SNPMiner Trials by Shray Alag


SNPMiner SNPMiner Trials (Home Page)


Report for Clinical Trial NCT04364451

Developed by Shray Alag, 2020.
SNP Clinical Trial Gene

Correlation of Polymorphisms of Lipoprotein Lipase (LpL) and Apolipoprotein E (Apo E) With Lipid Profile of Children With Acute Lymphoblastic Leukaemia During Therapy With L - Asparaginase

Haematological malignancies constitute the most common neoplastic disease in child population, with acute leukemia occupying the number one spot with a percentage of 32.8%. In children, leukaemia is primarily encountered in its acute form (97%) and in the majority of the cases it is presented as Acute Lymphoblastic Leukaemia - ALL (80%). Acute Non-Lymphoblastic Leukemia - ANLL is encountered less frequently (17%) and it includes Acute Myelogenous Leukaemia - AML (15%) and some other rare forms (2%), while the remainder 3% corresponds to chronic leukaemia. L-Asparaginase (L-ASP) is a fundamental component during the loading phase with regards to achieving remission of the disease and, likewise, during the maintenance phase with the intention of establishing that remission in both children and adults suffering from ALL. The cytotoxic effect of the exogenous administration of Asparaginase is caused by the depletion of the reserve of asparagine in the blood. Asparaginase (ASP) acts as a catalyst for the hydrolysis of asparagine to aspartic acid and ammonia. Asparagine is vital for protein and cell synthesis and, therefore, for their survival. The normal cells of the human body have the ability to produce asparagine from aspartic acid, with the assistance of the enzyme asparagine synthetase. However, the neoplastic cells either lack the enzyme completely or contain minute amounts of it resulting in their inability to synthesize asparagine de novo. The survival of these cells and their ability to synthesize proteins depends entirely on receiving asparagine from the blood. Thus, the administration of ASP leads to the inhibition of DNA, RNA and protein synthesis which, in turn, results in the apoptosis of these cells. Despite L-ASP's paramount importance in the chemotherapy treatment of leukaemia, it is responsible for a plethora of toxic adverse effects that sometimes even require the termination of its administration. A critical adverse event of ASP is a disorder in the metabolism of lipids. Specifically, it appears that the activation of the endogenous pathway that produces triglycerides through hepatic synthesis leads to hypertriglyceridaemia. The liver is capable of synthesizing VLDL (Very Low Density Lipoproteins) that are rich in triglycerides. Utilising the effect of the enzyme Lipoprotein Lipase (LpL), located on the vascular endothelium, the triglycerides detach from the VLDL causing the latter to transform into IDL (Intermediate Density Lipoproteins) and afterwards into LDL (Low Density Lipoproteins). The triglycerides are later extracted from the blood circulatory system and stored in the adipose tissue, while the LDL particles connect with tissue receptors or macrophage receptors. The final products of the breakdown (coming from the peripheral hydrolysis of triglycerides with the help of LpL) of chylomicrons, VLDL, the remnants of lipoproteins, will eventually be removed by hepatic receptors. Apolipoprotein E (Apo-E) plays an important role in this procedure, it binds these remnants in the presence of LpL and hepatic lipase. Along the duration of the treatment with ASP, reduced LpL functionality is recorded, resulting in impaired plasma clearance of triglycerides and an increase in their levels, while L-ASP appears to cause disorders in other lipid factors, such as cholesterol, HDL and apolipoprotein A. Disorders of lipid metabolism have been found to be associated with polymorphisms of the LpL and Apo-E genes, sometimes with positive and sometimes with negative effects on the lipid profile and more likely participation in cardiovascular complications. The current study will evaluate, the lipid profile of children with ALL, the effect of L-ASP on the lipid profile of the aforementioned patients, as well as the correlation between the polymorphisms of Lipoprotein Lipase (LpL) and Apolipoprotein E (ApoE) with the values of the lipids during chemotherapy. Both the universal and national bibliography that pertain to the effect of ASP on the potency of LpL and App E and to the values of the lipids in children that suffer from ALL during chemotherapy with L-ASP is limited, while there exists no bibliographic reference correlating the genetic background to LpL and Apo E and the relation of the lipid profile. The current study will examine for the first time gene polymorphisms of LpL and Apo E in children with ALL during treatment with ASP.

NCT04364451 Acute Lymphoblastic Leukemia
MeSH:Leukemia Precursor Cell Lymphoblastic Leukemia-Lymphoma Leukemia, Lymphoid
HPO:Leukemia Lymphoid leukemia

1 Interventions

Name: Correlation of Polymorphisms of Lipoprotein Lipase (LpL) and Apolipoprotein E (Apo E) With Lipid Profile of Children With Acute Lymphoblastic Leukaemia During Therapy With L - Asparaginase

Description: Children that meet all the inclusion criteria for this study will be examined and undergo treatment with asparaginase (Experimental group) and will be compared to the corresponding teams of healthy children and children that have ailed and are off chemotherapy for at least 6 months (Control group).
Type: Other


Primary Outcomes

Description: The genotypes of children with ALL will be recorded and it might constitute an early indicative factor concerning the treatment's outcome. Thusly, essential information will be extracted about the possible contribution of genotype of children under treatment with L-ASP to the lipid disorder as shown in the lab results, to better monitoring of each unique phase of the therapy for clinical occurrences and complication and to faster therapeutic intervention.

Measure: The correlation of lipoprotein lipase (LpL) and apolipoprotein E (apoE) polymorphisms with lipid values during the chemotherapy protocol.

Time: Baseline

Description: During the disease's diagnosis, the lipid profile of the patients' will be determined by measuring the changes of the following parameters compared to the baseline measures: cholesterol (mg/dl), triglycerides(mg/dl), HDL-cholesterol(mg/dl), LDL-cholesterol(mg/dl), apolipoprotein A1(mg/dl), apolipoprotein B100(g/L), lipoprotein α [Lp(α)](nmol/l), glucose (mg/dl), SGOT (U/I), SGPT (U/I), TSH (mU/l) FT4 (pmol/l) amylase (U/I) and lipase (U/I).

Measure: Assessment of the effect of asparaginase by measuring the changes induced in the lipid profile of children with acute lymphoblastic leukaemia.

Time: Baseline and days 11, 15, 24, 33 in loading phase and days 8, 16, 21 in maintenance phase

Time Perspective: Prospective

Case-Control


There is one SNP

SNPs


1 N291S

The mutation known as polymorphism N291S is present in 2-5% of the general population and its existence is associated with decreased functionality of LpL and an imbalance in the VLDL metabolism [increase of triglycerides, decrease of HDL (High Density Lipoproteins)]. --- N291S ---



HPO Nodes


HPO: