ow-
ing to the Bayesian methodology employed in the VIM, the estimates made by
the displacement expert are readilyfusedwith other probabilistic sources of in-
formation, such as a motion model. This chapter therefore explainshow the
displacement expert is combined with such models in a simple �ltering frame-
work.

The VIM learns its mapping from a supervised set of training data, and it will
be shown that the learning process is limited to a few seconds for the majority of
systems developed here. In some situations (including the displacement expert)
training data is easily gathered, yet for others it is this step that poses the largest
impediment to getting the VIM ready to make inference from real-time data.
Chapter 4 shows how the VIM may be extended to deal with training data in
which not all of the example images are labelled. The result is called thesemi-
supervised visual inference machineor SS-VIM, and experimental results show

5



x1.2 CHAPTER 1

how it is still possible to exploit partially labelled training data. The SS-VIM
makes a large number of applications practical that would otherwise bedif�cult
to de�ne with exhaustively labelled training data.

There are many ways in which a digital image can be �ltered to produce
features useful to the VIM in learning its input–output mapping. Chapter 5
�rstly describes the feature transforms that are used in this dissertation before
explaining how a mixture of feature transforms can be used with the VIM and
SS-VIM, making the most of several �lters.

A shortcoming of the appearance-based approach is that it can bemore dif-
�cult to identify outliers: if an image is a point in a high-dimensional space
mapped to an output space, the VIM will blithely map even ridiculous inputs
to similarly ridiculous outputs, with a possibly undesirable outcome. Therefore,
Chapter 6 covers the general topic of outliers. First whole image outliers are
considered so the that VIM is capable of either sending a warning signal that its
predictions may be unreliable, or automatically �xing the problem itself . The
latter half of the chapter then covers the more subtle issue ofpartial contamina-
tion, in which only part of in incoming image is an outlier, or misleading. Such
a problem has been studied in detail in the past, however the signi�cant contri-
bution here is the consideration of a spatial prior over the possible distribution
of outlying observations: “bad” portions of an image tend to appear in coherent
“blobs”. A Bayesian method is developed for inferring (i) which observations
are contaminated; and(ii) whether the “good” observations truly represent a
particular target. This is a sister algorithm to the VIM and, for reasons of its
design, is called thevariational Ising classi�er , or VIC.

Having developed the mathematical machinery of the VIM and VIC ap-
proaches to visual inference,Chapter 7 puts them to use as practical applica-
tions. The �rst application combines the displacement expert with the outlier
detection ideas to form a system that can track a target for an inde�nite period of
time whilst only requiring 10–20% CPU cycles. A number of human–computer
interaction applications are then considered, including gaze tracking (Fig. 1.1b)
and a variety of visual interfaces for theDasher text entry system [Ward and
MacKay, 2002]. The inference of 3D pose is then covered for human heads,
and for a moving camera. Finally, the possibility of using the continuous VIM
framework for discrete output sets is considered (e.g., Fig. 1.1c).

The last chapter of the main dissertation isChapter 8 which summarizes this
work and provides speculation on future research directions.

Beyond its scienti�c contributions, part of this dissertation's legacy is the
bringing together of various research topics in this particular con�guration. A
broad cross-section of the literature is surveyed here, with many such comments
are collated as Appendix A in order to keep the individual chapters asconcise as
possible. The most relevant work is however mentionedin situ if it is a necessary

6
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part of the “story” describing a part of the research explained.
Many aspects of the VIM's performance are best demonstratedthrough video

data. There is therefore a collection of on-line material which can be accessed
(along with an electronic copy of this dissertation) from the web page

http://mi.eng.cam.ac.uk/ � omcw2/thesis/thesis.html .

1.3 De�nition of symbols and notational conventions

Both variables and constants in this dissertation are representedby either Roman
or Greek italic characters, e.g.,x. A vector quantity is set asx, the i th element of
which is indexed using the notation x i . Matrices will be denoted using a sans-
serif font and are also capitalizedX. The element in thei th row and j th column
of a matrix is written as Xij .

Calligraphic notation will be used to denote sets: X . When a set contains
a �nite, ordered number of items, each item is indexed using the superscript
notation x(i ) . Sets are also written explicitly using curly braces, meaningf x; yg
is the set containingx and y.

Finally, we will also use “function overloading” from time to time, where
the meaning of a function depends on the number or type of parameters.

1.4 Related publications

Some of the work described in this dissertation has been published previously.
The displacement expert (Chapter 3) and its combination with a detection algo-
rithm (described in Chapter 7) appear in [Williams et al., 2003, Williams et al.,
2005a]. Some initial work on the variational Ising classi�er (VIC) algo rithm,
discussed in Chapter 6, has been published in [Williams et al., 2004].

7
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2
Bayesian Learning and Inference

The visual inference machine, or VIM, described in Chapter 1, learns the map-
ping between input feature vectorsx 2 X and an output spaceY. This chap-
ter does not contain any novel contributions, but is a tutorial on the Bayesian
learning techniques that will be used to implement the VIM for the various ap-
plications covered in this dissertation. These applications all involve continuous
output spacesY 2 Rd and therefore this chapter only covers Bayesian methods
for regression/interpolation; many interesting machine learning topics are omit-
ted simply because they are not involved in the research documented here. The
chapter opens with a section justifying the ubiquitous use of Bayesianmethods.
There is then a discussion on Bayesian learning in general, including a descrip-
tion of the evidence framework[MacKay, 1995] for setting model hyperparame-
ters, before a detailed description of the algorithms employed in later chapters:
namely the relevance vector machineor RVM [Tipping, 2000, Tipping, 2001]
and Gaussian processes [Williams and Rasmussen, 1996,MacKay, 1997].

Probability notation

Throughout this document, the notation P(A) will be used to represent the prob-
ability that the proposition A is true. The probability that a random variable A
takes the valuea, conditional on (or given that) the variable B = b, will be writ-
ten asP(A = ajB = b) and will be abbreviated to P(ajb) provided the meaning is
still clear. The notation P(a) will also be used for probability densities whenever
A is continuous. Joint distributions e.g., the probability that (A = a) \ (B = b),
will be written as P(a; b).

Rules of probability

Several rules for manipulating probabilities will be used extensively throughout
this dissertation and are brie�y stated here. For a full discussion see [Jaynes,
2003].

9
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Product rule This is also known as the chain rule and states that

P(a; b) = P(ajb)P(b) = P(bja)P(a); (2.1)

Sum rule This provides the ability to marginalize a joint distribution where, if b
is discrete

P(a) =
X

b

P(a; b) =
X

b

P(ajb)P(b); (2.2a)

or, if b is continuous

P(a) =
Z

P(a; b)db=
Z

P(ajb)P(b)db; (2.2b)

Bayes rule This is an important corollary to the product rule, stating that

P(yjD )
| {z }
posterior

=

likelihood
z }| {
P(D jy)

prior
z}| {
P(y)

P(D)
| {z }
evidence

; (2.3)

where the special namesposterior, likelihood , prior and evidenceare used
whenever y denotes a set of unknown parameters that we wish to infer
from data D .

2.1 Why Bayesian?

Bayesians, meaning those who practise Bayesian inference, regard probabilityas
a measure of the degree of belief in something [Cox, 1966, Jaynes,2003] and
treat the unknowns in a problem as random variables. An important part of
this is the ability to de�ne prior probability distributions over the unknowns,
encapsulating any beliefs held about them before observing data. Consider the
prior probability distributions as a pragmatic means of expressing our design
decisions, made meaningful thanks to their probabilistic interpretation. This
differs from Fuzzy Logic [Zadeh, 1965], for example, where “degree of truth”
cannot be interpreted probabilistically and as such is less meaningful.

This use of probability is at odds with the so-calledfrequentist [Fisher, 1956]
position on statistics where only repeated experimental outcomes may be con-
sidered as random variables and the laws of probability simply cannot beused
as Bayesians do. Rather than enter the prickly Bayesian/frequentist debate here
(there are better protagonists e.g., [Jaynes, 2003,Berger, 1993]), we will assume
that treating unknowns as random variablesis reasonable and rely on engineer-
ing common sense to let experimental performance speak for itself.
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Why Bayesian? x2.1

Like regularization [Tichonov, 1977], priors are often de�ned tha t promote
simpler explanations of the world, for example when �tting a curve to da ta
points, smoother interpolants are often preferred in the absence of any other
information. This is a manifestation of Occam's razor [Audi, 1996], the uni-
versally accepted scienti�c principle, also known as the principle of parsimony,
which states that when multiple explanations are available for a phenomenon,
the simplest should be preferred. As [Jefferys and Berger, 1992, MacKay, 1995,
Rasmussen and Ghahramani, 2001] explain, however, the Bayesian treatment
automatically encompasses Occam's razor without necessarily encouraging it in
the prior. This is due to requirement that the likelihood in (2.3) be a normalized
probability distribution which integrates to one. A more complex model will
explain more of the space of possible data and thereby tend to havea lower
density around the observed data point. A simpler hypothesis will have a higher
density in some region and, if this coincides with the data, will be preferred in
the posterior.

These regularizing effects act as a safeguard againstover�tting [Duda et al.,
2001] by preventing the selection of a model that �ts the data very well, but does
not generalizeto new training data. A good example of over�tting is found in
[Burges, 1998]: imagine a botanist who claims a large plant is not a treebecause
it has a different number of leaves to every tree she has seen before. The other
extreme is called “under�tting” and would correspond to our botanis t being
overly general declaring everything that is green to be a tree. As wewill see in
later chapters, Bayesian methods for learning from data have a good generalizing
ability and are capable of making reasonable predictions for novel inputs.

However it is achieved, the aim of Bayesian inference is to provide a distri-
bution over the unknowns given the dataP(yjD ). This differs from alternative
methods that may simply provide a single estimate for the unknowns. As an
illustration of the bene�ts of a full predictive distribution, consider the idea of
localizing a target object within an image (this is the subject of Chapter 3). Two
observations are made, the �rst of which leads to a prediction that the object
is at coordinates (100; 100) � (1; 1) and the second at(250; 250) � (200; 200).
Clearly, we would like to take the second prediction less seriously than the �rst
one due to its greater uncertainty. Bayesian inference not only gives us a mea-
sure of uncertainty but, coupled with the discipline of decision theory [Berger,
1993], provides a rational means of arriving at a decision, in light of its conse-
quences, by minimizing theexpected loss(deciding on a single position estimate
is covered inx3.5).

The Bayesian methods described in this chapterlearn the X ! Y mapping
from training data. Mechanisms for learning tend to involve a number of pa-
rameters, which are often referred to as “nuisance parameters”owing to the
notorious dif�culty of establishing their values manually. An example of this is

11



x2.2 CHAPTER 2

the support vector machine (SVM) [Scḧolkopf et al., 1998, Vapnik, 1995], the
performance of which is dependent on the kernel parameters and error-margin
trade-off parameterC. In light of this, a further bene�t of Bayesian inference for
learning is that it provides a principled means for automatically handling nui-
sance parameters, either by marginalizing them out or setting theirvalues from
training data: seex2.2.

Bayesian inference provides a principled means of incorporating prior knowl-
edge, makes predictions with a measure of uncertainty, and manages parame-
ter values, however its drawback is that the resulting expressions are often in-
tractable. Also, the Bayesian method can only make predictions based on the
models it is provided with; poor assumptions in the prior will lead to poor in-
ference. In many cases, the “easy” part of Bayesian inference isestablishing the
equations one wants to solve; the “hard” part is de�ning the models, making the
approximations, and developing the algorithms to learn and predict ef�ciently.
The following sections develop the principles of using Bayesian inference for
learning a regression from a supervised training set and describe algorithms for
performing such inference.

2.2 Bayesian inference for supervised learning

As discussed in Chapter 1, supervised learning involves �nding a mapping y :
X ! Y between an input feature spaceand an output space given a training set
D of exemplar inputs and outputs (the word “example” appears in a number
of contexts in this dissertation so, to avoid confusion, example input vectors
appearing as part of a training set will be referred to asexemplars)

D � f x (i ) ; y(i )gn
i =1 (2.4)

where x (i ) 2 X are exemplar feature vectors andy(i ) = y(x(i ) ) + � i 2 Y are
scalar outputs, possibly corrupted by some additive noise� i (we consider vector-
ial outputs in x2.7). Given this training data, the aim is to infer a probability dis-
tribution for the value y� = y(x � ) given a new input, P(y� jx � ; D). As was also
mentioned in Chapter 1, we intend to usediscriminative learning approaches
meaning we model the prediction without the use of agenerativedistribution
P(x � j : : :).

Frequently,y(�) is modelled as belonging to some functional class, parameter-
ized by a vectorw, i.e., y� = y(x � ; w). To make a prediction, w is marginalized
out, subject to some independence assumptions

P(y� jx � ; D) =
Z

P(y(x � ; w)jx � ; w)P(w jD)dw: (2.5)

12



Bayesian inference for supervised learning x2.2

From this it can be seen how the learning task is naturally divided in two: in
the learning stage the training data is used to �nd a posterior distribution for
the functional (or model) parametersP(w jD); in the prediction stage we mar-
ginalize over these parameters as in (2.5). Bayesian methods make no distinction
between learning and inference: the process of “learning” the parametersw, is
simply a case of inferring them from training data. Using Bayes' rule to write
the posterior for w gives

P(w jD ; � ) =
P(Djw; � )P(w j� )

P(Dj � )
(2.6)

where we have introduced somehyper-parameters � governing the learning
process. The term hyper-parameters will be used to refer to variables controlling
the learning process beyond the simple parameters de�ningy(�). For example,
they might re�ect our prior preference on values of w yielding smooth func-
tions y(�). When a prediction is made, these hyper-parameters should also be
marginalized out

P(y� jx � ; D) =
ZZ

P(y(x � ; w)jx � ; w)P(w jD ; � )P(� jD ) dw d�; (2.7)

however, performing these integrations is frequently intractable,time consuming
or both and an approximate solution is sought. For example, this might be done
by Monte Carlo methods [Gilks et al., 1995] or variational inference [Jordan,
1998]. Another approximation is to �x the value of � at its most probable value
given the training data and this is the approach we will adopt here, referred to
as theevidence framework.

2.2.1 The evidence framework

In [MacKay, 1995], the following approximation is made to (2.7)

P(y� jx � ; D) � P(y� jx � ; D; �̂ ) =
Z

P(y(x � ; w)jx � ; w)P(w jD ; �̂ )dw (2.8)

where �̂ is an optimal setting for the hyper-parameters. IfP(� jD ) is peaked
around �̂ , this will be a good approximation, and signi�cantly better and faster
than some others that might be used to evaluate (2.7) (e.g., Markovchain Monte
Carlo or variational methods [MacKay, 2003]).

In the evidence framework, the optimum�̂ is determined from the data using
the marginal likelihood

�̂ = arg max
�

P(Dj � ) =
Z

P(Djw; � )P(w j� )dw (2.9)

which appears in (2.6) as the evidence in the denominator; hence the name of
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the procedure. The following sections introduce the methods that willbe used
to learn mappings from training data and thereby form the visual inference ma-
chine. These use the evidence framework, showing it to be a simple and effective
means of dealing with hyper-parameters.

2.3 The generalized linear model

A popular parameterization for the functional mapping from featu re vectors to
outputs is known as thegeneralized linear model(GLM) [Bishop, 1995]

y(x; w) =
mX

i =1

wi � i (x) = w T � (x) (2.10)

where the vector � (x) consists of m basis functions evaluated at x. (2.10) is
often written with a constant bias term added, however we have chosen to omit
this as one can implicitly de�ne an extra basis function � (x) = 1 8x achieving
the same result with less notational clutter.

Which basis functions are used varies with application, however a frequent
choice is the Gaussian radial basis function (RBF) [Bishop, 1995]

� i (x) = exp
�

� � kx � � (i )k2
�

(2.11)

where� (i ) is the basis function “centre” and � is a width parameter. It is common
practice to setm = n and use the training exemplars as the RBF centres� (i ) =
x (i ) .

Learning with a GLM is a matter of inferring w from the training set D. This
is discriminative learning and feature vectors on the input side are �xed; i.e., no
attempt is made to introduce a density overx. Hence (2.6) is rewritten as

P(w jD ; � ) =
P(f y(i )gjf x (i )g; w; � )P(w j� )

P(f y(i )gjf x (i )g; � )
:

As a de�nition for the likelihood, target training outputs are assumed to be
corrupted from their true values by independent and identically distributed (iid)
Gaussian noise. The multivariate Gaussian distribution will be written asNormal(x j� ; � ),
meaning the distribution is over x with mean � and covariance matrix � : i.e.,

P(x) =
1

p
det(2� � )

exp
�
� 1

2(x � � )T � � 1(x � � )
�
:

In cases wherex is scalar, then this same notation will be used to represent
the univariate Gaussian distribution. Given that y(i ) = y(x (i ) ) + � where � �

14



The generalized linear model x2.3

Normal(� j0; � 2) we get the likelihood

P(f y(i )gjf x (i )g; w; � ) /
Y

i =1

exp
�

� 1
2� 2 (w T � (x (i ) ) � y(i ) )2

�

= exp
�

� 1
2� 2 (� w � y )T(� w � y )

�
: (2.12)

where y contains all of the scalar training targets collected into a column vector
(i.e., yi = y(i ) ) and � 2 Rn� m is the design matrix containing all of the basis
function values for the training set, i.e.,� ij = � j (x (i ) ). The prior is also speci�ed
as a multivariate Gaussian with mean zero and covariance matrixA

P(w j� ) = Normal(w j0; A) / exp(� 1
2w TA� 1w): (2.13)

Having speci�ed the likelihood and prior terms, the set of hyper-parameters
� now consists of the training data noise variance� 2, the elements ofA and the
parameters of the basis functions.

Since the prior and likelihood are both Gaussian, the posterior will be too
[MacKay, 1995,Bishop, 1995]

P(w jD ; � ) = Normal(w jŵ ; G) (2.14a)

G = ( 1
� 2 � T � + A � 1) � 1 (2.14b)

ŵ = 1
� 2 G� Ty : (2.14c)

The same analytic tractability applies when making a prediction

P(y� jx � ; D; � ) =
Z

P(y� jx � ; w ; � )P(w jD ; � )dw (2.15)

where we take the posterior forw from (2.14) and de�ne the functional evalua-
tion process as Gaussian

P(y� jx � ; w ; � ) = Normal(y� jw T � (x � ); � 2) (2.16)

to give the Gaussian prediction

P(y� jx � ; D; � ) = Normal(y� jŷ� ; R2) (2.17a)

ŷ� = ŵ T � (x � ) (2.17b)

R2 = � (x � )TG� (x � ) + � 2: (2.17c)

The evidence framework, described inx2.2.1, is used to establish a value for
the hyper-parameters in� . In the case of the GLM equations given above, the
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evidence is again a multivariate Gaussian distribution

P(f y(i )gjf x (i )g; � ) = Normal(y j0; S) (2.18a)

S = � 2In + �A � 1� T : (2.18b)

� is �xed at the maximum of this but for numerical reasons the objective func-
tion is usually the logarithm of the evidence

�̂ = arg max
�

logP(f y(i )gjf x (i )g; � )

= arg max
�

� 1
2y TS� 1y � 1

2 log detS+ const: (2.19)

The �rst term on the right is a measure of how well the GLM �ts the data for
a given set of hyper-parameters. The second term is the logarithmof what is
frequently termed the Occam factor [MacKay, 1995, Tipping, 2001] as it gov-
erns the complexity of the GLM. As mentioned in x2.1, we did not explicitly
demand this factor exist: it is a natural consequence of the Bayesian approach
to inference. Providing the basis functions are differentiable as a function of � ,
(2.19) can be maximized using conjugate gradient ascent [Bishop, 1995, Press
et al., 2002].

2.4 The relevance vector machine

The relevance vector machine (RVM) was introduced in [Tipping, 2001] as a
Bayesian response to the popularity of the support vector machine (SVM) [Vap-
nik, 1995, Schölkopf et al., 1998]. The RVM is a GLM, its novelty coming in
the de�nition of the prior covariance A (2.13)

A = diag(� 1; : : : ; � m ) (2.20)

where the� i are independent. This brings up the notion ofrelevance: basis func-
tions with � i ! 0 will have a zero posterior weight wi , have no in�uence on the
sum (2.10), and may as well be ignored when making predictions. This prop-
erty of ignoring basis functions is calledsparsity which, when a large number of
basis functions are removed, has bene�ts for both computational ef�ciency and
storage.

Sparsity is also one of the selling points of the SVM [Vapnik, 1995,Scḧolkopf
et al., 1998]. There are three reasons to prefer the RVM over theSVM, however:

1. The RVM yields full predictive distributions rather than point estim ates;

2. The RVM has been shown to be more sparse than the SVM in some cases;
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3. The SVM has a number of nuisance parameters that can be awkwardand
costly to set.

On this last point, one might point out that the RVM has a host of nuisance
parameters: namely the hyper-parameters� 2, � = f � i g and the basis function
settings. However, these can all be determined from the training data via the
evidence framework; as for all GLMs.

2.4.1 Training the RVM

If the values of the hyper-parameters are known, then predictions can be made
with (2.14) and (2.17) immediately. This may be the case for the basis function
parameters and possibly the training noise� 2, but we are unlikely to know the
value of � a priori: this would imply knowledge of which basis functions are not
relevant, in which case they would simply not be included in the �rst place!

�̂ is found by maximizing (2.19) which, for smaller data sets (n < 1000),
can be done using gradient ascent. Whilst training, it is observed that the values
for some of the � i begin tending to zero. This indicates that the associated basis
function is not relevant and it is then pruned from the problem by reposing it
as if that basis function never existed. The problem size is reduced each time
pruning occurs and iterations become gradually faster as training progresses.
Nevertheless, the complexity scales asO(n3) due to matrix inversion and, for
larger training sets, a more sophisticated algorithm, described in [Tipping and
Faul, 2003], can be used which exploits the sparsity of the RVM from the start.

2.5 Gaussian processes

In x2.2, it was implied that to make the Bayesian learning framework tractable
one must parameterize the output function. Learning and prediction then in-
volved making inferences about the parametersw based on the training data
before making predictions about y� based onw. This parametric form has ab-
stracted prediction away from training data.

Gaussian processes [Williams and Rasmussen, 1996,MacKay, 1997] remove
this parametric structure by de�ning probability distributions direc tly onto the
space of functions: a functiony(x) can be considered as an in�nite collection of
points indexed by feature vectorsx. As the name suggests, the distributions over
these functions are Gaussian and as such are completely described by mean and
covariancefunctions which can be written as

P(y(x)j� ) = GP
�
0; c(x (i ) ; x (j ) ; � )

�
(2.21)

where the mean ofy(x) is zero everywhere andc(x (i ) ; x (j ) ) is a covariance func-
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tion, possibly de�ned by hyper-parameters� . If c(x (i ) ; x (j ) ) has a high positive
value, we are stating our prior belief that y(x (i ) ) and y(x (j ) ) are highly corre-

lated (in fact, correlation depends on c(x ( i ) ;x ( j ) )p
c(x ( i ) ;x ( i ) )c(x ( j ) ;x ( j ) )

, but for the covariance

functions we will use, the denominator of this is a constant). Thus, if informa-
tion is obtained about y(x (i ) ) (e.g., there is some training data atx (i ) ), it is
propagated toy(x (j ) ) thanks to this prior. Thus, our task is to de�ne c(x (i ) ; x (j ) )
such that it encodes any prior knowledge about the relationships between fea-
ture vectors.

To make predictions with a Gaussian process, having obtained a trainingset
D and given a new inputx � , the product rule is used to give

P(y� jx � ; f y(i )g; f x (i )g; � ) =
P(y� ; f y(i )gjx � ; f x (i )g; � )

P(f y(i )gjf x (i )g; � )
: (2.22)

According to a Gaussian process, the set of training outputs are noisy samples
from y(x) taken at f x (i )g which are jointly distributed as

P(f y(i )gjf x (i )g; � ) = Normal(y j0; C + � 2In ) (2.23)

where the elements of the matrixCij = c(x (i ) ; x (j ) ) and y is again the vectorized
version of the setf y(i )g. The joint distribution of y and the predicted point y� is
likewise written as [Williams and Rasmussen, 1996,MacKay, 1997]

P(y� ; f y(i )gjx � ; f x (i )g; � ) = Normal

 "
y
y�

# �
�
�
�
�

0;

"
C + � 2In c

cT c(x � ; x � )

#!

(2.24)

where c is a vector with elementsci = c(x � ; x (i ) ). The ratio of Gaussians can
be found analytically and (2.22) is therefore [Williams and Rasmussen,1996,
MacKay, 1997]

P(y� jx � ; f y(i )g; f x (i )g; � ) = Normal(y� jŷ� ; R2) (2.25a)

ŷ� = cT(C + � 2In ) � 1y (2.25b)

R2 = c(x � ; x � ) � cT(C + � 2In ) � 1c: (2.25c)

Like the GLM, training to �nd the optimal values for � is performed by
maximizing the marginal likelihood, equivalent to the evidence, given by(2.23).
Taking the logarithm gives the objective function:

�̂ = arg max
�

logP(f y(i )gjf x (i )g; � )

= arg max
�

� 1
2y T(C + � 2In ) � 1y � 1

2 log det(C + � 2In ) + const (2.26)

which again consists of a data term and an Occam factor. This objective func-
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tion is reminiscent of that for the GLM and RVM: (2.18). This is because the
GLM is a type of Gaussian process with the explicit de�nition C = �A � 1� T . In
the case of the Gaussian process, however there was never any needto factorize
C, and as such it has been shown [Williams, 1997] that certain choices ofcovari-
ance function correspond to a GLM with an in�nite number of basis func tions.
To achieve this without additional computational burden (prediction s are still
made by inverting ann � n matrix) makes the Gaussian process a very powerful
concept.

A Gaussian process regression is trained by maximizing (2.26), usually using
an algorithm such as conjugate gradient ascent [Bishop, 1995,Press et al., 2002].
Since each iteration involves matrix inversion, training scales asO(n3), as it does
for the RVM ( x2.4).

2.6 A simple regression example

Later chapters demonstrate the RVM and Gaussian process learning non-linear
regression functions with very high dimensional feature spacesX . However, to
complement the discussion for this chapter, the RVM and a Gaussian process
were used to perform non-linear regression on a simple one-dimensional data
set in which the exemplars are the scalars

f x(i )g = f� 10; � 9; : : : ; +10g:

The output set was sampled from the function

y(x) = 0 :001x3 � 0:005x2 + 0 :2x � 0:2

with additional zero-mean Gaussian noise of variance 0.1.

The RVM was de�ned using n Gaussian RBF basis functions (2.11) centred
at the exemplars i.e.,

� i (x) = exp
�
� � kx � x (i )k2�

:

An RBF function was also used for the Gaussian process covariance

c(x(i ) ; x(j ) ) = sexp(� � kx i � x j k2)

where � and s are width and scale parameters respectively.

Both were trained using the evidence framework to establish optimal settings
for the basis/covariance function parameters, the training data noise estimate� 2

and the RVM's relevance hyper-parameters. They were then usedto predict
values of y(x) at unseen data points in the range� 50. The results of this are
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Figure 2.1: Simple 1D experiment.The thick line shows mean prediction and the
thin lines show the� 2 standard deviation error bars. Crosses indicate the training
data set. (a) Gaussian process predictions for 1D data set. (b) RVM predictions. (c)
Gaussian process predictions \zoomed-out" to illustrate behaviour far from training
data. (d) Zoomed-out RVM predictions.

shown in Fig. 2.1.

The mean prediction of both machines seems to interpolate the training data
well. The exception is the training point at x = 10, where the RVM has decided
it pays a lower Occam penalty to describe this point as an outlier ratherthan
use a more complex interpolant to �t it. The interesting behaviour is in the
error bars, where the Gaussian process is considerably more convincing: the
error bars shrink close to the training data and grow to a massive value far
away (Fig. 2.1c). The RVM has rather larger error bars near the training data
(which may be more reasonable than those on the Gaussian process given the
noise in the training data), however they do not grow with distance from the
training data as much as would be expected, exposing a known shortcoming
of the RVM: the RVM is overcon�dent for test points distant from the training
data.

This simple experiment suggests that the Gaussian process is preferable to the
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RVM since its predictive uncertainties are considerably more realistic. However,
there are still bene�ts to using an RVM owing to its sparsity. In this experiment,
the RVM training algorithm pruned all but 3 of the training basis funct ions,
meaning that it makes predictions 7 times faster than the Gaussian process and
requires 1/7th of the storage. In subsequent chapters the �nal choice betweenthe
RVM and Gaussian process for regression will be a trade-off between the com-
putational bene�ts of the RVM and the more realistic predictive uncertainties of
the Gaussian process.

2.7 Multivariate regression

The preceding sections have described regression with the GLM, the RVM and
with Gaussian processes when the target or output space is scalar i.e.,Y � R.
To use these learning tools as a general VIM, regression to higher dimensional
spacesY � Rd will be required. There are three levels of complexity with which
this can be tackled.

Full independence

By assuming the dimensions of the output space are completely independent,
multivariate regression can be achieved by simply modelling it asd completely
separate uni-dimensional regression problems. In many circumstances this is a
mild assumption provided Y can be chosen such that the coordinates are mu-
tually independent. This is analogous to the independence of sources in PCA
or ICA [Ghahramani, 2004, Duda et al., 2001, MacKay, 2003], which are com-
monly regarded as reasonable.

Coupled hyper-parameters

A major reason to use an RVM is that it �nds sparse solutions. Multivar iate
RVM regression can be almost as fast as univariate regression if thesame basis
functions and relevance parameters are used for each output dimension. The
multivariate form for (2.10) is

y � = WT � (x) (2.27)

where each column ofW is equivalent to the weight vectorw in the univariate
GLM. An identical prior, equivalent to (2.13), is placed on each column of the
random matrix W and the likelihood of the vectorial training targets is treated
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as independent,

P(f y (i )gjf x (i )g; W; � ) /
nY

i =1

exp
�

�
y (i ) � 1

2WT � (x (i ) )
� T � � 1�

y (i ) � WT � (x (i ) )
�
�

(2.28a)

P(Wj� ) /
dY

j =1

exp
�
� 1

2(� (j ) )TWTAW� (j ) � (2.28b)

where � = diag(� 2
1; : : : ; � 2

d) contains the independent target variances and

� (j )
i =

(
1 i = j
0 i 6= j

:

The posterior weight matrix W has independent columns and the covariance of
the elements of thej th column is given by the matrix (c.f., (2.14))

G(j ) =
�

1
2 � 2

j � T � + A� 1
�

; (2.29)

and the j th column of the mean weight matrix is

Ŵ�j = 1
� 2

j
G(j ) � Ty j : (2.30)

Accordingly, predictions are distributed as multivariate Gaussians

P(y � jx � ; D; � ) = Normal(y � jŷ � ; R) (2.31a)

ŷ � = ŴT � (x � ) (2.31b)

Rij =

(
� (x � )TG(j ) � (x � ) + � jj i = j
0 i 6= j

: (2.31c)

Note that although this model does consider some dependency between out-
put dimensions through the hyper-parameters, each coordinate isstill treated
as completely independent in the likelihood so, whilst there is an performance
improvement for the RVM, there is no modelling bene�t over the completely
independent option above.

Joint outputs

If � is no longer assumed to be diagonal, the situation becomes increasingly
complicated as the columns ofW are no longer independent in the posterior.
[Chakraborty et al., 2004] discusses some of the mathematical issues and com-
plications surrounding this problem, however for multivariate regression in the
VIM, the coupled hyper-parameter model will be used for the RVM, whereas
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the complete independence model will be used for the Gaussian process leaving
it to the higher order system providing training data to choose an output space
Y with approximately independent dimensions.
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3
Learning to Track: The Displacement Expert

The advent of object detection algorithms that can exhaustively search an image
and localize a target at video frame rate (e.g., [Romdhani et al., 2001,Viola and
Jones, 2001]), has raised the standard expected from localization algorithms.
For visual tracking algorithms to compete, they must become evenfaster, to the
point of becoming background tasks on a desktop PC. This chapterintroduces
and examines thedisplacement expert, an approach to tracking built on the
visual inference machine (VIM, Chapter 1), which learns a non-linearmapping
from images to displacements in object position. We will show that this is a
robust method for visual tracking and, when trained using the relevance vector
machine (x2.4), is capable of tracking at 30Hz using less than 20% CPU time
on a desktop PC (seex3.7 for experimental details). Extracts from this chapter
have appeared previously in [Williams et al., 2003,Williams et al., 2005a].

The chapter opens with a de�nition of what tracking is, how tracking ma y
be posed as a mapping and a literature survey of relevant previous work. The
creation and use of a displacement expert is then described as well asits integra-
tion with a Kalman �ltering algorithm. The chapter concludes with an exte nsive
set of experiments.

3.1 What is tracking?

A fundamental task in Computer Vision is the localization of a target within an
image (see Chapter 1). With no prior knowledge about the target's position, the
image must be searched exhaustively, but for localization in sequential frames
of a video sequence, it may be appropriate to usetracking if it is known, or
can reasonably be assumed, that the target's motion is smooth and inter-frame
changes in position will be either small or predictable. Localization by tracking
can therefore be computationally ef�cient, but has the downside that whenever
the smoothness assumptions are violated, a tracker may fail to localize the tar-
get: a failure mode known as “loss of lock” [Blake and Isard, 1998]. This
chapter explains how the visual inference machine (VIM) idea from Chapter 1
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can be used to build an ef�cient tracking system whilst Chapter 7 explains how
occasional loss of lock may be detected and dealt with.

Targets will be considered as rigid, planar regions of images in this chapter,
not as three-dimensional objects in the real world. Any 3D motion or non-rigid
deformation of the target will be considered as a non-linear noise process to
which a degree of invariance is needed. The treatment of some interesting 3D
motions and deformations will be covered in Chapters 4, 5 and 7.

3.1.1 State-spaces, sampling and normalization

To determine a target's position in an image, a de�nition is required for what
“position” means in a given application. The numerical description of a target's
position will be referred to as its state and when tracking with d degrees of
freedom, the state vector is represented asu 2 Rd.

Assume that the target is rectangular and that there is a canonical reference
frame with the target at its origin (see Fig. 3.1). Given the stateu, there exists a
warp function mapping canonical coordinatesa to image coordinatesa0

a0 = � (a; u);

where a 2 R2 is a point in the canonical reference frame anda0 2 R2 a point in
the image. The three state models that will be demonstrated inx3.7 are:

Translation This is the simplest model and only explicitly considers horizontal
and vertical translation of the target. The state vector isu 2 R2 and the
warp function is

� 2(a; u) = a + u:

Euclidean This four-dimensional state space (u 2 R4) expresses rotation and
isotropic scaling in addition to translation. Regions are therefore related
by the Euclidean similarities [Hartley and Zisserman, 2000] and the warp
function is given by

� 4(a; u) = 2 u4 � (u3)a + [ u1 u2]T

where � (� ) is a 2 � 2 rotation matrix through an angle � , and we have
de�ned the 4th element ofu to contain the logarithm to base 2 of relative
scale.

Af�ne The largest number of degrees of freedom considered is six, correspond-
ing to the af�ne transformation [Hartley and Zisserman, 2000]. Th ese
augment the four degrees of freedom of the Euclidean similarity by includ-
ing anisotropic scaling and shear. With this state representation, the warp
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function is

� 6(a; u) =

"
u1

u2

#

+

"
u3 u4

u5 u6

#

a

We assume that all imagesI are discrete and only contain data at integer
pixel locations. It is likely that warped points will not have integer values and
to recover (approximate) image data for general points a compromise between
computational speed and accuracy is necessary. The fastest method is to round
the warped coordinates to the nearest integral values.In cases witha large warp,
this can result in a considerable distortion. More sophisticated methods interpo-
late between pixels and in many cases a linear interpolation between neighbour-
ing pixels provides suf�ciently good quality output with little computatio nal
overhead compared to nearest neighbour: this method is used forthe experi-
ments in this dissertation.

Sampling is used to describe the process of warping a region described by
u into the canonical coordinate system before applying the featuretransform
to give a feature vector. Sampling fromI using state vectoru, gives a sampled
region x, written as

x = f (I ; u):

f (�) is a feature transform that translates general image data into a speci�c rep-
resentation. Examples of feature transforms include edge energy [Freeman and
Adelson, 1991], colour, or simple greyscale intensity. Different image features
are discussed in detail in Chapter 5, but in this chapter, greyscale features will be
used predominantly, in which case the elements ofx are scalars between0 and 1
which are normalized usinghistogram equalization [Jain, 1989] to provide some
invariance to illumination. The sampling procedure is summarized in Fig. 3.2.

3.2 Tracking as a mapping

Consider a video sequence of lengthV framesf I (t )gV
t=1 showing a moving target

where the true, and generally unknown, location of the target in eachframe is
given by the state vectors�u0; �u1; : : : ; �uV . It will be assumed that �u0 is already
known (initialization is covered in x7.1) and that tracking is causal i.e., when
inferring the target's position in frame t = � , no information is available for
frames at timest > � . There is also interest in non-causal tracking algorithms
in which information from an entire video sequence is used to infer position
in a single frame (e.g., [Winn and Blake, 2004]). However, our emphasishere
is on producing an ef�cient tracking algorithm that can be used in live, real-
time situations where V is unknown and there is no possibility of obtaining
knowledge of future frames.

Provided with an estimate of the target's position in a frame ~u t , the state
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W

H

canonical reference frame

image coordinate system

a0

a

� (a; u)

Figure 3.1: The canonical reference frame.A point a in the canonical reference
frame can be transformed into the image's coordinate system using a warp function
based on the region's state parametersu.

sample from image:x = f (I ; u)
Require: rectangle width/height: W; H

extract warped sub-imageI 0

for b = 0 to H do
for a = 0 to W do

a = [ a; b]T

a0 = � (a; u)
interpolateI 0(a; b)  I (a0)

end for
end for
apply feature transform to sub-imagex  f (I 0)

linear interpolation:I (a0)
(a; b) = a0

(~a;~b) = oor (a; b)
� = a � ~a
� = b� ~b
I 1 = (1 � � )I (~a;~b) + �I (~a + 1 ;~b)
I 2 = (1 � � )I (~a;~b+ 1) + �I (~a + 1 ;~b+ 1)
return I (a0) = (1 � � )I 1 + �I 2

Figure 3.2: Image sampling algorithm
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displacement is de�ned asy t = ~u t � �u t . The assumption of small or predictable
inter-frame motion underpins the justi�cation for tracking and is eq uivalent to
saying that

abs([y t ]i ) < � i i = 1 : : : d (3.1)

for some maximum displacement vector� i.e., all displacements lie within a hy-
percube centred on the origin with sides of length2� . Tracking may be achieved
if it is possible to generate estimates within� of the truth and infer y t for every
frame.

We de�ne a generaldisplacement expertas a machine that, givenI (t ) and an
estimate of the target's position~u, returns the displacement from the prediction
to the true location y = y(I (t ) ; ~u). The displacement expert can be posed as
a special case of the VIM, introduced in Chapter 1, when feature vectors are
sampled from a state estimate and mapped to a (PDF over) displacements y .

Subject to the assumption (3.1), aglobally optimal displacement expert is
de�ned as the minimizer of the functional

E (y ) =
X

I 2 Î

Z ~u= �u (I )+ �

~u= �u (I )� �

�
�u(I ) � ~u � y (I; ~u)

� 2 d~u (3.2)

where Î is the set of all images that contain the target to track, and the function
�u(I ) returns the ground-truth state vector for the target in imageI . The variable
~u 2 Rd traces out the hypercube of expected displacements, determined by � .

The following section gives some examples from the literature that canbe
considered as displacement experts and approximately solve (3.2) by lineariza-
tion. However in x3.4 we show that the VIM can also be used to create a dis-
placement expert by learning from a supervised training set of exemplars sam-
pled with known displacements.

3.3 Previous work

Tracking has been a central part of computer vision research formany years
and has a vast literature associated with it; more than could be comfortably
summarized here. Instead, this section aims to give a concise run-through of the
literature on real-time region tracking relevant to the novel work introduced in
this chapter. A more complete literature survey on the wider contributions in
visual tracking may be found in Appendix xA.1. Another extensive review, with
a different emphasis, may be found in [Blake, 2005].
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3.3.1 Model-based tracking

Real-time tracking occurs when state estimates are generated from one frame
of image data before the next arrives. A well-known early example of this is
the RAPID tracker [Harris, 1992]. RAPID requires a known camera calibra-
tion [Hartley and Zisserman, 2000] and an accurate 3D model of the target
object indicating the location of high-contrast edges. 3D tracking isperformed
by �rst projecting the model into the image using the current stateestimate and
measuring the distance from the edges predicted by the model to the nearest
edges detected in the image. The estimated pose of the object is then updated to
minimize this mismatch.

The original RAPID tracker is sensitive to spurious edge detections, inaccu-
racies in camera calibration and inaccuracies in the object model. In [Armstrong
and Zisserman, 1995], RANSAC [Fischler and Bolles, 1981] is used to detect
and eliminate outlying observations and thereby improve the robustness of the
RAPID tracker. More recently, robust optimization techniques have also been
used in [Pilet et al., 2005] to localize adeformable 2D mesh model at close to
real-time speed (10 frames per second). This ef�ciency is largely due to the use
of simple, but powerful, tree-based classi�ers to detect key pointsin a test im-
age; robustness is achieved by disregarding any key points that donot match the
consensus.

3.3.2 Template-based tracking

Model-based tracking can be both ef�cient and robust, however it isnot always
possible to know the 3D shape of an object suf�ciently well ahead of time to
use such methods. We therefore leave model-based approaches behind in favour
of techniques requiring minimal initialization. Many approaches to localization
minimize the misregistration between an imagetemplate x̂ and a region sampled
from a test image, i.e.,

u = arg min
u

kf (I ; u) � x̂k2: (3.3)

This approach originates from [Lucas and Kanade, 1981] in which (3.3) is it-
eratively minimized using Gauss-Newton gradient descent. The choice of state
representation and warp function dictates the modes of variation this system
can track; a frequent choice for rigid objects is the af�ne model. Various systems
have been based on this approach (e.g., [Bascle and Deriche, 1995, Hager and
Toyama, 1996]) and [Baker and Matthews, 2004] reviews each technique within
a uni�ed framework, showing how particular treatments of (3.3) lead t o faster
or more robust algorithms than the original. Of these, the work of [Cootes et al.,
1998] and [Hager and Belhumeur, 1998] are of particular interestin this chapter
as they can be interpreted as special cases of a displacement expert.
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[Hager and Belhumeur, 1998] reposes (3.3) in terms of a state estimate and
displacement,~u and y :

u = ~u + arg min
y

kf (I ; ~u + y) � x̂k2: (3.4)

A Taylor expansion on f (I ; ~u + y) gives

f (I ; ~u + y) = f (I ; ~u) +
�
r u f (I ; ~u)

� Ty (3.5a)

where

r u x =

2

6
4

@x1
@u 1

: : : @xn
@u 1

...
. . .

...
@x1
@u m

: : : @xn
@u m

3

7
5 ; (3.5b)

thus giving the approximation

u = ~u + ŷ (3.6a)

ŷ � arg min
y

kf (I ; ~u) +
�
r u f (I ; ~u)

� Ty � x̂k2 (3.6b)

which can be solved to give

y =
�

r u f (I ; ~u)
�
r u f (I ; ~u)

� T
� � 1

r u f (I ; ~u) ( x̂ � f (I ; ~u)) : (3.7)

By making the assumption that the estimate~u is perfect, it is possible to de�ne

M(~u) = r u f (I ; ~u) � M0H(~u)

where M0 = r u x̂ and only needs to be computed once for the templatêx . H(~u)
corrects for the change in coordinate system between the template and the image,
but is also a constant for many state spaces giving a tracking update equivalent
to a linear displacement expert

y = M0(x̂ � f (I ; ~u)) (3.8)

where M0 is constant for a particular template.

[Cootes et al., 1998] seek the same displacement update term as (3.8), but
rather than derive M0 from modelling assumptions, they generate a training set
of n random displacementsf y (i )g and feature vectorsf x (i )g sampled from those
displaced positions in an image containing the template (seex3.4 for a discussion
of training set generation). M0 is then found as

M0 = arg min
M0

nX

i =1



 y (i ) � M0

�
x̂ � x (i )

� 



2
(3.9)
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which can be solved by least squares. This approach was generalized and related
to the work of [Hager and Belhumeur, 1998] in [Jurie and Dhome, 2002] where
it is observed that by removing the explicit �rst order assumption, fewer itera-
tions of (3.8) are required per frame (i.e., the state updates are better). Equation
(3.9) can be seen as an approximation to the optimal displacement expert (3.2)
where jÎ j = 1 , the integral over y is replaced with a sum overn exemplars and
the form of y (I; ~u) is constrained to be linear.

3.3.3 Tracking using a binary classi�er

Template methods rely on there being a single, pre-de�ned template. Whilst this
is an easier approach to initialize than the 3D models required by [Harris, 1992,
Armstrong and Zisserman, 1995], it may be the case that a single template does
not capture suf�cient variability in the target's appearance, or that a particular
application will not provide the facility to obtain a template. In [Avidan, 2001],
a support vector machine (SVM [Vapnik, 1995]) is used to de�ne a class of
target appearances, rather than a single template; in the exampleapplication
of [Avidan, 2001], the SVM is trained off-line to classify image regions as cars
or not cards. The SVM score of a region vector  (x) 2 R is a scalar which
is more positive the more the region resembles a car. By taking the �rst order
Taylor expansion of the SVM score for displacements around a guessed location
~u, he writes

 
�
f (I ; ~u + y)

�
�  

�
f (I ; ~u)) + y T @

@u
 

�
f (I ; ~u)

�

and based on this linearization uses Newton's method to �nd they that maxi-
mizes locally the SVM score. For certain choices of SVM kernel [Scḧolkopf et al.,
1998], the gradient of the SVM score can be computed analytically. Fig. 3.3
shows how the SVM score varies with displacement from the true objectposi-
tion.

Each evaluation of the SVM score requires a candidate image region to be
compared via the kernel function to a number ofsupport vectors retained from
the off-line training. In [Avidan, 2003] it is observed that, during t racking,
the candidate region's appearance changes only slightly from one frame to the
next leading to only small changes in the kernel comparisons with the support
vectors. An approximation is therefore proposed in which a candidate patch
is not compared to every support vector in every frame; instead itis compared
to just 1=n of them, using cached results for the remainder. The comparison
to every support vector is thereby distributed overn frames (n is between 5
and 10 in reported experiments) resulting in much improved ef�ciency for little
reduction in tracking accuracy or robustness.

The approach of using a binary classi�er is further explored in [Avidan,
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Figure 3.3: SVM score as a function of displacement.This graph shows how
the SVM score varies with displacement. For this demonstration the SVM was
trained to classify faces against non-faces and each curve isfor a di�erent test
face image. The score for zero displacement corresponds to theSVM score for a
correctly registered image.

2005] where the SVM is exchanged for a classi�er based on boosting [Freund
and Schapire, 1995]. The bene�t of boosting is the ease with which theclassi�er
can be retrained on-line, resulting in an adaptive tracking algorithm capable of
handling steady appearance changes over time.

In x3.2, we motivated the treatment of tracking problems as one of mapping
from high-dimensional image space to a lower-dimensional state space (i.e., the
displacement expert). From this viewpoint it is possible to raise two criticisms
of the classi�er-based approach described above:

1. The space of SVM scores is one-dimensional and can therefore provide no
basis for a multi-dimensional state space; in terms of dimensionality reduc-
tion, we have over-shot the target. A parameter vector must be restored
by using the gradient of the score and assumptions about its form.

2. The SVM is optimized to perform classi�cation and not infer displace-
ments: it is a classi�cation machine. Why not use a displacement machine?

These points are illustrated in Fig. 3.4. For the SVM used to produce Fig. 3.3, the
gradient of the score with respect to displacement (Fig. 3.4a) is noisy, making op-
timization dif�cult and the results error-prone. By comparison, a d isplacement
expert (Fig. 3.4b: a RVM-based displacement expert as described inx3.4.2 was
used to generate this curve) produces a smooth surface from which displacement
predictions can be read directly without needing an optimization step.

The rest of this chapter explains how the idea of a VIM can be used, in
conjunction with Bayesian learning, to create a general, non-linear displacement
expert.
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Figure 3.4: SVM tracking verses displacement expert. (a)By maximizing SVM
score, [Avidan, 2001] seeks to �nd displacements giving zeros in the noisy derivative
of score function.(b) By learning displacements directly, the displacement expert
produces a much less noisy displacement prediction function.

3.4 Training a displacement expert

To create a displacement expert with the VIM, information is required about
what the target region is. This is provided by one or moreseed imagesin which
the state of the target is known: f �I (j ) ; �u (j )gns

j =1 . The seed position labels are
either provided manually or automatically (seex7.1). A supervised training set
of feature vectors and displacementsD � f x (i ) ; y (i )gn

i =1 is generated from the
seed images by

1. choosing a random seed imagej � [1; ns];

2. selecting a random displacement

y (i ) � Uniform(� � ; + � )

where Uniform(� � ; + � ) denotes a uniform probability distribution over
the hypercube bounded by the extreme points� � ;

3. sampling from the seed image using this displacement

x (i ) = f ( �I (j ) ; �u (j ) + y (i ) ):

This is the same procedure introduced by [Cootes et al., 1998] to create a lin-
ear equivalent to the displacement expert. Some exemplars, sampled for a face
tracking application using the Euclidean similarities and greyscale features, are
shown in Fig. 3.5.

A displacement expert is crafted by using the VIM to learn a mapping from
feature vectors to displacements, given inD. The complete training procedure is
summarized in Fig. 3.6.
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(a) (b)

Figure 3.5: Real training exemplars. (a)a labelled seed image.(b) some typi-
cal exemplars used to train the displacement expert, sampled with the Euclidean
similarities (i.e., displaced in translation, rotation andscale).

train displacement expert
Require: seed images:f �I (j )gns

j =1

Require: labels: f �u (j )gns
j =1

Require: displacement range:�
Require: number of exemplars:n
Require: feature transform:f (�)
Require: VIM training algorithm

for i = 1 to N do
y (i )  Uniform(� � ; + � )
j  Uniform(1; ns)
x (i )  f ( �I (j ) ; �u (j ) + y (i ) )

end for

D = f x (i ) ; y (i )gn
i =1

train VIM on D

Figure 3.6: Displacement expert training algorithm
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3.4.1 Inferring displacements

Once trained, displacement predictions can be made, given an imageI (t ) and an
estimate~u, by sampling

x = f (I (t ) ; ~u)

and generating a predictive distribution for the displacement with theVIM

P(y jI (t ) ; ~u) = P(y jx ; D):

3.4.2 Three implementations

The system for tracking described in the previous section has at itsheart a VIM
that has learnt to map image regions to displacement predictions. Inthe ex-
periments detailed in x3.7, the displacement expert is created by learning this
mapping with three different approaches to Bayesian regression:

Linear The simplest implementation uses linear regression from feature vectors
to displacements. It can be implemented as a linear model (GLMx2.3)
with one basis function for each element of the input; i.e.,

� i (x) = x i � x̂ i :

where x̂ is a template. This implementation of the displacement expert is
analogous to [Cootes et al., 1998, Jurie and Dhome, 2002], but with an
extra regularizing in�uence from the GLM prior.

RVM The sparse relevance vector machine [Tipping, 2001] (x2.4), trained for
multivariate regression, is also used to create a displacement expert. n
Gaussian radial basis functions were used, centred around the training
data

� i (x) = exp
�

� � kx � x (i )k2
�

;

where the width parameter � is set during training by evidence maximiza-
tion (seex2.2.1).

Gaussian processLastly, the displacement expert is implemented using multi-
variate Gaussian process regression [Williams and Rasmussen, 1996,MacKay,
1997] (x2.5) with a Gaussian RBF covariance function

c(x i ; x j ) = sexp
�
� � kx i � x j k2�

where again the scale and width parameters (s and � ) are set during train-
ing by the evidence framework.

Since all the models considered here make Gaussian predictions, these displace-
ment experts can be thought of as implementing two functions: one returning
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disp. expert �lter

delay

I (t ) P(y jI (t ) ; u t � 1) P(u t jI (t :1))

P(u t � 1jI (t � 1:1))

feature
transform

x

Figure 3.7: Schematic for a tracking system.Displacement expert predictions are
fused over time by a �lter.

the mean displacement vector, the other returning the covariance matrix

P(y jI t ; ~u) = Normal(y jŷ ; R) (3.10a)

ŷ = y (I t ; ~u) (3.10b)

R = R(I t ; ~u): (3.10c)

3.5 Spatio-temporal �ltering

The displacement expert learns directly the posterior mapping fromimages to
displacements, given an estimate of the target's state,~u

P(y jI (t ) ; ~u); (3.11)

where I (t ) is an image received from a video source at timet and y is the predic-
tion from the displacement expert. The great merit of the displacement expert
implemented by Bayesian regression is that it provides a full predictive distribu-
tion for y , and thereby for u t = ~u + y .

Tracking is possible by just updating a point state estimate, but to exploit
the displacement expert's full predictive distribution and incorporate any motion
dynamics that may have been learned previously (a dynamical prior), a higher-
level system is required to fuse all available information. We refer tothis general
class of systems as�lters and the situation is illustrated in Fig. 3.7. Notice that
the displacement expert is the only component exposed to actual image data
and that it depends on the previous state estimate to generate anestimate. This
situation is therefore somewhat different to that in classic �ltering [Gelb, 1974]
where state estimation does not affect the observations. The system's output is
an estimate of the distribution of the target's state given the history of images
received as input

P(u t jI (t ) ; : : : ; I 1) = P(u t jI (t :1)): (3.12)
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3.5.1 General �ltering formulation

Provided with the posterior from the previous time-step, and a dynamical prior
P(u t ju t � 1), a forecast of the new state can be made

P(u t jI (t � 1:1)) =
Z

P(u t ju t � 1)P(u t � 1jI (t � 1:1))du t � 1: (3.13)

To poll the displacement expert from the new image a single estimate isrequired.
The task of choosing the best point estimate from a distribution is a matter for
decision theory [Berger, 1993]. In this case, there is a quadraticloss for any error
in the estimate, which leads to the mean of (3.13) being the optimal choice

~u (0)
t =

Z
u t P(u t jI (t � 1:1))du t : (3.14)

The displacement expert will then return a predictive distribution P(u t jI (t ) ; ~u (0)
t )

which may be incorporated into the overall posterior using Bayes' rule

P(u t jI (t :1) ; ~u (0)
t ) = P(u t jI (t � 1:1))P(u t jI (t ) ; ~u (0)

t ) �
P(I (t ) j ~u (0)

t )

P(u t j ~u
(0)
t )

: (3.15)

Taking the last term as a constant this may be written as

P(u t jI (t :1) ; ~u (0)
t ) =

1
Z

P(u t jI (t � 1:1))P(u t jI (t ) ; ~u (0)
t ) (3.16a)

Z =
Z

P(u t jI (t � 1:1))P(u t jI (t ) ; ~u (0)
t )du t : (3.16b)

In light of this new distribution, it is possible to poll the displacement expert
again for another estimate

~u (1)
t =

Z
u t P(u t jI (t :1) ; ~u (0)

t )du t (3.17a)

P(u t jI (t :1) ; ~u (1)
t ; ~u (0)

t ) =
1
Z

P(u t jI (t :1) ; ~u (0)
t )P(u t jI (t ) ; ~u (1)

t ) (3.17b)

=
1
Z

P(u t jI (t � 1:1))P(u t jI (t ) ; ~u (0)
t )P(u t jI (t ) ; ~u (1)

t ) (3.17c)

where we have taken the liberty to constantly re-de�neZ so as to ensure the right
hand side always integrates to one. IfK tests are made with the displacement
expert from image I (t ) , the general form for the posterior state is

P(u t jI (t :1) ; ~uK :0) =
1
Z

0

B
@

Z
P(u t ju t � 1)
| {z }

dynamics

reverse posterior
z }| {
P(u t � 1jI (t � 1:1))du t � 1

1

C
A

KY

k=0

P(u t jI (t ) ; ~u (k)
t )

| {z }
disp. expert

(3.18a)
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where
~uk =

Z
u t P(u t jI (t :1) ; ~u0:k� 1)du t (3.18b)

3.5.2 Kalman �lter

Because the predictions made by the displacement experts described in x3.4.2
are normally distributed, (3.18a) can be computed analytically. This gives rise
to a set of linear equations analogous to the discrete Kalman �lter [Gelb, 1974,
Kalman, 1963].

Let us de�ne notation

1. for the dynamical prior (seex3.5.3 for details)

P(u t ju t � 1) = Normal(u t jBt u t � 1; � t ); (3.19)

where u t 2 Rd and Bt 2 Rd� d;

2. the displacement expert

P(u t jI (t ) ; ~uk ) = Normal(u t j ~uk + ŷk ; Rk ); (3.20)

where ŷk = y(I (t ) ; ~uk ) and Rk = R(I (t ) ; ~uk ) are the predicted displacement
mean and covariance;

3. and the posterior

P(u t jI (t :1) ; ~uK :0) = Normal(u t jû t ; 
 t ): (3.21)

Before applying the displacement expert, an estimate is made basedon the
dynamical prior and the reverse-time posterior

P(u t jI (t � 1:1)) = Normal
�
u t jBt û t � 1; Bt 
 t � 1BT

t + �
�

= Normal
�
u t jû

(� )
t ; 
 (� )

t

�
:

(3.22)
The notation is based on that in [Gelb, 1974] whereû (� )

t and 
 (� )
t are the esti-

mated state mean and covariance in framet before an observation is made;̂u (k)
t

and 
 (k)
t are the same quantities afterk observations. Polling the displacement

expert from the mean of (3.22) gives

P(u t jI (t ) ; ~u (0)
t ) = Normal(u t jû

(� )
t + y0; R0) (3.23)

and a posterior

P(u t ; jI (t :1) ; ~u (0)
t ) = Normal

�
u t jû

(0)
t ; 
 (0)

t

�
(3.24)
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where

û (0)
t = û (� )

t + Kŷ0 (3.25a)


 (0)
t = ( Id � K)
 (� )

t (3.25b)

K = 
 (� )
t

�
R0 + 
 (� )

t

� � 1: (3.25c)

K is called the Kalman gain [Gelb, 1974, Kalman, 1963]; when the estimates
made by the displacement expert are more con�dent, the Kalman gain is larger
thereby giving it a bigger in�uence on the posterior estimate. If thedisplacement
expert is polled several times, equations (3.25) can be used recursively:

û (k)
t = û (k� 1)

t + Kŷk (3.26a)


 (k)
t = ( Id � K)
 (k� 1)

t (3.26b)

K = 
 (k� 1)
t

�
Rk + 
 (k� 1)

t

� � 1: (3.26c)

The complete algorithm is summarized schematically in Fig. 3.8.

3.5.3 Dynamical priors

From (3.19), the form for the dynamical prior is

P(u t ju t � 1) = Normal(u t jBt u t � 1; � t ):

In many cases, however, it is useful to consider second order models which take
into account the two previous observations [Blake and Isard, 1998]. The �l-
tering algorithm can be easily extended to second order dynamical priors by
augmentingthe state vectors to accommodate the previous observation giving

�u t =

"
u t

u t � 1

#

�y =

"
y
0

#

�B =

"
B1 B2

Id 0

#

�� =

"
� 0
0 0

#

: (3.27)

These augmented vectors and matrices can then be used as before in the �ltering
algorithm Fig. 3.8.

Setting the values ofB1, B2 and � depends on how much information is
available before tracking. There are two possibilities considered here

1. No speci�c knowledge is held about the target motion, in which case a
constant velocity model is used whereB1 = 2 I ,B2 = � I and � = � dyn I
where � dyn is set to a reasonably large value re�ecting prior uncertainty.

2. A trajectory �u0; : : : ; �uV is available exemplifying the target motion for a
number of frames. Maximum likelihood learning can then be used to
establish values forB1, B2 and � .
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initial conditions: û0,
 0,t = 1

fetch I ( t ) from source

predict

û ( � )
t = Bt û t � 1


 ( � )
t = Bt 
 t � 1BT

t + �

k = 0

poll displacement expert

ŷ k = y(I ( t ) ; û (k � 1)
t )

Rk = R(I ( t ) ; û (k � 1)
t )

update estimate

K = 
 (k � 1)
t

�
Rk + 
 (k � 1)

t

� � 1

û (k )
t = û (k � 1)

t + Ky k


 (k )
t = ( I � K)
 (k � 1)

t

�nished?

k + +

return

û t = û (k )
t


 t = 
 (k )
t

t + +

yes no

Figure 3.8: Flow chart detailing the incorporation of the displacement expert with
a Kalman �lter.
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[Blake and Isard, 1998] give a thorough discussion on dynamical priors and
how the coef�cients may be learnt in the second case above.

If the motion coef�cients are to be learnt, it is important that the example
trajectory is truly representative of the motions that will be witnessed during
tracking. This is because the learnt process noise� will be very small if the
motion is well described by the model and the Kalman �lter will make con�d ent
forecasts of the target position in new frames. This gives a small Kalman gain
for new observations from the displacement expert and if the motion model
then makes erroneous forecasts, the displacement expert predictions will not
have suf�cient weight and loss of lock may occur.

3.6 System demonstration

Before we give a detailed experimental analysis of the displacement expert,
Fig. 3.9 shows a schematic diagram illustrating the process of collectinglabelled
training exemplars, training the VIM and then making real-time displacement
estimates.

As a demonstration, the displacement expert was trained to track aface.
A single seed image was used (the seed image shown in Fig. 3.9) and in this
case the target state space describes 2D translation only. The target region is of
size 38 by 44 pixels which, when processed by the greyscale feature transform,
gives x 2 R1672. 100 training exemplars were generated for displacements in
the range � 38 pixels horizontally and � 44 pixels vertically and the mapping
from feature vectors to displacements was learnt by the relevancevector machine
using exemplar-centric Gaussian RBF basis functions (seex2.4). The Kalman
�lter was equipped with a default “constant velocity” dynamical prior a nd for
each test frameK = 3 queries were made from the displacement expert. In this
case, the VIM took 2.83 seconds to train and following this tracked every frame
of video in 5.14ms. This is equivalent to consuming 15.4% CPU time when
images are arriving at 30Hz however, as explained inx3.7, this performance is
for a stored video sequence. Actual performance varies with hardware.

3.7 Performance evaluation

This section provides an extensive evaluation of the experimental performance
of the displacement expert. There will be �ve separate sets of experiments:

1. The �rst experiments measure the sensitivity of the displacement expert
to the free variables set by a user, these being: the expected displacement
range � ; the number of training exemplarsn; the number of seed images
ns; and the choice of initial region labelling.
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seed image exemplarsf x (i )g

VIM training

DE

feature transform

feature transform

posterior estimatêu; 


Kalman �lter

webcam

I t x t y ; R

Figure 3.9: Schematic for displacement expert training and tracking process.The
parts of this diagram inside the dashed box signify the o�inetraining process: ex-
emplars are excised from, in this case, a single labelled seed image and are then
passed to the appropriate VIM training algorithm which thenimplements a displace-
ment expert (DE) by providing the functionsy(�) and R(�). Outside of the dashed
box are the real-time components of the tracking system. New images received
from the webcam are processed by the feature transform (in this case the greyscale
feature transform, see Chapter 5) and displacement predictions are fused with the
dynamical prior by the Kalman �lter framework shown in Fig. 3.8
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Figure 3.10: Face tracking. A video of this sequence may be downloaded from
http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ violent mpg. mpg.
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2. The second set of experiments assess the tolerance of a displacement expert
to unmodelled appearance changes including: tolerance to unseen back-
grounds and clutter; tolerance to target deformation; tolerance to unmod-
elled three-dimensional motion; tolerance to occlusion; and tolerance to
lighting variation.

3. The next experiments demonstrate the bene�ts of including dynamical pri-
ors and probabilistic data fusion via a Kalman �lter. The tests will include :
tracking without a Kalman �lter; tracking with �ltering, but using a gen-
eral “constant velocity” dynamical prior; and �ltering with a dynamic al
prior trained speci�cally for the target in question from an authent ic ex-
ample trajectory.

4. Experiment set four compares the displacement expert againsttwo popular
tracking algorithms from the literature: the wandering, stable, lost(WSL)
model from [Jepson et al., 2001] and cross-correlation [Lucas and Kanade,
1981,Lewis, 1995].

5. Finally, the �fth set of experiments is a simple demonstration of the dis-
placement expert beyond what has already shown. Demonstrations in-
clude: tracking with 4 and 6 degrees of freedom and tracking objectswith
non-rectangular boundaries.

Implementation details

Unless otherwise stated, the following applies to the displacement experts being
tested: only translation is being tracked to facilitate easy comparison to ground
truth data; Kalman �ltering is used with a general constant velocity dynamical
prior with � dyn = 10; the feature transform f (�) is greyscale, hence the entries in
a feature vectorx are scalars between 0 and 1 and histogram equalization [Jain,
1989] is used to provide some invariance to lighting (see Chapter 5 for more);
displacement experts are trained from a single seed image (ns = 1 ); and, as there
is a random component to the displacement expert training algorithm(Fig. 3.6),
results are given for the mean of ten repeated experiments with all settings �xed.

The experiments were performed on a desktop PC with a 2.54GHz Intel Pen-
tium IV processor and 2GB of RAM. Measurements were made for saved video
sequences, which consisted of 640� 480 pixel images stored, uncompressed, as
24bit RGB images. Using this tracker with a webcam can be faster and slower
than the results reported here owing to factors such as camera device drivers and
hard-drive speed.
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Figure 3.11: E�ect of expected maximum displacement� on tracking accuracy.
Error bars indicate one standard deviation in results.

Performance measures

The two properties of the algorithm measured are accuracy and ef�ciency. In
the following experiments, a number of test video sequences are used, for which
a “ground truth” was obtained by hand-labelling the video sequences. This is
not ground truth data in the truest sense since it was not measureddirectly at
source, independently of the video images. But insofar as ground truth data may
be considered as an accurate and reliable source of data, we feel this carefully
hand-labelled data is suf�ciently good for our purposes. Accuracyis reported as
the root mean square (RMS) error between tracking estimates andthe ground
truth, de�ned as

eRMS =

vu
u
t 1

V

VX

t=1

kû t � �u t k2; (3.28)

where V is the number of frames in the video sequence,�u t is the ground truth
state for frame t and û t is the mean of the posterior state estimate made by the
�ltered displacement expert.

Ef�ciency will be reported as seconds per frame taken to provide anesti-
mate. All ef�ciency comparisons are carried-out on the same workstation using
identical software to extract frames from a video sequence and logresults.

Parameter sensitivity

To measure the effects of the displacement range� on displacement expert per-
formance, the RVM expert (tracking translation only) was trained wit h � =
(� ; �) for � in the range 0–25 pixels. The results of this are shown in Fig. 3.11.
The error bars on Fig. 3.11 give insight into the behaviour of the expert trained
on small displacement ranges: good tracking accuracy is possible asthe expert
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Figure 3.12: Displacement expert performance against training set sizen. (a)
Variation in the accuracy and e�ciency of an RVM displacementexpert againstn.
(b) number of relevance vectors retained by RVM expert with changing n.

has been trained on many exemplars very close to the target objectand predic-
tions within this local region are very accurate. However, the experthas not
been trained on any large displacements and rapid inter-frame motion will cause
loss of lock.

Fig. 3.12a shows how displacement expert performance varies with thesize
of the training set, n. Choosing n involves a compromise: the more train-
ing exemplars, the better the tracking performance, however larger n incurs
a larger computational penalty, for both training and tracking. For an RVM
expert the extra burden is imposed by an increased number of relevance vec-
tors (Fig. 3.12b). This number increases linearly withn up to n = 80, after
which the number of relevance vectors saturates at about 56. Thisimplies that
adding exemplars aboven = 80 does not provide any extra information about
displacements (for this test sequence).

By using a single seed image, the performance of the displacement expert is
dependent on what can be learnt from that one image. To capture greater in-
variance to deformation, 3D rotation, lighting and background, it is favourable
to train the expert on exemplars gathered from several different seed images. To
assess the bene�ts of using more than one seed image, a head-tracking sequence
was used in which signi�cant unmodelled 3D rotation occurs. By including seed
images showing the head in different poses, the displacement expertshould gen-
eralize to these different appearances. Fig. 3.13 shows how the performance of
an RVM expert improves with number of seed images; whilst the improvement
of using two seed images over one is dramatic, subsequent improvements are far
smaller. It is possible that for this face-against-of�ce scenario twoseed images
capture suf�cient variability in appearance.

A �nal degree of freedom left to a user (or higher order system) isthe choice
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Figure 3.13: Bene�ts of using more than one seed image.This plot shows how
RMS tracking error decreases as additional seed images are used to create the
displacement expert. The images on the right are the �ve seed images used in this
experiment.

of initial region labelling. In Fig. 3.14 it is shown how the choice of what con-
stitutes a face in face tracking can have a considerable effect on performance.
This shows that by cropping the face inside what would normally be considered
the boundary, performance improves. This is because the “background”, as the
tracker sees it, is actually the periphery of the face, something that is far more
stable in appearance than an arbitrary, cluttered background. However, if this
is taken too far (to below around 50% in face tracking) the number of features
available to help track the object has been reduced to such a point that the ac-
curacy degrades again. For face tracking, the optimal area is around 75% of the
total object.

Tolerance to appearance changes

Whilst it is plausible that the relatively small number of training exemplars gen-
erated in the algorithm of Fig. 3.6 are suf�cient to capture variation in the ap-
pearance of the target object, they are certainly insuf�cient to capture all possi-
ble backgrounds. There are two strategies available to help reduce the effect of
background:

1. If the target region is cropped inside the true object boundary,the “back-
ground”, as registered by the displacement expert, is actually theperiphery
of the target, the advantages of which are demonstrated in Fig. 3.14 above.

2. Training on multiple seed images showing the target against different back-
grounds will introduce some invariance to background. Whilst this still
will not generalize to all backgrounds, true background rarely occupies
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Figure 3.14: E�ect of cropping. By setting the target region to be inside the true
target, the displacement expert is less dependent on viewingthe object against one
particular background. In this example, the 100% area is of width 59 pixels and
height 74 pixels.

more than 25% of a sampled region and the remaining features can be
used to guide the displacement expert.

To test this second conjecture, the effects of using different backgrounds in seed
images was tested. The results of this are in Fig. 3.15. The sequence from which
Fig. 3.15b was taken contains a moving, cluttered background (this video is
available athttp://mi.eng.cam.ac.uk/ � omcw2/thesis/ben clutter mpg.mpg).

Other important appearance changes that can occur are due to deforma-
tion of the object (e.g., facial expression in face tracking), occlusion by some
foreign object or a change in lighting conditions. Fig. 3.16 shows that the dis-
placement expert is robust to object deformations and partial occlusions when
trained from just a single seed image. Despite the use of histogram equaliza-
tion, however, the displacement expert fails under signi�cant changes in light-
ing when using greyscale features. One way to overcome this is to provide
multiple seed images showing various illuminations, but when being used for
real-time tracking the user cooperation required to gather multiple illumina-
tions in the training set is unacceptable and an alternative approachis sought.
Fig. 3.16c shows the results when the edge orientation of asteerable �lter [Free-
man and Adelson, 1991] is used as the feature transform (this video is available
at http://mi.eng.cam.ac.uk/ � omcw2/thesis/light track mpg.mpg). These
features are magnitude invariant and exhibit excellent tolerance tosevere light-
ing variation when used by the displacement expert: see Chapter 5 for more.
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(a) (b) (c)
# backgrounds eRMS eRMS on
trained on on host BGs unseen BGs
1 6.2 17.2
2 5.8 8.1
3 6.1 7.6

(d)

Figure 3.15: Advantages of using di�erent backgrounds in seed images. (a-c) Stills
showing the three backgrounds used in this experiment.(d) Table showing the
accuracy of the displacement expert when trained on one or moreseed images
showing di�erent backgrounds. Results are given for tracking the object on the
\host" backgrounds the expert was trained against, and on unseen backgrounds.

Bene�ts of temporal �ltering

To test the value of the temporal �ltering strategy in x3.5, the three varieties of
displacement expert described inx3.4.2 were trained using the �rst frame of a
standard test sequence as a seed image. They were then each usedto track the
sequence under three �lters:

No Kalman �lter With no temporal �ltering, tracking was performed by updat-
ing a point estimate of state by the mean displacement predicted by the
displacement experts.

Default Kalman �lter This is the Kalman �lter described in x3.5 using a “de-
fault” constant velocity dynamical prior with large process noise.

Learnt Dynamics This is the same algorithm as above, however a dynamical
model was learnt beforehand from an example trajectory.

Fig. 3.17 shows how the accuracies of the nine combinations of displacement
expert and �lter vary and there are three signi�cant remarks to be made:

1. The Gaussian process displacement expert is the most accurate.The sim-
ple experiments inx2.6 showed that Gaussian processes provide more con-
vincing regression results than the RVM, hence this result could have been
predicted.

2. For all three types of displacement expert, using a Kalman �lter improves
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(a) (b) (c)

Figure 3.16: Tolerance to appearance changes. (a-b)show the displacement expert
tracking a face undergoing deformation and occlusion. Partial occlusion is tolerated
(although small misalignments occur), however the last occlusion in (b) is too severe
and tracking is lost.(c) a displacement expert using greyscale features is sensitive
to lighting variation, but one using the orientation from steerable �lters [Freeman
and Adelson, 1991] is extremely tolerant to it. This column shows the result of
tracking such �ltered image features under severe lighting variation.
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tracking accuracy, justifying the use of experts capable of makingproba-
bilistic predictions and the fusion with a dynamical model.

3. In each case, the speci�cally learnt dynamical model shows little improve-
ment in accuracy over the constant velocity model.

Fig. 3.18 shows how the ef�ciency of the displacement experts varieswith
different �lters. Although the RVM was seen to be slightly less accurate than
a Gaussian process in Fig. 3.17, this �gure illustrates how the RVM's sparsity
property (seex2.4) pays dividends in a real-time application. The fastest (but
also least accurate) results are for a linear displacement expert withno �ltering.
When a Kalman �lter is used, this time rises considerably due to the computa-
tional expense of computing the predictive uncertainty.

Comparison to other approaches

Many approaches for 2D region tracking exist in the literature. We compare the
displacement expert to two of them here:

1. Firstly we compare to normalized cross-correlation [Lewis, 1995] as this
is a well established and familiar approach and will serve as a benchmark.
This was implemented by updating the state estimate to the location having
the highest correlation score with an initial template. This search was
performed in a region around the previous state estimate. The sizeof
search region was chosen as the smallest which enabled the algorithm to
track the entire sequence without loss of lock.

2. Secondly the displacement expert is compared to theWandering, stable,
lost (WSL) tracker of [Jepson et al., 2001]. This is an adaptive approach
and as such is reported to have excellent tolerance to appearancechanges
as well as good accuracy.

These two methods were compared to the three types of displacement expert de-
scribed in x3.4.2 for both accuracy (RMS error) and ef�ciency (time per frame).
The results are recorded in Table 3.1.

An immediate advantage of the competition can be seen from this as they
required no off-line training before tracking. However, the displacement expert
only takes a few seconds to train, the Gaussian process being the fastest as it
has the fewest nuisance parameters to set, the RVM is next as it must establish
the relevance of all the basis functions and therefore has many more nuisance
parameters. The linear displacement expert takes so long to train because of the
number of basis functions it uses and the consequent cost of matrix inversion.
The most accurate tracker is the WSL algorithm, however this takessigni�cantly
longer to track each frame than any of the other methods and is far from a real-
time option. The Gaussian process displacement expert is only fractionally less
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Figure 3.17: Tracking accuracy with di�erent �lters.
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Figure 3.18: Tracking e�ciency with di�erent �lters.
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Method eRMS(pixels) Training time (s) Time/frame (ms)
GP displacement expert 3.71 0.74 15.03
RVM displacement expert 4.31 2.83 *5.14
Linear displacement expert 4.77 4.27 14.53
Cross-correlation 6.60 *none 17.73
WSL *3.70 *none 312.56

Table 3.1: Comparison to normalized cross-correlation [Lewis, 1995] and WSL
tracking [Jepson et al., 2001].These results were taken from tracking a 136 frame
sequence of a head passing in front of the camera at approximately constant depth.
Entries marked with an asterisk (*) indicate the best performance in that column.

accurate than WSL, but is 20 times faster at producing estimates.The fastest
tracker is the RVM displacement expert which requires only 5.14ms to track
per frame, but is slightly less accurate than the Gaussian process displacement
expert and WSL.

Further demonstrations

A previous experiment demonstrated the degree of tolerance thedisplacement
expert has to background variations. For objects with non-rectangular bound-
aries, another method to minimize the in�uence of background on tracking per-
formance is to sample pixels from contoured regions. Fig. 3.19 shows clips
from a hand tracking experiment in which pixels are sampled from a region de-
scribed by a closed B-spline curve [Blake and Isard, 1998]. Note that this does
not model the fact that a hand is not a rigid body but is merely illustrating the
use of contoured boundaries; Chapter 7 shows how this can be extended using
techniques from later chapters to create a “hand mouse”. In thiscase, the curve
was de�ned manually when labelling the seed image and the sampling procedure
in Fig. 3.2 was modi�ed by �rst sampling all pixels from a rectangular regio n,
strictly outside the curve, and then collating the feature vector by including only
pixels from inside the curve during raster scanning.

As an example of tracking objects against more varying backgrounds than
an of�ce, Fig. 3.20 shows the results of tracking passing cars, also using the
Euclidean similarities. Both cars were tracked successfully after training from a
single seed image.

An alternative method for handling 3D rotation is to model it approxim ately
with an af�ne transformation. This requires six degrees of freedomin the dis-
placement expert, the results of which are shown in Fig. 3.21.
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Figure 3.19: Hand tracking. When tracking a non-rectangular object, pixels can
be sampled from an arbitrarily contoured region to exclude asmuch background as
possible.

Figure 3.20: Tracking cars. Digital video recordings of a pass-
ing vehicle and a license plate. The RVM displacement expert was
trained from a single frame and successfully follows the regions de-
spite clutter and an unsteady camera. These videos can be down-
loaded fromhttp: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ volvo mpg. mpg
and http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ ford mpg. mpg.

Figure 3.21: Tracking with six degrees of freedom.These clips were gen-
erated by training an RVM displacement expert to work with sixdegrees of
freedom in the a�ne similarity space. This approximately models the projec-
tion of a planar object undergoing out-of-plane rotations. This video is at
http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ affine mpg. mpg.
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3.8 Summary

In this chapter we have introduced the idea of adisplacement expertin which
region tracking is treated as a mapping from feature vectors to displacements
in some state space representing a target object's position in an image. An al-
gorithm was devised for training the visual inference machine (VIM) to act as
a displacement expert which was then implemented as a linear regression, and
non-linear regression with the relevance vector machine and a Gaussian process.
Finally we explained how the probabilistic state displacements can be fused with
a dynamical motion model to form robust posterior estimates of object posi-
tion. An extensive experimental evaluation proved this method fortracking to
be highly ef�cient and accurate, two qualities between which a compromise is
normally necessary.
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4
Semi-Supervised Learning

Chapter 1 namesversatility as a key requirement for the visual inference ma-
chine (VIM) to be useful. Accordingly this chapter extends the VIM, making it
possible to learn the input–output mapping without needing to providelabels for
every training exemplar. We call the result thesemi-supervised visual inference
machineor SS-VIM. The chapter opens with an explanation of what is meant by
semi-supervised learning and a review of previous work in the area. Our method
for semi-supervised regression uses a Gaussian process (x2.5) to infer uncertain
or “noisy” labels for unlabelled exemplars in the training set. To assist this,
additional information, called temporal metadata, is considered: this metadata
is available if training data are collected at particular, known times. We show
how the GLM ( x2.3), RVM ( x2.4) or a Gaussian process can then be trained
from data with uncertain labels. This chapter includes two demonstrations of
the SS-VIM and concludes with experiments illustrating the bene�ts of including
unlabelled exemplars.

In Chapter 3, labelled exemplars were generated automatically from asingle
seed image. However, obtaining labelled training data is not always so easy;
labelling data is often time-consuming and error prone, particularly when it re-
quires human intervention. On the other hand, exemplarswithout labels are
typically abundant: e.g., gathering training data by capturing a videosequence
or trawling the Internet for images can generate thousands of exemplars with
minimal expenditure of effort, time or money. We therefore propose the follow-
ing subdivision of the feature vectors presented to VIM:

1. D l , f x (i ) ; y(i )gn l
i =1 is a set of training exemplars which have been labelled

with scalar target outputs y(i ) which will normally be written as a vector
y l (we address multiple outputs inx4.1.2);

2. Du , f x (i )gn l + nu
i = n l +1 is another (frequently larger) set of training exemplars

which do not have labels;

3. Dt is the (possibly in�nite) set of inputs for which the VIM is going to
make output predictions once trained.
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Learning from a labelled and unlabelled set of exemplars is calledsemi-supervised
learning [Seeger, 2001].Du and Dt are sometimes treated as the same set, how-
ever we keep them separate here because:(i) the aim of this work is to make fast
predictions at test time, so images inDt may be dealt with differently to those
in Du and (ii) during the gathering of Du there may be somemetadataavailable
for the exemplars, that will not be available for Dt (seex4.1).

The aims of semi-supervised learning are the same as those in supervised
learning, i.e., to learn a mapping between feature vectors and labels.Unsuper-
visedlearning [Ghahramani, 2004], being blind to any possible labels, is a rather
different discipline which concentrates on identifying structure within the data
(clusters, low-dimensional manifolds etc.). Nevertheless, many approaches to
semi-supervised learning begin with an unsupervised step (seexA.2). This chap-
ter discusses training a VIM from labelled and unlabelled exemplars to create
the SS-VIM, which means aregressionis learnt. The bulk of work in the area
of semi-supervised learning is for classi�cation, a summary of which may be
found in Appendix xA.2, and the relatively small amount of work addressing
semi-supervised regression is discussed next.

Previous approaches to semi-supervised regression

In [Franz et al., 2004], unlabelled exemplars are used to enhance regression
learning with a generalized linear model (GLM, x2.3). The observation is made
that GLM performance is improved when the basis functions are orthogonal
with respect to the data being used. The unlabelled exemplars are used to �nd a
transformation for the basis functions such that they become orthogonal. Whilst
the unlabelled exemplars are helping to condition the learning process, they are
not directly being used to learn the mapping.

Coreg [Zhu and Li, 2005] is an adaptation to regression of the co-training
approach for semi-supervised classi�cation ( [Blum and Mitchell, 1998], see
xA.2) in which two separate regressors are used to iteratively generate labels
for each other.

Semi-supervised regression is achieved in [Verbeek and Vlassis, 2005] by
de�ning a manifold over exemplars, where each exemplar is connectedto its
nearest neighbours in aGaussian �eld [Zhu and Ghahramani, 2003,Zhu et al.,
2003]. This poses the problem as one of energy minimization in which it is en-
ergetically favourable for connected exemplars to have the same labelling. By
minimizing this energy with the labels given inD l �xed, labels are generated for
the unlabelled exemplars. This method is similar to a Gaussian process [Williams
and Rasmussen, 1996,MacKay, 1997] where the covariance matrixfor the given
exemplars depends on the nearest neighbour structure.

Another method based around constructing a manifold from exemplars is
[Rahimi et al., 2005], where the data have been collected as a video sequence
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and, like the SS-VIM detailed below, temporal information is used to guide the
construction of the manifold.

4.1 Semi-supervised regression with a Gaussian process

For the unlabelled exemplarsDu to contribute to the learning process, prior
knowledge or assumptions must be used about the training data so that exem-
plars in Du may be compared toD l and in some way have labels inferred for
them. Without this expression of a prior, Du may as well be ignored and the
VIM trained in a supervised way from D l alone. The typical starting point is to
de�ne a distance function between exemplars and thereby recoversome struc-
ture within and between D l and Du that will help infer labels for Du (i.e., nearby
exemplars have more similar labels). We will refer to this as astructural prior .

As a consequence of how training data were collected, there may alsoexist
metadata which assist the process of labellingDu . We de�ne metadata to be
any additional information that is available for D l and Du , but not for Dt : if
useful information is ubiquitously available then it should simply be included as
an extra feature in x. The metadata for an exemplarx i is written as � i and the
setsM l and M u contain the metadata associated withD l and Du respectively.
The only type of metadata that will be considered in this dissertation istemporal
information, which is available if training data is collected as a video sequence,
however the approach is still general and can be easily adapted to other forms
of metadata. By assuming that the activity in the sequence is smooth, or obeys
some other temporal structure (e.g., periodicity; see below), atemporal prior
over the labels ofD l and Du can be de�ned. It seems reasonable that temporal
information will be available for test inputs, thereby making our use of it as
metadata contrary to the de�nition just given. However, since test data will
arrive at some arbitrarily long time after the training data were collected, we
assume that it have no bene�ts at test time.

We de�ne the model of exemplar labels to be a Gaussian processx2.5

P
�
y(x)

�
= GP

�
0; c(f x ; � g(i ) ; f x ; � g(j ) )

�
(4.1)

where, in a change to what was done in Chapter 2, the covariance function c(�; �)
now depends on both the exemplars and the temporal metadata

c(f x ; � g(i ) ; f x ; � g(j ) ) =
n �X

k=1

� kc(k)
� (x (i ) ; x (j ) ) +

n X

k=1

 kc(k)
 (� (i ) ; � (j ) ) (4.2)

and is the weighted sum ofn� structural covariance functions andn temporal
covariance functions (the hyperparameters� k ;  k will be set by maximizing the
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evidence; see below). The joint distribution over the known labelsy l and the
unknown labels yu (expressed as vectors) is a multivariate Gaussian

P(y l ; yu jD l ; Du ; M l ; M u ; � ) = Normal

 "
y l

yu

# �
�
�
�0; C

!

(4.3a)

C =

"
Cll + � 2I Clu

CT
lu Cuu

#

: (4.3b)

The matrix Cll 2 Rn l � n l contains the covariance function evaluated between
members ofD l ; M l , i.e., [Cll ]ij = c(f x (i ) ; � (i )g; f x (j ) ; � (j )g). Clu ad Cuu are sim-
ilarly computed. As in x2.5, it is assumed that the given labels are subject to
IID Gaussian noise with covariance� 2. � is again used to represent all of the
hyper-parameters.

By conditioning on the known labels y l , the distribution over yu may be
found as [Williams and Rasmussen, 1996],x2.5

P(yu jy l ; D l ; Du ; M l ; M u ; � ) = Normal(yu jŷu ; H) (4.4a)

ŷu = Clu (Cll + � 2I ) � 1y l (4.4b)

H = Cuu � Clu (Cll + � 2I ) � 1CT
lu (4.4c)

As is done throughout this thesis, the nuisance parameters are set using the
evidence framework [MacKay, 1995] in which the marginal likelihood

P(y l jD l ; Du ; M l ; M u ; � ) = Normal(y l j0; Cll ) (4.5)

is maximized as a function of � by conjugate gradient ascent [Press et al., 2002,
Bishop, 1995], seex2.2.1 for details.

4.1.1 One-dimensional demonstration: gesture

Before discussing how a general input–output mapping is learnt, we give a
demonstration of this method for inferring labels for Du . Consider the following
scenario: a user records a video sequence of them opening and closing their hand
(see Fig. 4.1) and wants to learn a mapping from hand images to real numbers in
the range[0; 1]. The user �nds it easy to label the extreme gestures i.e., where the
hand is fully open or closed, but leaves all other frames unlabelled. The images
are converted into feature vectors using a greyscale feature transform and the
frame number from the video is available as temporal metadata (e.g.,� 1 = 1 ,
� 5 = 5 etc.).

To infer yu , a Gaussian process is de�ned with one structural and two tem-
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Figure 4.1: Hand training exemplars.These images are frames1; 3; 5; 7; : : : ; 17
from the training sequence, which contains 150 frames in total. Only 18 frames
(including those shown here with a bold frame) have been labelled as either open
(y = 1 ) or closed (y = 0 ) and therefore belong toD l . All other frames are
unlabelled and belong toDu .

poral covariance functions, (4.2):

c� (x i ; x j ) = exp
�

� � 1kx i � x j k2
�

(4.6a)

c(1)
 (� i ; � j ) = exp

�
� � 2(� i � � j )2

�
(4.6b)

c(2)
 (� i ; � j ) = exp

n
� � 3 sin2

�
� (� i � � j )

�o
: (4.6c)

The function c� states that two exemplars with small sum-of-squared differences
in intensity are a priori correlated. The other covariance functions exploit the
temporal metadata: c(1)

 states that two exemplars from nearby frames will have
correlated labellings andc(2)

 comes from the prior observation that the video
of the hand opening and closing is roughly periodic (this covariance function is
very strong, in that it asserts that the signal isexactly periodic; a softer covari-
ance function would be more appropriate for general applications). All three
functions are exponential with width parameters � 1, � 2 and � 3. The periodic
covariance also has a frequency parameter� . The set of hyper-parameters to be
discovered by training is therefore� = f � 2; �;  1;  2; � 1; � 2; � 3; � g.

The table in Fig. 4.2a shows the values of� found by maximizing (4.5) and a
graph of the inferred labelsyu is shown in Fig. 4.3a. Based on the metadata, it is
highly plausible that the labels are periodic, hence the relative magnitude of  2,
and the clearly periodic shape. A video showing the exemplars and inferred la-
bels can be downloaded fromhttp://mi.eng.cam.ac.uk/ � omcw2/thesis/hand
labels mpg.mpg.

A second experiment was conducted to study the effects of the temporal
metadata in which the frames of the training video sequence were randomly per-
muted. The missing labelsyu were again inferred from these data and Fig. 4.2b
shows the inferred hyper-parameters. The encouraging point from these �gures
is that  1 and  2 have been effectively set to zero as there is no longer any evi-
dence for the effects they model; even though the Gaussian process has a very ex-
pressive covariance function, the Bayesian learning methodology has prevented
over�tting. The only signi�cant correlations between exemplars are therefore
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� 2 1:6 � 10� 3

� 0:50
 1 0:15
 2 2:48
� 1 6:97� 10� 6

� 2 1:80� 10� 5

� 3 0:20
� 0:61

(a)

� 2 1:41� 10� 51

� 0:89
 1 2:48� 10� 17

 2 6:88� 10� 20

� 1 4:68� 10� 5

� 2 1:83� 10� 4

� 3 0:199
� 2:92� 103

(b)

Figure 4.2: Inferred (hyper)parameter settings. (a)Inferred hyper-parameters for
ordered training data; periodic e�ects are judged to be dominant. (b) Inferred
hyper-parameters with permuted training data; temporal information is correctly
inferred to be useless and inference rests on structural information alone.

structural, as modelled byc� . A graph of the labels inferred in this case is shown
in Fig. 4.3b (un-permuted so as to correspond to the previous experiment). Since
the Gaussian process is now unable to exploit the additional temporalinforma-
tion, there is greater uncertainty in the estimated labelsyu than for the ordered
case in Fig. 4.3a.

4.1.2 Multi-dimensional labelling

When dealing with applications requiring vector-valued outputs, we arecon-
fronted with the same choices faced for multi-dimensional regression in x2.7: (i)
Attempt to learn a mapping giving a fully joint output distribution; (ii) Treat
outputs as independent problems, but couple hyper-parametersacross output
dimensions or;(iii) Treat each output dimension as a completely separate regres-
sion problem. For the Gaussian process labelling in the SS-VIM we adopt this
third and simplest approach.

4.2 Training the VIM from exemplars with noisy labels

The previous section describes the inference of a complete set of labels for semi-
supervised training data. This section address the problem of making predictions
for unseen test data by training the VIM on the complete set of data Du \ D l

and labels. We call the complete process of inferringyu and then training the
VIM as the semi-supervised visual inference machineor SS-VIM. In the case of
Du , the labels arenoisy, since their values are only known up to a probability
distribution:

yu � Normal(yu jŷu ; H) :

When supplied with a fully supervised training set, Chapter 2 explains how
the VIM may be trained using the generalized linear model (GLMx2.10), the
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Figure 4.3: Inferred labelsyu , computed with the hyper-parameter settings shown
in Fig. 4.2. Crosses show the user-supplied labelsy l and the dotted lines indicate the
� 2 standard deviation error bars taken from the diagonal elements of the covariance
for yu . (a) With the training data in order, the dominance of the periodiccovariance
function is clearly visible.(b) By shu�ing the data, there is less useful information
and the uncertainty on labels is greater, as indicated by wider error bars.
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relevance vector machine (RVMx2.4), or as a Gaussian process (x2.5). In all of
these cases, it was assumed that the provided labels were subject to I.I.D. Gaussian
noise of variance� 2. The following subsections describe how these three learn-
ing paradigms are extended to cope with a semi-supervised training set, where
the labels are sampled from a slightly more complicated, but known, distribu-
tion.

4.2.1 Generalized linear model

The GLM, explained in detail in x2.3, is easily extended to the case where the
given labels are subject to non-independent Gaussian noise. The GLM likelihood
from (2.12) is rede�ned to be

P(y jD ; w; �; � 0) / exp
�

� 1
2(� w � y )T 	 � 1(� w � y )

�
(4.7)

where

y =

"
y l

yu

#

and

	 =

"
� 2In l 0

0 H

#

:

H is the covariance ofyu from (4.4); � is the set of hyper-parameters inferred
during the labelling process which are now �xed; and � 0 is an additional set of
hyper-parameters associated with the GLM basis functions, the values of which
still need to be found. D � D l \ D u \ M l \ M u contains the training data.

The posterior over the weights (c.f., (2.14)) becomes

P(wjD ; �; � 0) = Normal(w jŵ ; G) (4.8a)

G = ( � T 	 � 1� + A � 1) � 1 (4.8b)

ŵ = G� T 	 � 1y : (4.8c)

and the evidence, which is used during training, becomes (c.f., (2.18))

P(y jD ; �; � 0) = Normal(y j0; S) (4.9a)

S = 	 + �A � 1� T : (4.9b)

With these simple modi�cations, the GLM is now equipped to handle the
case of arbitrarily correlated noise in the labels. In fact, learning is made simpler
because the noise is known beforehand and no longer needs to be inferred during
training. Recall from x2.4 that the relevance vector machine (RVM) [Tipping,
2001] is a special case of the GLM with a sparse prior and special training
algorithm, therefore these small changes to the GLM likelihood, posterior and
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evidence are also all that is required to modify the RVM for training targets with
general Gaussian covariance.

4.2.2 Gaussian process

A Gaussian process was used to infer labels forDu , based on both exemplars
and metadata. By de�nition, metadata is not available for unseen test data and
to learn the general input–output mapping with a Gaussian process, adifferent
covariance function is required

b(x (i ) ; x (j ) ):

To predict the value y� for an unseen feature vectorx � , a Gaussian process is
proposed where

P(y l ; yu ; y� jx � ; D; �; � 0) = Normal

0

B
@

2

6
4

y l

yu

y�

3

7
5

�
�
�
�0; B

1

C
A (4.10a)

B =

2

6
4

Bll + � 2I Blu b(x � ; D l )
BT

lu Buu + H b(x � ; Du)
bT(x � ; D l ) bT(x � ; Du) b(x � ; x � )

3

7
5 : (4.10b)

b(x � ; D l ) is the vector of covariance functions evaluated between the new input
and the exemplars inD l . Bll , Blu and Buu are de�ned analogously to the blocks
of C in (4.3) and H is the covariance inferred for the labelsyu . As with the GLM
above, � is the set of hyper-parameters inferred during the labelling process
which are now �xed; � 0 is an additional set of hyper-parameters associated with
the new covariance function b, the values of which still need to be inferred.
D � D l \ D u \ M l \ M u contains the training data.

The distribution over y� is found by conditioning on the supplied labels

P(y� jy l ; ŷu ; D; �; � 0) = Normal
�
y� jŷ� ; R2�

(4.11a)

ŷ� =

"
b(x � ; D l )
b(x � ; Du)

#T "
Bll + � 2I Blu

BT
lu Buu + H

#� 1 "
y l

ŷu

#

(4.11b)

R2 = b(x � ; x � ) �

"
b(x � ; D l )
b(x � ; Du)

#T "
Bll + � 2I Blu

BT
lu Buu + H

#� 1 "
b(x � ; D l )
b(x � ; Du)

#

: (4.11c)

The values of the new hyper-parameters� 0 are set by maximizing the mar-
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create SS-VIM
1 Collect exemplar feature vectors, storing temporal metadata
2 Provide labels for a convenient subset of exemplars! D l

3 Leave remaining exemplars unlabelled! D u

4 Specify structural and temporal covariance functions thatmay characterize
training data: (4.2)
5 Train labelling Gaussian process by maximizing(4.5)
6 Compute noisy labels,(4.4)
if Learning mapping with GLM or RVMthen

7a Choose basis functions
8a Train by maximizing(4.9)
9a if RVM: Prune non-relevant basis functions

end if
if Learning mapping with Gaussian processthen

7b Choose covariance functionb
8b Train by maximizing(4.12)

end if

Figure 4.4: Steps involved in training a semi-supervised visual inference machine.

ginal

�̂ 0 = arg max
� 0

P(y l ; yu jD ; �; � 0) (4.12a)

� arg max
� 0

�
1
2

"
y l

ŷu

#T "
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#� 1 "
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ŷu
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�
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2
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#

(4.12b)

4.3 The SS-VIM training process

Before the performance of the SS-VIM is assessed below, Fig. 4.4 provides a
summary of the steps involved in its training procedure.

4.3.1 Two-dimensional demonstration: gaze tracking

Gaze tracking can be implemented using the SS-VIM by learning the non-linear
mapping from images of an eye to coordinates on a screen; the mapping is there-
fore Rr ! R2 where r is the feature vector dimensionality.

A webcam was used to collect a video containing 937 closeup images of
an eye. Some of the frames show the eye gazing at one of the four corners of
the computer display (see Fig. 4.5) and 30 such frames were labelled withthese
calibrated 2D coordinates. The remaining 907 frames were left unlabelled and
the labels for these exemplars were inferred by using the 1D semi-supervised
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Figure 4.5: Labelled eye images.These are four of the 30 labelled eye images,
known to be looking at four calibration points on a display (the four corners).

framework (x4.1) independently for each output dimension. As before, images
were transformed into feature vectors by raster-scanning greyscale intensities
(the greyscale feature transform, see Chapter 5).

As the training data were collected in a video sequence, temporal metadata
is available and therefore the same covariance functions are used as in x4.1.1.
It may seem unlikely that there will be any periodic behaviour in these training
data and that c 2 should be removed. However, as the previous demonstration
showed, by keeping it, there is no danger of over�tting thanks to the Occam fac-
tor in the evidence objective function; if c 2 is truly irrelevant, it will simply be
assigned a negligible weight. The remaining motivation for removing the peri-
odic covariance function is therefore greater computational ef�ciency, but there
is a case for retaining a broader suite of covariance functions because it means
that a single implementation of the SS-VIM can be applied to a wider range of
problems, satisfying the requirement for versatility laid down in Chapter 1.

Having inferred a complete set of labels, the SS-VIM was trained usingan
RVM and Fig. 4.6 shows the inferred labels for some previously unseen eye
images. The principal axes of the error ellipses are aligned with the horizontal
and vertical axes because these dimensions are being modelled as independent.
Due to the closing eyelid, the eye's appearance changes more dramatically when
it looks up or down than when it looks left or right which means that the ver tical
errors bars are consistently smaller. The labelled images inD l were all looking
at one of the four corners of the target rectangle and as such the error bars in the
corners are far smaller than those in the central portions of the target rectangle.

For this demonstration it is assumed that well-registered eye images are read-
ily obtained; Chapter 7 describes the implementation of a complete gaze track-
ing system with automatic region tracking and calibration. The accuracy and
effectiveness of this approach will also be assessed in Chapter 7.

4.4 Performance of semi-supervised labelling

This section aims to demonstrate the effectiveness of the SS-VIMand to com-
pare it to other methods of learning a regression from labelled and unlabelled
exemplars. The experiment we will employ requires twofully labelled sets of
feature vectors:
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Figure 4.6: Inferred gaze direction.This �gure shows some selected test images
and the inferred point the eye is gazing at. These images have been mirrored around
the vertical axis to make the labels easier to interpret. The ellipses indicate the� 1
standard deviation error bars. The bottom row shows how the SS-VIM is sensitive
even to very subtle changes in eye appearance. This video is available for download
at http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ eye big mpg. mpg.

Figure 4.7: Sliding window.These exemplars were generated by sliding a window
horizontally past the image of a face and are labelled with thehorizontal displace-
ment from which they were sampled.

1. The �rst set will be used to train the SS-VIM by randomly selecting a
subset ofnl exemplars for which the labels are retained to formD l . The
remaining exemplars have their labels removed and these make upDu .

2. The second set is for testing: the predictions made by the SS-VIM on these
exemplars are compared to the provided labels and the RMS error is com-
puted.

Because the contents ofD l and Du are chosen at random, the results shown here
are the average of ten repetitions for each data point.

Two typical applications are used to provide representative trainingand test
sets. The �rst is inspired by the displacement expert (Chapter 3) and consists
of feature vectors sampled by sliding a window past a face. Some of the image
regions corresponding to these exemplars are shown in Fig. 4.7. Because these
data are generated synthetically, the labellings are perfect. Fig. 4.8a shows the
results of this experiment when the SS-VIM is trained with an RVM from the
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face data; Fig. 4.9a shows the results of training a Gaussian process with SS-VIM
labels. These �gures also show results for two additional methods for dealing
with labelled and unlabelled exemplars: the �rst simply ignores the unlabelled
exemplars and learns from theD l in the conventional supervised way described
in Chapter 2; the second, typically known asbootstrapping ( [Yarowsky, 1995,
Riloff et al., 2003], seexA.2) uses the machine trained by ignoring the unlabelled
data to label the exemplars inDu before retraining on a complete data set. In all
of these cases Gaussian RBFs were used between greyscale feature vectors.

The second data set uses images of a hand open and closing, as was demon-
strated already inx4.1.1. In this case the labels for both the training and test sets
were provided by a human and are therefore subjective. As for the face data,
Fig. 4.8b shows the performance of the SS-VIM on this data set when training
an RVM from the noisy labels; Fig. 4.9b is for a Gaussian process.

All of these graphs show that the SS-VIM outperforms the othermethods
tested; with as few as 20% of training data labelled, the SS-VIM's accuracy is
as good as the fully supervised case for the sliding window data. The hand data
is more challenging, partly because the human-supplied labels are lessreliable.
The interesting result, however, is that with between 40% and 75% supervision,
the SS-VIM performsbetter than with 100% supervision.

From these experiments it appears that neither the Gaussian process or RVM
bene�ts more from the semi-supervised treatment: the errors are roughly equal
for each nl in Fig. 4.8 and Fig. 4.9. However, these experiments only assess
the accuracy of mean predictions made by the SS-VIM: previous chapters have
shown that the Gaussian process makes more realistic error bar predictions and
that the RVM's sparsity property leads to ef�cient prediction. Th ese charac-
teristics also apply to the choice of learning algorithm paired with the SS-VIM
labelling procedure.

4.5 Summary

This chapter has covered the subject ofsemi-supervised learningin which unla-
belled exemplars are used to enhance the learning process when there are only
a few labelled exemplars available; further improvement is possible iftemporal
metadatacan be found. The result of this is thesemi-supervised visual inference
machine or SS-VIM, a system which uses a Gaussian process to infer “noisy”
labels for the unlabelled exemplars before learning the mapping from feature
vectors to outputs using either a GLM, RVM or Gaussian process, modi�ed to
handle general noisy labels. The SS-VIM has been demonstrated for use as a
gesture-based interface and for gaze tracking and an experimental evaluation
has shown the SS-VIM does indeed bene�t from unlabelled exemplars.More
applications of the SS-VIM may be found in Chapter 7. Fig. 4.4 summarizes the
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Figure 4.8: RVM SS-VIM learning performance.Thick lines show results for the
SS-VIM, dashed lines are the results of ignoring unlabelled data, and dotted lines
show bootstrapped results.(a) Sliding window data Fig. 4.7. (b) Hand data
Fig. 4.1.
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Figure 4.9: Semi-supervised Gaussian process learning performance. (a)Sliding
window data Fig. 4.7.(b) Hand data Fig. 4.1.
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steps involved in creating a SS-VIM.
The SS-VIM brings additional ease to the process of data-collectionand

learning, satisfying further our requirement for versatility and ease of use as-
serted in Chapter 1.
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5
Joint Selection of Exemplars and Features

The visual inference machine (VIM) learns the mapping from feature vectorsx to
an application-speci�c, continuous output spaceY � Rd. In previous chapters,
feature vectors have corresponded to the greyscale intensitiesof pixels in an
image or an image region (apart from the demonstration of the displacement
expert using edge energy, shown in Fig. 3.16): thefeature transform, part of the
“VIM pipeline” in Fig. 1.2, has therefore been the greyscaletransform which
converts generalized image data into such feature vectors. There are, however,
many other ways in which an image may be processed to form a feature vector
and, depending on application, these can be more useful to the VIMthan simple
greyscale; frequently, our choice of image feature is guided by thedesire for
invariance to certain appearance changes. Making an advance decision on the
type of image features to be used is a means of expressing prior knowledge about
an application.

This chapter describes some different types of feature transform that have
been used with the VIM before going on to explain how it can be trained from
a mixture of different types of feature. When learning the VIM mapping with
the sparse relevance vector machine ( [Tipping, 2001],x2.4) we show how the
problem can be posed so that an optimal mixture of prototypical exemplars
and feature types is automatically selected as an integral part of the Bayesian
learning framework. The chapter closes with an experimental evaluation of the
advantages (increased accuracy) and disadvantages (additional computational
overhead) of using multiple feature transforms with the VIM.

Feature selection is particularly pertinent for computer vision because it is
possible to compute a vast, almost limitless, number of different features from
a single digital image (see below for some examples of image features). Whilst
it is theoretically possible to just compute every feature type, leading to massive
feature vectorsx, this proves to be impractical, �rstly for obvious computational
reasons but also because in such a case any learning algorithm seeking to use
features bearing useful information is likely to be overwhelmed by thelarge
number of irrelevant and redundant features. There is an extensive literature,
from a broad range of pattern recognition research, on the subject of feature
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selection and AppendixxA.3 summarizes some pertinent work. Other surveys
are [Kittler, 1978,Siedlecki and Sklansky, 1988,Bishop, 1995,Blum and Langley,
1997,Guyon and Elisseeff, 2003].

For the areas of computer vision research in whichinterest points are con-
cerned [Harris and Stephens, 1988, Bauckhage and Schmid, 1996, Hartley and
Zisserman, 2000], the word “feature” appears in a slightly different context in
which a “feature” corresponds to a point in an image that meets somecriteria,
possibly with an associated data structure describing it. Interest points are used
to match the same scene point in several images so the aim is to devisea de-
scription that is as distinctive as possible for each point. In this dissertation, a
feature means a single real number computed from arbitrary imagedata making
up one element of an input x to the VIM; there is no notion of “interest” or
search within an image at this stage.

5.1 The feature transform

The feature transform has been mentioned in previous chapters as the means of
converting generalized image dataI 2 I into a real-valued feature vectorx 2 X .
The application domains considered for the VIM in this dissertation work with
a live video stream coming from a webcam (see Chapter 7). In this case, the
image spaceI is an array of discrete pixel data dedicatingB bits to each pixel
which somehow encode its appearance. A typical example is for everypixel to
have 24 bits, with 8 bits each representing red, green and blue intensity (RGB
image format).

The feature transform has and will be used in two ways

1. When the entire image is of interest, the whole thing is converted into a
feature vector

x = f (I ) f : I ! Rr : (5.1)

2. However, it is sometimes just a region of an image that we care about (e.g.,
in the displacement expert). In this case, the target region is described by
a state vectoru and a feature vector is given by

x = f (I ; u) f : I � Rd ! Rr : (5.2)

This is the sampling process which is detailed in Fig. 3.2.

Features generated from the greyscale intensity at every pixel are simple to
compute and have been used extensively in the previous chapters.Other popular
types of image feature includeeigenvectorrepresentations [Turk and Pentland,
1991] in which the features are the projections of an image onto a setof eigen-
vectors; wavelet representations (e.g., [Oren et al., 1997, Papageorgiou et al.,
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Figure 5.1: Edge energy and colour feature transforms. (a)Some example input
images. (b) The output of the edge energy feature transform picks out contours
of high contrast in the images.(c) High resolution colour histograms; notice how
little change there is between the two hand images.

1998]) where the features are a set of wavelet responses from different posi-
tions and scales within an image andGabor energy functions[Daugman, 1985].
The types of feature that we will use here are discussed below and illustrated in
Fig. 5.1.

5.1.1 Greyscale features

This is the fastest feature transform due to the ease with which intensity informa-
tion is garnered from a digital image. Sometimes intensity data is stored directly
for every pixel, on other occasions it must be computed e.g., in the case of RGB
images, intensity can be found as a weighted sum of the three colour compo-
nentsY = 0 :299R + 0 :587G + 0 :114B where Y is intensity (or “luminance”) and
the three colour components are assumed to be real numbers in[0; 1].

As detailed in Fig. 3.2, a 2D grid of greyscale data is converted into a 1D
vector by raster scanningin which the rows of data are concatenated.

The major weakness of this feature transform is its sensitivity to changes
in lighting conditions. None of the applications considered in this dissertation
are concerned with determining the lighting conditions of a scene and a�lter is
sought for greyscale feature vectors that will provide some invariance to illumi-
nation. We usehistogram equalization [Jain, 1989], which applies a non-linear

75



x5.1 CHAPTER 5

(a) (b)

Figure 5.2: Histogram equalization.In an e�ort to reduce the greyscale feature
transform's variability under changes in lighting, histogram equalization is used.
(a) Raw images received from camera.(b) Histogram equalization has forced each
image to have the same global proportions of dark and light but does not adjust
the relative spatial positions of dark and light pixels.

warping to intensity values such that the histogram of values in the vector is
equal across all intensities. Fig. 5.2 demonstrates the effects ofhistogram equal-
ization. Whilst this transformation normalizes global discrepancies inintensity,
spatial intensity relationships are preserved; for example, a bright spot coming
from a re�ection (a specularity) will force the remaining pixels to be generally
darker after histogram equalization and potentially cause problemsfor the ac-
curacy of VIM predictions.

5.1.2 Edge energy

The greyscale feature transform is the closest thing to raw image data used in this
dissertation and does not exploit any prior knowledge about what may be useful
in making inferences. Theedge energyis a feature transform that gives a high-
valued response for points in an image that have a strong directional gradient
and thereby highlights contours around and within an object, rather than the
smoother textured parts. Not only does this feature transformconcentrate on a
target's shape more strongly than the greyscale transform, and frequently shape
variation is the strongest cue with which to make visual inferences, but it is
considerably less sensitive to lighting variations than greyscale.

A great deal of work has gone into classifying parts of the images as edges
with the aim of providing a semantic description of shape [Canny, 1986]. This
is not the intention here and the task is therefore the simpler matter of selecting
a �lter for the image that is edge sensitive. We use thesteerable �lter approach
described in [Freeman and Adelson, 1991] in which an image is �ltered bytwo
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Figure 5.3: Quadrature pair of oriented �lters.The impulse response of(a) G30

the second derivative of a 2D Gaussian at 30� below the horizontal axis(b) H30

its Hilbert transform [Bracewell, 1999].

2D �lters G and H  which form a quadrature pair. G is the second derivative
of a 2D Gaussian along the direction at an angle below horizontal (see Fig. 5.3)
and H  is its Hilbert transform [Bracewell, 1999]. From Fig. 5.3 it can be seen
that G will give a large magnitude response for image points with line-like
structure (i.e., two nearby and parallel changes in magnitude) andH  will be
sensitive to step-like image structures.

The energy of an image at an orientation is found as the summed, squared
magnitude of the responses of both �lters to the greyscale component Y of an
imageI

E  = ( G � Y )2 + ( H  � Y )2:

where � indicates the 2D convolution operator. The maximum energy for a pixel
(a; b) is then given by

E(a; b) = max
 

E  (a; b)

which [Freeman and Adelson, 1991] shows can be computed ef�cientlyusing
only 1D �ltering operations. Fig. 5.1b shows the edge energy for someexample
input images.

As with the greyscale feature transform, the 2D grid of energy valuesE is
converted into a feature vector by raster scanning it.

5.1.3 Colour distributions

The greyscale and edge energy feature transforms operate on greyscale image
data only, discarding any colour information that might be available. The third
and �nal feature transform we will use therefore represents the colours within
an image or region. This is done by building a histogram from the “U” and “V”
components of an image. YUV is an alternative colour representation to RGB
in which Y is the intensity (already represented by the greyscale transform), U
is the relative amount of “blueness” of a pixel and V is its relative “redness”.
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Figure 5.4: UV colour plane.By setting Y = 0 :5, this image shows the di�erent
colours that are generated for the various settings ofU and V .

An image may be received already in the YUV format, otherwise the desired
components must be computed. In terms of RGB data they are [Fairchild, 1998]

U = 0 :492(B � Y ) V = 0 :877(R � Y ): (5.3)

Fig. 5.4 shows the variety of colours over the plane described byU and V .

To create a colour feature vector from a particular image (region), a 64 �
64 bin 2D histogram of UV values is constructed (see Fig. 5.1) which is then
vectorized by concatenating its columns into a long column vector.

Many webcams dedicate more bandwidth to intensity information than colour,
due to the ways in which images are perceived by humans. As a result, the use-
fulness of the colour feature transform depends on whether there is any strong
variation in colour between exemplars. In the third column of Fig. 5.1c, it can
be seen that for two images of a hand open and closed the colour histograms are
practically identical.

5.2 Using sparse learning for joint feature and exemplar selection

The experiments in Chapter 3 revealed how sensitive the VIM is to variations
in lighting when using greyscale features. By switching to edge energy instead, a
good deal of invariance to lighting was achieved, thereby improving the displace-
ment expert's robustness. It seems strange, however, to arbitrarily choose one
feature transform over all others when the best performance might be obtained
with a mixture of different feature types.

Fig. 5.5 illustrates the situation where several feature transformsare used,
the outputs of which are concatenated into a long feature vectorx. Feature
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Figure 5.5: The VIM using a mixture of feature types. (a)In earlier chapters, only
a single, pre-de�ned feature transform was considered for converting image data
into feature vectors.(b) It is possible to create feature vectors as the concatenated
output of more that one feature transform so that the VIM may take advantage of
the strengths of di�erent types of image feature.

vectors received by the VIM are therefore given by

x =

2

6
6
6
6
4

f 1(I )
f 2(I )

...
f F (I )

3

7
7
7
7
5

(5.4)

and x 2 R� i r i if f i : I ! Rr i .

We could leave things at this and simply use large feature vectors. However,
elements ofx, generated from different feature transforms, are not necessarily
commensurate and we would be unwise to blithely compare them using such
measures as the Euclidean distance. The following subsection therefore explains
how exemplar-centric basis functions may be de�ned for a generalized linear
model (GLM, x2.3) that take advantage of the special structure ofx. When the
RVM training algorithm is used, the pruning of basis functions will jointly select
the most informative combinations of features and training exemplars.

5.2.1 Training a GLM with mixed feature types

It is common practice to de�ne a GLM using radial basis functions, centred on
the training exemplars [Bishop, 1995] (seex2.3)

� i (x) = exp
�

� � kx � x (i )k2
�

(5.5)
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where x (i ) is the i th training exemplar and � is a width parameter. This gives
m = n basis functions. In cases wherex is the concatenated output of many
feature transforms, as in (5.4), the Euclidean distance measure in(5.5) doesn't
account for the different sources of the elements ofx. We therefore propose
that for applications involving F different feature transforms, m = nF basis
functions are used, each centred on a training exemplar and using aspeci�c
feature transform, i.e.,

� F i + k = exp
�

� � kkMk (x � x (i ) )k2
�

: (5.6a)

The matrix
Mk =

h
0 : : : 0 I r k 0 : : : 0

i
(5.6b)

selects the elements ofx generated by thekth feature transform. There are now
F width parameters � k : one for each type of feature.

To recap (2.10), the GLM output functional is given by

y(x; w) =
mX

i =1

wi � i (x) = w T � (x):

The RVM ( [Tipping, 2001], x2.4) is a special case of the GLM which aims
to set as many of the weightswi to zero yielding a sparsesolution and in the
case of mixed feature types presented here, each of them = nF basis functions
corresponds to a particular coupling of one of the n training exemplars and
one of the F feature transforms. When, during training, a particular weight is
set to zero, the associated basis function is said to be “pruned” meaning it is
eliminated from the model. When training is complete, the remaining sparse
set of basis functions will represent an optimal, joint choice of exemplars and
feature transforms.

This method of feature selection therefore does not require any new spec-
i�cation of the GLM or RVM learning algorithm, just a particular choice of
basis functions. This is therefore applicable to applications of a conventional
supervised VIM, such as that used as a displacement expert in Chapter 3 or its
semi-supervised sibling, the SS-VIM, covered in Chapter 4.

5.3 Performance evaluation

To assess the VIM performance when using a mixture of different feature types,
we �rst return to the example of a hand opening and closing from Chapter 4.
For this experiment, the SS-VIM is set up as described inx4.1.1 in which a
partially labelled training set has noisy labels inferred for it. An RVM is then
trained using these labels, but now three feature transforms areused with three

80



Performance evaluation x5.3

varieties of basis function:

Greyscale as used predominantly in previous chapters, histogram equalized greyscale
vectors are also used here, and the basis functions are Gaussian RBFs cen-
tred on the training exemplars

� (gs)
i (x) = exp

�
� � gkM1(x � x (i ) )k2

�
:

Edge energyFor this feature type, Gaussian RBFs are also used

� (e)
i (x) = exp

�
� � ekM2(x � x (i ) )k2

�
:

Colour distribution the �nal feature transform returns the UV colour histogram
for an image region, and as was done in [Comaniciu et al., 2000], the
Bhattacharyya coef�cient [Kailath, 1967] between this and the distribution
of an exemplar is used as a basis function

� (c)
i (x) = Bh

�
M3x; M3x (i )

�

where

Bh(a; b) =
rX

i =1

p
ai bi

for vectors a; b 2 Rr .

The SS-VIM was �rst trained using each type of feature singly, againus-
ing the RVM. The RMS errors between predictions made by the VIM andthe
ground truth are shown in Table 5.1; without feature selection, greyscale fea-
tures are most accurate followed by colour and then edges. The number of basis
functions retained by the RVM after learning (i.e., those that have not be pruned)
m0 is also recorded and, for this, the order of merit ranks edge features best and
colour worst suggesting that a single edge exemplar is most informative.

The �nal row of Table 5.1 show that using a mixture of all three featu re
types attains the greatest accuracy and the best sparsity (if one ranks bym0=m).

Fig. 5.6 shows the retained basis functions for this experiment. Although
colour features used alone attained greater accuracy than edges, almost all the
basis functions had to be retained to achieve this: colour featurespay too high
an “Occam penalty” during feature selection and as a consequencenone are
retained when greyscale and edge information is available.

5.3.1 Mixed features in the displacement expert

An additional experiment was conducted to illustrate the bene�ts of using mixed
feature types with the RVM displacement expert, introduced in Chapter 3. The
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Features RMS Error m0 m
Greyscale 0.0925 52 151
Edge energy 0.1235 19 151
Colour 0.1026 135 151
All three 0.0738 33 451

Table 5.1: Feature selection improves accuracy and sparsity. The performance of
the SS-VIM using greyscale, edge and colour features alone isshown as the RMS
error on an unseen test sequence, and the number of active basis functions retained
by the RVMm0. The initial number of basis functions,m = nF +1 , the additional
basis function being the bias� (x) = 1 . The last row shows the performance
improvement when provided with basis functions for all three feature types (see
Fig. 5.6).

�rst test was in a face tracking setting and Fig. 5.7a shows a 12% improvement
in the accuracy of the displacement expert when it uses the mixture of three
feature types used above over the simpler version using greyscalefeatures only.
However, Fig. 5.8a shows that this improvement in accuracy incurs a 600%
increase in the time taken to track each frame due to the extra image process-
ing required. Repeating this experiment by tracking a hand (an object that is
possibly easier to track using an edge-based representation) yields a 24% im-
provement in accuracy (Fig. 5.7b). The computational requirements are largely
identical for both experiments as the feature vectors were of roughly the same
length.

5.4 Summary

This chapter has given details of different feature transforms that can be used
with the VIM and SS-VIM. We have also shown how the VIM can be trained
using a mixture of different feature types, and by appropriate choices of basis
function, the sparse learning properties of the RVM can be exploited to select
which pairings of exemplars and features are most effective for learning the
input–output mapping. Fig. 5.9 outlines the steps involved in training the VIM
with a mixture of feature types.

Chapter 7 contains demonstrations of the VIM and SS-VIM, many of which
use a mixture of feature types as this chapter has described.
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weights learnt for the one-dimensional sequence used to create Table 5.1. The �rst
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Figure 5.7: Tracking error of displacement expert when using a single greyscale
feature transform versus a mixture of greyscale, edge energyand colour feature
transforms. (a)Face tracking sequence;(b) hand tracking sequence.
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Figure 5.8: Tracking speed of displacement expert when using a single greyscale
feature transform versus a mixture of greyscale, edge energyand colour feature
transforms. (a)Face tracking sequence;(b) hand tracking sequence.

Joint feature and exemplar selection
1 SelectF feature transforms
2 Obtain n training images and process with feature transforms to provide ex-
emplar training vectors
3 Obtain labels for training data, either by complete labelling or via the SS-VIM
labelling method (steps 1{6 in Fig. 4.4)
4 SpecifyF types of exemplar-centric basis function; one for each feature type
5 Train RVM usingnF basis functions
6 Prune non-relevant basis functions
if No basis functions retained for basis function of typei then

7 Remove feature transformf i (�) from further usage
end if

Figure 5.9: Steps involved in training the VIM or SS-VIM with a mixture of feature
transforms.
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6
Outlier Detection and Robustness to

Contamination

In previous chapters, we have implicitly relied on input images being “well be-
haved”: inputs are all expected to resemble the training exemplarsin some way.
If, for example, the visual inference machine (VIM, Chapter 1) is trained to make
predictions from face images and it is presented with a completely unrelated im-
age (a tree perhaps), the VIM will nevertheless execute the mapping it has learnt,
yielding a meaningless output. This chapter therefore opens by presenting the
idea of a home spaceof inputs, from which the VIM can be relied on to pro-
vide realistic output estimates: albeit with a degree of uncertainty. By training a
classi�er to determine whether or not a particular feature vector belongs to this
space, an additional signal is available to an application which can then deal
with potential outliers differently to yield more reliable VIM predictions .

The latter parts of this chapter shift to the subtler issue ofpartial contami-
nation i.e., when only a subset of the image data is unreliable. The particular
contribution here is the consideration of a spatial coherence priorover the dis-
tribution of contaminated observations. The variational Ising classi�er or VIC
algorithm is described for performing inference subject to this prior and the
chapter closes by combining the VIC with the displacement expert forocclusion
tolerant tracking. Extracts from this chapter have been published previously
in [Williams et al., 2004].

6.1 The home space of images

The VIM discriminatively maps input feature vectors x 2 X to an output space
Y � Rd having learnt the mapping from a set of labelled exemplar imagesD. If
our intention is to perform inference from hostile, cluttered, real life images, we
must be prepared for the fact that the entire target object is notgoing to be visible
every time due to occlusions, lighting conditions or simple absence of the target
from the �eld of view. Also, due to any inadequacies in the training data (e.g.,
if the training exemplars only represent a restricted subset of possible inputs),
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Figure 6.1: The home space of images.In this schematic illustration, the home
spaceH is shown as a dotted line drawn around the VIM training exemplars,
indicated by circles. Four unseen test points, A{D, are shown as squares.

unanticipated appearance changes may occur, for example thosedue to changes
in shape of the target. When the image of the target becomescontaminated in
such a way, it is important that the VIM uses only those data which are reliable:
only data that “belong” to the target. We are then forced to hope there are
suf�cient uncontaminated data remaining to correctly infer the target's state.

Fig. 6.1 illustrates the idea of ahome spaceH of images. For feature vectors
falling into this notional set, we trust the learning algorithm used to implement
the VIM will have generalized suf�ciently well to make sensible predictions. This
is not to say all predictions made from within the home space are con�dent: at
points that are sparsely populated by training exemplars, large error bars are
expected, but the prediction will still be meaningful. For test points that fall
signi�cantly outside the home space, the VIM output is far less meaningful. If
the learning algorithm is doing its job properly, there should certainly be very
large error bars on any prediction but it would be useful if the VIM also pro-
vided a separate signal to indicate that the feature vector was so unusual. As
was illustrated in Chapter 2, the Gaussian process does indeed returnvery large
errors for test points distant from the training data, whereas theRVM is rather
overcon�dent for such points.

The next chapter (Chapter 7,x7.1) describes a simple strategy for detecting
outliers when tracking with the displacement expert introduced in Chapter 3:
during normal tracking, displacement estimates may be more or lesscon�dent
depending on the target appearance, however if loss of lock occurs, the input
vectors are going to stray far from the home space of images and by providing a
binary signal indicating this, the overarching tracking algorithm can revert to a
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restart mode and reinitialize the displacement expert.

Whilst it is useful to know whether a feature vector is inside or outsideof the
home space, a subtler problem is to infer whether the entire vector ismislead-
ing (e.g., in the loss of lock case) or whether it is only a few elements thatare
causing the abnormality (e.g., due to occlusion).x6.3 describes the variational
Ising classi�er (VIC) algorithm that can infer which are the good pixels in con-
taminated data through capturing the regularity inherent in typical patterns of
contamination, namely their spatial coherence.

6.2 Occlusions and beyond

The contamination idea of identifying outlying image features is far from new
in computer vision research; especially in the �eld of tracking. In [Black and
Anandan, 1996, Black and Jepson, 1996, Hager and Belhumeur, 1998] robust
statistics are used to overcome the effects of contamination: any data that dis-
agree strongly with the consensus on the motion of the target are labelled as
outliers and disregarded from the estimation process. Likewise, [Jepson et al.,
2001] include a “lost” component to their generative model which can tem-
porarily explain away, contaminated data and ignore them when estimating mo-
tion (see Chapter 3 for a comparison of this tracker to the displacement expert).
In contour tracking, [MacCormick and Blake, 1998] handles contamination by
discounting portions of the contour template.

Outside of tracking, methods that are robust to outlying observations are an
essential component in many computer vision applications. The mostnotable
case is in �tting homographies from point correspondences where the RANSAC
algorithm [Fischler and Bolles, 1981] and its generalizations [Torr and Murray,
1997, Torr and Zisserman, 2000] make accurate estimation possible, even with
very large proportions of spurious data.

Another important example is robust principal components analysis. Stan-
dard PCA selects linear bases by minimizing a quadratic reconstruction error.
Such a quadratic loss function is highly sensitive to outlying pixels in anyof the
training exemplars and in [De La Torre and Black, 2001] the authors show that
by replacing this with a robust cost [Black and Rangarajan, 1996] the outliers
are ignored and sensible bases found. This treatment of individual pixels as out-
liers is in the same spirit as the problem we seek to address in the remainder of
this chapter and is in contrast to previous approaches to robust PCA (e.g., [Xu
and Yuille, 1995]) which ignore entire exemplars as outliers. The major differ-
ence, though, is that we must cope with outliers in a single unlabelled testimage,
rather than in a large labelled training set.
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Figure 6.2: Ising model [Kindermann and Snell, 1980,Cipra, 1987,MacKay,2003].
If elements of� are considered to lie on a rectangular grid, each� i has four neigh-
bours: one each to the north, south, east and west. In this diagram, the � i are
shown as circles and two elements are neighbours if there is a line drawn between
them.

6.2.1 Spatially coherent contamination

This previous work has modelled contaminations as arising independently; that
is, one observation may be labelled as contaminated without reference to any
others that may be connected to it in some way (the exception to thisis [Mac-
Cormick and Blake, 1998] where coherence is modelled in 1D around a con-
tour). Our experience, however, suggests real contamination exhibits signi�cant
correlation. For example, consider contaminations arising throughocclusion
of the target or shadow where the pattern of contamination forms a spatially
coherent blob in the image. The remainder of this chapter therefore proposes
an algorithm that does take spatial dependencies between contaminations into
account.

Contamination is represented as a binary random variable� 2 f 0; 1gr , where
each entry corresponds to a pixel in an imageI and indicates whether that pixel
is contaminated (� i = 0 ) or trustworthy ( � i = 1 ). Rather than treat the elements
of � as independent, we de�ne a prior distribution taking the form of an Ising
model [Kindermann and Snell, 1980, Cipra, 1987, MacKay, 2003], a model of
spatial coherence originating from the study of ferromagnetism inPhysics. The
Ising model expresses the prior belief that if one pixel is labelled as contami-
nated, the neighbouring pixels are more likely to be too.

Two entries, i and j , of � are said to be neighbours if the pixels to which they
correspond are adjacent in the image. De�ning the pixels to lie on a rectangular
grid, each element of� has four neighbours, as shown in Fig. 6.2. The edge
between neighbouring pixels is termed abond, which is said to be broken if the
elements of � representing its ends have different labellings. Theenergy of a
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particular contamination � is then

U(� ) = 1
2

X

i;j

�( i; j )j� i � � j j + �
X

i

(1 � � i ); (6.1)

where �( i; j ) = 1 if i and j are neighbours and is zero otherwise. The energy
is proportional to the number of broken bonds and the ground stateswith zero
energy are those with either every pixel labelled contaminated or every pixel
labelled trustworthy. There is also an energy� added for every contaminated
pixel. This is not part of the Ising energy, but is used to bias generallyagainst
contamination.

The prior energy determines a probability via a “temperature” parameter
T0 [Kindermann and Snell, 1980]

P(� ) =
1

Z (T0)
exp

�
� U(� )=T0

�
(6.2)

where

Z (T0) =
X

� 0

exp
�

� U(� 0)=T0

�
(6.3)

is the partition function. Performing inference with this prior is hampered by the
inability to exactly compute the partition function as it is a sum over 2r possible
contaminations [Kramers and Wannier, 1941].

6.3 The Variational Ising Classi�er (VIC)

In previous chapters, the VIM was used to learn the mapping from image data
to continuous variables; in the case of the displacement expert (Chapter 3), this
meant learning state displacements from a training set of displaced feature vec-
tors. In the following discussion, we are interested in a binary classi�cation
problem (i.e., is x in H or not) and as such training/test data are all assumed to
be perfectly aligned and differ, not in position, but it their binary hom e space
membership status.

There are two interesting distributions that we may want to infer from an
input feature vector x, when considering the possibility that the image from
which it was sampled is contaminated. Firstly, assuming thatx would be in
a home spaceH if it weren't for the contamination, the posterior pattern of
contaminated pixels is useful as it can be used to instruct a companion inference
engine (in our case the VIM or SS-VIM: seex6.5) on which observations to
ignore

P(� jx ; A) =
P(� ; Ajx)
P(Ajx)

(6.4a)
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where A is the proposition that x 2 H . As this assumes thatx is in H the other
requirement is a detection signal analogous to that used in the �rstpart of this
chapter

P(Ajx) =
X

�

P(� ; Ajx): (6.4b)

The rest of this chapter develops an algorithm for inferring these quantities
which we call the variational Ising classi�er or VIC algorithm.

6.3.1 A contamination tolerant classi�er

Both of the VIC output distributions (6.4) can be written in terms of t he joint
distribution P(� ; Ajx). This is further factorized using the product rule

P(� ; Ajx) = P(� )
| {z }
prior

cont. tol. class.
z }| {
P(Aj� ; x) (6.5)

where the �rst factor is the Ising prior over � (6.2), which is assumed to be inde-
pendent of x, and the second is acontamination tolerant classi�er which returns
the probability that x is a member ofH , given the pattern of contamination � .
The following subsection brie�y explains how the Bayesian learning methods
from Chapter 2 can be extended to build a binary classi�er. Following this our
contamination tolerant classi�er is described.

Bayesian classi�cation

The generalized linear model (GLM) [Bishop, 1995] was described inx2.10 for
regression problems. It is also possible to use the GLM for classi�cation between
images in classesH and �H where �H [ H = X and �H \ H = ; . Repeating (2.10),
the output of GLM regression, given a feature vectorx, is

y(x) =
nX

i =1

wi � i (x): (6.6)

If the basis functions are Gaussian RBFs [Schölkopf et al., 1998] centred on the
training exemplars, we get

� i (x) = exp
�

� � kx � x (i )k2
�

(6.7)

where x (i ) are exemplars and� is a width parameter. To convert this linear
output into the posterior probability that the image is in H , the logistic sigmoid
link function is used [Bishop, 1995]

P(Ajx; � = 1) = �
�
y(x)

�
=

1
1 + e� y(x )

(6.8)
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where P(A) � P(x 2 H ).

The GLM likelihood function, (2.12), must be adapted to the fact that the
training set target labelsf y(i )g are no longer continuous real numbers, but be-
long to the set f 0; 1g according to whether the associated exemplars belong to
H or not. As described in [Bishop, 1995], a Bernoulli distribution is used

P(y(i ) jw ; x (i ) ; � = 1) = �
�
w T � (x (i ) )

� y( i ) �
1 � �

�
w T � (x (i ) )

� � 1� y( i )

: (6.9)

The relevance vector machine (RVM, [Tipping, 2001] seex2.4) is a special
case of the GLM and the classi�cation version of the RVM shares the spar-
sity property of the regression form. This means that after training it retains
only a few non-zero elements of the weight vectorw and runtime estimates of
P(Ajx; � = 1) are made ef�ciently. We therefore use the classi�cation form of
the RVM as a probabilistic classi�er in the VIC, however the classi�er described
so far assumes the input is totally uncontaminated. The next subsection explains
how this classi�er is extended to form a contamination tolerant classi�er.

Hallucinating hidden pixels

Let the setPc contain all of the elements ofx that are labelled as contaminated
by � and Pt all those that are trustworthy. x t is the vector containing the subset
of x labelled as trustworthy: x t � f x i : i 2 P t g and the remainder comprise the
complementary contaminated subsetxc.

When making a prediction in the presence of possible contamination, the
RVM should only base its decision on the trustworthy elements ofx i.e.,

P(Ajx; � ) = P(Ajx t ): (6.10)

The RVM, however, is a static machine and requires a �xed number of obser-
vations when classifying an image. To overcome this, wehallucinate (or im-
pute [Rubin, 1987]) the underlying appearance for any contaminated pixels and
thereby supply the RVM with a complete set of observations.

Let ! be the underlying appearance of the object without contamination. To
get a classi�cation from the RVM, marginalize over all possible hallucinations

P(Ajx t ) =
Z

P(A; ! jx t )d! =
Z

P(Aj! )P(! jx t )d!: (6.11)

The �rst term in the integrand is now the RVM classi�er probability for the
hallucinated appearance. The second is ahallucination processde�ning a distri-
bution over ! . By partitioning ! into those elements inPc and Pt (! c and ! t )
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the hallucination process becomes

P(! jx t ) = P(! t ; ! cjx t ) = P(! cj! t )P(! t jx t ): (6.12)

The appearance of the visible parts of! should be �xed at the received intensi-
ties:

P(! t jx t ) =
Y

i 2P t

� ([! t ]i � x i ); (6.13)

where � (�) is the Dirac delta function [Bracewell, 1999]. For computational
reasons, we model the hallucination process over contaminated pixels as a delta
function at the mean intensity for that pixel. This amounts to a hallucination
process

P(! jx t ) =
Y

i 2P t

� (! i � x i )
Y

i 2P c

� (! i � � i ); (6.14)

where

� =
P

y(i )x (i )
P

y(i )

is the mean pixel appearance for images in classH (unlike the continuous VIM,
a classi�cation training set has labelsy(i ) 2 f 0; 1g). Recall that the objective is to
infer the contamination posterior, and not perform image restoration, so it is im-
portant not to put too many resources into a sophisticated hallucination process
if it is unnecessary. The results show that this model is reasonably effective for
low resolution images.

Since this gives a deterministic value for! , we re-write the hallucinated ap-
pearance as a function of contamination and the input image! (� ; x). Equations
(6.11) and (6.10) then become

P(Ajx; � ) = P(Ajx t ) = P
�

Aj! (� ; x)
�

: (6.15)

The joint distribution (6.5) can only be found up to scale since it is intractable
to compute the normalization constant for the Ising model in the prior P(� ). As
a result, the desired outputs (6.4) must be computed by an approximate algo-
rithm; in our case a variational mean �eld algorithm [Jaakkola, 2000] . Firstly,
however, we review why some popular techniques that have been used to solve
quite similar problems cannot be used in the case of the VIC.

Graphical model

Fig. 6.3 shows a directed graphical model [Jordan, 1998] for the contamina-
tion process which permits an alternative derivation of the joint distribution
P(A; � jx). The graph shows that the uncontaminated target appearance! de-
pends on whether the image belongs to our target class or not; e.g., for faces,A
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Figure 6.3: A graphical model for the contamination process.

being true means that! is an uncontaminated image of a face, whenA is false,
! is a sample from the space of non-face images. The observed imagex is then
a version of ! that has been contaminated by the binary contaminated �eld� .

From this model, the joint distribution is

P(A; � jx) =
P(� )P(A)

P(x)
P(x jA; � ) (6.16)

=
P(� )P(A)

P(x)

Z
P(x j!; � )P(! jA) d!: (6.17)

Using Bayes' rule we write

P(x jA; � ) =
P(x)
P(A)

P(Ajx; � ) (6.18)

=
P(x)
P(A)

Z
P(Aj! )P(! jx ; � ) d!: (6.19)

Substituting this back into (6.17), and exploiting the deterministic form for
P(! jx ; � ) gives

P(A; � jx) = P(� )P
�
Aj! (x ; � )

�
: (6.20)

6.3.2 Markov random �elds

A number of problems in Computer Vision have been successfully modelled as
Markov random �elds (MRFs) (e.g. [Boykov and Kolmogorov, 2004, Freeman
et al., 2000,Geman and Geman, 1984]). In terms of the model introduced here,
an MRF would factorize the joint distribution for the image and contamin ation
as

PMRF (x ; � ) =
Y

i

P(x i j� i )
Y

a;b2N

P(� a; � b); (6.21)

where the setN contains all pairs that are neighbours in the prior model (Fig. 6.2),
i.e. N � f a; b : �( a; b) = 1 g. The complete joint distribution has been decom-
posed into pairwisecliqueseither between an element in� and the corresponding
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elements ofx or between two neighbouring elements of� . Importantly, all the
image pixels are treated as independent of each other. Algorithms such as loopy
belief propagation [Yedidia et al., 2003] or graph cuts [Boykov and Kolmogorov,
2004] exploit this independence to rapidly generate good approximations to the
posterior for � .

Because, in the case of our contamination model, the non-contaminated pix-
els are jointly considered when testing their membership of the classH , the
distribution P(x; � ) is not an MRF and a solution cannot be found using loopy
belief propagation or graph cuts (it is not possible to write down a Bethe free
energy[Yedidia et al., 2003]).

6.3.3 Mean �eld approximation

Mean �eld approximation is a form of variational approximation [Jaak kola,
2000] which �nds an approximation Q(� ) to the posterior P(� jA; x) by restrict-
ing Q(� ) to a particular functional form. The aim is to minimize the Kullback-
Liebler (KL) divergence [Cover and Thomas, 1991] betweenQ and the true
posterior

Q� (� ) = arg min
Q

KL [Q(� )kP(� jx ; A)] (6.22)

where

KL [Q(� )kP(� jx ; A)] =
X

� 0

Q(� 0) log
Q(� 0)

P(� 0jx ; A)
: (6.23)

Using the factorization already shown in (6.4), (6.22) can be expanded as

KL [Q(� )kP(� jx ; A)]

=
X

� 0

Q(� 0) log Q(� 0) +
X

� 0

Q(� 0) log P(Ajx) �
X

� 0

Q(� 0) log P(A; � 0jx )

= � S(Q) � EQ [logP(A; � jx)] + log P(Ajx) (6.24)

where S(Q) is the entropy of the distribution Q [Cover and Thomas, 1991] and

EQ [g(� )] =
X

� 0

Q(� 0)g(� 0) (6.25)

is the expectation of a function with respect toQ(� ).

The minimum value for (6.24) is zero and occurs whenQ(� ) = P(� jA; x).
By rearranging, this gives a functional

J (Q) = S(Q) + EQ [logP(A; � jx)] (6.26)

which is a lower bound on logP(Ajx), meaning that maximizing J (Q) gives
not only an approximation to the posterior for � , but an approximation to the
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marginal detection score too.

A form of Q(� ) must be chosen that makes the maximization ofJ (Q) tractable.
For the mean-�eld approximation, Q(� ) is modelled as a product of factors
[Jaakkola, 2000,Yedidia et al., 2003], one for every element of� :

Q(� ) =
Y

i

Qi (� i ): (6.27)

It is now possible to maximize J iteratively with respect to each marginalQi (� i )
in turn, using the mean �eld update [Haft et al., 1999]:

Qi (� i )  
1
Z i

exp
�

EQj� i [logP(A; � jx)]
	

; (6.28)

where
Z i =

X

� i

exp
�

EQj� i [logP(A; � jx)]
	

(6.29)

is the partition function and EQj� i [�] is the expectation with respect toQ �xing
the i th element of � at the value� i :

EQj� i [g(� )] =
X

f � gj ni

2

4
Y

j ni

Qj (� j )

3

5 g(� ): (6.30)

P
f � gj ni

denotes a sum over all con�gurations of� , except for leaving� i �xed.

6.3.4 Taking expectations overP(A; � jx)

The log-joint distribution is written as

logP(A; � jx) = log P(Aj� ; x) �
1
T0

U(� ) + const (6.31)

where U(� ) is the prior energy and the conditional expectation can be written as
the sum of two simpler expectations

EQj� i [logP(A; � jx)] = EQj� i [logP(Aj� ; x)] �
1
T0

EQj� i [U(� )] + const: (6.32)

The second term, coming from the prior, can be factorized acrosselements
of � making is feasible to compute this conditional expectation exactly. The
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complete expectation (i.e., not conditional) is given by

EQ [U(� )] =
X

i;j

�( i; j )
X

� i

X

� j

Qi (� i )Qj (� j )
�

1 � � (� i � � j )
�

+ �
X

i

Qi (� i = 0) ; (6.33)

and the conditional expectation can be computed from this term byreplacing
the relevant parts of the sum

EQj� i [U(� )] = EQ [U(� )] + � E (� i ) (6.34a)

� E (� i ) =
X

j 2N (i )

X

� j

Qj (� j )
� �

1 � � (� j � � i )
�

�
X

� 0
i

Qi (� 0
i )

�
1 � � (� j � � 0

i )
� �

� �Q i (� i = 0) + � (1 � � i ) (6.34b)

where N (i ) � f j : �( i; j ) = 1 g and � 0
i is a dummy variable standing in for

the values of � i that were used in the complete expectation. Any term that is
constant in � i will cancel when (6.28) is normalized therefore removing the need
to compute EQ [U(� )] at any stage in the algorithm.

The �rst term of (6.32), for the contamination tolerant classi�er, is not fac-
torizable in such a way as to make exact computation feasible. This expectation
is instead found approximately. The exact quantity of interest is

EQj� i

�
� log

�
1 + e� y

�
! (� ;x )

� ��
= �

X

f � gj ni

Q(� ) log P(Aj� ; x) (6.35)

which intractably requires the summation over 2r � 1 terms. In the approxima-
tion, this is replaced by the sum over a subset of con�gurations

� � f � (1) ; : : : ; � (� )g

giving

EQj� i

�
� log

�
1 + e� y

�
! (� ;x )

� ��
� �

�X

j =1

Q(� (j ) ) log
�

1 + e� y
�

! (� ( j ) ;x )
� �

:

(6.36)
By making � small, say < 210, the approximation is quick to compute. The
challenge is then to choose the set� to give the best approximation for a given
� .

We create� by dividing the image region into successive annuli of varying
thickness, centred on thei th element of � , up to a maximum radius. This is
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� 1

� max

10 10 10 10 9 9 9

10 10 10 10 9 9 9

10 10 10 10 5 9 9

10 10 10 6 1 5 9

10 10 6 2 0 4

11 11 11 7 3 4 8

11 11 11 11 7 8 8

(a) (b)

Figure 6.4: Annular groupings of elements of� . (a) In this low resolution example,
the circles indicate the elements of� which lie on a 12� 12 grid. The centre of the
annuli is the target pixel being updated and� max = 4 , � = 2 12. The 0th annulus
contains only the four neighbours of the target, each considered independently. The
remaining annuli group larger numbers of elements together in the four quadrants
(grouped elements have the same colour).(b) For this even smaller grid,� max = 2
and � = 2 8 and the pixels have been numbered according to which group they
belong to. The outer groups (8,9,10,11) remain �xed at the current maximizer of
Q(� ) for all entries in� .

illustrated in Fig. 6.4. Each annulus is subdivided into four parts and within
each part all elements of� will have the same value when the set� is generated.
The members of� are the binary permutations of the independent parts of�
in this annular structure; i.e., if there are 12 groups � = 2 12. The elements
outside of the maximum radius are �xed at the current maximizer of Q(� ) for
all members of � .

Using the pitch between neighbouring elements of� as a unit of distance, the
�rst annulus is constrained to be of radius 1 so that the variables inN (i ) are in-
cluded individually. Following this, the radii are assumed to grow exponentially,
with the outer radius of the j th annulus (the �rst annulus corresponds toj = 0 )
given by

� j = 2 �j : (6.37)

If � and the maximum radius � max are known, the constant � may be set

� =
4 log2 � max

log2 �
:

For the experiments detailed here, the values� max = 4 and � = 256 are used.
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6.3.5 VIC classi�cation

In x6.3.3 it was shown how J (Q) is a lower bound on the marginal, classi�cation
term P(Ajx). Owing to the unknown normalization of the Ising prior, it is only
possible to computeEQ [logP(A; � jx)] up to a constant. Therefore, to perform
classi�cation with the VIC, we compare the value of J (Q) computed without
the constant to an experimentally derived threshold:

J (Q) > � x 2 H
J (Q) � � x =2 H

: (6.38)

This means that it is possible to perform classi�cation, however we are unable
to recover the underlying marginal probability P(Ajx).

6.3.6 Course-to-�ne initialization

The mean �eld algorithm described above is capable only of local optimization
of J (Q). A symptom of this is that it exhibits spontaneous symmetry breaking
[Jaakkola, 2000], where the contamination �eld is set to either all contaminated
or all trustworthy. This is alleviated through initialization, for which we qu ickly
search for a point ~� � arg max� P(� ; Ajx). Q(� ) is then initialized using this
mask, before mean �eld iterations start, by settingQi (� i ) = 0 :5� � Q depending
on ~� i . � Q = 0 :25 was found to be a reasonable choice.

The search is performed by dividing the image region into four quadrants.
The joint distribution P(� ; Ajx) is evaluated with the elements of� set to each
of the sixteen binary con�gurations of these quadrants and~� is then the con-
�guration with the highest probability. Following this each quadrant is fu rther
subdivided into four sub-quadrants and sixteen evaluations are made for each
group of four, keeping the values of ~� outside the quadrant of interest �xed at
the current maximum. This process is repeated down to a maximum number of
layers of sub-divisions (three are used in our experiments) resulting in a course
initialization. The initialization procedure is illustrated in Fig. 6.5.

Fig. 6.6 shows pseudo-code for the VIC algorithm. For19 � 19 images, the
average time taken for the VIC algorithm to converge is 0.5 seconds(this is a
C++ implementation on a 2.54GHz Pentium IV PC).

6.4 VIC performance evaluation

To test the VIC, A was chosen to be the proposition that the imagex depicts
a face. The training set used is the theCBCL Face Database #1from the MIT
Center for Biological and Computation Learning1, which contains images of

1http://www.ai.mit.edu/projects/cbcl .
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(a) (b) (c)

(d)

Figure 6.5: Course-to-�ne VIC initialization. (a)At the coarsest level, this initializa-
tion procedure searches over the four quadrants of the region of interest, selecting
the one pattern out of the sixteen combinations that maximizesP(� ; Ajx). (b,c)
At the next two levels, each quadrant is further subdivided into increasingly smaller
squares, searching over each group of four.(d) Possible ground truth pattern of
contamination for this hypothetical example (black patches indicate contamina-
tion).
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MaximizeJ (Q)
Require: Candidate image regionx
Require: ParametersT0, � , � Q
Require: Annulus radii
Require: RVM weights and exemplarsw; f x (k)gn

k=1
Require: Mean appearance�

Obtain initial guess of~� (Fig. 6.5)
Initialize Qi (� i = 1)  0:5 + ~� i � Q � (1 � ~� i )� Q

while Q not convergeddo
for All image locationsi do

for � i = f 0; 1g do
Compute� E (� i ) (6.34)
Approximately computeEQj� i [logP(Aj� ; x)]
EQj� i [logP(A; � jx)]  EQj� i [logP(Aj� ; x)] + � E (� i )

end for
Compute partitionZ i =

P
� i

exp
�

EQj� i [logP(A; � jx)]
	

UpdateQi (� i )  1
Z i

eEQ j � i
[log P (A; � jx )]

end for
end while

Figure 6.6: Pseudo-code for the VIC algorithm.

registered faces and non-faces which were histogram equalized [Jain, 1989] to
reduce the effects of different lighting (see Chapter 5). The same is done to each
test image. The RVM was trained using 1500 face examples and 1500 non-
face examples. These numbers are limited in practice by the complexity of the
training algorithm [Tipping, 2001]. Parameters were set as� = 0 :2, � Q = 0 :25
and the temperature constant wasT0 = 1 :5.

The posterior pattern of contamination P(� jx ; A) is approximately inferred
as the value ofQ which maximizes J . Fig. 6.7 shows some results of this. As
might be expected, for a non-face, the algorithm hallucinates an intact face with
total contamination (for example, row 4 of the �gure); but of cou rse the mar-
ginal P(Ajx) is very small in such instances.

To assess the classi�cation performance of the VIC, 1000 contaminated pos-
itives were automatically generated (Fig. 6.8). These were combined withpure
faces and pure non-faces (none of which were used in the training set) and tested
to produce the receiver operating characteristic (ROC) curves shown in Fig. 6.8.

Curves are shown for the unaltered RVM acting on the contaminatedset
and the new contamination-tolerant VIC outlined in this paper. For compari-
son, points are shown for aboosted cascade of classi�ers[Lienhart and Maydt,
2002] which is a publicly available detector based on the system of Viola and
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Figure 6.7: Contamination posterior.Examples of contaminated inputs with in-
ferred contamination distribution.
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Figure 6.8: Classi�cation performance.The ROC curve on the left was traced out
by varying the threshold� in (6.38). The VIC is shown as the solid line, but also
shown are lines for the RVM (without VIC enhancements) testing uncontaminated
examples (dashed) and the contaminated examples tested by the RVM (dash-dot).
Likewise, single points are shown for the boosted cascade face detector [Lienhart
and Maydt, 2002]. Some of the contaminated positives used to generate the curves
are shown on the right.

Jones [Viola and Jones, 2001]. The curve shown for the RVM againstan un-
contaminated test set con�rms that contamination does make the classi�cation
task considerably harder. By modelling the contamination �eld explicitly, a de-
tector is produced that improves on the performance of both a plain RVM and
a boosted cascade detector although it is still falls short, of course, of the perfor-
mance of an RVM on completely uncontaminated examples. The algorithm is
also relatively expensive to execute compared, say, with the contamination-free
RVM.

Fig. 6.9 shows some natural face images that the boosted cascade [Lienhart
and Maydt, 2002] fails to detect, either because of occlusion or due to a degree
of deviation from the frontal pose. The VIC algorithm detects them successfully
however. The �rst row illustrates occlusion and the corresponding inferred con-
tamination �eld. In the second row, the centre of the face is deemed unusual
relative to the training data so recognition hangs on the remaining peripheral
features. In the third row, the non-frontal orientation is nonet heless accepted by
discounting the data around one eye.
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Figure 6.9: Some more examples.The leftmost column depicts faces that the
boosted cascade [Lienhart and Maydt, 2002] fails to detect.Using the VIC, these
lead to high posterior probabilities of faces after labelling some regions as contam-
inated.
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6.5 Combining the VIM with the VIC

Having inferred the posterior pattern of contamination Q(� ) � P(� jx ; A) with
the VIC, we may then wish to make continuous predictions with the VIM using
only the “good” data. We achieve this by making a simple modi�cation to the
GLM ( x2.10) using Gaussian RBF basis functions. Given a pattern of contami-
nation � the continuous GLM output is given by

y(x; � ; w) =
mX

i =1

wi � i (x ; � ) (6.39)

where we de�ne the basis functions as

� i (x ; � ) = exp
�
� � kx � x (i )k2

�

�
(6.40)

and

kx � x (i )k2
� =

r
P r

k=1 � k

rX

j =1

� j
�
x j � x(i )

j

� 2 (6.41)

where r is the dimensionality of x and � .
By training a GLM (or an RVM, see x2.4) on clean data, this simple modi�-

cation can be used to make inferences from contaminated data. Asa demonstra-
tion of this, Fig. 6.10 shows how an RVM displacement expert (see Chapter 3)
can be used in collaboration with the VIC to track an object undergoingocclu-
sion. These results require approximately 0.7s of computation time per frame,
which means that it does not meet our requirement for ef�ciency (Chapter 1),
however this is a powerful of�ine tracking system.

6.6 Summary

This chapter has explored the use of classi�cation algorithms to detect outliers.
The notion of a home spaceH of images was introduced as a class of feature
vectors for which the VIM will make useful predictions. In cases wherean in-
put may be partially contaminated we introduced the variational Ising classi�er
(VIC) which can identify the outlying elements of a feature vector byexploiting
the prior knowledge that contaminations exhibit spatial coherence.This uses a
discriminative RVM classi�er [Tipping, 2001] to decide whether the tar get be-
longs to H or not, however it is worth reiterating that the VIC algorithm is not
limited to RVMs: any probabilistic detector can be modi�ed in a similar way
to deal with spatially coherent contamination. Finally we showed how the VIC
algorithm can be used in conjunction with the VIM to create a contamination
tolerant displacement expert.
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Figure 6.10: VIM combined with VIC.For this demonstration, a displacement
expert was trained from clean data using an RVM (see Chapter 3). The VIC was
implemented with a classi�er trained from faces which was thenused to infer the
pattern of contaminationQ(� ) over the tracked region. The displacement expert
was used to track the target using only data predicted to be good by Q(� ). The
�lled-in parts of the tracked region indicate the inferred contamination. This video
is available fromhttp: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ vic track
mpg. mpg.
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7
Practical Applications of the VIM

When the visual inference machineor VIM, was introduced in Chapter 1, the
diagram in Fig. 1.2 omitted what is arguably the most important block: the
target application for the inferencesy . This chapter offers a collection of ex-
ample applications that demonstrate the type of problems that arenaturally
tackled in this mapping framework. An extract from this chapter has appeared
in [Williams et al., 2005a].

One application that has already been covered in detail in Chapter 3 isthe
displacement expert which will not be covered again here, but is a component
for a number of additional applications. For the demonstrations that use a dis-
placement expert, a default constant velocity dynamical prior is used andK = 3
observations are made for each video frame (see Chapter 3 for details). All these
demonstrations track translation only.

The �rst section of this chapter explains how an object detection algorithm
(Chapter 6) can be used in conjunction with the displacement expert (Chapter 3)
for a robust real-time tracking system capable of automatic initialization. The
bene�ts of this approach to computational ef�ciency and robustness are demon-
strated experimentally. The next section examines the application of the VIM
and SS-VIM to human–machine interfaces. This includesgaze tracking where
an image of the eye is used to infer where on a computer screen the user is
looking, and a variety of one-dimensional controllers for the Dasher text entry
system [Ward and MacKay, 2002]. Finally, we deviate from the rest of the work
in this dissertation (which concerns the mapping of images to continuous output
spaces) to brie�y explain how ideas borrowed from work in dimensionality re-
duction [Tenenbaum et al., 2000] can be used to map into certain discrete output
spaces.

7.1 Tracking validation and recovery

Being a local method, tracking with a displacement expert (Chapter 3) is ef�cient
at localizing a target object in an image. However, a target may occasionally
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validate an image region: validate(I; u)
Require: binary classi�er

sample feature vector:x  f (I ; u) (Fig. 3.2)
test x with classi�er
if x 2 H then

return 1
else

return 0
end if

Exhaustive search:u = search(I )
Require: max, min scales and resolutionsmax ; smin ; sres

Require: translation resolutiont res

scales = smax

while s � smin do
for a = 0 to width of I step t res do

for b = 0 to height of I step t res do
candidate state vectoru = [ a b s0]T (seex3.2)
if validate(I; u) then

return u
end if

end for
end for
s  s � sres

end while
return search failed

Figure 7.1: Pseudo-code for validation and search algorithms.The search algorithm
is described assuming the Euclidean similarities are being used and that no variation
in orientation is considered.

move more rapidly than expected, or alter appearance in an unfamiliar way
causing the state estimates made by the tracker either to diverge, or converge
to an incorrect solution. This results in loss of lock and if a viable, long-term
localization system is desired, something most be done to detect lossof lock and
recover from it. This section describes a simple system for doing this, provided
the target region is assumed to belong to a prede�ned space of images H (see
Chapter 6). A detection system is required which can operate in two modes:

Validate Given an image regionx, the detector will classify whether or not it
belongs toH ;

Search Given a complete imageI , the detector will exhaustively search it and
return either one or many regions that belong toH .
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During normal tracking with the displacement expert, the region described by
the mean of the current state estimate is tested using the detector in validation
mode and, if it is deemed not to belong toH , the system is alerted to loss of
lock. This triggers the search mode to reacquire the position of thetarget region.
Pseudo-code for these simple routines is shown in Fig. 7.1, where the search
algorithm assumes the Euclidean similarities are being used. Both algorithms
require a ready-trained binary classi�er to decide whether featurevectors belong
to H or not. For applications like face tracking, powerful pre-trained systems
are publicly available (e.g., [Lienhart and Maydt, 2002]); for other t argets a
detector must be prepared specially.

In x3.7, the displacement expert was tested after being trained from hand
labelled seed images and hand initialized. Exhaustive search by the detection
algorithm can be used to automate this process by providing labelled seed im-
ages and giving an initial state estimate when continuous tracking commences
(i.e. provide u0 in Fig. 3.8) An automated tracking system, with validation and
restart is detailed in Fig. 7.2.

7.1.1 Algorithmic complexity of tracking and detection

Exhaustive search must consider a large number of candidates, the overwhelm-
ing majority of which will be negative. The aim of the algorithm in Fig. 7.2
is to create a system that exploits both the ef�ciency of local tracking with the
displacement expert and the long-term robustness of an object detector.

During continuous tracking, the operation count for generating displace-
ments from the expert scales linearly with three terms:

track: O(r � n � d): (7.1)

where r is the number of features in a feature vectorx, n is the number of
exemplars used to train the displacement expert (or the number ofremaining
relevance vectors in the case of an RVM displacement expert) andd is the num-
ber of degrees of freedom being tracked. In a particular application d is �xed,
as are the number of features in a vectorx. The RVM displacement expert was
shown in x3.7 to make predictions faster than a Gaussian process, and this is due
to the smaller n from the sparse learning process. For real-time tracking there
is also a signi�cant constant term corresponding to the time taken to retrieve an
image from a webcam.

For exhaustive image search (in translation and scale space as described in
Fig. 7.1), the number of operations is :

search:O
�
r � [Image width] � [Image height] � t2

res � sres
�
: (7.2)

Fast object detection algorithms achieve computational ef�ciencyin part by
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input:seed imagesf �I (i )gns
i =1

no. examplesn
range�

i = 1

�nd target:
�u (i ) = search( �I (i ) )

i < n s?

i + +

train displacement expert
Fig. 3.6

fetch I from video source

u0 = search(I )

t = 0

track 1 frame with
Kalman �lter Fig. 3.8

! û t

validate(I; û t )

t + +

fetch newI

u t = search(I )

search successful?

passfail

no

no

yes

yes

Figure 7.2: Automatic displacement expert training, initialization andrecovery.
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Boosting RVM RVM
Video RMS RMS Adj. RMS Inliers

A 9.3 9.3 5.3 88%
B 10.1 17.1 11.3 70%
C 11.8 5.3 9.5 80%
D 22.0 31.4 15.6 78%

Table 7.1: RMS tracking errors. This table shows the RMS error of the two
algorithms compared to a ground truth. The adjusted RMS error is calculated by
only using as inliers those frames for which the detector scored a hit .

adapting the number of features used for each test. In the caseof [Viola and
Jones, 2001,Romdhani et al., 2001] this is done via adetection cascadewherein
many candidates are rejected without the need to examine all of the features. Im-
portantly, however, the cost of a detector of this kind still scales with the size of
an input image (every image location must be tested, at least partially) whereas
the cost of the displacement expert does not. The validator, which tests just
one location, also escapes any dependency on image size and thereby imposes
negligible computational cost.

7.1.2 Complete tracker performance

Tracking has been combined with search for a fast localization algorithm. Speed
is measured here as both time taken to track each frame and CPU utilization.
This second measure is meaningful when video frames are only availableat a
maximum rate (e.g. 15 or 25 frames per second) and the tracker leaves processor
cycles free.

Recently, work such as [Viola and Jones, 2001] has provided highly ef�cient
face detection algorithms. For face tracking applications of this system Float-
Boost [Li et al., 2002], a variant of [Viola and Jones, 2001], was used. Experi-
ments were carried out to measure the CPU demand and accuracy ofFloatBoost
alone. As a fairer comparison to the displacement expert, a versionof the Float-
Boost detector was used that is optimized for �nding only one face in an image.
By using a heuristic search pattern and halting after one face is found, this ver-
sion is more ef�cient than exhaustive full-frame search. The hybridtracker with
the RVM displacement expert using FloatBoost for validation and restarting
was also tested for speed and accuracy on the same test data. Table 7.1 shows
how the accuracy of frame-independent search by FloatBoost compares a hybrid
system. The sequences used in this experiment all include the target object be-
coming totally occluded for a short time. To calculate the adjusted RMS values,
inliers were counted as those frames for which the boosting algorithm supplied
an estimate (the boosting RMS and adjusted RMS columns were therefore com-
puted on the same number of data).
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Mean Steady
Video Boosting RVM RVM
A 44% 21% 21%
B 43% 45% 16%
C 50% 39% 20%
D 53% 43% 21%

Table 7.2: CPU Usage.Mean and steady-state (during tracking alone) CPU uti-
lization by both algorithms.

Table 7.2 shows the mean CPU utilization of each algorithm as well as
the “steady-state” CPU usage during tracking alone (i.e. ignoring exhaustive
searches and training).

For tracking a single object, the expert shows similar accuracy to boosting
(when taking the adjusted RMS value). With respect to CPU usage, the hybrid
system takes 75% the number of cycles required by boosting for these short test
sequences (including training the expert). In other, longer, scenarios with less
attempts to deliberately instigate restarts, this gets closer to the 40% suggested
by the steady-state results. It is worth mentioning, however, thatthe version of
FloatBoost being used is optimized for �nding a single face. Using a version with
exhaustive search will require more CPU time, but will have the advantage of
�nding all faces present in the image.

The bene�t of combining an object detector with a tracker is a systemthat is
not only ef�cient but can recover from failure of the tracking comp onent yielding
long-term (inde�nite) reliability. Figure 7.3 shows snapshots from a 60 minute
face tracking sequence during which the target (observed by a webcam) carries
on working as normal, including leaving and returning to the scene several times.
The tracker was trained from three seed images and the mean CPU utilization
for this period, including on-line learning of the displacement expert was 32%.
Of all the occasions that the system changed from tracking to restart mode,
approximately 12% were due to tracker failure rather than the target simply
leaving the �eld of view. The hybrid strategy is capable of tracking an object
for extended periods of time whilst still only using a fraction of available CPU
cycles.

7.2 Gaze tracking

The human, or indeed animal, eye is essentially an input organ ful�lling the role
of light detector in the vision system (see Chapter 1). However, there is also in-
terest in the use of the eyes as output organs [Witzner Hansen, 2005] for human–
computer interaction: by knowing the location a user is gazing at, thesystem can
act accordingly e.g., by moving the cursor to that location. For comfort and ease

112



Gaze tracking x7.2

t = 10min t = 20min t = 30min

t = 40min t = 50min t = 60min

Figure 7.3: Long-term tracking behaviour.This �gure shows tracking continuing
robustly over a 60 minute period.

of use, this is best implemented by using cameras, leading to the requirement for
a machine that can localize the eye and infer the direction in which it is looking
from images: a process known as eye orgaze tracking[Duchowski, 2003]. The
typical gaze tracking “pipeline” is illustrated in Fig. 7.4. Eye localization and
tracking can be performed using a displacement expert to ef�ciently localize the
eye in each video frame (which has been initially identi�ed in a seed image by
the user). Having localized the eye, the next stage is to infer the gaze direction
and, as was brie�y explained in Chapter 4, this can be achieved with the VIM by
directly learning the mapping between eye images and the 2D screen coordinates
the user is gazing at.

Although some appearance-based approaches have been used in the litera-
ture [Baluja and Pomerleau, 1994,Tan et al., 2002], our method forgaze track-
ing is in contrast to the majority of other approaches which work by shining
infra-red light on the subject and use a model of the eye optics to infer gaze
position. The shortcomings of this are:

1. Dedicated infra-red lights and camera hardware is expensive;

2. The equipment must be carefully set up for the scene to �t the optical
model;

3. infra-red based systems typically fail in daylight;

4. If a user has an unusual eye appearance, lens distortion or needs to wear
glasses, these systems again fail to operate successfully.

As motivated in Chapter 1, the VIM approach to visual inference does not rely
on models of image formation and as such unusual eye appearance or glasses
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video input
eye localization

and tracking gaze inference
target

application

Figure 7.4: The gaze pipeline. This diagram illustrates the semantic compo-
nents forming a complete system for gaze tracking (adapted from [Witzner Hansen,
2005]).

do not prohibit its ability to track gaze, provided the eye appearance changes
consistently as the user looks around. Also, the computational and hardware re-
quirements of the VIM extend to a budget desktop PC or laptop anda webcam.
The process of setting up the equipment is also far simpler: one mustsimply
ensure the webcam has a view of the user's eye; the gaze tracking application
bene�ts from our efforts to meet the requirements for ef�ciency, simplicity and
versatility established in Chapter 1. There is, however, still a calibration step
required to train the VIM, and this is discussed next.

7.2.1 Calibration

For gaze tracking, the SS-VIM is trained using a semi-supervised training set
(see Chapter 4) with feature vectors generated from the mixed feature types of
greyscale, edge energy and colour histograms (see Chapter 5). To gather the
training data, an animated calibration pattern is shown on the screeninvolving
a target that moves betweennl = 16 points arranged in a spiral pattern around
the screen. At each point the target comes to rest and an exemplar feature
vector is recorded for the eye appearance, labelled with that point's coordinates.
Between each point, �ve exemplars are also collected as the eye followsthe
target, but these are left unlabelled, givingnu = 75. These data are collected as a
video sequence, so temporal metadata is also available and the semi-supervised
learning framework, already explained in Chapter 4 is used to train an RVM
(modi�ed to handle noisy labels and exploit mixed feature types) forming the
mapping from eye images to screen coordinates.

7.2.2 Performance

To test the SS-VIM as a gaze tracker, the animated target on thescreen, used
for calibration, was moved between 100 randomly selected points. At each
point, the moving target stops and the VIM's gaze prediction is recorded. From
this the RMS error in screen coordinates may be found. The accuracy of gaze
trackers is usually measured in degrees and to compute this we need to know the
user's distance from the screen (0.8m in our experiment) and the physical pixel
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Gaze tracker Calibration points Angular erroreang

SS-VIM 16 1.12�

[Baluja and Pomerleau, 1994] 2000 1.5�

[Tan et al., 2002] 256 0.5�

[Tobii Technologies, 2004] - < 0.5�

Table 7.3: Gaze tracking accuracy.This table shows the accuracy of the VIM gaze
tracker when trained on 16 calibration points. Also shown isthe accuracy reported
in [Witzner Hansen, 2005] of the Tobii [Tobii Technologies,2004] system and the
gaze trackers in [Tan et al., 2002,Baluja and Pomerleau, 1994].

dimensions (0.25mm). The average angular error is then given by

eang = tan � 1 RMS pixel error � pixel width
distance from screen

:

Table 7.3 shows the accuracy of the VIM gaze tracker when trained with16
calibration points. Also shown are the reported accuracies of the commercial
Tobii system and the systems in [Tan et al., 2002] and [Baluja and Pomerleau,
1994]. The VIM gaze tracker is capable of predicting gaze at 30Hz utilizing
around 30% of available CPU time. Calibration/training takes approximately
22 seconds. Although, again, actual performance varies with hardware.

The results in Table 7.3 show how the SS-VIM is a competitive method for
gaze tracking measured by accuracy, and is particularly attractive given the lim-
ited calibration required. The expensive Tobii system clearly outperforms our
offering, as does the system of [Tan et al., 2002], however it is worthnoting
that the accuracy reported by the authors of this system is computed by a leave-
one-out test on 256 consistent and well-registered eye-images; our results are
for a more realistic scenario in which unseen images are used, captured after
calibration and training are complete.

7.3 An all-purpose one-dimensional controller

The Dasher writing system [Ward and MacKay, 2002]1 is a replacement for
keyboards as a means of computer text entry. With Dasher, text isentered by
steering through the alphabet using continuous gestures. Such gestures can be
generated by the mouse or some mechanical device (e.g., “breath Dasher” works
by measuring a user's breathing pattern) however, the VIM can also be used as
a controller by mapping images received from a camera to a one-dimensional
signal. In this section we describe a single software application that tracks a
region with the displacement expert and trains a one-dimensional SS-VIM to
map feature vectors sampled from this region to a control signal. This enables

1Also seehttp://www.inference.phy.cam.ac.uk/dasher/ .
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Figure 7.5: One-dimensional controller screen shots. Here are some
stills showing the SS-VIM making 1D controller predictions from im-
ages of an eyebrow and mouth. The bars to the side give an im-
pression of the predicted 1D signal. These videos can be downloaded
from http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ eyebrow mpg. mpg and
http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ mouth mpg. mpg.

the use of practically any visible gesture as a controller for Dasher. The particular
examples given here are for the use of eyebrow motion and open andclosing of
the mouth, however, the VIM gaze tracker from the previous section and the
hand mouse and head pose tracker shown below can also be used to control
Dasher.

For this one-dimensional controller, the training procedure is similarto that
for the gaze tracker above. The displacement expert is used to track the target
that is going to be used. If there is no detector available for this target then
the seed image must be manually labelled and the tracker manually initialized.
Once the displacement expert is trained, a calibration process is performed for
which the user is expected to smoothly alternate between the extremes of the
input range in time with a visible and audible calibration signal. The SS-VIM
is then trained by only labelling the data that were collected at the extremes
(the calibration pauses at these points and this data is taken as most reliable).
Also in common with the gaze tracker is the use of a mixture of greyscale, edge
energy and colour feature transforms and the use of the sparseRVM to learn the
mapping.

Fig. 7.5 shows some screen shots of this one-dimensional controller inaction.

7.4 Hand mouse

Work such as [Cipolla et al., 1994, Stenger et al., 2001, Stenger et al.,2003]
is motivated by the application of a “hand mouse”, a visual interface in which
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Figure 7.6: Hand mouse.With a vertically mounted camera, a hand can be viewed
in a comfortable desktop position. By tracking the hand with adisplacement
expert, the horizontal and vertical hand position can be inferred e�ciently and
used to drive the position of the cursor on the computer screen. Using the 1D
controller described in the previous section, a 1D signal isgenerated by the hand
opening and closing, thereby providing a single button \click" functionality: the
bottom row shows a typical \click and drag" sequence. This video is available at
http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ hand mouse mpg. mpg.

hand gestures are used to replace the traditional, mechanical mouse input. The
gaze tracker and 1D controller applications of the preceding sections use a dis-
placement expert to extract the correct image region and this localization is oth-
erwise ignored. These additional degrees of freedom can be put to use however,
and Fig. 7.6 shows some snapshots in which the VIM is used to create a hand
mouse.

7.5 Head pose tracking

Head pose is another useful piece of information for many applications [Gee
and Cipolla, 1994], and it is also possible to train the SS-VIM to map head
images to 3D pitch and yaw angles. This application is a good candidate for the
semi-supervised treatment because a teacher providing labelled exemplars may
know or be able to infer the head orientation in a few key images (e.g., when the
head is dead-on and 90� to the camera), but to label accurately the pose in every
image is dif�cult and inaccurate without instrumenting the subject: something
that is not always practical. Fig. 7.7 shows some examples of this working.

7.6 Mobile camera

If the scene being studied remains largely static, but the camera moves, the VIM
can also be used to infer the camera's pose. Still images were captured at 36
known camera orientations and by processing these with a mixture of greyscale,
edge energy and colour feature transforms a labelled training set was created.
The VIM was then used to learn the mapping from these exemplars to a2D
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Figure 7.7: 3D pose recovery.Five key frames from a training sequence were la-
belled with the approximate 3D rotation (pitch and yaw) of thesubject's head.
The SS-VIM learns the mapping from images to the pose parameters (indepen-
dently) and is then able to successfully predict the pose in previously unseen
images (�ve of which are shown here). This video can be downloaded from
http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ head pose mpg. mpg.

output space representing the camera's azimuthal and zenith angles. For new,
unseen feature vectors it was then possible to predict the azimuth and zenith of
the camera: see Fig. 7.8. The sequence of inferred poses is also available for
download from http://mi.eng.cam.ac.uk/ � omcw2/thesis/slam mpg.mpg.

7.7 Manifold interpolation

This last section deviates from the rest of this dissertation because it addresses
circumstances where the output spaceY is discreteY � f o(i )gO

i =1 . The training
set in such a case de�nes the input–output relationship through correspondences
between training exemplars and members ofY, instead of vectorial labels.

The learning task is broken into three parts:

1. A graph is built from the members of Y and the geodesic distance com-
puted between all members;

2. Using a set of L landmark elements in Y, an intermediate, continuous
coordinate system is de�ned inRL ;

3. The (SS-)VIM then learns the mapping from feature vectors topoints in
the intermediate coordinate system.

This section does not therefore describe any alterations to the VIM, framework,
but instead explains how the intermediate coordinate system is devised.

7.7.1 Manifold structure

The �rst step is to identify structure within Y and for this to be possible a dis-
tance function is required d : Y � Y ! R+ and the O � O matrix of distances
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Figure 7.8: Inferring the azimuthal and zenith pose angles of a camera rotating
around a �xed origin.
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between all output members is computed usingd giving

Dij = d(o(i ) ; o(j ) ): (7.3)

For the experiments described here, the sum-of-squared differences (SSD) be-
tween two greyscale images is used as a distance. By connecting each member of
Y to its K nearest neighbours a graph� is constructed from D

� ij =

(
Dij if o(i ) ; o(j ) connected
1 otherwise

: (7.4)

The path matrix P0 contains the distance of all elements ofY from one-another,
travelling between connected elements only: thegeodesic distance. This is com-
puted using Floyd's algorithm [Floyd, 1963]. This process comprises the initial
stages of theIsomap algorithm for dimensionality reduction [Tenenbaum et al.,
2000]. Isomap would then recover the manifold dimensionality by solving an
O � O eigenproblem however, as our aim is not to identify latent dimensionality,
this computationally intensive stage is not necessary here.

7.7.2 De�ning an intermediate coordinate system

Given the set of exemplarsf x (i )g, a teacher now de�nes correspondences be-
tween exemplars and members ofY (see Fig. 7.9b). Each exemplar can only be
labelled once (or not at all), but one member ofY may be associated with many
exemplars. All of the o(i ) that correspond to at least one exemplar de�ne a set of
L landmarks L � Y . The columns ofP0that do not correspond to landmarks are
removed to give a thinned matrix P (Fig. 7.9c) in which every row now contains
the geodesic distances of every member ofY from the landmarks L . These row
vectors will be used as a coordinate system inRL for points on the manifold.
The abstract correspondences between the exemplars andY are translated into
vectorial labelsy l using the thinned path matrix P. If example x (i ) corresponds
to o(j ) , then y (i ) 2 RL will be the j th row of P.

Now that there is a vectorial label associated with each exemplar, the process
of inferring the complete label set[y l ; yu ] and learning the mapping from X to
the landmark coordinate system then follows the SS-VIM algorithm described in
Chapter 4. Once trained, any unseen feature vectorx � can be mapped toRL . To
translate this into a member of the setY, the output whose row of P is closest
(in Euclidean distance) to the VIM prediction is selected.

7.7.3 Performance

We demonstrate the use of the VIM in conjunction with manifold learning when
the setY contains images from a video sequence. As a distance measure, thesum
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Figure 7.9: Manifold learning. (a)In this example, the training exemplars are sam-
pled from a video of a hand opening and closing (12 of 150 imagesshown). Y
contains frames from a video of a buttery apping its wings (12 of 387 shown).
(b) The teacher makes correspondences between exemplars showingthe hand
open(closed) to images inY with the wings open(closed). The remaining exemplars
remain unlabelled.(c) There are only two landmarks in this example, and the ma-
trix P contains the distance of each node inY to the landmarksL . This schematic
shows smaller distances darker.(d) Having trained the SS-VIM to map feature vec-
tors to the intermediate coordinate system, an unseen example is tested to predict
distances from the landmarks. The nearest neighbour is foundaccording to geo-
desic distance by �nding the best matching row ofP. A video demonstrating this
is at http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ butterfly mpg. mpg.

of squared differences (SSD) between greyscale images is used. Thisis a mean-
ingful measure when images are similar but degrades rapidly with increasing
dissimilarity. The Isomap [Tenenbaum et al., 2000] method of creating man-
ifold distances used here is therefore particularly effective as it computes the
distance between two arbitrary members ofY by concatenating many small,
reliable steps.

Fig. 7.10 shows this method being used to synchronize two video sequences.
Y contains images of “person 1” rolling her head around randomly. Similarly,
the exemplars show “person 2”, also rolling her head. Some of the exemplars
are labelled by making correspondences to �ve landmarks inY whenever the
two heads are in the same pose. The SS-VIM then learns a mapping from im-
ages of person 2 to the intermediate manifold coordinate system, and thereby to
members ofY. Novel test images of person 2 can then be used to fetch images
from Y, �nding a new trajectory through the video. This application is similar
to the “do as I do” idea from [Efros et al., 2003]. As an illustration of the man-
ifold and the landmarks, a 2D embedding of the manifold is shown in Fig. 7.11
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Correspondences

D

Y
Predictions

Figure 7.10: \Do as I do". When the output set consists of video frames,
a mapping can be learnt so that the input images \drive" the output. The
top two rows show the correspondences made by the teacher, thebottom
shows some predictions. The VIM makes r predictions at 25Hz using < 30%
of time on a 2.5GHz CPU. This video sequence can be downloaded from
http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ a2z mpg. mpg.

together with the path followed when creating a novel output sequence. See also
Fig. 7.12.

This manifold learning method can also be used in human–computer inter-
action applications. Fig. 1.1d in Chapter 1 shows how hand gesture is used to
index frames from a video of karate moves. When the training set waslabelled,
a �at hand corresponds to a neutral stance, �st shapes have been mapped to
punch and a rotated palm to a blocking motion.
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Figure 7.11: Intrinsic dimensionality.Solely for illustration, this is a 2D projection
of the nodes in the graph� for the example of Fig. 7.10 (using Isomap [Tenenbaum
et al., 2000] code available from the author's web site). As humans we know the
manifold of these images to be two-dimensional and this structure is convincingly
so. The stars indicate the landmark positions together with the corresponding
members ofL . The thick line indicates the interpolated path taken by theVIM in
generating the output of Fig. 7.10.

Figure 7.12: More \do as I do". Another example in which the output set
Y are frames from a video found on the Internet. See the video of this
http: // mi. eng. cam. ac. uk/ � omcw2/ thesis/ ow gb mpg. mpg.
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8
Concluding Remarks

This dissertation describes and develops a general framework for ef�ciently solv-
ing a subset of problems in computer vision by treating them as a mapping from
the space of images to a continuous-valued output space. The result is called the
visual inference machine(VIM). In Chapter 3 it was shown how tracking can be
accomplished by adisplacement expertin which a mapping is learnt from im-
ages to displacements using the VIM; experiments demonstrated that tracking
with a displacement expert is both robust and ef�cient. Chapter 4 introduced
the semi-supervised visual inference machine(SS-VIM) in which a new method
for solving semi-supervised regression with a Gaussian process was used to deal
with partially labelled training sets. Chapter 5 explains some of the ways in
which images may be �ltered for the VIM, and then goes on to adapt the rele-
vance vector machine so that it automatically selects the most useful features for
the task in hand. Chapter 6 addressed the problems associated withoutlying,
mis-registered or corrupted observations. In the �rst instance, a simple object
detector can be used to classify an entire input image as to whether or not it is
suitable for the VIM; however, we then went on to develop thevariational Ising
classi�er (VIC), an algorithm that considers whether speci�c observations are
contaminated. The novel aspect of the VIC is that a prior distribution is placed
over the patterns of contaminated observations which expressestheir spatial co-
herence.

It was stated in Chapter 1 that the aims of this research were to produce a
system that demonstrated ef�ciency, simplicity and versatility. The VIM solves
most tasks in real-time (i.e., at 15–30Hz) using< 50% CPU time, and typically
even less than this. Hopefully, the demonstrations in Chapter 7 convince the
reader of the ease with which the VIM and SS-VIM can be readily deployed for a
wide variety of visual inference applications using a standard personal computer
with a webcam attached.
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8.1 The VIM design cycle

This section summarizes the work presented in this dissertation as adesign cycle
[Duda et al., 2001] for tackling visual inference problems with the VIM.

Identify input and output The nature of what the VIM input and output will be
like is likely to be de�ned, at least vaguely. It can, however, take some
time to decide which degrees of freedom should be considered explicitlyas
output, and which others are super�uous and to which the VIM should be
invariant. In terms of the input, it may be the case that the entire image
is of interest, however it is often just a region of the image that is useful,
and if this region might move, the �rst step is to construct a systemfor
localizing the region in every frame. As a robust and ef�cient means of
achieving this, the displacement expert has been an excellent choicefor
this in the applications devised here.

Implement feature transforms Chapter 5 describes the greyscale, edge energy
and colour feature transforms that have been used to implement the ap-
plications that have been demonstrated for this dissertation. A decision
must be made as which feature transforms are likely to be useful forthe
application in hand, and whether the computational burden of the extra
image processing is affordable.

Collect training data This step varies with application, and the major decision
to make is whether the training data is to be fully or only semi-supervised.
The actual process of gathering data then need not include a userlabou-
riously entering labels for a list of images: in the case of the displacement
expert (Chapter 3), a fewseed imageswere labelled with the target region
and a large training set was generated by synthesizing displacements; for
the human–computer interaction applications shown in Chapter 7, acali-
bration procedure was used in which the user was directed to provide par-
ticular data by the system, which then trusted these inputs to provide labels
automatically. It is, however, important that suf�cient data is gath ered to
learn the desired mapping effectively and for the VIM to be invariant to
any super�uous degrees of freedom in the input.

Training The next decision is which learning tool is going to be used, the ma-
jor ones used in this dissertation being the Gaussian process and relevance
vector machine (see Chapter 2); for most implementations used here the
RVM has been preferred due to its sparsity, which in turn means it makes
predictions more ef�ciently than the Gaussian process. Whichever method
is used, the speci�cation of basis/covariance functions, appropriate to the
feature transforms being used and the characteristics of the output, is nec-
essary.
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Prediction When the training procedure is complete, the VIM is ready to make
predictions based on the input–output mapping de�ned by the training set.
The predictions may simply be displayed as a point on a display, or used
to override the mouse, or probabilistically fused with another data source
before being passed back to a higher-order system.

8.2 Future research directions

This section provides speculation on possibly fruitful avenues alongwhich re-
search into the VIM and VIC ideas may be extended. These are split into two
categories: “research” ideas that will continue to develop the novel theoretical
ideas presented here, and “engineering” ideas which will add polish and useful-
ness to some of the practical applications of the VIM.

Research ideas

By considering contamination, the VIC was shown to improve on classi�ers that
do not consider contamination, however its accuracy is still poor. Whilst it is
unreasonable to expect it to perform on contaminated data as well as classi�ers
on clean data, improvements in this area will dramatically enhance the VIC's
usefulness. One target is to eliminate the hallucination process fromthe conta-
mination tolerant classi�er and develop a classi�er capable of handling general
missing data. A related topic is to make improvements to the way the VIM
makes continuous predictions with missing data, beyond the simple masking
procedure used in Chapter 6.

Chapter 4 extended the VIM to work with semi-supervised training sets. A
related idea isactive learning [MacKay, 1992] in which the learning algorithm
decides which data points would be most bene�cial to the learning task. This
extension would be useful in the gaze tracking application where the VIC could
select the most informative calibration points which would maximally improv e
accuracy.

Another related idea is to incorporate incremental learning, particularly for
the displacement expert. In this scenario, the VIM would constantlyupdate the
learnt mapping based on new observations. As presented here, the displacement
expert is trained once from a limited sample of target appearances.If the target
gradually changes appearance, incremental learning would allow the displace-
ment expert to adapt with it.

A longer term ambition for the VIM is for it to tackle more advanced disc rete
problems via the manifold learning extension described inx7.7 with the eventual
target of tackling object recognition problems. This will require signi�c ant work
to develop all aspects of the work discussed here, but particularly the manifold
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learning approach and the selection of image features.

Engineering ideas

The gaze tracking system demonstrated in Chapter 7 is a promising application
of the VIM, yet for it to be a success it requires the ability to detectblinking and
the facility to decorrelate changes in head pose from eye motion. Further design
of a user interface is also required, especially increased ease of calibration (see
comments on active learning above).

This gaze tracking technology, and the other demonstrations of human–
computer interaction shown in Chapter 7, are ripe for exploitation as aids to
people with physical and/or communication dif�culties. Hopefully it will be
possible to further design the VIM and the SS-VIM so that they cantruly be of
use to the world.

It would be interesting to extended the simple spatial localization application
demonstrated in x7.6 and test its usefulness when used in conjunction with a
mobile robot.
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A
Bibliographic Notes

In an attempt to keep the major chapters of this thesis concise, many signi�cant
contributions from the literature have been overlooked if they do not pertain
directly to the discussion. This chapter therefore covers the broader literature
not discussed elsewhere.

A.1 Visual tracking

A.1.1 Optical ow

To track a target, prior knowledge or reasonable assumptions are exploited to
achieve computational ef�ciency. One of the earliest assumptionsis that of
brightness constancy[Horn, 1986]: if a single point in an image at time t,
I (a; b; t), is translating with velocity (_a; _b), this assumes that, a short time�t
later, the brightness of the translated target point is identical

I (a + _a�t; b + _b�t; t + �t ) � I (a; b; t):

Making the �rst order Taylor expansion on the left hand side gives the motion
constraint equation [Horn, 1986]

I (a; b; t) +
@I
@a

_a�t +
@I
@b

_b�t +
@I
@t

�t = I (a; b; t)

@I
@a

_a +
@I
@b

_b+
@I
@t

= 0 (A.1)

which, provided the gradients can be computed, may be solved to �ndthe veloc-
ity of that point.

There are problems with solving for pixel velocities like this: where the spa-
tial or temporal gradients are small, the results will be sensitive to noise; the
component of motion perpendicular to the spatial gradient cannotbe recovered
(the aperture problem [Hildreth, 1984]); and the assumption of brightness con-
stancy is often violated. These shortcomings are addressed in part by Horn and

129



xA.1 CHAPTER A

Schunck [Horn and Schunck, 1981], who consider a region of pixelsR, believed
to have the same velocity. The left hand side of (A.1) is then minimized over this
region achieving a more stable estimate of the velocity:

_a; _b = arg min
_a;_b

X

a;b2R

�
@I(a; b)

@a
_a +

@I(a; b)
@b

_b+
@I(a; b)

@t

� 2

: (A.2)

Owing to either the choice of region or the character of that part of the
image (or both), there may be outlier pixels in the region that disagree strongly
with the consensus. When solving equation (A.2), these will act to pull the
inferred velocity away from a possibly better answer. [Black and Anandan, 1996]
therefore introduce further stability by using robust statistics

_a; _b = arg min
_a;_b

X

a;b2R

�
�

@I(a; b)
@a

_a +
@I(a; b)

@b
_b+

@I(a; b)
@t

�
: (A.3)

� is a robust cost function which reduces the effect of large image differences on
the solution; this is an early example of work that ignores certain input data that
may be contaminated: see Chapter 6.

Blob tracking

The class ofblob tracking [Wren et al., 1997] algorithms represent a target im-
age region using only the gross statistics of that region. Tracking isperformed
by locally searching for a cluster of image pixels with the greatest probabil-
ity of coming from the blob model. One strength of blob tracking is the ease
with which the statistical appearance model can be updated on-line.Mean shift
tracking [Comaniciu et al., 2000, Comaniciu et al., 2003, Pérez et al., 2002]
maintains and updates a histogram of the colours within a target region and
has been shown to be a robust and ef�cient tracker in certain situations. The
robustness of blob tracking can also be improved by modelling the statistics of
background [Stauffer and Grimson, 1999,Isard and MacCormick,2001] and by
controlling the amount of adaptation dependent on the reliability of t he current
observations [Vermaak et al., 2002, Ṕerez et al., 2004].

Adaptive appearance models

The trackers described inx3.3 use only a �xed template to de�ne target ap-
pearance. The general displacement experts in Chapter 3 and theapproach
in [Avidan, 2001] extend this by generalizing appearance from a collection of
exemplars, but this de�nition of appearance is �xed once tracking begins. Blob
trackers use a softer approach by having a probability distributionover the space
of possible appearances, but still this is �xed during tracking. Thereis a class
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of trackers, however, that does not keep its representation �xed but actively
updates it during tracking. This is an excellent way to deal with objects that
might smoothly change appearance during tracking without having toexplicitly
describe the appearance change: e.g., a human face might change expression
or an object might move to a location with different lighting. Unfortuna tely
they do suffer from drift where they adapt whilst misaligned and the appearance
representation steadily degrades from that of the true target,often becoming
permanently “stuck” to a piece of background or an occluding object.

A good example of an adaptive tracker is the “wandering stable lost”WSL
tracker [Jepson et al., 2001]. In this case the image features arethe responses
of a �lter centred at each pixel in a region. Like blob tracking, the WSL has a
probability distribution over these image features that is a mixture of three com-
ponents, but unlike a blob tracker the parameters of the mixture components
and the mixture weights are continuously updated. The mixture components
are

Wandering describes features that are smoothly changing appearance overtime;

Stable describes features whose value remains �xed;

Lost is an outlier process “explaining away” pixels that do not �t the other t wo
components. The lost component is valuable as it can detect partialconta-
mination (Chapter 6) and indicate that such features should be temporarily
ignored during tracking.

Another example is theeigentrackersystem of Black et al. [Black and Jepson,
1996] where the pixels in a tracked region are modelled as belonging to alinear
subspace found using principal components analysis [Jollife, 1986]. Tracking
is then performed using a framework very much like that in [Black and Anan-
dan, 1996], but the state vector has appended to it the subspace coef�cients
for the current appearance. Thus tracking is performed in parallel with adapta-
tion/recognition within a limited space of appearances.

Tracking articulated objects

So far we have considered tracking rigid bodies and, in the previous section,
methods of updating appearance parameters to cope with deformation. In other
applications, the aim of tracking is to directly infer deformation or ar ticula-
tion of objects, examples of which include faces [Blake and Isard, 1994], hands
[Stenger et al., 2001, Stenger et al., 2003], and human bodies [Wren et al.,
1997,Toyama and Blake, 2002,Shakhnarovich et al., 2003,Agarwaland Triggs,
2004].

In [Stenger et al., 2001, Stenger et al., 2003] an articulated 3D computer
graphics model is constructed for a human hand. Tracking is performed by
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minimizing a cost function based on thechamfer distance[Borgefors, 1998] be-
tween edges detected in an image and the occluding contour of the hand model
projected into the image. The hand model has 27 degrees of freedom and so-
phisticated search methods, relying heavily on learnt dynamics, arerequired in
order to �nd the optimal hand con�guration ef�ciently.

Another approach using the chamfer distance is [Gavrilla, 1999], in which
the articulation of an object is recovered by matching a template from a large
library to the image edges. [Toyama and Blake, 2002] extends this by introduc-
ing a dynamical model over the transition between templates in the library. The
ingenious approach of Shakhnarovich [Shakhnarovich et al., 2003]also tracks a
human body by looking up templates in a library, but this time using parameter
sensitive hashing.

In [Agarwal and Triggs, 2004], the ideas behind the displacement expert
(Chapter 3) are extended to articulated body tracking where, rather than infer-
ring displacements in a rigid body state space, separate RVMs are used to predict
the joint angles in a model of the human body. A similar model, but a different
approach, is that of pictorial structures [Fischler and Elschlager, 1973, Felzen-
szwalb and Huttenlocher, 2005] in which objects are modelled as piecewise
rigid components which are then tracked/localized separately subjectto joint
constraints.

Active contours

A large body of work in tracking models targets simply by their occluding con-
tour [Lowe, 1992, Yuille and Hallinan, 1992] (a thorough review of this work
is [Blake and Isard, 1998]). Traditionally, these methods consist of a parameter-
ized curve, asnakeor active contour, that is �tted to greyscale images by search-
ing along normals to the curve for intensity discontinuities. Snakes can be con-
strained to deform rigidly, can be left to deform freely or can be subject to more
general shape constraints: e.g., continuous constraints on curvature [Kass et al.,
1987] or embedding shape in a linear subspace [Cootes et al., 1995].[Blake
and Isard, 1998] explains how snake tracking can be placed into a Bayesian
framework, facilitating the inclusion of dynamical priors. Unlike the dis place-
ment expert (x3.5), observations made from a snake are non-Gaussian and of-
ten multi-modal. The condensation algorithm [Isard and Blake, 1996] uses a
Markov-chain Monte Carlo approach to obtain approximations to th e posterior
state. This method is the standard means of tracking in a Bayesian framework
when observations are non-Gaussian. When observations are Gaussian, as they
are with the displacement expert, the Kalman �lter [Gelb, 1974] can beused to
give exact posteriors.
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A.2 Semi-supervised Learning

This section is a brief survey of the published literature on semi-supervised learn-
ing that has not been covered in Chapter 4. Two alternative reviews ofthis
subject are [Seeger, 2001,Zhu, 2005].

Rather than regression, the vast majority of work on learning with a mixture
of labelled and unlabelled exemplars addresses classi�cation, where a mapping is
needed to a discrete set of class labelsf `1 : : : `L g (as opposed to a vector space in
regression). A lot of this work bears more resemblance tounsupervised learning
[Ghahramani, 2004], in which there are no labels, than to supervised learning.
For example, much work attempts to model the distribution of feature vectors
P(x) as a mixture model [Titterington et al., 1985, McLachlan and Basford,
1988] identifying clusters of data. Two feature vectors should then be given the
same labelling provided they are connected by a region of highP(x) (i.e., belong
to the same cluster) [Tipping, 1999]. A generative model for exemplars is used
in a novel way in [Jaakkola and Haussler, 1998] to create a kernel [Schölkopf
et al., 1998] that can be used in a discriminative classi�er, such as a support
vector machine [Vapnik, 1995].

Another popular approach that begins with unsupervised learning is to iden-
tify manifold structure [Szummer and Jaakkola, 2001,Blum and Chawla, 2001,
Belkin and Niyogi, 2004] in the exemplars using methods such as thegenerative
topographic mapping [Bishop et al., 1998], Isomap [Tenenbaum et al., 2000],
locally linear embedding[Roweis and Saul, 2000] andGaussian �elds [Zhu and
Ghahramani, 2003,Zhu et al., 2003]. Labels can then be inferred forunlabelled
exemplars by comparing their manifold position relative to labelled exemplars.

Like the SS-VIM, [Lawrence and Jordan, 1995] use a Gaussian process for
semi-supervised learning without seeking to explicitly explain the exemplars,
however this behaves quite differently since it is being used for binaryclassi�ca-
tion and not regression. This approach works by modelling the prior assumption
that the data density should be lower between two classes (i.e., the classes form
clusters). The unlabelled exemplars are therefore useful in the placement of a
decision boundary by their contribution to data density.

Co-training [Blum and Mitchell, 1998] is also a method for semi-supervised
learning based on discriminative, rather than generative, learning.This method
relies on two “suf�cient and redundant views” of feature vectors fo r each ex-
emplar. Two learning algorithms are trained on the labelled exemplars for each
view. Predictions made by one of these on unlabelled exemplars are then used
to augment the training set for the other by labelling unlabelled exemplars. This
process alternates between the two learners until the labels predicted by the two
converge. In computer vision, co-training was used in [Levin et al., 2003] to
train an object detector based on the work of [Viola and Jones, 2001].

Self-training or bootstrapping [Yarowsky, 1995,Riloff et al., 2003] is a method
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in which a classi�er is trained on the labelled exemplars alone and is then used
to predict labels for the unsupervised exemplars. These (or a subset of these) are
then added to the original training data and learning is repeated on this larger
set. The obvious danger with this procedure is that any errors madein predicting
labels are then reinforced in subsequent rounds of training. In computer vision
Rosenberg et al. [Rosenberg et al., 2005] use self-training to create an object
detection system.

There has been a lot of interest inweakly or minimally supervised learning
for computer vision problems [Selinger, 2001,Rosenberg et al., 2005]. In [Fergus
et al., 2003,Fei-Fei et al., 2003], the task is object recognition by learning from
a training set comprised of whole images containing a target object in arbitrary
positions and poses. In some sense this data set is supervised sinceeach image
has a class label provided for it, however since the images are completely un-
normalized and there is no explicit information guiding the identi�cation of the
target object under consideration, the learning strategy still hasa great deal of
work to do in order to build a classi�er from such “weak” labels.

Active learning [MacKay, 1992,Cohn and Jordan, 1996] is a technique that
is somewhat connected to semi-supervised learning in which an input-output
rule is learned from an initial data set, following which the system selectsa new
exemplar (possibly from a library of unlabelled exemplars) that when labelled
by some higher order system is expected to improve the quality of the learnt
rule in some respect (e.g., the variance of estimates made in a certainregion is
reduced).

Coaching [Tibshirani and Hinton, 1995] is a technique which relies on ad-
ditional data during training, similar to the metadata in the SS-VIM. Multi-task
learning [Baxter, 1995,Caruana, 1995,Thrun, 1996] is another methodin which
the learning hyper-parameters are set by learning one problem andthen �xed for
another. In the case of the VIM, this could be a useful avenue forfurther research
if a mapping is �rst learnt between feature vectors and the metadata to establish
hyper-parameter values before learning the mapping to the true target variables
from the labelled exemplars alone.

A.3 Feature selection

Feature selection is primarily of interest in supervised learning, wherefeature
types can be assessed according to how much they help predict exemplar label.
Feature selection in unsupervised learning is a much rarer and more challenging
scenario (see e.g., [Law et al., 2003, Roth and Lange, 2004]). Methods for
feature selection in supervised learning have been divided by [John et al., 1994]
into �lter and wrapper methods. Filter methods separately choose a subset of
features before passing the feature vectors to the learning algorithm. Wrapper
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methods search for an optimal subset of features as an integralpart of the overall
learning and inference algorithm. The method explained Chapter 5 is of this
latter kind.

Recent approaches have tackled feature selection by focusing more on the de-
�nition and optimization of an objective function [Jebara and Jaakko la, 2000,
Weston et al., 2000, Weston et al., 2003]. These functions have a term for the
predictive performance of a classi�er using a particular subset anda term penal-
izing the number of features used, or the complexity. This approach relates most
closely to what we introduce in Chapter 5, where the eventual objectivefunc-
tion is a natural consequence of the Bayesian learning methodologyemployed
throughout this dissertation.

In computer vision, a recent and high pro�le use of feature selection is in
[Viola and Jones, 2001,Viola et al., 2003]. In this work, simple rectangle-based
features are used because of the speed with which they can be computed. The
exhaustive set of all such features is massive, so feature selection is used to �nd
an optimal subset for the face detection task under consideration. This is done by
building a simple classi�er independently for every feature. For obvious reasons,
these are called “weak learners”. TheAdaBoost learning algorithm [Freund and
Schapire, 1995] is then used to construct a stronger classi�er bycombining m
such classi�ers, and thereby select a subset of features.
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(2004). Semi-supervised kernel regression using whitened function classes. In
DAGM-Symposium, pages 18–26.

[Freeman and Adelson, 1991] Freeman, W. and Adelson, E. (1991). The design
and use of steerable �lters. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 13(9):891–906.

[Freeman et al., 2000] Freeman, W., Pasztor, E. C., and Carmichael,O. T.
(2000). Learning low-level vision. Int. J. Computer Vision, 40(1):25–47.

[Freund and Schapire, 1995] Freund, Y. and Schapire, R. (1995). A decision-
theoretic generalization of on-line learning and an application to boosting. In
Computational Learning Theory: Eurocolt '95 , pages 23–37. Springer Verlag.

[Gavrilla, 1999] Gavrilla, D. (1999). The visual analysis of human movement:
A survey. Comp. Vision and Image Understanding, 73(1).

[Gee and Cipolla, 1994] Gee, A. and Cipolla, R. (1994). Determining the gaze
of faces in images.Image and Vision Computing, 12(10):639–647.

[Gelb, 1974] Gelb, A., editor (1974). Applied Optimal Estimation . MIT Press,
Cambridge, MA.

[Geman and Geman, 1984] Geman, S. and Geman, D. (1984). Stochastic re-
laxation, Gibbs distributions, and the Bayesian restoration of images. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 6(6):721–741.

[Ghahramani, 2004] Ghahramani, Z. (2004). Unsupervised learning. In Bous-
quet, O., Raetsch, G., and von Luxburg, U., editors,Advanced Lectures on
Machine Learning. Springer-Verlag.

[Gilks et al., 1995] Gilks, W., Richardson, S., and Spielgelhalter, D., editors
(1995). Markov Chain Monte Carlo in Practice . CRC.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An introduction
to variable and feature selection. J. Machine Learning Research, 3:1157–
1182.

141



[Haft et al., 1999] Haft, M., Hofmann, R., and Tresp, V. (1999). Mo del-
independent mean �eld theory as a local method for approximate propagation
of information. Network: Computation in Neural Systems, 10:93–105.

[Hager and Belhumeur, 1998] Hager, G. and Belhumeur, P. (1998).Ef�cient re-
gion tracking with parametric models of geometry and illumination. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 20(10):1025–1039.

[Hager and Toyama, 1996] Hager, G. and Toyama, K. (1996). XVision: Com-
bining image warping and geometric constraints for fast tracking. InProc. Eu-
ropean Conf. on Computer Vision, pages 507–517.

[Harris, 1992] Harris, C. (1992). Tracking with rigid models. In Blake , A. and
Yuille, A., editors, Active Vision. MIT Press, Cambridge, MA.

[Harris and Stephens, 1988] Harris, C. and Stephens, M. (1988). A combined
corner and edge detector. InProc. Fourth Alvey Vision Conference, pages
147–151, Manchester.

[Hartley and Zisserman, 2000] Hartley, R. and Zisserman, A. (2000). Multiple
View Geometry. Cambridge University Press.

[Hildreth, 1984] Hildreth, E. C. (1984). The measurement of visual motion.
MIT Press, Cambridge, MA.

[Horn, 1986] Horn, B. (1986). Computer Vision. MIT Press, Cambridge, MA.

[Horn and Schunck, 1981] Horn, B. and Schunck, G. (1981). Determining op-
tical �ow. Arti�cial Intelligence. , 17(1–3):185–203.

[Isard and Blake, 1996] Isard, M. and Blake, A. (1996). Contour tracking by
stochastic propagation of conditional density. In European Conf. Computer
Vision, pages 343–356, Cambridge, UK.

[Isard and MacCormick, 2001] Isard, M. and MacCormick, J. (200 1). BraM-
BLe: a Bayesian multiple-blob tracker. InProc. Int. Conf. on Computer Vi-
sion, pages 34–41.

[Jaakkola, 2000] Jaakkola, T. (2000). Tutorial on variational ap proximation
methods. InAdvanced Mean Field Methods: Theory and Practice. MIT Press.

[Jaakkola and Haussler, 1998] Jaakkola, T. and Haussler, D. (1998). Exploiting
generative models in discriminative classi�ers. InAdvances in Neural Infor-
mation Processing Systems.

[Jain, 1989] Jain, A. (1989). Fundamentals of Digital Image Processing. System
Sciences. Prentice-Hall, New Jersey.

142



[Jaynes, 2003] Jaynes, E. (2003).Probability Theory . Cambridge University
Press.

[Jebara and Jaakkola, 2000] Jebara, T. and Jaakkola, T. (2000). Feature selec-
tion and dualities in maximum entropy discrimination. In Proc. Conf. Uncer-
tainty in Arti�cial Intelligence .

[Jefferys and Berger, 1992] Jefferys, W. and Berger, J. (1992). Ockham's razor
and Bayesian analysis.American Scientist, 80:64–72.

[Jepson et al., 2001] Jepson, A., Fleet, D., and El-Maraghi, T. (2001). Robust
on-line appearance models for visual tracking. InProc. Conf. Computer Vi-
sion and Pattern Recognition, pages 415–422.

[John et al., 1994] John, G., Kohavi, R., and P�eger, K. (1994). Irrelevant fea-
tures and the subset selection problem. InProc. 11th Int. Conf. Machine
Learning, pages 121–129.

[Jollife, 1986] Jollife, I. (1986). Principal Components Analysis. Springer-
Verlag, New York.

[Jordan, 1998] Jordan, M., editor (1998). Learning in Graphical Models.
Kluwer.

[Jurie and Dhome, 2002] Jurie, F. and Dhome, M. (2002). Hyperplaneapproxi-
mation for template matching. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(7):996–1000.

[Kailath, 1967] Kailath, T. (1967). The divergence and bhattacharyya dis-
tance measures in signal selection.IEEE Trans. Communication Technology,
15(1):52–60.

[Kalman, 1963] Kalman, R. (1963). New methods in Wiener �ltering. I n
Proc. of the First Symposium on Engineering Applications of Random Func-
tion Theory and Probability . John Wiley and Sons, Inc.

[Kass et al., 1987] Kass, M., Witkin, A., and Terzopoulos, D. (1987). Snakes:
Active contour models. In Proc. Int. Conf. on Computer Vision , pages 259–
268.

[Kindermann and Snell, 1980] Kindermann, R. and Snell, J. (1980). Markov
Random Fields and Their Applications. American Mathematical Society.

[Kittler, 1978] Kittler, J. (1978). Feature set search algorithms. Pattern Recog-
nition and Signal Processing, pages 41–60.

[Kramers and Wannier, 1941] Kramers, H. and Wannier, G. (1941). Statistics
of the two-dimensional ferromagnet. Physical Review, 60:252–262.

143



[Law et al., 2003] Law, M., Jain, A., and Figueiredo, M. (2003). Feature selec-
tion in mixture-based clustering. In Advances in Neural Information Process-
ing Systems, volume 15.

[Lawrence and Jordan, 1995] Lawrence, N. and Jordan, M. (1995). Semi-
supervised learning via Gaussian processes. InAdvances in Neural Infor-
mation Processing Systems.

[Levin et al., 2003] Levin, A., Viola, P., and Weiss, Y. (2003). Unsupervised
improvement of visual detectors using co-training. InProc. Int. Conf. on
Computer Vision.

[Lewis, 1995] Lewis, J. (1995). Fast normalized cross-correlation.Vision Inter-
face.

[Li et al., 2002] Li, S., Zhu, L., Zhang, Z., Blake, A., Zhang, H., and Shu m, H.
(2002). Statistical learning of multi-view face detection. In Proc. European
Conf. on Computer Vision.

[Lienhart and Maydt, 2002] Lienhart, R. and Maydt, J. (2002). A n extended
set of Haar-like features for rapid object detection. In Proc. IEEE ICIP ,
volume 1, pages 900–903.

[Lowe, 1992] Lowe, D. (1992). Robust model-based motion tracking through
the integration of search and estimation. Int. J. Computer Vision, 8(2):113–
122.

[Lucas and Kanade, 1981] Lucas, B. and Kanade, T. (1981). An interactive im-
age registration technique with an application to stereo vision. InProc. of the
7th International Joint Conference on Arti�cial Intelligence , pages 674–679.

[MacCormick and Blake, 1998] MacCormick, J. and Blake, A. (1998). Spatial
dependence in the observation of visual contours. InProc. European Conf. on
Computer Vision, pages 765–781.

[MacKay, 1992] MacKay, D. (1992). Information-based objective functions for
active data selection.Neural Computation , 4(4):589–603.

[MacKay, 1995] MacKay, D. (1995). Probable networks and plausible
predictions-a review of practical Bayesian methods for supervised neural net-
works. Network: Computational Neural Systems, 6:469–505.

[MacKay, 1997] MacKay, D. (1997). Gaussian processes - a replacement for
supervised neural networks? InAdvances in Neural Information Processing
Systems, volume 9. Lecture notes for a tutorial at NIPS 1997.

144



[MacKay, 2003] MacKay, D. (2003). Information Theory, Inference and Learn-
ing Algorithms. Cambridge University Press.

[Marr, 1982] Marr, D. (1982). Vision. W.H. Freeman & co., San Francisco.

[McLachlan and Basford, 1988] McLachlan, G. and Basford, K. (1988). Mix-
ture Models. Marcel Dekker.

[Oren et al., 1997] Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., and
Poggio, T. (1997). Pedestrian detection using wavelet templates. In
Proc. Conf. Computer Vision and Pattern Recognition, pages 193–199.

[Osuna et al., 1997] Osuna, E., Freund, R., and Girosi, F. (1997). Training sup-
port vector machines: An application to face detection.Proc. Conf. Computer
Vision and Pattern Recognition, pages 130–136.

[Papageorgiou et al., 1998] Papageorgiou, C., Oren, M., and Poggio,T. (1998).
A general framework for object detection. In Proc. Int. Conf. on Computer
Vision.
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